## Free Statistics

of Irreproducible Research!

Author's title
Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationThu, 12 Nov 2009 15:03:14 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/12/t1258034663fagi4z9rmty7nh6.htm/, Retrieved Wed, 11 Sep 2024 07:11:20 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=55996, Retrieved Wed, 11 Sep 2024 07:11:20 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact762
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD    [Multiple Regression] [Seatbelt] [2009-11-12 14:03:14] [d76b387543b13b5e3afd8ff9e5fdc89f] [Current]
-    D      [Multiple Regression] [] [2009-11-14 11:27:12] [e2a6b1b31bd881219e1879835b4c60d0]
-             [Multiple Regression] [Regressiemodel me...] [2009-11-14 11:29:26] [e2a6b1b31bd881219e1879835b4c60d0]
-    D      [Multiple Regression] [Multiple regressi...] [2009-11-14 12:18:51] [d46757a0a8c9b00540ab7e7e0c34bfc4]
-   PD        [Multiple Regression] [fixed seasonal ef...] [2009-11-21 00:06:45] [3dd791303389e75e672968b227170a72]
-    D        [Multiple Regression] [Multiple Regressi...] [2009-12-20 12:20:57] [73863f7f907331e734eff34b7de6fc83]
-    D      [Multiple Regression] [WS 7 2] [2009-11-14 13:20:47] [6e4e01d7eb22a9f33d58ebb35753a195]
- RMPD      [] [] [-0001-11-30 00:00:00] [ca7a691f2b8ebdc7b81799394c1aa70d]
-    D      [Multiple Regression] [] [2009-11-17 18:34:34] [96d96f181930b548ce74f8c3116c4873]
-    D      [Multiple Regression] [workshop 7 bereke...] [2009-11-17 18:53:04] [eaf42bcf5162b5692bb3c7f9d4636222]
-    D      [Multiple Regression] [] [2009-11-18 12:06:02] [6ba840d2473f9a55d7b3e13093db69b8]
-    D        [Multiple Regression] [] [2009-12-15 14:57:54] [6ba840d2473f9a55d7b3e13093db69b8]
-   PD          [Multiple Regression] [] [2009-12-21 11:18:14] [6ba840d2473f9a55d7b3e13093db69b8]
-    D          [Multiple Regression] [] [2009-12-21 11:50:01] [6ba840d2473f9a55d7b3e13093db69b8]
-    D      [Multiple Regression] [] [2009-11-18 14:23:39] [ee35698a38947a6c6c039b1e3deafc05]
-    D      [Multiple Regression] [] [2009-11-18 14:33:37] [94b62ad0aa784646217b93aa983cee13]
-    D      [Multiple Regression] [SHW WS7 - Fixed S...] [2009-11-18 14:34:12] [253127ae8da904b75450fbd69fe4eb21]
-    D      [Multiple Regression] [] [2009-11-18 14:44:06] [7e8bf94ac9834384fa22d029eca19fa6]
-    D      [Multiple Regression] [WS7 Include dummies] [2009-11-18 15:42:15] [445b292c553470d9fed8bc2796fd3a00]
F    D      [Multiple Regression] [] [2009-11-18 16:31:11] [90f6d58d515a4caed6fb4b8be4e11eaa]
-   PD      [Multiple Regression] [] [2009-11-18 17:10:28] [7369a9baefff1ba9d2171738b4c9faa6]
-    D      [Multiple Regression] [] [2009-11-18 17:28:08] [e48499dbc39d7bbb032694d069ad98a5]
-    D      [Multiple Regression] [SHw WS7] [2009-11-18 17:51:18] [af2352cd9a951bedd08ebe247d0de1a2]
-    D      [Multiple Regression] [ws7_2] [2009-11-18 17:59:26] [8b1aef4e7013bd33fbc2a5833375c5f5]
-             [Multiple Regression] [] [2009-11-19 13:59:48] [08fc5c07292c885b941f0cb515ce13f3]
-    D          [Multiple Regression] [] [2009-11-20 16:55:24] [4d62210f0915d3a20cbf115865da7cd4]
- R PD        [Multiple Regression] [Multiple_Regressi...] [2009-12-29 14:44:45] [2663058f2a5dda519058ac6b2228468f]
- R PD        [Multiple Regression] [Multiple_Regressi...] [2009-12-29 14:48:15] [2663058f2a5dda519058ac6b2228468f]
-    D        [Multiple Regression] [Paper Multiple re...] [2010-12-04 13:03:59] [814f53995537cd15c528d8efbf1cf544]
-   PD      [Multiple Regression] [] [2009-11-18 18:37:15] [7369a9baefff1ba9d2171738b4c9faa6]
-    D      [Multiple Regression] [] [2009-11-18 18:48:31] [539cd8be0bf6326526ff2d448281a204]
-    D      [Multiple Regression] [] [2009-11-18 18:51:31] [539cd8be0bf6326526ff2d448281a204]
-   PD      [Multiple Regression] [Grondstofprijsind...] [2009-11-18 19:41:50] [016baa4dcb32aa0a4ae1d7f97a4b0730]
-   PD        [Multiple Regression] [] [2009-11-21 14:55:39] [6998f38352c0f6bc3cf32a17448703fc]
F R  D      [Multiple Regression] [Model 2] [2009-11-18 20:35:45] [1f74ef2f756548f1f3a7b6136ea56d7f]
-    D        [Multiple Regression] [model 2 ws 7] [2009-11-20 14:15:33] [134dc66689e3d457a82860db6471d419]
-   PD        [Multiple Regression] [model 3 ws 7] [2009-11-20 14:17:31] [134dc66689e3d457a82860db6471d419]
- R PD      [Multiple Regression] [Model 3] [2009-11-18 21:10:22] [1f74ef2f756548f1f3a7b6136ea56d7f]
-   PD      [Multiple Regression] [multiple regressi...] [2009-11-18 21:40:19] [74be16979710d4c4e7c6647856088456]
-    D      [Multiple Regression] [M2] [2009-11-19 07:34:35] [3b0db66ac8145b1be856a517e2900332]
-    D      [Multiple Regression] [Multivariate regr...] [2009-11-19 08:45:43] [21324e9cdf3569788a3d630236984d87]
-    D        [Multiple Regression] [] [2010-12-07 12:28:40] [f47feae0308dca73181bb669fbad1c56]
- R             [Multiple Regression] [] [2011-11-26 18:16:37] [74be16979710d4c4e7c6647856088456]
- R P             [Multiple Regression] [] [2011-11-27 16:44:08] [3931071255a6f7f4a767409781cc5f7d]
- R P             [Multiple Regression] [] [2011-11-27 16:47:29] [3931071255a6f7f4a767409781cc5f7d]
-    D        [Multiple Regression] [] [2010-12-21 20:19:59] [f47feae0308dca73181bb669fbad1c56]
-   PD        [Multiple Regression] [] [2010-12-21 20:26:33] [f47feae0308dca73181bb669fbad1c56]
-   PD        [Multiple Regression] [] [2010-12-21 20:36:54] [f47feae0308dca73181bb669fbad1c56]
-    D          [Multiple Regression] [] [2010-12-28 18:23:34] [f47feae0308dca73181bb669fbad1c56]

[Truncated]
Feedback Forum

Post a new message
Dataseries X:
1687	0
1508	0
1507	0
1385	0
1632	0
1511	0
1559	0
1630	0
1579	0
1653	0
2152	0
2148	0
1752	0
1765	0
1717	0
1558	0
1575	0
1520	0
1805	0
1800	0
1719	0
2008	0
2242	0
2478	0
2030	0
1655	0
1693	0
1623	0
1805	0
1746	0
1795	0
1926	0
1619	0
1992	0
2233	0
2192	0
2080	0
1768	0
1835	0
1569	0
1976	0
1853	0
1965	0
1689	0
1778	0
1976	0
2397	0
2654	0
2097	0
1963	0
1677	0
1941	0
2003	0
1813	0
2012	0
1912	0
2084	0
2080	0
2118	0
2150	0
1608	0
1503	0
1548	0
1382	0
1731	0
1798	0
1779	0
1887	0
2004	0
2077	0
2092	0
2051	0
1577	0
1356	0
1652	0
1382	0
1519	0
1421	0
1442	0
1543	0
1656	0
1561	0
1905	0
2199	0
1473	0
1655	0
1407	0
1395	0
1530	0
1309	0
1526	0
1327	0
1627	0
1748	0
1958	0
2274	0
1648	0
1401	0
1411	0
1403	0
1394	0
1520	0
1528	0
1643	0
1515	0
1685	0
2000	0
2215	0
1956	0
1462	0
1563	0
1459	0
1446	0
1622	0
1657	0
1638	0
1643	0
1683	0
2050	0
2262	0
1813	0
1445	0
1762	0
1461	0
1556	0
1431	0
1427	0
1554	0
1645	0
1653	0
2016	0
2207	0
1665	0
1361	0
1506	0
1360	0
1453	0
1522	0
1460	0
1552	0
1548	0
1827	0
1737	0
1941	0
1474	0
1458	0
1542	0
1404	0
1522	0
1385	0
1641	0
1510	0
1681	0
1938	0
1868	0
1726	0
1456	0
1445	0
1456	0
1365	0
1487	0
1558	0
1488	0
1684	0
1594	0
1850	0
1998	0
2079	0
1494	0
1057	1
1218	1
1168	1
1236	1
1076	1
1174	1
1139	1
1427	1
1487	1
1483	1
1513	1
1357	1
1165	1
1282	1
1110	1
1297	1
1185	1
1222	1
1284	1
1444	1
1575	1
1737	1
1763	1

 Summary of computational transaction Raw Input view raw input (R code) Raw Output view raw output of R engine Computing time 8 seconds R Server 'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 8 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=55996&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]8 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=55996&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=55996&T=0

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Summary of computational transaction Raw Input view raw input (R code) Raw Output view raw output of R engine Computing time 8 seconds R Server 'Gwilym Jenkins' @ 72.249.127.135

 Multiple Linear Regression - Estimated Regression Equation Y[t] = + 2165.22639318886 -395.811145510835X[t] -442.550696594425M1[t] -617.812500000002M2[t] -567.25M3[t] -680.4375M4[t] -543.125000000001M5[t] -598.874999999998M6[t] -523.250000000001M7[t] -508.375M8[t] -455.5625M9[t] -316.187500000000M10[t] -116.625000000000M11[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  2165.22639318886 -395.811145510835X[t] -442.550696594425M1[t] -617.812500000002M2[t] -567.25M3[t] -680.4375M4[t] -543.125000000001M5[t] -598.874999999998M6[t] -523.250000000001M7[t] -508.375M8[t] -455.5625M9[t] -316.187500000000M10[t] -116.625000000000M11[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=55996&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  2165.22639318886 -395.811145510835X[t] -442.550696594425M1[t] -617.812500000002M2[t] -567.25M3[t] -680.4375M4[t] -543.125000000001M5[t] -598.874999999998M6[t] -523.250000000001M7[t] -508.375M8[t] -455.5625M9[t] -316.187500000000M10[t] -116.625000000000M11[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=55996&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=55996&T=1

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Multiple Linear Regression - Estimated Regression Equation Y[t] = + 2165.22639318886 -395.811145510835X[t] -442.550696594425M1[t] -617.812500000002M2[t] -567.25M3[t] -680.4375M4[t] -543.125000000001M5[t] -598.874999999998M6[t] -523.250000000001M7[t] -508.375M8[t] -455.5625M9[t] -316.187500000000M10[t] -116.625000000000M11[t] + e[t]

 Multiple Linear Regression - Ordinary Least Squares Variable Parameter S.D. T-STATH0: parameter = 0 2-tail p-value 1-tail p-value (Intercept) 2165.22639318886 43.631881 49.6249 0 0 X -395.811145510835 38.605577 -10.2527 0 0 M1 -442.550696594425 61.373686 -7.2108 0 0 M2 -617.812500000002 61.326238 -10.0742 0 0 M3 -567.25 61.326238 -9.2497 0 0 M4 -680.4375 61.326238 -11.0954 0 0 M5 -543.125000000001 61.326238 -8.8563 0 0 M6 -598.874999999998 61.326238 -9.7654 0 0 M7 -523.250000000001 61.326238 -8.5322 0 0 M8 -508.375 61.326238 -8.2897 0 0 M9 -455.5625 61.326238 -7.4285 0 0 M10 -316.187500000000 61.326238 -5.1558 1e-06 0 M11 -116.625000000000 61.326238 -1.9017 0.058815 0.029407

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 2165.22639318886 & 43.631881 & 49.6249 & 0 & 0 \tabularnewline
X & -395.811145510835 & 38.605577 & -10.2527 & 0 & 0 \tabularnewline
M1 & -442.550696594425 & 61.373686 & -7.2108 & 0 & 0 \tabularnewline
M2 & -617.812500000002 & 61.326238 & -10.0742 & 0 & 0 \tabularnewline
M3 & -567.25 & 61.326238 & -9.2497 & 0 & 0 \tabularnewline
M4 & -680.4375 & 61.326238 & -11.0954 & 0 & 0 \tabularnewline
M5 & -543.125000000001 & 61.326238 & -8.8563 & 0 & 0 \tabularnewline
M6 & -598.874999999998 & 61.326238 & -9.7654 & 0 & 0 \tabularnewline
M7 & -523.250000000001 & 61.326238 & -8.5322 & 0 & 0 \tabularnewline
M8 & -508.375 & 61.326238 & -8.2897 & 0 & 0 \tabularnewline
M9 & -455.5625 & 61.326238 & -7.4285 & 0 & 0 \tabularnewline
M10 & -316.187500000000 & 61.326238 & -5.1558 & 1e-06 & 0 \tabularnewline
M11 & -116.625000000000 & 61.326238 & -1.9017 & 0.058815 & 0.029407 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=55996&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]2165.22639318886[/C][C]43.631881[/C][C]49.6249[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]X[/C][C]-395.811145510835[/C][C]38.605577[/C][C]-10.2527[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M1[/C][C]-442.550696594425[/C][C]61.373686[/C][C]-7.2108[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M2[/C][C]-617.812500000002[/C][C]61.326238[/C][C]-10.0742[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M3[/C][C]-567.25[/C][C]61.326238[/C][C]-9.2497[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M4[/C][C]-680.4375[/C][C]61.326238[/C][C]-11.0954[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M5[/C][C]-543.125000000001[/C][C]61.326238[/C][C]-8.8563[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M6[/C][C]-598.874999999998[/C][C]61.326238[/C][C]-9.7654[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M7[/C][C]-523.250000000001[/C][C]61.326238[/C][C]-8.5322[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M8[/C][C]-508.375[/C][C]61.326238[/C][C]-8.2897[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M9[/C][C]-455.5625[/C][C]61.326238[/C][C]-7.4285[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M10[/C][C]-316.187500000000[/C][C]61.326238[/C][C]-5.1558[/C][C]1e-06[/C][C]0[/C][/ROW]
[ROW][C]M11[/C][C]-116.625000000000[/C][C]61.326238[/C][C]-1.9017[/C][C]0.058815[/C][C]0.029407[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=55996&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=55996&T=2

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Multiple Linear Regression - Ordinary Least Squares Variable Parameter S.D. T-STATH0: parameter = 0 2-tail p-value 1-tail p-value (Intercept) 2165.22639318886 43.631881 49.6249 0 0 X -395.811145510835 38.605577 -10.2527 0 0 M1 -442.550696594425 61.373686 -7.2108 0 0 M2 -617.812500000002 61.326238 -10.0742 0 0 M3 -567.25 61.326238 -9.2497 0 0 M4 -680.4375 61.326238 -11.0954 0 0 M5 -543.125000000001 61.326238 -8.8563 0 0 M6 -598.874999999998 61.326238 -9.7654 0 0 M7 -523.250000000001 61.326238 -8.5322 0 0 M8 -508.375 61.326238 -8.2897 0 0 M9 -455.5625 61.326238 -7.4285 0 0 M10 -316.187500000000 61.326238 -5.1558 1e-06 0 M11 -116.625000000000 61.326238 -1.9017 0.058815 0.029407

 Multiple Linear Regression - Regression Statistics Multiple R 0.814751285561214 R-squared 0.663819657323651 Adjusted R-squared 0.641282427647024 F-TEST (value) 29.4543591580865 F-TEST (DF numerator) 12 F-TEST (DF denominator) 179 p-value 0 Multiple Linear Regression - Residual Statistics Residual Standard Deviation 173.456794605829 Sum Squared Residuals 5385619.46749226

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.814751285561214 \tabularnewline
R-squared & 0.663819657323651 \tabularnewline
F-TEST (value) & 29.4543591580865 \tabularnewline
F-TEST (DF numerator) & 12 \tabularnewline
F-TEST (DF denominator) & 179 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 173.456794605829 \tabularnewline
Sum Squared Residuals & 5385619.46749226 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=55996&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.814751285561214[/C][/ROW]
[ROW][C]R-squared[/C][C]0.663819657323651[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]29.4543591580865[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]12[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]179[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]173.456794605829[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]5385619.46749226[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=55996&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=55996&T=3

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Multiple Linear Regression - Regression Statistics Multiple R 0.814751285561214 R-squared 0.663819657323651 Adjusted R-squared 0.641282427647024 F-TEST (value) 29.4543591580865 F-TEST (DF numerator) 12 F-TEST (DF denominator) 179 p-value 0 Multiple Linear Regression - Residual Statistics Residual Standard Deviation 173.456794605829 Sum Squared Residuals 5385619.46749226

