## Free Statistics

of Irreproducible Research!

Author's title
Author*Unverified author*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationSat, 21 Dec 2013 13:23:11 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2013/Dec/21/t1387650224t0ox4nvq725a16g.htm/, Retrieved Sat, 21 May 2022 15:23:29 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=232496, Retrieved Sat, 21 May 2022 15:23:29 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact128
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Notched Boxplots] [werkloosheidscijf...] [2013-10-08 18:26:09] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD  [Harrell-Davis Quantiles] [consumtieprijs va...] [2013-12-21 15:50:38] [6a1a05b03d1c87a66b915fc3d5866cc8]
-   PD    [Harrell-Davis Quantiles] [] [2013-12-21 16:11:56] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD        [(Partial) Autocorrelation Function] [] [2013-12-21 18:23:11] [4a7f7842fc88d649abcd00dd10ef7b6c] [Current]
-    D          [(Partial) Autocorrelation Function] [] [2013-12-22 16:04:51] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD          [Mean Plot] [] [2013-12-22 16:12:13] [6a1a05b03d1c87a66b915fc3d5866cc8]
- R PD          [(Partial) Autocorrelation Function] [] [2013-12-22 16:16:18] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD          [Variability] [] [2013-12-22 17:47:13] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD          [Standard Deviation Plot] [] [2013-12-22 18:10:49] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD          [Standard Deviation-Mean Plot] [] [2013-12-22 19:00:26] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD          [Variability] [] [2013-12-22 19:09:26] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD          [Standard Deviation Plot] [] [2013-12-22 19:16:43] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD          [Standard Deviation-Mean Plot] [] [2013-12-22 19:33:36] [6a1a05b03d1c87a66b915fc3d5866cc8]
Feedback Forum

Post a new message
Dataseries X:
 500
500,01
500,02
500,03
500,04
500,05
500,06
500,07
500,08
500,09
500,10
500,11
500,12
500,13
500,14
500,15
500,16
500,17
500,18
500,19
500,20
500,21
500,22
500,23
500,24
500,25
500,26
500,27
500,28
500,29
500,30
500,31
500,32
500,33
500,34
500,35
500,36
500,37
500,38
500,39
500,40
500,41
500,42
500,43
500,44
500,45
500,46
500,47
500,48
500,49
500,50
500,51
500,52
500,53
500,54
500,55
500,56
500,57
500,58
500,59
500,60
500,61
500,62
500,63
500,64
500,65
500,66
500,67
500,68
500,69
500,70
500,71


 Summary of computational transaction Raw Input view raw input (R code) Raw Output view raw output of R engine Computing time 3 seconds R Server 'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232496&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232496&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232496&T=0

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Summary of computational transaction Raw Input view raw input (R code) Raw Output view raw output of R engine Computing time 3 seconds R Server 'Gertrude Mary Cox' @ cox.wessa.net

 Autocorrelation Function Time lag k ACF(k) T-STAT P-value 1 0.958333 8.1317 0 2 0.916699 7.7784 0 3 0.875129 7.4257 0 4 0.833655 7.0738 0 5 0.79231 6.723 0 6 0.751125 6.3735 0 7 0.710134 6.0257 0 8 0.669368 5.6798 0 9 0.628859 5.336 1e-06 10 0.588639 4.9948 2e-06 11 0.548741 4.6562 7e-06 12 0.509197 4.3207 2.5e-05 13 0.470038 3.9884 7.9e-05 14 0.431298 3.6597 0.000239 15 0.393008 3.3348 0.000676 16 0.3552 3.014 0.001779 17 0.317906 2.6975 0.004348 18 0.28116 2.3857 0.009839 19 0.244992 2.0788 0.020599 20 0.209435 1.7771 0.039887 21 0.174521 1.4809 0.071504 22 0.140282 1.1903 0.118912 23 0.106751 0.9058 0.184028 24 0.07396 0.6276 0.266136 25 0.04194 0.3559 0.361488 26 0.010724 0.091 0.463874 27 -0.019656 -0.1668 0.434004 28 -0.049167 -0.4172 0.338888 29 -0.077778 -0.66 0.255689 30 -0.105457 -0.8948 0.186929 31 -0.132171 -1.1215 0.132899 32 -0.157888 -1.3397 0.092274 33 -0.182576 -1.5492 0.062858 34 -0.206203 -1.7497 0.042216 35 -0.228737 -1.9409 0.028093 36 -0.250145 -2.1225 0.018616 37 -0.270395 -2.2944 0.012344 38 -0.289456 -2.4561 0.008229 39 -0.307295 -2.6075 0.005541 40 -0.323879 -2.7482 0.003784 41 -0.339178 -2.878 0.002632 42 -0.353158 -2.9966 0.001871 43 -0.365787 -3.1038 0.001365 44 -0.377034 -3.1992 0.001025 45 -0.386866 -3.2827 0.000794 46 -0.39525 -3.3538 0.000637 47 -0.402156 -3.4124 0.00053 48 -0.40755 -3.4582 0.000458

