Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_bootstrapplot.wasp
Title produced by softwareBlocked Bootstrap Plot - Central Tendency
Date of computationThu, 22 Nov 2012 14:33:45 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Nov/22/t1353612859az26yqi3um8y86a.htm/, Retrieved Mon, 29 Apr 2024 09:19:33 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=191904, Retrieved Mon, 29 Apr 2024 09:19:33 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact169
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [Ontvangsten geïnd...] [2012-10-07 17:57:08] [7e0b1fc7e94581fb4f84255f8aa2fbc5]
- RMP   [Central Tendency] [Centrummaten ontv...] [2012-10-11 15:49:27] [7e0b1fc7e94581fb4f84255f8aa2fbc5]
- R  D    [Central Tendency] [Centrummaten ontv...] [2012-10-11 15:56:24] [7e0b1fc7e94581fb4f84255f8aa2fbc5]
- RMP       [Mean Plot] [Ontvangsten schat...] [2012-10-18 14:12:08] [7e0b1fc7e94581fb4f84255f8aa2fbc5]
- RMP         [(Partial) Autocorrelation Function] [schatkist autocor...] [2012-11-12 11:07:31] [7e0b1fc7e94581fb4f84255f8aa2fbc5]
- RMP           [Blocked Bootstrap Plot - Central Tendency] [density plot rek ...] [2012-11-22 19:31:20] [7e0b1fc7e94581fb4f84255f8aa2fbc5]
- R P               [Blocked Bootstrap Plot - Central Tendency] [density plot rek ...] [2012-11-22 19:33:45] [1fc6f30e88849aa85fd62e34f240f44c] [Current]
-   P                 [Blocked Bootstrap Plot - Central Tendency] [density plot rek ...] [2012-11-22 19:35:27] [7e0b1fc7e94581fb4f84255f8aa2fbc5]
- RMP                   [Classical Decomposition] [Classical Deompos...] [2012-12-06 18:42:10] [74be16979710d4c4e7c6647856088456]
- R P                     [Classical Decomposition] [Classical Deompos...] [2012-12-06 18:44:34] [74be16979710d4c4e7c6647856088456]
- RMP                       [Exponential Smoothing] [Exponential Smoot...] [2013-01-11 16:16:59] [7e0b1fc7e94581fb4f84255f8aa2fbc5]
- RMP                 [Variability] [spreidingsmaten s...] [2012-11-30 11:19:52] [7e0b1fc7e94581fb4f84255f8aa2fbc5]
- RMP                 [Standard Deviation Plot] [spreidingsgrafiek...] [2012-11-30 11:20:44] [7e0b1fc7e94581fb4f84255f8aa2fbc5]
- RMP                 [Standard Deviation-Mean Plot] [spreidings- en ge...] [2012-11-30 11:21:47] [7e0b1fc7e94581fb4f84255f8aa2fbc5]
Feedback Forum

Post a new message
Dataseries X:
6848
5772
5251
11232
5908
6812
9962
6155
5673
7985
5780
11999
6973
5817
5844
11178
5533
6870
9521
5363
6031
9245
5621
11802
8364
6286
5071
10773
5821
7794
10636
6405
5811
8981
6228
11950
7523
6067
4825
12162
6989
8012
10893
6647
5938
9005
6262
12022
7683
6004
4724
10343
6604
7241
9331
6418
7094
10340
6814
12003
7481
5452
6380
11425
5905
8536
10785
6672
7293
9809
5658
12364
8078
5269
7787
11729
6236
8576
11216
6814
6019
9351
5464
12518