 Multiple Linear Regression - Actuals, Interpolation, and Residuals Time or Index Actuals InterpolationForecast ResidualsPrediction Error 1 1687 1722.67569659441 -35.6756965944053 2 1508 1547.41389318886 -39.413893188857 3 1507 1597.97639318886 -90.9763931888592 4 1385 1484.78889318885 -99.7888931888466 5 1632 1622.10139318886 9.8986068111442 6 1511 1566.35139318886 -55.3513931888552 7 1559 1641.97639318885 -82.9763931888532 8 1630 1656.85139318886 -26.8513931888614 9 1579 1709.66389318885 -130.663893188851 10 1653 1849.03889318885 -196.038893188855 11 2152 2048.60139318886 103.398606811145 12 2148 2165.22639318885 -17.226393188854 13 1752 1722.67569659443 29.3243034055713 14 1765 1547.41389318885 217.586106811146 15 1717 1597.97639318885 119.023606811146 16 1558 1484.78889318885 73.211106811145 17 1575 1622.10139318885 -47.1013931888544 18 1520 1566.35139318885 -46.3513931888545 19 1805 1641.97639318885 163.023606811145 20 1800 1656.85139318885 143.148606811146 21 1719 1709.66389318885 9.33610681114532 22 2008 1849.03889318885 158.961106811145 23 2242 2048.60139318885 193.398606811146 24 2478 2165.22639318885 312.773606811145 25 2030 1722.67569659443 307.324303405571 26 1655 1547.41389318885 107.586106811146 27 1693 1597.97639318885 95.0236068111458 28 1623 1484.78889318885 138.211106811145 29 1805 1622.10139318885 182.898606811146 30 1746 1566.35139318885 179.648606811145 31 1795 1641.97639318885 153.023606811145 32 1926 1656.85139318885 269.148606811146 33 1619 1709.66389318885 -90.6638931888547 34 1992 1849.03889318885 142.961106811145 35 2233 2048.60139318885 184.398606811146 36 2192 2165.22639318885 26.7736068111454 37 2080 1722.67569659443 357.324303405571 38 1768 1547.41389318885 220.586106811146 39 1835 1597.97639318885 237.023606811146 40 1569 1484.78889318885 84.211106811145 41 1976 1622.10139318885 353.898606811146 42 1853 1566.35139318885 286.648606811145 43 1965 1641.97639318885 323.023606811145 44 1689 1656.85139318885 32.148606811146 45 1778 1709.66389318885 68.3361068111453 46 1976 1849.03889318885 126.961106811145 47 2397 2048.60139318885 348.398606811146 48 2654 2165.22639318885 488.773606811145 49 2097 1722.67569659443 374.324303405571 50 1963 1547.41389318885 415.586106811145 51 1677 1597.97639318885 79.0236068111458 52 1941 1484.78889318886 456.211106811145 53 2003 1622.10139318885 380.898606811146 54 1813 1566.35139318885 246.648606811145 55 2012 1641.97639318885 370.023606811145 56 1912 1656.85139318885 255.148606811146 57 2084 1709.66389318885 374.336106811145 58 2080 1849.03889318885 230.961106811145 59 2118 2048.60139318885 69.3986068111455 60 2150 2165.22639318885 -15.2263931888546 61 1608 1722.67569659443 -114.675696594429 62 1503 1547.41389318885 -44.4138931888543 63 1548 1597.97639318885 -49.9763931888542 64 1382 1484.78889318885 -102.788893188855 65 1731 1622.10139318885 108.898606811146 66 1798 1566.35139318885 231.648606811145 67 1779 1641.97639318885 137.023606811145 68 1887 1656.85139318885 230.148606811146 69 2004 1709.66389318885 294.336106811145 70 2077 1849.03889318885 227.961106811145 71 2092 2048.60139318885 43.3986068111455 72 2051 2165.22639318885 -114.226393188855 73 1577 1722.67569659443 -145.675696594429 74 1356 1547.41389318885 -191.413893188854 75 1652 1597.97639318885 54.0236068111458 76 1382 1484.78889318885 -102.788893188855 77 1519 1622.10139318885 -103.101393188854 78 1421 1566.35139318885 -145.351393188855 79 1442 1641.97639318885 -199.976393188855 80 1543 1656.85139318885 -113.851393188854 81 1656 1709.66389318885 -53.6638931888547 82 1561 1849.03889318885 -288.038893188855 83 1905 2048.60139318885 -143.601393188855 84 2199 2165.22639318885 33.7736068111454 85 1473 1722.67569659443 -249.675696594429 86 1655 1547.41389318885 107.586106811146 87 1407 1597.97639318885 -190.976393188854 88 1395 1484.78889318885 -89.788893188855 89 1530 1622.10139318885 -92.1013931888544 90 1309 1566.35139318885 -257.351393188855 91 1526 1641.97639318885 -115.976393188855 92 1327 1656.85139318885 -329.851393188854 93 1627 1709.66389318885 -82.6638931888547 94 1748 1849.03889318885 -101.038893188855 95 1958 2048.60139318885 -90.6013931888545 96 2274 2165.22639318885 108.773606811145 97 1648 1722.67569659443 -74.6756965944287 98 1401 1547.41389318885 -146.413893188854 99 1411 1597.97639318885 -186.976393188854 100 1403 1484.78889318885 -81.788893188855 101 1394 1622.10139318885 -228.101393188854 102 1520 1566.35139318885 -46.3513931888545 103 1528 1641.97639318885 -113.976393188855 104 1643 1656.85139318885 -13.851393188854 105 1515 1709.66389318885 -194.663893188855 106 1685 1849.03889318885 -164.038893188855 107 2000 2048.60139318885 -48.6013931888545 108 2215 2165.22639318885 49.7736068111454 109 1956 1722.67569659443 233.324303405571 110 1462 1547.41389318885 -85.4138931888543 111 1563 1597.97639318885 -34.9763931888542 112 1459 1484.78889318885 -25.7888931888550 113 1446 1622.10139318885 -176.101393188854 114 1622 1566.35139318885 55.6486068111455 115 1657 1641.97639318885 15.0236068111454 116 1638 1656.85139318885 -18.851393188854 117 1643 1709.66389318885 -66.6638931888547 118 1683 1849.03889318885 -166.038893188855 119 2050 2048.60139318885 1.39860681114553 120 2262 2165.22639318885 96.7736068111454 121 1813 1722.67569659443 90.3243034055712 122 1445 1547.41389318885 -102.413893188854 123 1762 1597.97639318885 164.023606811146 124 1461 1484.78889318885 -23.7888931888550 125 1556 1622.10139318885 -66.1013931888544 126 1431 1566.35139318885 -135.351393188855 127 1427 1641.97639318885 -214.976393188855 128 1554 1656.85139318885 -102.851393188854 129 1645 1709.66389318885 -64.6638931888547 130 1653 1849.03889318885 -196.038893188855 131 2016 2048.60139318885 -32.6013931888545 132 2207 2165.22639318885 41.7736068111454 133 1665 1722.67569659443 -57.6756965944287 134 1361 1547.41389318885 -186.413893188854 135 1506 1597.97639318885 -91.9763931888542 136 1360 1484.78889318885 -124.788893188855 137 1453 1622.10139318885 -169.101393188854 138 1522 1566.35139318885 -44.3513931888545 139 1460 1641.97639318885 -181.976393188855 140 1552 1656.85139318885 -104.851393188854 141 1548 1709.66389318885 -161.663893188855 142 1827 1849.03889318885 -22.0388931888545 143 1737 2048.60139318885 -311.601393188855 144 1941 2165.22639318885 -224.226393188855 145 1474 1722.67569659443 -248.675696594429 146 1458 1547.41389318885 -89.4138931888543 147 1542 1597.97639318885 -55.9763931888542 148 1404 1484.78889318885 -80.788893188855 149 1522 1622.10139318885 -100.101393188854 150 1385 1566.35139318885 -181.351393188855 151 1641 1641.97639318885 -0.9763931888546 152 1510 1656.85139318885 -146.851393188854 153 1681 1709.66389318885 -28.6638931888547 154 1938 1849.03889318885 88.9611068111455 155 1868 2048.60139318885 -180.601393188855 156 1726 2165.22639318885 -439.226393188855 157 1456 1722.67569659443 -266.675696594429 158 1445 1547.41389318885 -102.413893188854 159 1456 1597.97639318885 -141.976393188854 160 1365 1484.78889318885 -119.788893188855 161 1487 1622.10139318885 -135.101393188854 162 1558 1566.35139318885 -8.3513931888545 163 1488 1641.97639318885 -153.976393188855 164 1684 1656.85139318885 27.148606811146 165 1594 1709.66389318885 -115.663893188855 166 1850 1849.03889318885 0.9611068111455 167 1998 2048.60139318885 -50.6013931888545 168 2079 2165.22639318885 -86.2263931888546 169 1494 1722.67569659443 -228.675696594429 170 1057 1151.60274767802 -94.6027476780183 171 1218 1202.16524767802 15.8347523219817 172 1168 1088.97774767802 79.022252321981 173 1236 1226.29024767802 9.70975232198158 174 1076 1170.54024767802 -94.5402476780185 175 1174 1246.16524767802 -72.1652476780186 176 1139 1261.04024767802 -122.040247678018 177 1427 1313.85274767802 113.147252321981 178 1487 1453.22774767802 33.7722523219814 179 1483 1652.79024767802 -169.790247678018 180 1513 1769.41524767802 -256.415247678019 181 1357 1326.86455108359 30.1354489164072 182 1165 1151.60274767802 13.3972523219817 183 1282 1202.16524767802 79.8347523219817 184 1110 1088.97774767802 21.0222523219809 185 1297 1226.29024767802 70.7097523219816 186 1185 1170.54024767802 14.4597523219815 187 1222 1246.16524767802 -24.1652476780187 188 1284 1261.04024767802 22.9597523219819 189 1444 1313.85274767802 130.147252321981 190 1575 1453.22774767802 121.772252321981 191 1737 1652.79024767802 84.2097523219815 192 1763 1769.41524767802 -6.41524767801867

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 1687 & 1722.67569659441 & -35.6756965944053 \tabularnewline
2 & 1508 & 1547.41389318886 & -39.413893188857 \tabularnewline
3 & 1507 & 1597.97639318886 & -90.9763931888592 \tabularnewline
4 & 1385 & 1484.78889318885 & -99.7888931888466 \tabularnewline
5 & 1632 & 1622.10139318886 & 9.8986068111442 \tabularnewline
6 & 1511 & 1566.35139318886 & -55.3513931888552 \tabularnewline
7 & 1559 & 1641.97639318885 & -82.9763931888532 \tabularnewline
8 & 1630 & 1656.85139318886 & -26.8513931888614 \tabularnewline
9 & 1579 & 1709.66389318885 & -130.663893188851 \tabularnewline
10 & 1653 & 1849.03889318885 & -196.038893188855 \tabularnewline
11 & 2152 & 2048.60139318886 & 103.398606811145 \tabularnewline
12 & 2148 & 2165.22639318885 & -17.226393188854 \tabularnewline
13 & 1752 & 1722.67569659443 & 29.3243034055713 \tabularnewline
14 & 1765 & 1547.41389318885 & 217.586106811146 \tabularnewline
15 & 1717 & 1597.97639318885 & 119.023606811146 \tabularnewline
16 & 1558 & 1484.78889318885 & 73.211106811145 \tabularnewline
17 & 1575 & 1622.10139318885 & -47.1013931888544 \tabularnewline
18 & 1520 & 1566.35139318885 & -46.3513931888545 \tabularnewline
19 & 1805 & 1641.97639318885 & 163.023606811145 \tabularnewline
20 & 1800 & 1656.85139318885 & 143.148606811146 \tabularnewline
21 & 1719 & 1709.66389318885 & 9.33610681114532 \tabularnewline
22 & 2008 & 1849.03889318885 & 158.961106811145 \tabularnewline
23 & 2242 & 2048.60139318885 & 193.398606811146 \tabularnewline
24 & 2478 & 2165.22639318885 & 312.773606811145 \tabularnewline
25 & 2030 & 1722.67569659443 & 307.324303405571 \tabularnewline
26 & 1655 & 1547.41389318885 & 107.586106811146 \tabularnewline
27 & 1693 & 1597.97639318885 & 95.0236068111458 \tabularnewline
28 & 1623 & 1484.78889318885 & 138.211106811145 \tabularnewline
29 & 1805 & 1622.10139318885 & 182.898606811146 \tabularnewline
30 & 1746 & 1566.35139318885 & 179.648606811145 \tabularnewline
31 & 1795 & 1641.97639318885 & 153.023606811145 \tabularnewline
32 & 1926 & 1656.85139318885 & 269.148606811146 \tabularnewline
33 & 1619 & 1709.66389318885 & -90.6638931888547 \tabularnewline
34 & 1992 & 1849.03889318885 & 142.961106811145 \tabularnewline
35 & 2233 & 2048.60139318885 & 184.398606811146 \tabularnewline
36 & 2192 & 2165.22639318885 & 26.7736068111454 \tabularnewline
37 & 2080 & 1722.67569659443 & 357.324303405571 \tabularnewline
38 & 1768 & 1547.41389318885 & 220.586106811146 \tabularnewline
39 & 1835 & 1597.97639318885 & 237.023606811146 \tabularnewline
40 & 1569 & 1484.78889318885 & 84.211106811145 \tabularnewline
41 & 1976 & 1622.10139318885 & 353.898606811146 \tabularnewline
42 & 1853 & 1566.35139318885 & 286.648606811145 \tabularnewline
43 & 1965 & 1641.97639318885 & 323.023606811145 \tabularnewline
44 & 1689 & 1656.85139318885 & 32.148606811146 \tabularnewline
45 & 1778 & 1709.66389318885 & 68.3361068111453 \tabularnewline
46 & 1976 & 1849.03889318885 & 126.961106811145 \tabularnewline
47 & 2397 & 2048.60139318885 & 348.398606811146 \tabularnewline
48 & 2654 & 2165.22639318885 & 488.773606811145 \tabularnewline
49 & 2097 & 1722.67569659443 & 374.324303405571 \tabularnewline
50 & 1963 & 1547.41389318885 & 415.586106811145 \tabularnewline
51 & 1677 & 1597.97639318885 & 79.0236068111458 \tabularnewline
52 & 1941 & 1484.78889318886 & 456.211106811145 \tabularnewline
53 & 2003 & 1622.10139318885 & 380.898606811146 \tabularnewline
54 & 1813 & 1566.35139318885 & 246.648606811145 \tabularnewline
55 & 2012 & 1641.97639318885 & 370.023606811145 \tabularnewline
56 & 1912 & 1656.85139318885 & 255.148606811146 \tabularnewline
57 & 2084 & 1709.66389318885 & 374.336106811145 \tabularnewline
58 & 2080 & 1849.03889318885 & 230.961106811145 \tabularnewline
59 & 2118 & 2048.60139318885 & 69.3986068111455 \tabularnewline
60 & 2150 & 2165.22639318885 & -15.2263931888546 \tabularnewline
61 & 1608 & 1722.67569659443 & -114.675696594429 \tabularnewline
62 & 1503 & 1547.41389318885 & -44.4138931888543 \tabularnewline
63 & 1548 & 1597.97639318885 & -49.9763931888542 \tabularnewline
64 & 1382 & 1484.78889318885 & -102.788893188855 \tabularnewline
65 & 1731 & 1622.10139318885 & 108.898606811146 \tabularnewline
66 & 1798 & 1566.35139318885 & 231.648606811145 \tabularnewline
67 & 1779 & 1641.97639318885 & 137.023606811145 \tabularnewline
68 & 1887 & 1656.85139318885 & 230.148606811146 \tabularnewline
69 & 2004 & 1709.66389318885 & 294.336106811145 \tabularnewline
70 & 2077 & 1849.03889318885 & 227.961106811145 \tabularnewline
71 & 2092 & 2048.60139318885 & 43.3986068111455 \tabularnewline
72 & 2051 & 2165.22639318885 & -114.226393188855 \tabularnewline
73 & 1577 & 1722.67569659443 & -145.675696594429 \tabularnewline
74 & 1356 & 1547.41389318885 & -191.413893188854 \tabularnewline
75 & 1652 & 1597.97639318885 & 54.0236068111458 \tabularnewline
76 & 1382 & 1484.78889318885 & -102.788893188855 \tabularnewline
77 & 1519 & 1622.10139318885 & -103.101393188854 \tabularnewline
78 & 1421 & 1566.35139318885 & -145.351393188855 \tabularnewline
79 & 1442 & 1641.97639318885 & -199.976393188855 \tabularnewline
80 & 1543 & 1656.85139318885 & -113.851393188854 \tabularnewline
81 & 1656 & 1709.66389318885 & -53.6638931888547 \tabularnewline
82 & 1561 & 1849.03889318885 & -288.038893188855 \tabularnewline
83 & 1905 & 2048.60139318885 & -143.601393188855 \tabularnewline
84 & 2199 & 2165.22639318885 & 33.7736068111454 \tabularnewline
85 & 1473 & 1722.67569659443 & -249.675696594429 \tabularnewline
86 & 1655 & 1547.41389318885 & 107.586106811146 \tabularnewline
87 & 1407 & 1597.97639318885 & -190.976393188854 \tabularnewline
88 & 1395 & 1484.78889318885 & -89.788893188855 \tabularnewline
89 & 1530 & 1622.10139318885 & -92.1013931888544 \tabularnewline
90 & 1309 & 1566.35139318885 & -257.351393188855 \tabularnewline
91 & 1526 & 1641.97639318885 & -115.976393188855 \tabularnewline
92 & 1327 & 1656.85139318885 & -329.851393188854 \tabularnewline
93 & 1627 & 1709.66389318885 & -82.6638931888547 \tabularnewline
94 & 1748 & 1849.03889318885 & -101.038893188855 \tabularnewline
95 & 1958 & 2048.60139318885 & -90.6013931888545 \tabularnewline
96 & 2274 & 2165.22639318885 & 108.773606811145 \tabularnewline
97 & 1648 & 1722.67569659443 & -74.6756965944287 \tabularnewline
98 & 1401 & 1547.41389318885 & -146.413893188854 \tabularnewline
99 & 1411 & 1597.97639318885 & -186.976393188854 \tabularnewline
100 & 1403 & 1484.78889318885 & -81.788893188855 \tabularnewline
101 & 1394 & 1622.10139318885 & -228.101393188854 \tabularnewline
102 & 1520 & 1566.35139318885 & -46.3513931888545 \tabularnewline
103 & 1528 & 1641.97639318885 & -113.976393188855 \tabularnewline
104 & 1643 & 1656.85139318885 & -13.851393188854 \tabularnewline
105 & 1515 & 1709.66389318885 & -194.663893188855 \tabularnewline
106 & 1685 & 1849.03889318885 & -164.038893188855 \tabularnewline
107 & 2000 & 2048.60139318885 & -48.6013931888545 \tabularnewline
108 & 2215 & 2165.22639318885 & 49.7736068111454 \tabularnewline
109 & 1956 & 1722.67569659443 & 233.324303405571 \tabularnewline
110 & 1462 & 1547.41389318885 & -85.4138931888543 \tabularnewline
111 & 1563 & 1597.97639318885 & -34.9763931888542 \tabularnewline
112 & 1459 & 1484.78889318885 & -25.7888931888550 \tabularnewline
113 & 1446 & 1622.10139318885 & -176.101393188854 \tabularnewline
114 & 1622 & 1566.35139318885 & 55.6486068111455 \tabularnewline
115 & 1657 & 1641.97639318885 & 15.0236068111454 \tabularnewline
116 & 1638 & 1656.85139318885 & -18.851393188854 \tabularnewline
117 & 1643 & 1709.66389318885 & -66.6638931888547 \tabularnewline
118 & 1683 & 1849.03889318885 & -166.038893188855 \tabularnewline
119 & 2050 & 2048.60139318885 & 1.39860681114553 \tabularnewline
120 & 2262 & 2165.22639318885 & 96.7736068111454 \tabularnewline
121 & 1813 & 1722.67569659443 & 90.3243034055712 \tabularnewline
122 & 1445 & 1547.41389318885 & -102.413893188854 \tabularnewline
123 & 1762 & 1597.97639318885 & 164.023606811146 \tabularnewline
124 & 1461 & 1484.78889318885 & -23.7888931888550 \tabularnewline
125 & 1556 & 1622.10139318885 & -66.1013931888544 \tabularnewline
126 & 1431 & 1566.35139318885 & -135.351393188855 \tabularnewline
127 & 1427 & 1641.97639318885 & -214.976393188855 \tabularnewline
128 & 1554 & 1656.85139318885 & -102.851393188854 \tabularnewline
129 & 1645 & 1709.66389318885 & -64.6638931888547 \tabularnewline
130 & 1653 & 1849.03889318885 & -196.038893188855 \tabularnewline
131 & 2016 & 2048.60139318885 & -32.6013931888545 \tabularnewline
132 & 2207 & 2165.22639318885 & 41.7736068111454 \tabularnewline
133 & 1665 & 1722.67569659443 & -57.6756965944287 \tabularnewline
134 & 1361 & 1547.41389318885 & -186.413893188854 \tabularnewline
135 & 1506 & 1597.97639318885 & -91.9763931888542 \tabularnewline
136 & 1360 & 1484.78889318885 & -124.788893188855 \tabularnewline
137 & 1453 & 1622.10139318885 & -169.101393188854 \tabularnewline
138 & 1522 & 1566.35139318885 & -44.3513931888545 \tabularnewline
139 & 1460 & 1641.97639318885 & -181.976393188855 \tabularnewline
140 & 1552 & 1656.85139318885 & -104.851393188854 \tabularnewline
141 & 1548 & 1709.66389318885 & -161.663893188855 \tabularnewline
142 & 1827 & 1849.03889318885 & -22.0388931888545 \tabularnewline
143 & 1737 & 2048.60139318885 & -311.601393188855 \tabularnewline
144 & 1941 & 2165.22639318885 & -224.226393188855 \tabularnewline
145 & 1474 & 1722.67569659443 & -248.675696594429 \tabularnewline
146 & 1458 & 1547.41389318885 & -89.4138931888543 \tabularnewline
147 & 1542 & 1597.97639318885 & -55.9763931888542 \tabularnewline
148 & 1404 & 1484.78889318885 & -80.788893188855 \tabularnewline
149 & 1522 & 1622.10139318885 & -100.101393188854 \tabularnewline
150 & 1385 & 1566.35139318885 & -181.351393188855 \tabularnewline
151 & 1641 & 1641.97639318885 & -0.9763931888546 \tabularnewline
152 & 1510 & 1656.85139318885 & -146.851393188854 \tabularnewline
153 & 1681 & 1709.66389318885 & -28.6638931888547 \tabularnewline
154 & 1938 & 1849.03889318885 & 88.9611068111455 \tabularnewline
155 & 1868 & 2048.60139318885 & -180.601393188855 \tabularnewline
156 & 1726 & 2165.22639318885 & -439.226393188855 \tabularnewline
157 & 1456 & 1722.67569659443 & -266.675696594429 \tabularnewline
158 & 1445 & 1547.41389318885 & -102.413893188854 \tabularnewline
159 & 1456 & 1597.97639318885 & -141.976393188854 \tabularnewline
160 & 1365 & 1484.78889318885 & -119.788893188855 \tabularnewline
161 & 1487 & 1622.10139318885 & -135.101393188854 \tabularnewline
162 & 1558 & 1566.35139318885 & -8.3513931888545 \tabularnewline
163 & 1488 & 1641.97639318885 & -153.976393188855 \tabularnewline
164 & 1684 & 1656.85139318885 & 27.148606811146 \tabularnewline
165 & 1594 & 1709.66389318885 & -115.663893188855 \tabularnewline
166 & 1850 & 1849.03889318885 & 0.9611068111455 \tabularnewline
167 & 1998 & 2048.60139318885 & -50.6013931888545 \tabularnewline
168 & 2079 & 2165.22639318885 & -86.2263931888546 \tabularnewline
169 & 1494 & 1722.67569659443 & -228.675696594429 \tabularnewline
170 & 1057 & 1151.60274767802 & -94.6027476780183 \tabularnewline
171 & 1218 & 1202.16524767802 & 15.8347523219817 \tabularnewline
172 & 1168 & 1088.97774767802 & 79.022252321981 \tabularnewline
173 & 1236 & 1226.29024767802 & 9.70975232198158 \tabularnewline
174 & 1076 & 1170.54024767802 & -94.5402476780185 \tabularnewline
175 & 1174 & 1246.16524767802 & -72.1652476780186 \tabularnewline
176 & 1139 & 1261.04024767802 & -122.040247678018 \tabularnewline
177 & 1427 & 1313.85274767802 & 113.147252321981 \tabularnewline
178 & 1487 & 1453.22774767802 & 33.7722523219814 \tabularnewline
179 & 1483 & 1652.79024767802 & -169.790247678018 \tabularnewline
180 & 1513 & 1769.41524767802 & -256.415247678019 \tabularnewline
181 & 1357 & 1326.86455108359 & 30.1354489164072 \tabularnewline
182 & 1165 & 1151.60274767802 & 13.3972523219817 \tabularnewline
183 & 1282 & 1202.16524767802 & 79.8347523219817 \tabularnewline
184 & 1110 & 1088.97774767802 & 21.0222523219809 \tabularnewline
185 & 1297 & 1226.29024767802 & 70.7097523219816 \tabularnewline
186 & 1185 & 1170.54024767802 & 14.4597523219815 \tabularnewline
187 & 1222 & 1246.16524767802 & -24.1652476780187 \tabularnewline
188 & 1284 & 1261.04024767802 & 22.9597523219819 \tabularnewline
189 & 1444 & 1313.85274767802 & 130.147252321981 \tabularnewline
190 & 1575 & 1453.22774767802 & 121.772252321981 \tabularnewline
191 & 1737 & 1652.79024767802 & 84.2097523219815 \tabularnewline
192 & 1763 & 1769.41524767802 & -6.41524767801867 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=55996&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]1687[/C][C]1722.67569659441[/C][C]-35.6756965944053[/C][/ROW]
[ROW][C]2[/C][C]1508[/C][C]1547.41389318886[/C][C]-39.413893188857[/C][/ROW]
[ROW][C]3[/C][C]1507[/C][C]1597.97639318886[/C][C]-90.9763931888592[/C][/ROW]
[ROW][C]4[/C][C]1385[/C][C]1484.78889318885[/C][C]-99.7888931888466[/C][/ROW]
[ROW][C]5[/C][C]1632[/C][C]1622.10139318886[/C][C]9.8986068111442[/C][/ROW]
[ROW][C]6[/C][C]1511[/C][C]1566.35139318886[/C][C]-55.3513931888552[/C][/ROW]
[ROW][C]7[/C][C]1559[/C][C]1641.97639318885[/C][C]-82.9763931888532[/C][/ROW]
[ROW][C]8[/C][C]1630[/C][C]1656.85139318886[/C][C]-26.8513931888614[/C][/ROW]
[ROW][C]9[/C][C]1579[/C][C]1709.66389318885[/C][C]-130.663893188851[/C][/ROW]
[ROW][C]10[/C][C]1653[/C][C]1849.03889318885[/C][C]-196.038893188855[/C][/ROW]
[ROW][C]11[/C][C]2152[/C][C]2048.60139318886[/C][C]103.398606811145[/C][/ROW]
[ROW][C]12[/C][C]2148[/C][C]2165.22639318885[/C][C]-17.226393188854[/C][/ROW]
[ROW][C]13[/C][C]1752[/C][C]1722.67569659443[/C][C]29.3243034055713[/C][/ROW]
[ROW][C]14[/C][C]1765[/C][C]1547.41389318885[/C][C]217.586106811146[/C][/ROW]
[ROW][C]15[/C][C]1717[/C][C]1597.97639318885[/C][C]119.023606811146[/C][/ROW]
[ROW][C]16[/C][C]1558[/C][C]1484.78889318885[/C][C]73.211106811145[/C][/ROW]
[ROW][C]17[/C][C]1575[/C][C]1622.10139318885[/C][C]-47.1013931888544[/C][/ROW]
[ROW][C]18[/C][C]1520[/C][C]1566.35139318885[/C][C]-46.3513931888545[/C][/ROW]
[ROW][C]19[/C][C]1805[/C][C]1641.97639318885[/C][C]163.023606811145[/C][/ROW]
[ROW][C]20[/C][C]1800[/C][C]1656.85139318885[/C][C]143.148606811146[/C][/ROW]
[ROW][C]21[/C][C]1719[/C][C]1709.66389318885[/C][C]9.33610681114532[/C][/ROW]
[ROW][C]22[/C][C]2008[/C][C]1849.03889318885[/C][C]158.961106811145[/C][/ROW]
[ROW][C]23[/C][C]2242[/C][C]2048.60139318885[/C][C]193.398606811146[/C][/ROW]
[ROW][C]24[/C][C]2478[/C][C]2165.22639318885[/C][C]312.773606811145[/C][/ROW]
[ROW][C]25[/C][C]2030[/C][C]1722.67569659443[/C][C]307.324303405571[/C][/ROW]
[ROW][C]26[/C][C]1655[/C][C]1547.41389318885[/C][C]107.586106811146[/C][/ROW]
[ROW][C]27[/C][C]1693[/C][C]1597.97639318885[/C][C]95.0236068111458[/C][/ROW]
[ROW][C]28[/C][C]1623[/C][C]1484.78889318885[/C][C]138.211106811145[/C][/ROW]
[ROW][C]29[/C][C]1805[/C][C]1622.10139318885[/C][C]182.898606811146[/C][/ROW]
[ROW][C]30[/C][C]1746[/C][C]1566.35139318885[/C][C]179.648606811145[/C][/ROW]
[ROW][C]31[/C][C]1795[/C][C]1641.97639318885[/C][C]153.023606811145[/C][/ROW]
[ROW][C]32[/C][C]1926[/C][C]1656.85139318885[/C][C]269.148606811146[/C][/ROW]
[ROW][C]33[/C][C]1619[/C][C]1709.66389318885[/C][C]-90.6638931888547[/C][/ROW]
[ROW][C]34[/C][C]1992[/C][C]1849.03889318885[/C][C]142.961106811145[/C][/ROW]
[ROW][C]35[/C][C]2233[/C][C]2048.60139318885[/C][C]184.398606811146[/C][/ROW]
[ROW][C]36[/C][C]2192[/C][C]2165.22639318885[/C][C]26.7736068111454[/C][/ROW]
[ROW][C]37[/C][C]2080[/C][C]1722.67569659443[/C][C]357.324303405571[/C][/ROW]
[ROW][C]38[/C][C]1768[/C][C]1547.41389318885[/C][C]220.586106811146[/C][/ROW]
[ROW][C]39[/C][C]1835[/C][C]1597.97639318885[/C][C]237.023606811146[/C][/ROW]
[ROW][C]40[/C][C]1569[/C][C]1484.78889318885[/C][C]84.211106811145[/C][/ROW]
[ROW][C]41[/C][C]1976[/C][C]1622.10139318885[/C][C]353.898606811146[/C][/ROW]
[ROW][C]42[/C][C]1853[/C][C]1566.35139318885[/C][C]286.648606811145[/C][/ROW]
[ROW][C]43[/C][C]1965[/C][C]1641.97639318885[/C][C]323.023606811145[/C][/ROW]
[ROW][C]44[/C][C]1689[/C][C]1656.85139318885[/C][C]32.148606811146[/C][/ROW]
[ROW][C]45[/C][C]1778[/C][C]1709.66389318885[/C][C]68.3361068111453[/C][/ROW]
[ROW][C]46[/C][C]1976[/C][C]1849.03889318885[/C][C]126.961106811145[/C][/ROW]
[ROW][C]47[/C][C]2397[/C][C]2048.60139318885[/C][C]348.398606811146[/C][/ROW]
[ROW][C]48[/C][C]2654[/C][C]2165.22639318885[/C][C]488.773606811145[/C][/ROW]
[ROW][C]49[/C][C]2097[/C][C]1722.67569659443[/C][C]374.324303405571[/C][/ROW]
[ROW][C]50[/C][C]1963[/C][C]1547.41389318885[/C][C]415.586106811145[/C][/ROW]
[ROW][C]51[/C][C]1677[/C][C]1597.97639318885[/C][C]79.0236068111458[/C][/ROW]
[ROW][C]52[/C][C]1941[/C][C]1484.78889318886[/C][C]456.211106811145[/C][/ROW]
[ROW][C]53[/C][C]2003[/C][C]1622.10139318885[/C][C]380.898606811146[/C][/ROW]
[ROW][C]54[/C][C]1813[/C][C]1566.35139318885[/C][C]246.648606811145[/C][/ROW]
[ROW][C]55[/C][C]2012[/C][C]1641.97639318885[/C][C]370.023606811145[/C][/ROW]
[ROW][C]56[/C][C]1912[/C][C]1656.85139318885[/C][C]255.148606811146[/C][/ROW]
[ROW][C]57[/C][C]2084[/C][C]1709.66389318885[/C][C]374.336106811145[/C][/ROW]
[ROW][C]58[/C][C]2080[/C][C]1849.03889318885[/C][C]230.961106811145[/C][/ROW]
[ROW][C]59[/C][C]2118[/C][C]2048.60139318885[/C][C]69.3986068111455[/C][/ROW]
[ROW][C]60[/C][C]2150[/C][C]2165.22639318885[/C][C]-15.2263931888546[/C][/ROW]
[ROW][C]61[/C][C]1608[/C][C]1722.67569659443[/C][C]-114.675696594429[/C][/ROW]
[ROW][C]62[/C][C]1503[/C][C]1547.41389318885[/C][C]-44.4138931888543[/C][/ROW]
[ROW][C]63[/C][C]1548[/C][C]1597.97639318885[/C][C]-49.9763931888542[/C][/ROW]
[ROW][C]64[/C][C]1382[/C][C]1484.78889318885[/C][C]-102.788893188855[/C][/ROW]
[ROW][C]65[/C][C]1731[/C][C]1622.10139318885[/C][C]108.898606811146[/C][/ROW]
[ROW][C]66[/C][C]1798[/C][C]1566.35139318885[/C][C]231.648606811145[/C][/ROW]
[ROW][C]67[/C][C]1779[/C][C]1641.97639318885[/C][C]137.023606811145[/C][/ROW]
[ROW][C]68[/C][C]1887[/C][C]1656.85139318885[/C][C]230.148606811146[/C][/ROW]
[ROW][C]69[/C][C]2004[/C][C]1709.66389318885[/C][C]294.336106811145[/C][/ROW]
[ROW][C]70[/C][C]2077[/C][C]1849.03889318885[/C][C]227.961106811145[/C][/ROW]
[ROW][C]71[/C][C]2092[/C][C]2048.60139318885[/C][C]43.3986068111455[/C][/ROW]
[ROW][C]72[/C][C]2051[/C][C]2165.22639318885[/C][C]-114.226393188855[/C][/ROW]
[ROW][C]73[/C][C]1577[/C][C]1722.67569659443[/C][C]-145.675696594429[/C][/ROW]
[ROW][C]74[/C][C]1356[/C][C]1547.41389318885[/C][C]-191.413893188854[/C][/ROW]
[ROW][C]75[/C][C]1652[/C][C]1597.97639318885[/C][C]54.0236068111458[/C][/ROW]
[ROW][C]76[/C][C]1382[/C][C]1484.78889318885[/C][C]-102.788893188855[/C][/ROW]
[ROW][C]77[/C][C]1519[/C][C]1622.10139318885[/C][C]-103.101393188854[/C][/ROW]
[ROW][C]78[/C][C]1421[/C][C]1566.35139318885[/C][C]-145.351393188855[/C][/ROW]
[ROW][C]79[/C][C]1442[/C][C]1641.97639318885[/C][C]-199.976393188855[/C][/ROW]
[ROW][C]80[/C][C]1543[/C][C]1656.85139318885[/C][C]-113.851393188854[/C][/ROW]
[ROW][C]81[/C][C]1656[/C][C]1709.66389318885[/C][C]-53.6638931888547[/C][/ROW]
[ROW][C]82[/C][C]1561[/C][C]1849.03889318885[/C][C]-288.038893188855[/C][/ROW]
[ROW][C]83[/C][C]1905[/C][C]2048.60139318885[/C][C]-143.601393188855[/C][/ROW]
[ROW][C]84[/C][C]2199[/C][C]2165.22639318885[/C][C]33.7736068111454[/C][/ROW]
[ROW][C]85[/C][C]1473[/C][C]1722.67569659443[/C][C]-249.675696594429[/C][/ROW]
[ROW][C]86[/C][C]1655[/C][C]1547.41389318885[/C][C]107.586106811146[/C][/ROW]
[ROW][C]87[/C][C]1407[/C][C]1597.97639318885[/C][C]-190.976393188854[/C][/ROW]
[ROW][C]88[/C][C]1395[/C][C]1484.78889318885[/C][C]-89.788893188855[/C][/ROW]
[ROW][C]89[/C][C]1530[/C][C]1622.10139318885[/C][C]-92.1013931888544[/C][/ROW]
[ROW][C]90[/C][C]1309[/C][C]1566.35139318885[/C][C]-257.351393188855[/C][/ROW]
[ROW][C]91[/C][C]1526[/C][C]1641.97639318885[/C][C]-115.976393188855[/C][/ROW]
[ROW][C]92[/C][C]1327[/C][C]1656.85139318885[/C][C]-329.851393188854[/C][/ROW]
[ROW][C]93[/C][C]1627[/C][C]1709.66389318885[/C][C]-82.6638931888547[/C][/ROW]
[ROW][C]94[/C][C]1748[/C][C]1849.03889318885[/C][C]-101.038893188855[/C][/ROW]
[ROW][C]95[/C][C]1958[/C][C]2048.60139318885[/C][C]-90.6013931888545[/C][/ROW]
[ROW][C]96[/C][C]2274[/C][C]2165.22639318885[/C][C]108.773606811145[/C][/ROW]
[ROW][C]97[/C][C]1648[/C][C]1722.67569659443[/C][C]-74.6756965944287[/C][/ROW]
[ROW][C]98[/C][C]1401[/C][C]1547.41389318885[/C][C]-146.413893188854[/C][/ROW]
[ROW][C]99[/C][C]1411[/C][C]1597.97639318885[/C][C]-186.976393188854[/C][/ROW]
[ROW][C]100[/C][C]1403[/C][C]1484.78889318885[/C][C]-81.788893188855[/C][/ROW]
[ROW][C]101[/C][C]1394[/C][C]1622.10139318885[/C][C]-228.101393188854[/C][/ROW]
[ROW][C]102[/C][C]1520[/C][C]1566.35139318885[/C][C]-46.3513931888545[/C][/ROW]
[ROW][C]103[/C][C]1528[/C][C]1641.97639318885[/C][C]-113.976393188855[/C][/ROW]
[ROW][C]104[/C][C]1643[/C][C]1656.85139318885[/C][C]-13.851393188854[/C][/ROW]
[ROW][C]105[/C][C]1515[/C][C]1709.66389318885[/C][C]-194.663893188855[/C][/ROW]
[ROW][C]106[/C][C]1685[/C][C]1849.03889318885[/C][C]-164.038893188855[/C][/ROW]
[ROW][C]107[/C][C]2000[/C][C]2048.60139318885[/C][C]-48.6013931888545[/C][/ROW]
[ROW][C]108[/C][C]2215[/C][C]2165.22639318885[/C][C]49.7736068111454[/C][/ROW]
[ROW][C]109[/C][C]1956[/C][C]1722.67569659443[/C][C]233.324303405571[/C][/ROW]
[ROW][C]110[/C][C]1462[/C][C]1547.41389318885[/C][C]-85.4138931888543[/C][/ROW]
[ROW][C]111[/C][C]1563[/C][C]1597.97639318885[/C][C]-34.9763931888542[/C][/ROW]
[ROW][C]112[/C][C]1459[/C][C]1484.78889318885[/C][C]-25.7888931888550[/C][/ROW]
[ROW][C]113[/C][C]1446[/C][C]1622.10139318885[/C][C]-176.101393188854[/C][/ROW]
[ROW][C]114[/C][C]1622[/C][C]1566.35139318885[/C][C]55.6486068111455[/C][/ROW]
[ROW][C]115[/C][C]1657[/C][C]1641.97639318885[/C][C]15.0236068111454[/C][/ROW]
[ROW][C]116[/C][C]1638[/C][C]1656.85139318885[/C][C]-18.851393188854[/C][/ROW]
[ROW][C]117[/C][C]1643[/C][C]1709.66389318885[/C][C]-66.6638931888547[/C][/ROW]
[ROW][C]118[/C][C]1683[/C][C]1849.03889318885[/C][C]-166.038893188855[/C][/ROW]
[ROW][C]119[/C][C]2050[/C][C]2048.60139318885[/C][C]1.39860681114553[/C][/ROW]
[ROW][C]120[/C][C]2262[/C][C]2165.22639318885[/C][C]96.7736068111454[/C][/ROW]
[ROW][C]121[/C][C]1813[/C][C]1722.67569659443[/C][C]90.3243034055712[/C][/ROW]
[ROW][C]122[/C][C]1445[/C][C]1547.41389318885[/C][C]-102.413893188854[/C][/ROW]
[ROW][C]123[/C][C]1762[/C][C]1597.97639318885[/C][C]164.023606811146[/C][/ROW]
[ROW][C]124[/C][C]1461[/C][C]1484.78889318885[/C][C]-23.7888931888550[/C][/ROW]
[ROW][C]125[/C][C]1556[/C][C]1622.10139318885[/C][C]-66.1013931888544[/C][/ROW]
[ROW][C]126[/C][C]1431[/C][C]1566.35139318885[/C][C]-135.351393188855[/C][/ROW]
[ROW][C]127[/C][C]1427[/C][C]1641.97639318885[/C][C]-214.976393188855[/C][/ROW]
[ROW][C]128[/C][C]1554[/C][C]1656.85139318885[/C][C]-102.851393188854[/C][/ROW]
[ROW][C]129[/C][C]1645[/C][C]1709.66389318885[/C][C]-64.6638931888547[/C][/ROW]
[ROW][C]130[/C][C]1653[/C][C]1849.03889318885[/C][C]-196.038893188855[/C][/ROW]
[ROW][C]131[/C][C]2016[/C][C]2048.60139318885[/C][C]-32.6013931888545[/C][/ROW]
[ROW][C]132[/C][C]2207[/C][C]2165.22639318885[/C][C]41.7736068111454[/C][/ROW]
[ROW][C]133[/C][C]1665[/C][C]1722.67569659443[/C][C]-57.6756965944287[/C][/ROW]
[ROW][C]134[/C][C]1361[/C][C]1547.41389318885[/C][C]-186.413893188854[/C][/ROW]
[ROW][C]135[/C][C]1506[/C][C]1597.97639318885[/C][C]-91.9763931888542[/C][/ROW]
[ROW][C]136[/C][C]1360[/C][C]1484.78889318885[/C][C]-124.788893188855[/C][/ROW]
[ROW][C]137[/C][C]1453[/C][C]1622.10139318885[/C][C]-169.101393188854[/C][/ROW]
[ROW][C]138[/C][C]1522[/C][C]1566.35139318885[/C][C]-44.3513931888545[/C][/ROW]
[ROW][C]139[/C][C]1460[/C][C]1641.97639318885[/C][C]-181.976393188855[/C][/ROW]
[ROW][C]140[/C][C]1552[/C][C]1656.85139318885[/C][C]-104.851393188854[/C][/ROW]
[ROW][C]141[/C][C]1548[/C][C]1709.66389318885[/C][C]-161.663893188855[/C][/ROW]
[ROW][C]142[/C][C]1827[/C][C]1849.03889318885[/C][C]-22.0388931888545[/C][/ROW]
[ROW][C]143[/C][C]1737[/C][C]2048.60139318885[/C][C]-311.601393188855[/C][/ROW]
[ROW][C]144[/C][C]1941[/C][C]2165.22639318885[/C][C]-224.226393188855[/C][/ROW]
[ROW][C]145[/C][C]1474[/C][C]1722.67569659443[/C][C]-248.675696594429[/C][/ROW]
[ROW][C]146[/C][C]1458[/C][C]1547.41389318885[/C][C]-89.4138931888543[/C][/ROW]
[ROW][C]147[/C][C]1542[/C][C]1597.97639318885[/C][C]-55.9763931888542[/C][/ROW]
[ROW][C]148[/C][C]1404[/C][C]1484.78889318885[/C][C]-80.788893188855[/C][/ROW]
[ROW][C]149[/C][C]1522[/C][C]1622.10139318885[/C][C]-100.101393188854[/C][/ROW]
[ROW][C]150[/C][C]1385[/C][C]1566.35139318885[/C][C]-181.351393188855[/C][/ROW]
[ROW][C]151[/C][C]1641[/C][C]1641.97639318885[/C][C]-0.9763931888546[/C][/ROW]
[ROW][C]152[/C][C]1510[/C][C]1656.85139318885[/C][C]-146.851393188854[/C][/ROW]
[ROW][C]153[/C][C]1681[/C][C]1709.66389318885[/C][C]-28.6638931888547[/C][/ROW]
[ROW][C]154[/C][C]1938[/C][C]1849.03889318885[/C][C]88.9611068111455[/C][/ROW]
[ROW][C]155[/C][C]1868[/C][C]2048.60139318885[/C][C]-180.601393188855[/C][/ROW]
[ROW][C]156[/C][C]1726[/C][C]2165.22639318885[/C][C]-439.226393188855[/C][/ROW]
[ROW][C]157[/C][C]1456[/C][C]1722.67569659443[/C][C]-266.675696594429[/C][/ROW]
[ROW][C]158[/C][C]1445[/C][C]1547.41389318885[/C][C]-102.413893188854[/C][/ROW]
[ROW][C]159[/C][C]1456[/C][C]1597.97639318885[/C][C]-141.976393188854[/C][/ROW]
[ROW][C]160[/C][C]1365[/C][C]1484.78889318885[/C][C]-119.788893188855[/C][/ROW]
[ROW][C]161[/C][C]1487[/C][C]1622.10139318885[/C][C]-135.101393188854[/C][/ROW]
[ROW][C]162[/C][C]1558[/C][C]1566.35139318885[/C][C]-8.3513931888545[/C][/ROW]
[ROW][C]163[/C][C]1488[/C][C]1641.97639318885[/C][C]-153.976393188855[/C][/ROW]
[ROW][C]164[/C][C]1684[/C][C]1656.85139318885[/C][C]27.148606811146[/C][/ROW]
[ROW][C]165[/C][C]1594[/C][C]1709.66389318885[/C][C]-115.663893188855[/C][/ROW]
[ROW][C]166[/C][C]1850[/C][C]1849.03889318885[/C][C]0.9611068111455[/C][/ROW]
[ROW][C]167[/C][C]1998[/C][C]2048.60139318885[/C][C]-50.6013931888545[/C][/ROW]
[ROW][C]168[/C][C]2079[/C][C]2165.22639318885[/C][C]-86.2263931888546[/C][/ROW]
[ROW][C]169[/C][C]1494[/C][C]1722.67569659443[/C][C]-228.675696594429[/C][/ROW]
[ROW][C]170[/C][C]1057[/C][C]1151.60274767802[/C][C]-94.6027476780183[/C][/ROW]
[ROW][C]171[/C][C]1218[/C][C]1202.16524767802[/C][C]15.8347523219817[/C][/ROW]
[ROW][C]172[/C][C]1168[/C][C]1088.97774767802[/C][C]79.022252321981[/C][/ROW]
[ROW][C]173[/C][C]1236[/C][C]1226.29024767802[/C][C]9.70975232198158[/C][/ROW]
[ROW][C]174[/C][C]1076[/C][C]1170.54024767802[/C][C]-94.5402476780185[/C][/ROW]
[ROW][C]175[/C][C]1174[/C][C]1246.16524767802[/C][C]-72.1652476780186[/C][/ROW]
[ROW][C]176[/C][C]1139[/C][C]1261.04024767802[/C][C]-122.040247678018[/C][/ROW]
[ROW][C]177[/C][C]1427[/C][C]1313.85274767802[/C][C]113.147252321981[/C][/ROW]
[ROW][C]178[/C][C]1487[/C][C]1453.22774767802[/C][C]33.7722523219814[/C][/ROW]
[ROW][C]179[/C][C]1483[/C][C]1652.79024767802[/C][C]-169.790247678018[/C][/ROW]
[ROW][C]180[/C][C]1513[/C][C]1769.41524767802[/C][C]-256.415247678019[/C][/ROW]
[ROW][C]181[/C][C]1357[/C][C]1326.86455108359[/C][C]30.1354489164072[/C][/ROW]
[ROW][C]182[/C][C]1165[/C][C]1151.60274767802[/C][C]13.3972523219817[/C][/ROW]
[ROW][C]183[/C][C]1282[/C][C]1202.16524767802[/C][C]79.8347523219817[/C][/ROW]
[ROW][C]184[/C][C]1110[/C][C]1088.97774767802[/C][C]21.0222523219809[/C][/ROW]
[ROW][C]185[/C][C]1297[/C][C]1226.29024767802[/C][C]70.7097523219816[/C][/ROW]
[ROW][C]186[/C][C]1185[/C][C]1170.54024767802[/C][C]14.4597523219815[/C][/ROW]
[ROW][C]187[/C][C]1222[/C][C]1246.16524767802[/C][C]-24.1652476780187[/C][/ROW]
[ROW][C]188[/C][C]1284[/C][C]1261.04024767802[/C][C]22.9597523219819[/C][/ROW]
[ROW][C]189[/C][C]1444[/C][C]1313.85274767802[/C][C]130.147252321981[/C][/ROW]
[ROW][C]190[/C][C]1575[/C][C]1453.22774767802[/C][C]121.772252321981[/C][/ROW]
[ROW][C]191[/C][C]1737[/C][C]1652.79024767802[/C][C]84.2097523219815[/C][/ROW]
[ROW][C]192[/C][C]1763[/C][C]1769.41524767802[/C][C]-6.41524767801867[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=55996&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=55996&T=4