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 6 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=191904&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]6 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=191904&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=191904&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Estimation Results of Blocked Bootstrap
statisticQ1EstimateQ3S.D.IQR
mean7780.48809523817869.714285714297933.65178571429102.895359555525153.16369047619
median687069817167.5209.28012237935297.5
midrange854486218671.587.3537209083429127.5

\begin{tabular}{lllllllll}
\hline
Estimation Results of Blocked Bootstrap \tabularnewline
statistic & Q1 & Estimate & Q3 & S.D. & IQR \tabularnewline
mean & 7780.4880952381 & 7869.71428571429 & 7933.65178571429 & 102.895359555525 & 153.16369047619 \tabularnewline
median & 6870 & 6981 & 7167.5 & 209.28012237935 & 297.5 \tabularnewline
midrange & 8544 & 8621 & 8671.5 & 87.3537209083429 & 127.5 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=191904&T=1

[TABLE]
[ROW][C]Estimation Results of Blocked Bootstrap[/C][/ROW]
[ROW][C]statistic[/C][C]Q1[/C][C]Estimate[/C][C]Q3[/C][C]S.D.[/C][C]IQR[/C][/ROW]
[ROW][C]mean[/C][C]7780.4880952381[/C][C]7869.71428571429[/C][C]7933.65178571429[/C][C]102.895359555525[/C][C]153.16369047619[/C][/ROW]
[ROW][C]median[/C][C]6870[/C][C]6981[/C][C]7167.5[/C][C]209.28012237935[/C][C]297.5[/C][/ROW]
[ROW][C]midrange[/C][C]8544[/C][C]8621[/C][C]8671.5[/C][C]87.3537209083429[/C][C]127.5[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=191904&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=191904&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimation Results of Blocked Bootstrap
statisticQ1EstimateQ3S.D.IQR
mean7780.48809523817869.714285714297933.65178571429102.895359555525153.16369047619
median687069817167.5209.28012237935297.5
midrange854486218671.587.3537209083429127.5



Parameters (Session):
par1 = 200 ; par2 = 12 ;
Parameters (R input):
par1 = 200 ; par2 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
if (par1 < 10) par1 = 10
if (par1 > 5000) par1 = 5000
if (par2 < 3) par2 = 3
if (par2 > length(x)) par2 = length(x)
library(lattice)
library(boot)
boot.stat <- function(s)
{
s.mean <- mean(s)
s.median <- median(s)
s.midrange <- (max(s) + min(s)) / 2
c(s.mean, s.median, s.midrange)
}
(r <- tsboot(x, boot.stat, R=par1, l=12, sim='fixed'))
bitmap(file='plot1.png')
plot(r$t[,1],type='p',ylab='simulated values',main='Simulation of Mean')
grid()
dev.off()
bitmap(file='plot2.png')
plot(r$t[,2],type='p',ylab='simulated values',main='Simulation of Median')
grid()
dev.off()
bitmap(file='plot3.png')
plot(r$t[,3],type='p',ylab='simulated values',main='Simulation of Midrange')
grid()
dev.off()
bitmap(file='plot4.png')
densityplot(~r$t[,1],col='black',main='Density Plot',xlab='mean')
dev.off()
bitmap(file='plot5.png')
densityplot(~r$t[,2],col='black',main='Density Plot',xlab='median')
dev.off()
bitmap(file='plot6.png')
densityplot(~r$t[,3],col='black',main='Density Plot',xlab='midrange')
dev.off()
z <- data.frame(cbind(r$t[,1],r$t[,2],r$t[,3]))
colnames(z) <- list('mean','median','midrange')
bitmap(file='plot7.png')
boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency')
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimation Results of Blocked Bootstrap',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'statistic',header=TRUE)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,'Estimate',header=TRUE)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'IQR',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
q1 <- quantile(r$t[,1],0.25)[[1]]
q3 <- quantile(r$t[,1],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[1])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,1])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
q1 <- quantile(r$t[,2],0.25)[[1]]
q3 <- quantile(r$t[,2],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[2])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,2])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'midrange',header=TRUE)
q1 <- quantile(r$t[,3],0.25)[[1]]
q3 <- quantile(r$t[,3],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[3])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,3])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')