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Multiple Linear Regression - Actuals, Interpolation, and Residuals Time or Index Actuals InterpolationForecast ResidualsPrediction Error 1 1687 1722.67569659441 -35.6756965944053 2 1508 1547.41389318886 -39.413893188857 3 1507 1597.97639318886 -90.9763931888592 4 1385 1484.78889318885 -99.7888931888466 5 1632 1622.10139318886 9.8986068111442 6 1511 1566.35139318886 -55.3513931888552 7 1559 1641.97639318885 -82.9763931888532 8 1630 1656.85139318886 -26.8513931888614 9 1579 1709.66389318885 -130.663893188851 10 1653 1849.03889318885 -196.038893188855 11 2152 2048.60139318886 103.398606811145 12 2148 2165.22639318885 -17.226393188854 13 1752 1722.67569659443 29.3243034055713 14 1765 1547.41389318885 217.586106811146 15 1717 1597.97639318885 119.023606811146 16 1558 1484.78889318885 73.211106811145 17 1575 1622.10139318885 -47.1013931888544 18 1520 1566.35139318885 -46.3513931888545 19 1805 1641.97639318885 163.023606811145 20 1800 1656.85139318885 143.148606811146 21 1719 1709.66389318885 9.33610681114532 22 2008 1849.03889318885 158.961106811145 23 2242 2048.60139318885 193.398606811146 24 2478 2165.22639318885 312.773606811145 25 2030 1722.67569659443 307.324303405571 26 1655 1547.41389318885 107.586106811146 27 1693 1597.97639318885 95.0236068111458 28 1623 1484.78889318885 138.211106811145 29 1805 1622.10139318885 182.898606811146 30 1746 1566.35139318885 179.648606811145 31 1795 1641.97639318885 153.023606811145 32 1926 1656.85139318885 269.148606811146 33 1619 1709.66389318885 -90.6638931888547 34 1992 1849.03889318885 142.961106811145 35 2233 2048.60139318885 184.398606811146 36 2192 2165.22639318885 26.7736068111454 37 2080 1722.67569659443 357.324303405571 38 1768 1547.41389318885 220.586106811146 39 1835 1597.97639318885 237.023606811146 40 1569 1484.78889318885 84.211106811145 41 1976 1622.10139318885 353.898606811146 42 1853 1566.35139318885 286.648606811145 43 1965 1641.97639318885 323.023606811145 44 1689 1656.85139318885 32.148606811146 45 1778 1709.66389318885 68.3361068111453 46 1976 1849.03889318885 126.961106811145 47 2397 2048.60139318885 348.398606811146 48 2654 2165.22639318885 488.773606811145 49 2097 1722.67569659443 374.324303405571 50 1963 1547.41389318885 415.586106811145 51 1677 1597.97639318885 79.0236068111458 52 1941 1484.78889318886 456.211106811145 53 2003 1622.10139318885 380.898606811146 54 1813 1566.35139318885 246.648606811145 55 2012 1641.97639318885 370.023606811145 56 1912 1656.85139318885 255.148606811146 57 2084 1709.66389318885 374.336106811145 58 2080 1849.03889318885 230.961106811145 59 2118 2048.60139318885 69.3986068111455 60 2150 2165.22639318885 -15.2263931888546 61 1608 1722.67569659443 -114.675696594429 62 1503 1547.41389318885 -44.4138931888543 63 1548 1597.97639318885 -49.9763931888542 64 1382 1484.78889318885 -102.788893188855 65 1731 1622.10139318885 108.898606811146 66 1798 1566.35139318885 231.648606811145 67 1779 1641.97639318885 137.023606811145 68 1887 1656.85139318885 230.148606811146 69 2004 1709.66389318885 294.336106811145 70 2077 1849.03889318885 227.961106811145 71 2092 2048.60139318885 43.3986068111455 72 2051 2165.22639318885 -114.226393188855 73 1577 1722.67569659443 -145.675696594429 74 1356 1547.41389318885 -191.413893188854 75 1652 1597.97639318885 54.0236068111458 76 1382 1484.78889318885 -102.788893188855 77 1519 1622.10139318885 -103.101393188854 78 1421 1566.35139318885 -145.351393188855 79 1442 1641.97639318885 -199.976393188855 80 1543 1656.85139318885 -113.851393188854 81 1656 1709.66389318885 -53.6638931888547 82 1561 1849.03889318885 -288.038893188855 83 1905 2048.60139318885 -143.601393188855 84 2199 2165.22639318885 33.7736068111454 85 1473 1722.67569659443 -249.675696594429 86 1655 1547.41389318885 107.586106811146 87 1407 1597.97639318885 -190.976393188854 88 1395 1484.78889318885 -89.788893188855 89 1530 1622.10139318885 -92.1013931888544 90 1309 1566.35139318885 -257.351393188855 91 1526 1641.97639318885 -115.976393188855 92 1327 1656.85139318885 -329.851393188854 93 1627 1709.66389318885 -82.6638931888547 94 1748 1849.03889318885 -101.038893188855 95 1958 2048.60139318885 -90.6013931888545 96 2274 2165.22639318885 108.773606811145 97 1648 1722.67569659443 -74.6756965944287 98 1401 1547.41389318885 -146.413893188854 99 1411 1597.97639318885 -186.976393188854 100 1403 1484.78889318885 -81.788893188855 101 1394 1622.10139318885 -228.101393188854 102 1520 1566.35139318885 -46.3513931888545 103 1528 1641.97639318885 -113.976393188855 104 1643 1656.85139318885 -13.851393188854 105 1515 1709.66389318885 -194.663893188855 106 1685 1849.03889318885 -164.038893188855 107 2000 2048.60139318885 -48.6013931888545 108 2215 2165.22639318885 49.7736068111454 109 1956 1722.67569659443 233.324303405571 110 1462 1547.41389318885 -85.4138931888543 111 1563 1597.97639318885 -34.9763931888542 112 1459 1484.78889318885 -25.7888931888550 113 1446 1622.10139318885 -176.101393188854 114 1622 1566.35139318885 55.6486068111455 115 1657 1641.97639318885 15.0236068111454 116 1638 1656.85139318885 -18.851393188854 117 1643 1709.66389318885 -66.6638931888547 118 1683 1849.03889318885 -166.038893188855 119 2050 2048.60139318885 1.39860681114553 120 2262 2165.22639318885 96.7736068111454 121 1813 1722.67569659443 90.3243034055712 122 1445 1547.41389318885 -102.413893188854 123 1762 1597.97639318885 164.023606811146 124 1461 1484.78889318885 -23.7888931888550 125 1556 1622.10139318885 -66.1013931888544 126 1431 1566.35139318885 -135.351393188855 127 1427 1641.97639318885 -214.976393188855 128 1554 1656.85139318885 -102.851393188854 129 1645 1709.66389318885 -64.6638931888547 130 1653 1849.03889318885 -196.038893188855 131 2016 2048.60139318885 -32.6013931888545 132 2207 2165.22639318885 41.7736068111454 133 1665 1722.67569659443 -57.6756965944287 134 1361 1547.41389318885 -186.413893188854 135 1506 1597.97639318885 -91.9763931888542 136 1360 1484.78889318885 -124.788893188855 137 1453 1622.10139318885 -169.101393188854 138 1522 1566.35139318885 -44.3513931888545 139 1460 1641.97639318885 -181.976393188855 140 1552 1656.85139318885 -104.851393188854 141 1548 1709.66389318885 -161.663893188855 142 1827 1849.03889318885 -22.0388931888545 143 1737 2048.60139318885 -311.601393188855 144 1941 2165.22639318885 -224.226393188855 145 1474 1722.67569659443 -248.675696594429 146 1458 1547.41389318885 -89.4138931888543 147 1542 1597.97639318885 -55.9763931888542 148 1404 1484.78889318885 -80.788893188855 149 1522 1622.10139318885 -100.101393188854 150 1385 1566.35139318885 -181.351393188855 151 1641 1641.97639318885 -0.9763931888546 152 1510 1656.85139318885 -146.851393188854 153 1681 1709.66389318885 -28.6638931888547 154 1938 1849.03889318885 88.9611068111455 155 1868 2048.60139318885 -180.601393188855 156 1726 2165.22639318885 -439.226393188855 157 1456 1722.67569659443 -266.675696594429 158 1445 1547.41389318885 -102.413893188854 159 1456 1597.97639318885 -141.976393188854 160 1365 1484.78889318885 -119.788893188855 161 1487 1622.10139318885 -135.101393188854 162 1558 1566.35139318885 -8.3513931888545 163 1488 1641.97639318885 -153.976393188855 164 1684 1656.85139318885 27.148606811146 165 1594 1709.66389318885 -115.663893188855 166 1850 1849.03889318885 0.9611068111455 167 1998 2048.60139318885 -50.6013931888545 168 2079 2165.22639318885 -86.2263931888546 169 1494 1722.67569659443 -228.675696594429 170 1057 1151.60274767802 -94.6027476780183 171 1218 1202.16524767802 15.8347523219817 172 1168 1088.97774767802 79.022252321981 173 1236 1226.29024767802 9.70975232198158 174 1076 1170.54024767802 -94.5402476780185 175 1174 1246.16524767802 -72.1652476780186 176 1139 1261.04024767802 -122.040247678018 177 1427 1313.85274767802 113.147252321981 178 1487 1453.22774767802 33.7722523219814 179 1483 1652.79024767802 -169.790247678018 180 1513 1769.41524767802 -256.415247678019 181 1357 1326.86455108359 30.1354489164072 182 1165 1151.60274767802 13.3972523219817 183 1282 1202.16524767802 79.8347523219817 184 1110 1088.97774767802 21.0222523219809 185 1297 1226.29024767802 70.7097523219816 186 1185 1170.54024767802 14.4597523219815 187 1222 1246.16524767802 -24.1652476780187 188 1284 1261.04024767802 22.9597523219819 189 1444 1313.85274767802 130.147252321981 190 1575 1453.22774767802 121.772252321981 191 1737 1652.79024767802 84.2097523219815 192 1763 1769.41524767802 -6.41524767801867

 Goldfeld-Quandt test for Heteroskedasticity p-values Alternative Hypothesis breakpoint index greater 2-sided less 16 0.477412392593736 0.954824785187473 0.522587607406264 17 0.317783061374179 0.635566122748358 0.682216938625821 18 0.191885033017608 0.383770066035215 0.808114966982392 19 0.21949644245213 0.43899288490426 0.78050355754787 20 0.182871328784974 0.365742657569947 0.817128671215026 21 0.138850641397902 0.277701282795803 0.861149358602098 22 0.247066821091927 0.494133642183854 0.752933178908073 23 0.186573077093517 0.373146154187033 0.813426922906483 24 0.268174322039433 0.536348644078867 0.731825677960567 25 0.375317347973012 0.750634695946024 0.624682652026988 26 0.298471225788020 0.596942451576041 0.70152877421198 27 0.239925267391636 0.479850534783272 0.760074732608364 28 0.213045039049363 0.426090078098727 0.786954960950637 29 0.213768874665489 0.427537749330978 0.786231125334511 30 0.229775231390765 0.459550462781531 0.770224768609235 31 0.194771535540367 0.389543071080733 0.805228464459633 32 0.207765111722895 0.415530223445791 0.792234888277105 33 0.162156516074257 0.324313032148515 0.837843483925743 34 0.148116430104430 0.296232860208859 0.85188356989557 35 0.117831295973623 0.235662591947246 0.882168704026377 36 0.0973821172219917 0.194764234443983 0.902617882778008 37 0.141400961547807 0.282801923095614 0.858599038452193 38 0.129782291551691 0.259564583103381 0.87021770844831 39 0.139772827651345 0.279545655302690 0.860227172348655 40 0.110585409484316 0.221170818968631 0.889414590515685 41 0.184124718668966 0.368249437337932 0.815875281331034 42 0.234899328567712 0.469798657135423 0.765100671432288 43 0.291650147887306 0.583300295774613 0.708349852112694 44 0.255254376276575 0.510508752553149 0.744745623723425 45 0.231933978176051 0.463867956352102 0.768066021823949 46 0.203909631331678 0.407819262663356 0.796090368668322 47 0.243147708070040 0.486295416140081 0.756852291929960 48 0.47388776216581 0.94777552433162 0.52611223783419 49 0.569198532309371 0.861602935381258 0.430801467690629 50 0.726418882814955 0.54716223437009 0.273581117185045 51 0.688396761118617 0.623206477762766 0.311603238881383 52 0.888242393763722 0.223515212472556 0.111757606236278 53 0.944877463261828 0.110245073476344 0.0551225367381722 54 0.954654571772184 0.0906908564556312 0.0453454282278156 55 0.98111520713736 0.0377695857252814 0.0188847928626407 56 0.986513964448928 0.0269720711021439 0.0134860355510720 57 0.997847998894441 0.00430400221111737 0.00215200110555868 58 0.998562893607976 0.00287421278404882 0.00143710639202441 59 0.998500290558421 0.00299941888315808 0.00149970944157904 60 0.998543220395462 0.00291355920907621 0.00145677960453811 61 0.999071731216277 0.00185653756744668 0.000928268783723342 62 0.999115103902979 0.00176979219404262 0.000884896097021311 63 0.998871905331227 0.00225618933754644 0.00112809466877322 64 0.998910346069769 0.00217930786046273 0.00108965393023137 65 0.998930622909329 0.00213875418134243 0.00106937709067122 66 0.999397505960305 0.00120498807939 0.000602494039695 67 0.999504759687325 0.000990480625349449 0.000495240312674724 68 0.999760713595366 0.000478572809268209 0.000239286404634104 69 0.999948455558024 0.000103088883951553 5.15444419757764e-05 70 0.999979975598548 4.00488029040693e-05 2.00244014520346e-05 71 0.999980305975869 3.93880482627085e-05 1.96940241313543e-05 72 0.999983954097483 3.20918050348279e-05 1.60459025174140e-05 73 0.999988779228469 2.24415430626064e-05 1.12207715313032e-05 74 0.99999409578811 1.18084237801413e-05 5.90421189007064e-06 75 0.999992139221738 1.57215565242678e-05 7.8607782621339e-06 76 0.999990757414991 1.84851700178040e-05 9.24258500890202e-06 77 0.999991705960114 1.65880797721136e-05 8.29403988605678e-06 78 0.999993196296076 1.36074078485785e-05 6.80370392428923e-06 79 0.999996708992126 6.58201574797166e-06 3.29100787398583e-06 80 0.99999678274875 6.43450250216893e-06 3.21725125108447e-06 81 0.999995379009574 9.24198085107973e-06 4.62099042553986e-06 82 0.999998914761907 2.17047618646408e-06 1.08523809323204e-06 83 0.99999905536806 1.88926387964174e-06 9.4463193982087e-07 84 0.999998829619894 2.34076021144639e-06 1.17038010572320e-06 85 0.999999513722613 9.7255477329988e-07 4.8627738664994e-07 86 0.999999653904716 6.92190568997731e-07 3.46095284498866e-07 87 0.99999972226803 5.5546393885066e-07 2.7773196942533e-07 88 0.999999586153735 8.27692529861566e-07 4.13846264930783e-07 89 0.999999484150618 1.03169876404525e-06 5.15849382022623e-07 90 0.999999782930722 4.34138555732368e-07 2.17069277866184e-07 91 0.999999734119497 5.31761004889164e-07 2.65880502444582e-07 92 0.999999959339058 8.13218832371426e-08 4.06609416185713e-08 93 0.999999934879806 1.30240387583734e-07 6.51201937918671e-08 94 0.999999901028302 1.97943395314047e-07 9.89716976570233e-08 95 0.999999861221093 2.77557813291379e-07 1.38778906645690e-07 96 0.999999914079973 1.71840054584607e-07 8.59200272923037e-08 97 0.99999986012182 2.79756359989457e-07 1.39878179994729e-07 98 0.999999825021158 3.49957683513652e-07 1.74978841756826e-07 99 0.999999846950936 3.06098128076187e-07 1.53049064038094e-07 100 0.999999747154582 5.05690835816319e-07 2.52845417908160e-07 101 0.99999981258329 3.7483341941049e-07 1.87416709705245e-07 102 0.999999685151943 6.29696114916211e-07 3.14848057458106e-07 103 0.99999954887673 9.02246538632805e-07 4.51123269316402e-07 104 0.99999929222596 1.41554807902718e-06 7.0777403951359e-07 105 0.999999364526747 1.27094650632298e-06 6.3547325316149e-07 106 0.999999297249657 1.40550068602918e-06 7.02750343014592e-07 107 0.99999895872801 2.08254397902858e-06 1.04127198951429e-06 108 0.999999152146335 1.69570732985605e-06 8.47853664928023e-07 109 0.999999919851355 1.60297289800619e-07 8.01486449003093e-08 110 0.999999871087118 2.57825763589014e-07 1.28912881794507e-07 111 0.999999760605925 4.78788149181416e-07 2.39394074590708e-07 112 0.999999583966098 8.32067803672855e-07 4.16033901836428e-07 113 0.999999494823376 1.01035324743262e-06 5.0517662371631e-07 114 0.999999480267561 1.03946487774175e-06 5.19732438870876e-07 115 0.999999452400836 1.09519832770823e-06 5.47599163854117e-07 116 0.999999162874419 1.67425116273504e-06 8.37125581367521e-07 117 0.999998530873767 2.93825246625430e-06 1.46912623312715e-06 118 0.999998492753709 3.01449258219802e-06 1.50724629109901e-06 119 0.999998322921291 3.35415741711385e-06 1.67707870855692e-06 120 0.999999617867116 7.64265768332042e-07 3.82132884166021e-07 121 0.999999893373343 2.13253314532940e-07 1.06626657266470e-07 122 0.99999981861141 3.62777181927527e-07 1.81388590963763e-07 123 0.999999949356552 1.01286896749012e-07 5.0643448374506e-08 124 0.999999912066183 1.75867634100664e-07 8.7933817050332e-08 125 0.999999842274074 3.15451851057457e-07 1.57725925528729e-07 126 0.999999733127569 5.33744862044504e-07 2.66872431022252e-07 127 0.999999689201263 6.21597472934647e-07 3.10798736467324e-07 128 0.9999994387758 1.12244840081945e-06 5.61224200409725e-07 129 0.999998935678024 2.12864395257080e-06 1.06432197628540e-06 130 0.99999942772623 1.14454753850936e-06 5.72273769254682e-07 131 0.999999390997002 1.21800599684692e-06 6.09002998423458e-07 132 0.999999935744485 1.28511029699837e-07 6.42555148499187e-08 133 0.999999945689883 1.08620234260407e-07 5.43101171302033e-08 134 0.999999915559562 1.68880875030271e-07 8.44404375151355e-08 135 0.99999982730464 3.45390721431426e-07 1.72695360715713e-07 136 0.99999968111279 6.37774418162373e-07 3.18887209081187e-07 137 0.999999516321377 9.67357246883755e-07 4.83678623441878e-07 138 0.999999218169784 1.56366043213988e-06 7.81830216069941e-07 139 0.999998785104147 2.42979170547042e-06 1.21489585273521e-06 140 0.99999764586801 4.70826397889355e-06 2.35413198944678e-06 141 0.999997512387917 4.97522416654345e-06 2.48761208327172e-06 142 0.999995061082498 9.87783500307573e-06 4.93891750153786e-06 143 0.999997737829351 4.52434129751273e-06 2.26217064875636e-06 144 0.999996469214725 7.06157054924965e-06 3.53078527462482e-06 145 0.999994862395303 1.02752093948037e-05 5.13760469740187e-06 146 0.999990271774088 1.94564518248318e-05 9.7282259124159e-06 147 0.99998094543812 3.81091237617349e-05 1.90545618808674e-05 148 0.9999625131262 7.49737476012236e-05 3.74868738006118e-05 149 0.999928432870693 0.000143134258614119 7.15671293070596e-05 150 0.999894002745356 0.000211994509286974 0.000105997254643487 151 0.999894020798052 0.000211958403896148 0.000105979201948074 152 0.99981724152826 0.000365516943479771 0.000182758471739886 153 0.999649970251462 0.00070005949707591 0.000350029748537955 154 0.999531183427333 0.000937633145333717 0.000468816572666858 155 0.999252101750874 0.00149579649825203 0.000747898249126013 156 0.999848486594899 0.000303026810202280 0.000151513405101140 157 0.999821773945542 0.000356452108915764 0.000178226054457882 158 0.999646663903749 0.000706672192502481 0.000353336096251241 159 0.99947224659046 0.00105550681907927 0.000527753409539633 160 0.999161941856327 0.00167611628734633 0.000838058143673166 161 0.99879443070355 0.00241113859289918 0.00120556929644959 162 0.998132418671365 0.0037351626572697 0.00186758132863485 163 0.996541317679327 0.00691736464134663 0.00345868232067332 164 0.99643064239685 0.00713871520630226 0.00356935760315113 165 0.99630291304999 0.00739417390002156 0.00369708695001078 166 0.992624820543152 0.0147503589136949 0.00737517945684745 167 0.986949004632548 0.0261019907349031 0.0130509953674515 168 0.990914720921223 0.0181705581575536 0.0090852790787768 169 0.982271046311107 0.0354579073777866 0.0177289536888933 170 0.971877160373402 0.0562456792531961 0.0281228396265981 171 0.949755158728175 0.100489682543650 0.0502448412718248 172 0.912201040193592 0.175597919612815 0.0877989598064076 173 0.852461858529344 0.295076282941313 0.147538141470656 174 0.782357319812533 0.435285360374933 0.217642680187467 175 0.656942818640769 0.686114362718462 0.343057181359231 176 0.550072850089641 0.899854299820717 0.449927149910359

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
16 & 0.477412392593736 & 0.954824785187473 & 0.522587607406264 \tabularnewline
17 & 0.317783061374179 & 0.635566122748358 & 0.682216938625821 \tabularnewline
18 & 0.191885033017608 & 0.383770066035215 & 0.808114966982392 \tabularnewline
19 & 0.21949644245213 & 0.43899288490426 & 0.78050355754787 \tabularnewline
20 & 0.182871328784974 & 0.365742657569947 & 0.817128671215026 \tabularnewline
21 & 0.138850641397902 & 0.277701282795803 & 0.861149358602098 \tabularnewline
22 & 0.247066821091927 & 0.494133642183854 & 0.752933178908073 \tabularnewline
23 & 0.186573077093517 & 0.373146154187033 & 0.813426922906483 \tabularnewline
24 & 0.268174322039433 & 0.536348644078867 & 0.731825677960567 \tabularnewline
25 & 0.375317347973012 & 0.750634695946024 & 0.624682652026988 \tabularnewline
26 & 0.298471225788020 & 0.596942451576041 & 0.70152877421198 \tabularnewline
27 & 0.239925267391636 & 0.479850534783272 & 0.760074732608364 \tabularnewline
28 & 0.213045039049363 & 0.426090078098727 & 0.786954960950637 \tabularnewline
29 & 0.213768874665489 & 0.427537749330978 & 0.786231125334511 \tabularnewline
30 & 0.229775231390765 & 0.459550462781531 & 0.770224768609235 \tabularnewline
31 & 0.194771535540367 & 0.389543071080733 & 0.805228464459633 \tabularnewline
32 & 0.207765111722895 & 0.415530223445791 & 0.792234888277105 \tabularnewline
33 & 0.162156516074257 & 0.324313032148515 & 0.837843483925743 \tabularnewline
34 & 0.148116430104430 & 0.296232860208859 & 0.85188356989557 \tabularnewline
35 & 0.117831295973623 & 0.235662591947246 & 0.882168704026377 \tabularnewline
36 & 0.0973821172219917 & 0.194764234443983 & 0.902617882778008 \tabularnewline
37 & 0.141400961547807 & 0.282801923095614 & 0.858599038452193 \tabularnewline
38 & 0.129782291551691 & 0.259564583103381 & 0.87021770844831 \tabularnewline
39 & 0.139772827651345 & 0.279545655302690 & 0.860227172348655 \tabularnewline
40 & 0.110585409484316 & 0.221170818968631 & 0.889414590515685 \tabularnewline
41 & 0.184124718668966 & 0.368249437337932 & 0.815875281331034 \tabularnewline
42 & 0.234899328567712 & 0.469798657135423 & 0.765100671432288 \tabularnewline
43 & 0.291650147887306 & 0.583300295774613 & 0.708349852112694 \tabularnewline
44 & 0.255254376276575 & 0.510508752553149 & 0.744745623723425 \tabularnewline
45 & 0.231933978176051 & 0.463867956352102 & 0.768066021823949 \tabularnewline
46 & 0.203909631331678 & 0.407819262663356 & 0.796090368668322 \tabularnewline
47 & 0.243147708070040 & 0.486295416140081 & 0.756852291929960 \tabularnewline
48 & 0.47388776216581 & 0.94777552433162 & 0.52611223783419 \tabularnewline
49 & 0.569198532309371 & 0.861602935381258 & 0.430801467690629 \tabularnewline
50 & 0.726418882814955 & 0.54716223437009 & 0.273581117185045 \tabularnewline
51 & 0.688396761118617 & 0.623206477762766 & 0.311603238881383 \tabularnewline
52 & 0.888242393763722 & 0.223515212472556 & 0.111757606236278 \tabularnewline
53 & 0.944877463261828 & 0.110245073476344 & 0.0551225367381722 \tabularnewline
54 & 0.954654571772184 & 0.0906908564556312 & 0.0453454282278156 \tabularnewline
55 & 0.98111520713736 & 0.0377695857252814 & 0.0188847928626407 \tabularnewline
56 & 0.986513964448928 & 0.0269720711021439 & 0.0134860355510720 \tabularnewline
57 & 0.997847998894441 & 0.00430400221111737 & 0.00215200110555868 \tabularnewline
58 & 0.998562893607976 & 0.00287421278404882 & 0.00143710639202441 \tabularnewline
59 & 0.998500290558421 & 0.00299941888315808 & 0.00149970944157904 \tabularnewline
60 & 0.998543220395462 & 0.00291355920907621 & 0.00145677960453811 \tabularnewline
61 & 0.999071731216277 & 0.00185653756744668 & 0.000928268783723342 \tabularnewline
62 & 0.999115103902979 & 0.00176979219404262 & 0.000884896097021311 \tabularnewline
63 & 0.998871905331227 & 0.00225618933754644 & 0.00112809466877322 \tabularnewline
64 & 0.998910346069769 & 0.00217930786046273 & 0.00108965393023137 \tabularnewline
65 & 0.998930622909329 & 0.00213875418134243 & 0.00106937709067122 \tabularnewline
66 & 0.999397505960305 & 0.00120498807939 & 0.000602494039695 \tabularnewline
67 & 0.999504759687325 & 0.000990480625349449 & 0.000495240312674724 \tabularnewline
68 & 0.999760713595366 & 0.000478572809268209 & 0.000239286404634104 \tabularnewline
69 & 0.999948455558024 & 0.000103088883951553 & 5.15444419757764e-05 \tabularnewline
70 & 0.999979975598548 & 4.00488029040693e-05 & 2.00244014520346e-05 \tabularnewline
71 & 0.999980305975869 & 3.93880482627085e-05 & 1.96940241313543e-05 \tabularnewline
72 & 0.999983954097483 & 3.20918050348279e-05 & 1.60459025174140e-05 \tabularnewline
73 & 0.999988779228469 & 2.24415430626064e-05 & 1.12207715313032e-05 \tabularnewline
74 & 0.99999409578811 & 1.18084237801413e-05 & 5.90421189007064e-06 \tabularnewline
75 & 0.999992139221738 & 1.57215565242678e-05 & 7.8607782621339e-06 \tabularnewline
76 & 0.999990757414991 & 1.84851700178040e-05 & 9.24258500890202e-06 \tabularnewline
77 & 0.999991705960114 & 1.65880797721136e-05 & 8.29403988605678e-06 \tabularnewline
78 & 0.999993196296076 & 1.36074078485785e-05 & 6.80370392428923e-06 \tabularnewline
79 & 0.999996708992126 & 6.58201574797166e-06 & 3.29100787398583e-06 \tabularnewline
80 & 0.99999678274875 & 6.43450250216893e-06 & 3.21725125108447e-06 \tabularnewline
81 & 0.999995379009574 & 9.24198085107973e-06 & 4.62099042553986e-06 \tabularnewline
82 & 0.999998914761907 & 2.17047618646408e-06 & 1.08523809323204e-06 \tabularnewline
83 & 0.99999905536806 & 1.88926387964174e-06 & 9.4463193982087e-07 \tabularnewline
84 & 0.999998829619894 & 2.34076021144639e-06 & 1.17038010572320e-06 \tabularnewline
85 & 0.999999513722613 & 9.7255477329988e-07 & 4.8627738664994e-07 \tabularnewline
86 & 0.999999653904716 & 6.92190568997731e-07 & 3.46095284498866e-07 \tabularnewline
87 & 0.99999972226803 & 5.5546393885066e-07 & 2.7773196942533e-07 \tabularnewline
88 & 0.999999586153735 & 8.27692529861566e-07 & 4.13846264930783e-07 \tabularnewline
89 & 0.999999484150618 & 1.03169876404525e-06 & 5.15849382022623e-07 \tabularnewline
90 & 0.999999782930722 & 4.34138555732368e-07 & 2.17069277866184e-07 \tabularnewline
91 & 0.999999734119497 & 5.31761004889164e-07 & 2.65880502444582e-07 \tabularnewline
92 & 0.999999959339058 & 8.13218832371426e-08 & 4.06609416185713e-08 \tabularnewline
93 & 0.999999934879806 & 1.30240387583734e-07 & 6.51201937918671e-08 \tabularnewline
94 & 0.999999901028302 & 1.97943395314047e-07 & 9.89716976570233e-08 \tabularnewline
95 & 0.999999861221093 & 2.77557813291379e-07 & 1.38778906645690e-07 \tabularnewline
96 & 0.999999914079973 & 1.71840054584607e-07 & 8.59200272923037e-08 \tabularnewline
97 & 0.99999986012182 & 2.79756359989457e-07 & 1.39878179994729e-07 \tabularnewline
98 & 0.999999825021158 & 3.49957683513652e-07 & 1.74978841756826e-07 \tabularnewline
99 & 0.999999846950936 & 3.06098128076187e-07 & 1.53049064038094e-07 \tabularnewline
100 & 0.999999747154582 & 5.05690835816319e-07 & 2.52845417908160e-07 \tabularnewline
101 & 0.99999981258329 & 3.7483341941049e-07 & 1.87416709705245e-07 \tabularnewline
102 & 0.999999685151943 & 6.29696114916211e-07 & 3.14848057458106e-07 \tabularnewline
103 & 0.99999954887673 & 9.02246538632805e-07 & 4.51123269316402e-07 \tabularnewline
104 & 0.99999929222596 & 1.41554807902718e-06 & 7.0777403951359e-07 \tabularnewline
105 & 0.999999364526747 & 1.27094650632298e-06 & 6.3547325316149e-07 \tabularnewline
106 & 0.999999297249657 & 1.40550068602918e-06 & 7.02750343014592e-07 \tabularnewline
107 & 0.99999895872801 & 2.08254397902858e-06 & 1.04127198951429e-06 \tabularnewline
108 & 0.999999152146335 & 1.69570732985605e-06 & 8.47853664928023e-07 \tabularnewline
109 & 0.999999919851355 & 1.60297289800619e-07 & 8.01486449003093e-08 \tabularnewline
110 & 0.999999871087118 & 2.57825763589014e-07 & 1.28912881794507e-07 \tabularnewline
111 & 0.999999760605925 & 4.78788149181416e-07 & 2.39394074590708e-07 \tabularnewline
112 & 0.999999583966098 & 8.32067803672855e-07 & 4.16033901836428e-07 \tabularnewline
113 & 0.999999494823376 & 1.01035324743262e-06 & 5.0517662371631e-07 \tabularnewline
114 & 0.999999480267561 & 1.03946487774175e-06 & 5.19732438870876e-07 \tabularnewline
115 & 0.999999452400836 & 1.09519832770823e-06 & 5.47599163854117e-07 \tabularnewline
116 & 0.999999162874419 & 1.67425116273504e-06 & 8.37125581367521e-07 \tabularnewline
117 & 0.999998530873767 & 2.93825246625430e-06 & 1.46912623312715e-06 \tabularnewline
118 & 0.999998492753709 & 3.01449258219802e-06 & 1.50724629109901e-06 \tabularnewline
119 & 0.999998322921291 & 3.35415741711385e-06 & 1.67707870855692e-06 \tabularnewline
120 & 0.999999617867116 & 7.64265768332042e-07 & 3.82132884166021e-07 \tabularnewline
121 & 0.999999893373343 & 2.13253314532940e-07 & 1.06626657266470e-07 \tabularnewline
122 & 0.99999981861141 & 3.62777181927527e-07 & 1.81388590963763e-07 \tabularnewline
123 & 0.999999949356552 & 1.01286896749012e-07 & 5.0643448374506e-08 \tabularnewline
124 & 0.999999912066183 & 1.75867634100664e-07 & 8.7933817050332e-08 \tabularnewline
125 & 0.999999842274074 & 3.15451851057457e-07 & 1.57725925528729e-07 \tabularnewline
126 & 0.999999733127569 & 5.33744862044504e-07 & 2.66872431022252e-07 \tabularnewline
127 & 0.999999689201263 & 6.21597472934647e-07 & 3.10798736467324e-07 \tabularnewline
128 & 0.9999994387758 & 1.12244840081945e-06 & 5.61224200409725e-07 \tabularnewline
129 & 0.999998935678024 & 2.12864395257080e-06 & 1.06432197628540e-06 \tabularnewline
130 & 0.99999942772623 & 1.14454753850936e-06 & 5.72273769254682e-07 \tabularnewline
131 & 0.999999390997002 & 1.21800599684692e-06 & 6.09002998423458e-07 \tabularnewline
132 & 0.999999935744485 & 1.28511029699837e-07 & 6.42555148499187e-08 \tabularnewline
133 & 0.999999945689883 & 1.08620234260407e-07 & 5.43101171302033e-08 \tabularnewline
134 & 0.999999915559562 & 1.68880875030271e-07 & 8.44404375151355e-08 \tabularnewline
135 & 0.99999982730464 & 3.45390721431426e-07 & 1.72695360715713e-07 \tabularnewline
136 & 0.99999968111279 & 6.37774418162373e-07 & 3.18887209081187e-07 \tabularnewline
137 & 0.999999516321377 & 9.67357246883755e-07 & 4.83678623441878e-07 \tabularnewline
138 & 0.999999218169784 & 1.56366043213988e-06 & 7.81830216069941e-07 \tabularnewline
139 & 0.999998785104147 & 2.42979170547042e-06 & 1.21489585273521e-06 \tabularnewline
140 & 0.99999764586801 & 4.70826397889355e-06 & 2.35413198944678e-06 \tabularnewline
141 & 0.999997512387917 & 4.97522416654345e-06 & 2.48761208327172e-06 \tabularnewline
142 & 0.999995061082498 & 9.87783500307573e-06 & 4.93891750153786e-06 \tabularnewline
143 & 0.999997737829351 & 4.52434129751273e-06 & 2.26217064875636e-06 \tabularnewline
144 & 0.999996469214725 & 7.06157054924965e-06 & 3.53078527462482e-06 \tabularnewline
145 & 0.999994862395303 & 1.02752093948037e-05 & 5.13760469740187e-06 \tabularnewline
146 & 0.999990271774088 & 1.94564518248318e-05 & 9.7282259124159e-06 \tabularnewline
147 & 0.99998094543812 & 3.81091237617349e-05 & 1.90545618808674e-05 \tabularnewline
148 & 0.9999625131262 & 7.49737476012236e-05 & 3.74868738006118e-05 \tabularnewline
149 & 0.999928432870693 & 0.000143134258614119 & 7.15671293070596e-05 \tabularnewline
150 & 0.999894002745356 & 0.000211994509286974 & 0.000105997254643487 \tabularnewline
151 & 0.999894020798052 & 0.000211958403896148 & 0.000105979201948074 \tabularnewline
152 & 0.99981724152826 & 0.000365516943479771 & 0.000182758471739886 \tabularnewline
153 & 0.999649970251462 & 0.00070005949707591 & 0.000350029748537955 \tabularnewline
154 & 0.999531183427333 & 0.000937633145333717 & 0.000468816572666858 \tabularnewline
155 & 0.999252101750874 & 0.00149579649825203 & 0.000747898249126013 \tabularnewline
156 & 0.999848486594899 & 0.000303026810202280 & 0.000151513405101140 \tabularnewline
157 & 0.999821773945542 & 0.000356452108915764 & 0.000178226054457882 \tabularnewline
158 & 0.999646663903749 & 0.000706672192502481 & 0.000353336096251241 \tabularnewline
159 & 0.99947224659046 & 0.00105550681907927 & 0.000527753409539633 \tabularnewline
160 & 0.999161941856327 & 0.00167611628734633 & 0.000838058143673166 \tabularnewline
161 & 0.99879443070355 & 0.00241113859289918 & 0.00120556929644959 \tabularnewline
162 & 0.998132418671365 & 0.0037351626572697 & 0.00186758132863485 \tabularnewline
163 & 0.996541317679327 & 0.00691736464134663 & 0.00345868232067332 \tabularnewline
164 & 0.99643064239685 & 0.00713871520630226 & 0.00356935760315113 \tabularnewline
165 & 0.99630291304999 & 0.00739417390002156 & 0.00369708695001078 \tabularnewline
166 & 0.992624820543152 & 0.0147503589136949 & 0.00737517945684745 \tabularnewline
167 & 0.986949004632548 & 0.0261019907349031 & 0.0130509953674515 \tabularnewline
168 & 0.990914720921223 & 0.0181705581575536 & 0.0090852790787768 \tabularnewline
169 & 0.982271046311107 & 0.0354579073777866 & 0.0177289536888933 \tabularnewline
170 & 0.971877160373402 & 0.0562456792531961 & 0.0281228396265981 \tabularnewline
171 & 0.949755158728175 & 0.100489682543650 & 0.0502448412718248 \tabularnewline
172 & 0.912201040193592 & 0.175597919612815 & 0.0877989598064076 \tabularnewline
173 & 0.852461858529344 & 0.295076282941313 & 0.147538141470656 \tabularnewline
174 & 0.782357319812533 & 0.435285360374933 & 0.217642680187467 \tabularnewline
175 & 0.656942818640769 & 0.686114362718462 & 0.343057181359231 \tabularnewline
176 & 0.550072850089641 & 0.899854299820717 & 0.449927149910359 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=55996&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]16[/C][C]0.477412392593736[/C][C]0.954824785187473[/C][C]0.522587607406264[/C][/ROW]
[ROW][C]17[/C][C]0.317783061374179[/C][C]0.635566122748358[/C][C]0.682216938625821[/C][/ROW]
[ROW][C]18[/C][C]0.191885033017608[/C][C]0.383770066035215[/C][C]0.808114966982392[/C][/ROW]
[ROW][C]19[/C][C]0.21949644245213[/C][C]0.43899288490426[/C][C]0.78050355754787[/C][/ROW]
[ROW][C]20[/C][C]0.182871328784974[/C][C]0.365742657569947[/C][C]0.817128671215026[/C][/ROW]
[ROW][C]21[/C][C]0.138850641397902[/C][C]0.277701282795803[/C][C]0.861149358602098[/C][/ROW]
[ROW][C]22[/C][C]0.247066821091927[/C][C]0.494133642183854[/C][C]0.752933178908073[/C][/ROW]
[ROW][C]23[/C][C]0.186573077093517[/C][C]0.373146154187033[/C][C]0.813426922906483[/C][/ROW]
[ROW][C]24[/C][C]0.268174322039433[/C][C]0.536348644078867[/C][C]0.731825677960567[/C][/ROW]
[ROW][C]25[/C][C]0.375317347973012[/C][C]0.750634695946024[/C][C]0.624682652026988[/C][/ROW]
[ROW][C]26[/C][C]0.298471225788020[/C][C]0.596942451576041[/C][C]0.70152877421198[/C][/ROW]
[ROW][C]27[/C][C]0.239925267391636[/C][C]0.479850534783272[/C][C]0.760074732608364[/C][/ROW]
[ROW][C]28[/C][C]0.213045039049363[/C][C]0.426090078098727[/C][C]0.786954960950637[/C][/ROW]
[ROW][C]29[/C][C]0.213768874665489[/C][C]0.427537749330978[/C][C]0.786231125334511[/C][/ROW]
[ROW][C]30[/C][C]0.229775231390765[/C][C]0.459550462781531[/C][C]0.770224768609235[/C][/ROW]
[ROW][C]31[/C][C]0.194771535540367[/C][C]0.389543071080733[/C][C]0.805228464459633[/C][/ROW]
[ROW][C]32[/C][C]0.207765111722895[/C][C]0.415530223445791[/C][C]0.792234888277105[/C][/ROW]
[ROW][C]33[/C][C]0.162156516074257[/C][C]0.324313032148515[/C][C]0.837843483925743[/C][/ROW]
[ROW][C]34[/C][C]0.148116430104430[/C][C]0.296232860208859[/C][C]0.85188356989557[/C][/ROW]
[ROW][C]35[/C][C]0.117831295973623[/C][C]0.235662591947246[/C][C]0.882168704026377[/C][/ROW]
[ROW][C]36[/C][C]0.0973821172219917[/C][C]0.194764234443983[/C][C]0.902617882778008[/C][/ROW]
[ROW][C]37[/C][C]0.141400961547807[/C][C]0.282801923095614[/C][C]0.858599038452193[/C][/ROW]
[ROW][C]38[/C][C]0.129782291551691[/C][C]0.259564583103381[/C][C]0.87021770844831[/C][/ROW]
[ROW][C]39[/C][C]0.139772827651345[/C][C]0.279545655302690[/C][C]0.860227172348655[/C][/ROW]
[ROW][C]40[/C][C]0.110585409484316[/C][C]0.221170818968631[/C][C]0.889414590515685[/C][/ROW]
[ROW][C]41[/C][C]0.184124718668966[/C][C]0.368249437337932[/C][C]0.815875281331034[/C][/ROW]
[ROW][C]42[/C][C]0.234899328567712[/C][C]0.469798657135423[/C][C]0.765100671432288[/C][/ROW]
[ROW][C]43[/C][C]0.291650147887306[/C][C]0.583300295774613[/C][C]0.708349852112694[/C][/ROW]
[ROW][C]44[/C][C]0.255254376276575[/C][C]0.510508752553149[/C][C]0.744745623723425[/C][/ROW]
[ROW][C]45[/C][C]0.231933978176051[/C][C]0.463867956352102[/C][C]0.768066021823949[/C][/ROW]
[ROW][C]46[/C][C]0.203909631331678[/C][C]0.407819262663356[/C][C]0.796090368668322[/C][/ROW]
[ROW][C]47[/C][C]0.243147708070040[/C][C]0.486295416140081[/C][C]0.756852291929960[/C][/ROW]
[ROW][C]48[/C][C]0.47388776216581[/C][C]0.94777552433162[/C][C]0.52611223783419[/C][/ROW]
[ROW][C]49[/C][C]0.569198532309371[/C][C]0.861602935381258[/C][C]0.430801467690629[/C][/ROW]
[ROW][C]50[/C][C]0.726418882814955[/C][C]0.54716223437009[/C][C]0.273581117185045[/C][/ROW]
[ROW][C]51[/C][C]0.688396761118617[/C][C]0.623206477762766[/C][C]0.311603238881383[/C][/ROW]
[ROW][C]52[/C][C]0.888242393763722[/C][C]0.223515212472556[/C][C]0.111757606236278[/C][/ROW]
[ROW][C]53[/C][C]0.944877463261828[/C][C]0.110245073476344[/C][C]0.0551225367381722[/C][/ROW]
[ROW][C]54[/C][C]0.954654571772184[/C][C]0.0906908564556312[/C][C]0.0453454282278156[/C][/ROW]
[ROW][C]55[/C][C]0.98111520713736[/C][C]0.0377695857252814[/C][C]0.0188847928626407[/C][/ROW]
[ROW][C]56[/C][C]0.986513964448928[/C][C]0.0269720711021439[/C][C]0.0134860355510720[/C][/ROW]
[ROW][C]57[/C][C]0.997847998894441[/C][C]0.00430400221111737[/C][C]0.00215200110555868[/C][/ROW]
[ROW][C]58[/C][C]0.998562893607976[/C][C]0.00287421278404882[/C][C]0.00143710639202441[/C][/ROW]
[ROW][C]59[/C][C]0.998500290558421[/C][C]0.00299941888315808[/C][C]0.00149970944157904[/C][/ROW]
[ROW][C]60[/C][C]0.998543220395462[/C][C]0.00291355920907621[/C][C]0.00145677960453811[/C][/ROW]
[ROW][C]61[/C][C]0.999071731216277[/C][C]0.00185653756744668[/C][C]0.000928268783723342[/C][/ROW]
[ROW][C]62[/C][C]0.999115103902979[/C][C]0.00176979219404262[/C][C]0.000884896097021311[/C][/ROW]
[ROW][C]63[/C][C]0.998871905331227[/C][C]0.00225618933754644[/C][C]0.00112809466877322[/C][/ROW]
[ROW][C]64[/C][C]0.998910346069769[/C][C]0.00217930786046273[/C][C]0.00108965393023137[/C][/ROW]
[ROW][C]65[/C][C]0.998930622909329[/C][C]0.00213875418134243[/C][C]0.00106937709067122[/C][/ROW]
[ROW][C]66[/C][C]0.999397505960305[/C][C]0.00120498807939[/C][C]0.000602494039695[/C][/ROW]
[ROW][C]67[/C][C]0.999504759687325[/C][C]0.000990480625349449[/C][C]0.000495240312674724[/C][/ROW]
[ROW][C]68[/C][C]0.999760713595366[/C][C]0.000478572809268209[/C][C]0.000239286404634104[/C][/ROW]
[ROW][C]69[/C][C]0.999948455558024[/C][C]0.000103088883951553[/C][C]5.15444419757764e-05[/C][/ROW]
[ROW][C]70[/C][C]0.999979975598548[/C][C]4.00488029040693e-05[/C][C]2.00244014520346e-05[/C][/ROW]
[ROW][C]71[/C][C]0.999980305975869[/C][C]3.93880482627085e-05[/C][C]1.96940241313543e-05[/C][/ROW]
[ROW][C]72[/C][C]0.999983954097483[/C][C]3.20918050348279e-05[/C][C]1.60459025174140e-05[/C][/ROW]
[ROW][C]73[/C][C]0.999988779228469[/C][C]2.24415430626064e-05[/C][C]1.12207715313032e-05[/C][/ROW]
[ROW][C]74[/C][C]0.99999409578811[/C][C]1.18084237801413e-05[/C][C]5.90421189007064e-06[/C][/ROW]
[ROW][C]75[/C][C]0.999992139221738[/C][C]1.57215565242678e-05[/C][C]7.8607782621339e-06[/C][/ROW]
[ROW][C]76[/C][C]0.999990757414991[/C][C]1.84851700178040e-05[/C][C]9.24258500890202e-06[/C][/ROW]
[ROW][C]77[/C][C]0.999991705960114[/C][C]1.65880797721136e-05[/C][C]8.29403988605678e-06[/C][/ROW]
[ROW][C]78[/C][C]0.999993196296076[/C][C]1.36074078485785e-05[/C][C]6.80370392428923e-06[/C][/ROW]
[ROW][C]79[/C][C]0.999996708992126[/C][C]6.58201574797166e-06[/C][C]3.29100787398583e-06[/C][/ROW]
[ROW][C]80[/C][C]0.99999678274875[/C][C]6.43450250216893e-06[/C][C]3.21725125108447e-06[/C][/ROW]
[ROW][C]81[/C][C]0.999995379009574[/C][C]9.24198085107973e-06[/C][C]4.62099042553986e-06[/C][/ROW]
[ROW][C]82[/C][C]0.999998914761907[/C][C]2.17047618646408e-06[/C][C]1.08523809323204e-06[/C][/ROW]
[ROW][C]83[/C][C]0.99999905536806[/C][C]1.88926387964174e-06[/C][C]9.4463193982087e-07[/C][/ROW]
[ROW][C]84[/C][C]0.999998829619894[/C][C]2.34076021144639e-06[/C][C]1.17038010572320e-06[/C][/ROW]
[ROW][C]85[/C][C]0.999999513722613[/C][C]9.7255477329988e-07[/C][C]4.8627738664994e-07[/C][/ROW]
[ROW][C]86[/C][C]0.999999653904716[/C][C]6.92190568997731e-07[/C][C]3.46095284498866e-07[/C][/ROW]
[ROW][C]87[/C][C]0.99999972226803[/C][C]5.5546393885066e-07[/C][C]2.7773196942533e-07[/C][/ROW]
[ROW][C]88[/C][C]0.999999586153735[/C][C]8.27692529861566e-07[/C][C]4.13846264930783e-07[/C][/ROW]
[ROW][C]89[/C][C]0.999999484150618[/C][C]1.03169876404525e-06[/C][C]5.15849382022623e-07[/C][/ROW]
[ROW][C]90[/C][C]0.999999782930722[/C][C]4.34138555732368e-07[/C][C]2.17069277866184e-07[/C][/ROW]
[ROW][C]91[/C][C]0.999999734119497[/C][C]5.31761004889164e-07[/C][C]2.65880502444582e-07[/C][/ROW]
[ROW][C]92[/C][C]0.999999959339058[/C][C]8.13218832371426e-08[/C][C]4.06609416185713e-08[/C][/ROW]
[ROW][C]93[/C][C]0.999999934879806[/C][C]1.30240387583734e-07[/C][C]6.51201937918671e-08[/C][/ROW]
[ROW][C]94[/C][C]0.999999901028302[/C][C]1.97943395314047e-07[/C][C]9.89716976570233e-08[/C][/ROW]
[ROW][C]95[/C][C]0.999999861221093[/C][C]2.77557813291379e-07[/C][C]1.38778906645690e-07[/C][/ROW]
[ROW][C]96[/C][C]0.999999914079973[/C][C]1.71840054584607e-07[/C][C]8.59200272923037e-08[/C][/ROW]
[ROW][C]97[/C][C]0.99999986012182[/C][C]2.79756359989457e-07[/C][C]1.39878179994729e-07[/C][/ROW]
[ROW][C]98[/C][C]0.999999825021158[/C][C]3.49957683513652e-07[/C][C]1.74978841756826e-07[/C][/ROW]
[ROW][C]99[/C][C]0.999999846950936[/C][C]3.06098128076187e-07[/C][C]1.53049064038094e-07[/C][/ROW]
[ROW][C]100[/C][C]0.999999747154582[/C][C]5.05690835816319e-07[/C][C]2.52845417908160e-07[/C][/ROW]
[ROW][C]101[/C][C]0.99999981258329[/C][C]3.7483341941049e-07[/C][C]1.87416709705245e-07[/C][/ROW]
[ROW][C]102[/C][C]0.999999685151943[/C][C]6.29696114916211e-07[/C][C]3.14848057458106e-07[/C][/ROW]
[ROW][C]103[/C][C]0.99999954887673[/C][C]9.02246538632805e-07[/C][C]4.51123269316402e-07[/C][/ROW]
[ROW][C]104[/C][C]0.99999929222596[/C][C]1.41554807902718e-06[/C][C]7.0777403951359e-07[/C][/ROW]
[ROW][C]105[/C][C]0.999999364526747[/C][C]1.27094650632298e-06[/C][C]6.3547325316149e-07[/C][/ROW]
[ROW][C]106[/C][C]0.999999297249657[/C][C]1.40550068602918e-06[/C][C]7.02750343014592e-07[/C][/ROW]
[ROW][C]107[/C][C]0.99999895872801[/C][C]2.08254397902858e-06[/C][C]1.04127198951429e-06[/C][/ROW]
[ROW][C]108[/C][C]0.999999152146335[/C][C]1.69570732985605e-06[/C][C]8.47853664928023e-07[/C][/ROW]
[ROW][C]109[/C][C]0.999999919851355[/C][C]1.60297289800619e-07[/C][C]8.01486449003093e-08[/C][/ROW]
[ROW][C]110[/C][C]0.999999871087118[/C][C]2.57825763589014e-07[/C][C]1.28912881794507e-07[/C][/ROW]
[ROW][C]111[/C][C]0.999999760605925[/C][C]4.78788149181416e-07[/C][C]2.39394074590708e-07[/C][/ROW]
[ROW][C]112[/C][C]0.999999583966098[/C][C]8.32067803672855e-07[/C][C]4.16033901836428e-07[/C][/ROW]
[ROW][C]113[/C][C]0.999999494823376[/C][C]1.01035324743262e-06[/C][C]5.0517662371631e-07[/C][/ROW]
[ROW][C]114[/C][C]0.999999480267561[/C][C]1.03946487774175e-06[/C][C]5.19732438870876e-07[/C][/ROW]
[ROW][C]115[/C][C]0.999999452400836[/C][C]1.09519832770823e-06[/C][C]5.47599163854117e-07[/C][/ROW]
[ROW][C]116[/C][C]0.999999162874419[/C][C]1.67425116273504e-06[/C][C]8.37125581367521e-07[/C][/ROW]
[ROW][C]117[/C][C]0.999998530873767[/C][C]2.93825246625430e-06[/C][C]1.46912623312715e-06[/C][/ROW]
[ROW][C]118[/C][C]0.999998492753709[/C][C]3.01449258219802e-06[/C][C]1.50724629109901e-06[/C][/ROW]
[ROW][C]119[/C][C]0.999998322921291[/C][C]3.35415741711385e-06[/C][C]1.67707870855692e-06[/C][/ROW]
[ROW][C]120[/C][C]0.999999617867116[/C][C]7.64265768332042e-07[/C][C]3.82132884166021e-07[/C][/ROW]
[ROW][C]121[/C][C]0.999999893373343[/C][C]2.13253314532940e-07[/C][C]1.06626657266470e-07[/C][/ROW]
[ROW][C]122[/C][C]0.99999981861141[/C][C]3.62777181927527e-07[/C][C]1.81388590963763e-07[/C][/ROW]
[ROW][C]123[/C][C]0.999999949356552[/C][C]1.01286896749012e-07[/C][C]5.0643448374506e-08[/C][/ROW]
[ROW][C]124[/C][C]0.999999912066183[/C][C]1.75867634100664e-07[/C][C]8.7933817050332e-08[/C][/ROW]
[ROW][C]125[/C][C]0.999999842274074[/C][C]3.15451851057457e-07[/C][C]1.57725925528729e-07[/C][/ROW]
[ROW][C]126[/C][C]0.999999733127569[/C][C]5.33744862044504e-07[/C][C]2.66872431022252e-07[/C][/ROW]
[ROW][C]127[/C][C]0.999999689201263[/C][C]6.21597472934647e-07[/C][C]3.10798736467324e-07[/C][/ROW]
[ROW][C]128[/C][C]0.9999994387758[/C][C]1.12244840081945e-06[/C][C]5.61224200409725e-07[/C][/ROW]
[ROW][C]129[/C][C]0.999998935678024[/C][C]2.12864395257080e-06[/C][C]1.06432197628540e-06[/C][/ROW]
[ROW][C]130[/C][C]0.99999942772623[/C][C]1.14454753850936e-06[/C][C]5.72273769254682e-07[/C][/ROW]
[ROW][C]131[/C][C]0.999999390997002[/C][C]1.21800599684692e-06[/C][C]6.09002998423458e-07[/C][/ROW]
[ROW][C]132[/C][C]0.999999935744485[/C][C]1.28511029699837e-07[/C][C]6.42555148499187e-08[/C][/ROW]
[ROW][C]133[/C][C]0.999999945689883[/C][C]1.08620234260407e-07[/C][C]5.43101171302033e-08[/C][/ROW]
[ROW][C]134[/C][C]0.999999915559562[/C][C]1.68880875030271e-07[/C][C]8.44404375151355e-08[/C][/ROW]
[ROW][C]135[/C][C]0.99999982730464[/C][C]3.45390721431426e-07[/C][C]1.72695360715713e-07[/C][/ROW]
[ROW][C]136[/C][C]0.99999968111279[/C][C]6.37774418162373e-07[/C][C]3.18887209081187e-07[/C][/ROW]
[ROW][C]137[/C][C]0.999999516321377[/C][C]9.67357246883755e-07[/C][C]4.83678623441878e-07[/C][/ROW]
[ROW][C]138[/C][C]0.999999218169784[/C][C]1.56366043213988e-06[/C][C]7.81830216069941e-07[/C][/ROW]
[ROW][C]139[/C][C]0.999998785104147[/C][C]2.42979170547042e-06[/C][C]1.21489585273521e-06[/C][/ROW]
[ROW][C]140[/C][C]0.99999764586801[/C][C]4.70826397889355e-06[/C][C]2.35413198944678e-06[/C][/ROW]
[ROW][C]141[/C][C]0.999997512387917[/C][C]4.97522416654345e-06[/C][C]2.48761208327172e-06[/C][/ROW]
[ROW][C]142[/C][C]0.999995061082498[/C][C]9.87783500307573e-06[/C][C]4.93891750153786e-06[/C][/ROW]
[ROW][C]143[/C][C]0.999997737829351[/C][C]4.52434129751273e-06[/C][C]2.26217064875636e-06[/C][/ROW]
[ROW][C]144[/C][C]0.999996469214725[/C][C]7.06157054924965e-06[/C][C]3.53078527462482e-06[/C][/ROW]
[ROW][C]145[/C][C]0.999994862395303[/C][C]1.02752093948037e-05[/C][C]5.13760469740187e-06[/C][/ROW]
[ROW][C]146[/C][C]0.999990271774088[/C][C]1.94564518248318e-05[/C][C]9.7282259124159e-06[/C][/ROW]
[ROW][C]147[/C][C]0.99998094543812[/C][C]3.81091237617349e-05[/C][C]1.90545618808674e-05[/C][/ROW]
[ROW][C]148[/C][C]0.9999625131262[/C][C]7.49737476012236e-05[/C][C]3.74868738006118e-05[/C][/ROW]
[ROW][C]149[/C][C]0.999928432870693[/C][C]0.000143134258614119[/C][C]7.15671293070596e-05[/C][/ROW]
[ROW][C]150[/C][C]0.999894002745356[/C][C]0.000211994509286974[/C][C]0.000105997254643487[/C][/ROW]
[ROW][C]151[/C][C]0.999894020798052[/C][C]0.000211958403896148[/C][C]0.000105979201948074[/C][/ROW]
[ROW][C]152[/C][C]0.99981724152826[/C][C]0.000365516943479771[/C][C]0.000182758471739886[/C][/ROW]
[ROW][C]153[/C][C]0.999649970251462[/C][C]0.00070005949707591[/C][C]0.000350029748537955[/C][/ROW]
[ROW][C]154[/C][C]0.999531183427333[/C][C]0.000937633145333717[/C][C]0.000468816572666858[/C][/ROW]
[ROW][C]155[/C][C]0.999252101750874[/C][C]0.00149579649825203[/C][C]0.000747898249126013[/C][/ROW]
[ROW][C]156[/C][C]0.999848486594899[/C][C]0.000303026810202280[/C][C]0.000151513405101140[/C][/ROW]
[ROW][C]157[/C][C]0.999821773945542[/C][C]0.000356452108915764[/C][C]0.000178226054457882[/C][/ROW]
[ROW][C]158[/C][C]0.999646663903749[/C][C]0.000706672192502481[/C][C]0.000353336096251241[/C][/ROW]
[ROW][C]159[/C][C]0.99947224659046[/C][C]0.00105550681907927[/C][C]0.000527753409539633[/C][/ROW]
[ROW][C]160[/C][C]0.999161941856327[/C][C]0.00167611628734633[/C][C]0.000838058143673166[/C][/ROW]
[ROW][C]161[/C][C]0.99879443070355[/C][C]0.00241113859289918[/C][C]0.00120556929644959[/C][/ROW]
[ROW][C]162[/C][C]0.998132418671365[/C][C]0.0037351626572697[/C][C]0.00186758132863485[/C][/ROW]
[ROW][C]163[/C][C]0.996541317679327[/C][C]0.00691736464134663[/C][C]0.00345868232067332[/C][/ROW]
[ROW][C]164[/C][C]0.99643064239685[/C][C]0.00713871520630226[/C][C]0.00356935760315113[/C][/ROW]
[ROW][C]165[/C][C]0.99630291304999[/C][C]0.00739417390002156[/C][C]0.00369708695001078[/C][/ROW]
[ROW][C]166[/C][C]0.992624820543152[/C][C]0.0147503589136949[/C][C]0.00737517945684745[/C][/ROW]
[ROW][C]167[/C][C]0.986949004632548[/C][C]0.0261019907349031[/C][C]0.0130509953674515[/C][/ROW]
[ROW][C]168[/C][C]0.990914720921223[/C][C]0.0181705581575536[/C][C]0.0090852790787768[/C][/ROW]
[ROW][C]169[/C][C]0.982271046311107[/C][C]0.0354579073777866[/C][C]0.0177289536888933[/C][/ROW]
[ROW][C]170[/C][C]0.971877160373402[/C][C]0.0562456792531961[/C][C]0.0281228396265981[/C][/ROW]
[ROW][C]171[/C][C]0.949755158728175[/C][C]0.100489682543650[/C][C]0.0502448412718248[/C][/ROW]
[ROW][C]172[/C][C]0.912201040193592[/C][C]0.175597919612815[/C][C]0.0877989598064076[/C][/ROW]
[ROW][C]173[/C][C]0.852461858529344[/C][C]0.295076282941313[/C][C]0.147538141470656[/C][/ROW]
[ROW][C]174[/C][C]0.782357319812533[/C][C]0.435285360374933[/C][C]0.217642680187467[/C][/ROW]
[ROW][C]175[/C][C]0.656942818640769[/C][C]0.686114362718462[/C][C]0.343057181359231[/C][/ROW]
[ROW][C]176[/C][C]0.550072850089641[/C][C]0.899854299820717[/C][C]0.449927149910359[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=55996&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=55996&T=5

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Goldfeld-Quandt test for Heteroskedasticity p-values Alternative Hypothesis breakpoint index greater 2-sided less 16 0.477412392593736 0.954824785187473 0.522587607406264 17 0.317783061374179 0.635566122748358 0.682216938625821 18 0.191885033017608 0.383770066035215 0.808114966982392 19 0.21949644245213 0.43899288490426 0.78050355754787 20 0.182871328784974 0.365742657569947 0.817128671215026 21 0.138850641397902 0.277701282795803 0.861149358602098 22 0.247066821091927 0.494133642183854 0.752933178908073 23 0.186573077093517 0.373146154187033 0.813426922906483 24 0.268174322039433 0.536348644078867 0.731825677960567 25 0.375317347973012 0.750634695946024 0.624682652026988 26 0.298471225788020 0.596942451576041 0.70152877421198 27 0.239925267391636 0.479850534783272 0.760074732608364 28 0.213045039049363 0.426090078098727 0.786954960950637 29 0.213768874665489 0.427537749330978 0.786231125334511 30 0.229775231390765 0.459550462781531 0.770224768609235 31 0.194771535540367 0.389543071080733 0.805228464459633 32 0.207765111722895 0.415530223445791 0.792234888277105 33 0.162156516074257 0.324313032148515 0.837843483925743 34 0.148116430104430 0.296232860208859 0.85188356989557 35 0.117831295973623 0.235662591947246 0.882168704026377 36 0.0973821172219917 0.194764234443983 0.902617882778008 37 0.141400961547807 0.282801923095614 0.858599038452193 38 0.129782291551691 0.259564583103381 0.87021770844831 39 0.139772827651345 0.279545655302690 0.860227172348655 40 0.110585409484316 0.221170818968631 0.889414590515685 41 0.184124718668966 0.368249437337932 0.815875281331034 42 0.234899328567712 0.469798657135423 0.765100671432288 43 0.291650147887306 0.583300295774613 0.708349852112694 44 0.255254376276575 0.510508752553149 0.744745623723425 45 0.231933978176051 0.463867956352102 0.768066021823949 46 0.203909631331678 0.407819262663356 0.796090368668322 47 0.243147708070040 0.486295416140081 0.756852291929960 48 0.47388776216581 0.94777552433162 0.52611223783419 49 0.569198532309371 0.861602935381258 0.430801467690629 50 0.726418882814955 0.54716223437009 0.273581117185045 51 0.688396761118617 0.623206477762766 0.311603238881383 52 0.888242393763722 0.223515212472556 0.111757606236278 53 0.944877463261828 0.110245073476344 0.0551225367381722 54 0.954654571772184 0.0906908564556312 0.0453454282278156 55 0.98111520713736 0.0377695857252814 0.0188847928626407 56 0.986513964448928 0.0269720711021439 0.0134860355510720 57 0.997847998894441 0.00430400221111737 0.00215200110555868 58 0.998562893607976 0.00287421278404882 0.00143710639202441 59 0.998500290558421 0.00299941888315808 0.00149970944157904 60 0.998543220395462 0.00291355920907621 0.00145677960453811 61 0.999071731216277 0.00185653756744668 0.000928268783723342 62 0.999115103902979 0.00176979219404262 0.000884896097021311 63 0.998871905331227 0.00225618933754644 0.00112809466877322 64 0.998910346069769 0.00217930786046273 0.00108965393023137 65 0.998930622909329 0.00213875418134243 0.00106937709067122 66 0.999397505960305 0.00120498807939 0.000602494039695 67 0.999504759687325 0.000990480625349449 0.000495240312674724 68 0.999760713595366 0.000478572809268209 0.000239286404634104 69 0.999948455558024 0.000103088883951553 5.15444419757764e-05 70 0.999979975598548 4.00488029040693e-05 2.00244014520346e-05 71 0.999980305975869 3.93880482627085e-05 1.96940241313543e-05 72 0.999983954097483 3.20918050348279e-05 1.60459025174140e-05 73 0.999988779228469 2.24415430626064e-05 1.12207715313032e-05 74 0.99999409578811 1.18084237801413e-05 5.90421189007064e-06 75 0.999992139221738 1.57215565242678e-05 7.8607782621339e-06 76 0.999990757414991 1.84851700178040e-05 9.24258500890202e-06 77 0.999991705960114 1.65880797721136e-05 8.29403988605678e-06 78 0.999993196296076 1.36074078485785e-05 6.80370392428923e-06 79 0.999996708992126 6.58201574797166e-06 3.29100787398583e-06 80 0.99999678274875 6.43450250216893e-06 3.21725125108447e-06 81 0.999995379009574 9.24198085107973e-06 4.62099042553986e-06 82 0.999998914761907 2.17047618646408e-06 1.08523809323204e-06 83 0.99999905536806 1.88926387964174e-06 9.4463193982087e-07 84 0.999998829619894 2.34076021144639e-06 1.17038010572320e-06 85 0.999999513722613 9.7255477329988e-07 4.8627738664994e-07 86 0.999999653904716 6.92190568997731e-07 3.46095284498866e-07 87 0.99999972226803 5.5546393885066e-07 2.7773196942533e-07 88 0.999999586153735 8.27692529861566e-07 4.13846264930783e-07 89 0.999999484150618 1.03169876404525e-06 5.15849382022623e-07 90 0.999999782930722 4.34138555732368e-07 2.17069277866184e-07 91 0.999999734119497 5.31761004889164e-07 2.65880502444582e-07 92 0.999999959339058 8.13218832371426e-08 4.06609416185713e-08 93 0.999999934879806 1.30240387583734e-07 6.51201937918671e-08 94 0.999999901028302 1.97943395314047e-07 9.89716976570233e-08 95 0.999999861221093 2.77557813291379e-07 1.38778906645690e-07 96 0.999999914079973 1.71840054584607e-07 8.59200272923037e-08 97 0.99999986012182 2.79756359989457e-07 1.39878179994729e-07 98 0.999999825021158 3.49957683513652e-07 1.74978841756826e-07 99 0.999999846950936 3.06098128076187e-07 1.53049064038094e-07 100 0.999999747154582 5.05690835816319e-07 2.52845417908160e-07 101 0.99999981258329 3.7483341941049e-07 1.87416709705245e-07 102 0.999999685151943 6.29696114916211e-07 3.14848057458106e-07 103 0.99999954887673 9.02246538632805e-07 4.51123269316402e-07 104 0.99999929222596 1.41554807902718e-06 7.0777403951359e-07 105 0.999999364526747 1.27094650632298e-06 6.3547325316149e-07 106 0.999999297249657 1.40550068602918e-06 7.02750343014592e-07 107 0.99999895872801 2.08254397902858e-06 1.04127198951429e-06 108 0.999999152146335 1.69570732985605e-06 8.47853664928023e-07 109 0.999999919851355 1.60297289800619e-07 8.01486449003093e-08 110 0.999999871087118 2.57825763589014e-07 1.28912881794507e-07 111 0.999999760605925 4.78788149181416e-07 2.39394074590708e-07 112 0.999999583966098 8.32067803672855e-07 4.16033901836428e-07 113 0.999999494823376 1.01035324743262e-06 5.0517662371631e-07 114 0.999999480267561 1.03946487774175e-06 5.19732438870876e-07 115 0.999999452400836 1.09519832770823e-06 5.47599163854117e-07 116 0.999999162874419 1.67425116273504e-06 8.37125581367521e-07 117 0.999998530873767 2.93825246625430e-06 1.46912623312715e-06 118 0.999998492753709 3.01449258219802e-06 1.50724629109901e-06 119 0.999998322921291 3.35415741711385e-06 1.67707870855692e-06 120 0.999999617867116 7.64265768332042e-07 3.82132884166021e-07 121 0.999999893373343 2.13253314532940e-07 1.06626657266470e-07 122 0.99999981861141 3.62777181927527e-07 1.81388590963763e-07 123 0.999999949356552 1.01286896749012e-07 5.0643448374506e-08 124 0.999999912066183 1.75867634100664e-07 8.7933817050332e-08 125 0.999999842274074 3.15451851057457e-07 1.57725925528729e-07 126 0.999999733127569 5.33744862044504e-07 2.66872431022252e-07 127 0.999999689201263 6.21597472934647e-07 3.10798736467324e-07 128 0.9999994387758 1.12244840081945e-06 5.61224200409725e-07 129 0.999998935678024 2.12864395257080e-06 1.06432197628540e-06 130 0.99999942772623 1.14454753850936e-06 5.72273769254682e-07 131 0.999999390997002 1.21800599684692e-06 6.09002998423458e-07 132 0.999999935744485 1.28511029699837e-07 6.42555148499187e-08 133 0.999999945689883 1.08620234260407e-07 5.43101171302033e-08 134 0.999999915559562 1.68880875030271e-07 8.44404375151355e-08 135 0.99999982730464 3.45390721431426e-07 1.72695360715713e-07 136 0.99999968111279 6.37774418162373e-07 3.18887209081187e-07 137 0.999999516321377 9.67357246883755e-07 4.83678623441878e-07 138 0.999999218169784 1.56366043213988e-06 7.81830216069941e-07 139 0.999998785104147 2.42979170547042e-06 1.21489585273521e-06 140 0.99999764586801 4.70826397889355e-06 2.35413198944678e-06 141 0.999997512387917 4.97522416654345e-06 2.48761208327172e-06 142 0.999995061082498 9.87783500307573e-06 4.93891750153786e-06 143 0.999997737829351 4.52434129751273e-06 2.26217064875636e-06 144 0.999996469214725 7.06157054924965e-06 3.53078527462482e-06 145 0.999994862395303 1.02752093948037e-05 5.13760469740187e-06 146 0.999990271774088 1.94564518248318e-05 9.7282259124159e-06 147 0.99998094543812 3.81091237617349e-05 1.90545618808674e-05 148 0.9999625131262 7.49737476012236e-05 3.74868738006118e-05 149 0.999928432870693 0.000143134258614119 7.15671293070596e-05 150 0.999894002745356 0.000211994509286974 0.000105997254643487 151 0.999894020798052 0.000211958403896148 0.000105979201948074 152 0.99981724152826 0.000365516943479771 0.000182758471739886 153 0.999649970251462 0.00070005949707591 0.000350029748537955 154 0.999531183427333 0.000937633145333717 0.000468816572666858 155 0.999252101750874 0.00149579649825203 0.000747898249126013 156 0.999848486594899 0.000303026810202280 0.000151513405101140 157 0.999821773945542 0.000356452108915764 0.000178226054457882 158 0.999646663903749 0.000706672192502481 0.000353336096251241 159 0.99947224659046 0.00105550681907927 0.000527753409539633 160 0.999161941856327 0.00167611628734633 0.000838058143673166 161 0.99879443070355 0.00241113859289918 0.00120556929644959 162 0.998132418671365 0.0037351626572697 0.00186758132863485 163 0.996541317679327 0.00691736464134663 0.00345868232067332 164 0.99643064239685 0.00713871520630226 0.00356935760315113 165 0.99630291304999 0.00739417390002156 0.00369708695001078 166 0.992624820543152 0.0147503589136949 0.00737517945684745 167 0.986949004632548 0.0261019907349031 0.0130509953674515 168 0.990914720921223 0.0181705581575536 0.0090852790787768 169 0.982271046311107 0.0354579073777866 0.0177289536888933 170 0.971877160373402 0.0562456792531961 0.0281228396265981 171 0.949755158728175 0.100489682543650 0.0502448412718248 172 0.912201040193592 0.175597919612815 0.0877989598064076 173 0.852461858529344 0.295076282941313 0.147538141470656 174 0.782357319812533 0.435285360374933 0.217642680187467 175 0.656942818640769 0.686114362718462 0.343057181359231 176 0.550072850089641 0.899854299820717 0.449927149910359

 Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity Description # significant tests % significant tests OK/NOK 1% type I error level 109 0.677018633540373 NOK 5% type I error level 115 0.714285714285714 NOK 10% type I error level 117 0.726708074534162 NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 109 & 0.677018633540373 & NOK \tabularnewline
5% type I error level & 115 & 0.714285714285714 & NOK \tabularnewline
10% type I error level & 117 & 0.726708074534162 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=55996&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]109[/C][C]0.677018633540373[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]115[/C][C]0.714285714285714[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]117[/C][C]0.726708074534162[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=55996&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=55996&T=6

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity Description # significant tests % significant tests OK/NOK 1% type I error level 109 0.677018633540373 NOK 5% type I error level 115 0.714285714285714 NOK 10% type I error level 117 0.726708074534162 NOK

library(lattice)library(lmtest)n25 <- 25 #minimum number of obs. for Goldfeld-Quandt testpar1 <- as.numeric(par1)x <- t(y)k <- length(x[1,])n <- length(x[,1])x1 <- cbind(x[,par1], x[,1:k!=par1])mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])colnames(x1) <- mycolnames #colnames(x)[par1]x <- x1if (par3 == 'First Differences'){x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))for (i in 1:n-1) {for (j in 1:k) {x2[i,j] <- x[i+1,j] - x[i,j]}}x <- x2}if (par2 == 'Include Monthly Dummies'){x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))for (i in 1:11){x2[seq(i,n,12),i] <- 1}x <- cbind(x, x2)}if (par2 == 'Include Quarterly Dummies'){x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))for (i in 1:3){x2[seq(i,n,4),i] <- 1}x <- cbind(x, x2)}k <- length(x[1,])if (par3 == 'Linear Trend'){x <- cbind(x, c(1:n))colnames(x)[k+1] <- 't'}xk <- length(x[1,])df <- as.data.frame(x)(mylm <- lm(df))(mysum <- summary(mylm))if (n > n25) {kp3 <- k + 3nmkm3 <- n - k - 3gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))numgqtests <- 0numsignificant1 <- 0numsignificant5 <- 0numsignificant10 <- 0for (mypoint in kp3:nmkm3) {j <- 0numgqtests <- numgqtests + 1for (myalt in c('greater', 'two.sided', 'less')) {j <- j + 1gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value}if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1}gqarr}bitmap(file='test0.png')plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')points(x[,1]-mysum$resid)grid()dev.off()bitmap(file='test1.png')plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')grid()dev.off()bitmap(file='test2.png')hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')grid()dev.off()bitmap(file='test3.png')densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')dev.off()bitmap(file='test4.png')qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')qqline(mysum$resid)grid()dev.off()(myerror <- as.ts(mysum$resid))bitmap(file='test5.png')dum <- cbind(lag(myerror,k=1),myerror)dumdum1 <- dum[2:length(myerror),]dum1z <- as.data.frame(dum1)zplot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')lines(lowess(z))abline(lm(z))grid()dev.off()bitmap(file='test6.png')acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')grid()dev.off()bitmap(file='test7.png')pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')grid()dev.off()bitmap(file='test8.png')opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))plot(mylm, las = 1, sub='Residual Diagnostics')par(opar)dev.off()if (n > n25) {bitmap(file='test9.png')plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')grid()dev.off()}load(file='createtable')a<-table.start()a<-table.row.start(a)a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)a<-table.row.end(a)myeq <- colnames(x)[1]myeq <- paste(myeq, '[t] = ', sep='')for (i in 1:k){if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')if (rownames(mysum$coefficients)[i] != '(Intercept)') {myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')}}myeq <- paste(myeq, ' + e[t]')a<-table.row.start(a)a<-table.element(a, myeq)a<-table.row.end(a)a<-table.end(a)table.save(a,file='mytable1.tab')a<-table.start()a<-table.row.start(a)a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Variable',header=TRUE)a<-table.element(a,'Parameter',header=TRUE)a<-table.element(a,'S.D.',header=TRUE)a<-table.element(a,'T-STATH0: parameter = 0',header=TRUE)a<-table.element(a,'2-tail p-value',header=TRUE)a<-table.element(a,'1-tail p-value',header=TRUE)a<-table.row.end(a)for (i in 1:k){a<-table.row.start(a)a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)a<-table.element(a,mysum$coefficients[i,1])a<-table.element(a, round(mysum$coefficients[i,2],6))a<-table.element(a, round(mysum$coefficients[i,3],4))a<-table.element(a, round(mysum$coefficients[i,4],6))a<-table.element(a, round(mysum$coefficients[i,4]/2,6))a<-table.row.end(a)}a<-table.end(a)table.save(a,file='mytable2.tab')a<-table.start()a<-table.row.start(a)a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a, 'Multiple R',1,TRUE)a<-table.element(a, sqrt(mysum$r.squared))a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a, 'R-squared',1,TRUE)a<-table.element(a, mysum$r.squared)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a, 'Adjusted R-squared',1,TRUE)a<-table.element(a, mysum$adj.r.squared)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a, 'F-TEST (value)',1,TRUE)a<-table.element(a, mysum$fstatistic[1])a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)a<-table.element(a, mysum$fstatistic[2])a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)a<-table.element(a, mysum$fstatistic[3])a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a, 'p-value',1,TRUE)a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a, 'Residual Standard Deviation',1,TRUE)a<-table.element(a, mysum$sigma)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a, 'Sum Squared Residuals',1,TRUE)a<-table.element(a, sum(myerror*myerror))a<-table.row.end(a)a<-table.end(a)table.save(a,file='mytable3.tab')a<-table.start()a<-table.row.start(a)a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a, 'Time or Index', 1, TRUE)a<-table.element(a, 'Actuals', 1, TRUE)a<-table.element(a, 'InterpolationForecast', 1, TRUE)a<-table.element(a, 'ResidualsPrediction Error', 1, TRUE)a<-table.row.end(a)for (i in 1:n) {a<-table.row.start(a)a<-table.element(a,i, 1, TRUE)a<-table.element(a,x[i])a<-table.element(a,x[i]-mysum$resid[i])a<-table.element(a,mysum\$resid[i])a<-table.row.end(a)}a<-table.end(a)table.save(a,file='mytable4.tab')if (n > n25) {a<-table.start()a<-table.row.start(a)a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'p-values',header=TRUE)a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'breakpoint index',header=TRUE)a<-table.element(a,'greater',header=TRUE)a<-table.element(a,'2-sided',header=TRUE)a<-table.element(a,'less',header=TRUE)a<-table.row.end(a)for (mypoint in kp3:nmkm3) {a<-table.row.start(a)a<-table.element(a,mypoint,header=TRUE)a<-table.element(a,gqarr[mypoint-kp3+1,1])a<-table.element(a,gqarr[mypoint-kp3+1,2])a<-table.element(a,gqarr[mypoint-kp3+1,3])a<-table.row.end(a)}a<-table.end(a)table.save(a,file='mytable5.tab')a<-table.start()a<-table.row.start(a)a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Description',header=TRUE)a<-table.element(a,'# significant tests',header=TRUE)a<-table.element(a,'% significant tests',header=TRUE)a<-table.element(a,'OK/NOK',header=TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'1% type I error level',header=TRUE)a<-table.element(a,numsignificant1)a<-table.element(a,numsignificant1/numgqtests)if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'a<-table.element(a,dum)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'5% type I error level',header=TRUE)a<-table.element(a,numsignificant5)a<-table.element(a,numsignificant5/numgqtests)if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'a<-table.element(a,dum)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'10% type I error level',header=TRUE)a<-table.element(a,numsignificant10)a<-table.element(a,numsignificant10/numgqtests)if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'a<-table.element(a,dum)a<-table.row.end(a)a<-table.end(a)table.save(a,file='mytable6.tab')}