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.958333 & 8.1317 & 0 \tabularnewline
2 & 0.916699 & 7.7784 & 0 \tabularnewline
3 & 0.875129 & 7.4257 & 0 \tabularnewline
4 & 0.833655 & 7.0738 & 0 \tabularnewline
5 & 0.79231 & 6.723 & 0 \tabularnewline
6 & 0.751125 & 6.3735 & 0 \tabularnewline
7 & 0.710134 & 6.0257 & 0 \tabularnewline
8 & 0.669368 & 5.6798 & 0 \tabularnewline
9 & 0.628859 & 5.336 & 1e-06 \tabularnewline
10 & 0.588639 & 4.9948 & 2e-06 \tabularnewline
11 & 0.548741 & 4.6562 & 7e-06 \tabularnewline
12 & 0.509197 & 4.3207 & 2.5e-05 \tabularnewline
13 & 0.470038 & 3.9884 & 7.9e-05 \tabularnewline
14 & 0.431298 & 3.6597 & 0.000239 \tabularnewline
15 & 0.393008 & 3.3348 & 0.000676 \tabularnewline
16 & 0.3552 & 3.014 & 0.001779 \tabularnewline
17 & 0.317906 & 2.6975 & 0.004348 \tabularnewline
18 & 0.28116 & 2.3857 & 0.009839 \tabularnewline
19 & 0.244992 & 2.0788 & 0.020599 \tabularnewline
20 & 0.209435 & 1.7771 & 0.039887 \tabularnewline
21 & 0.174521 & 1.4809 & 0.071504 \tabularnewline
22 & 0.140282 & 1.1903 & 0.118912 \tabularnewline
23 & 0.106751 & 0.9058 & 0.184028 \tabularnewline
24 & 0.07396 & 0.6276 & 0.266136 \tabularnewline
25 & 0.04194 & 0.3559 & 0.361488 \tabularnewline
26 & 0.010724 & 0.091 & 0.463874 \tabularnewline
27 & -0.019656 & -0.1668 & 0.434004 \tabularnewline
28 & -0.049167 & -0.4172 & 0.338888 \tabularnewline
29 & -0.077778 & -0.66 & 0.255689 \tabularnewline
30 & -0.105457 & -0.8948 & 0.186929 \tabularnewline
31 & -0.132171 & -1.1215 & 0.132899 \tabularnewline
32 & -0.157888 & -1.3397 & 0.092274 \tabularnewline
33 & -0.182576 & -1.5492 & 0.062858 \tabularnewline
34 & -0.206203 & -1.7497 & 0.042216 \tabularnewline
35 & -0.228737 & -1.9409 & 0.028093 \tabularnewline
36 & -0.250145 & -2.1225 & 0.018616 \tabularnewline
37 & -0.270395 & -2.2944 & 0.012344 \tabularnewline
38 & -0.289456 & -2.4561 & 0.008229 \tabularnewline
39 & -0.307295 & -2.6075 & 0.005541 \tabularnewline
40 & -0.323879 & -2.7482 & 0.003784 \tabularnewline
41 & -0.339178 & -2.878 & 0.002632 \tabularnewline
42 & -0.353158 & -2.9966 & 0.001871 \tabularnewline
43 & -0.365787 & -3.1038 & 0.001365 \tabularnewline
44 & -0.377034 & -3.1992 & 0.001025 \tabularnewline
45 & -0.386866 & -3.2827 & 0.000794 \tabularnewline
46 & -0.39525 & -3.3538 & 0.000637 \tabularnewline
47 & -0.402156 & -3.4124 & 0.00053 \tabularnewline
48 & -0.40755 & -3.4582 & 0.000458 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232496&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.958333[/C][C]8.1317[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.916699[/C][C]7.7784[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.875129[/C][C]7.4257[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.833655[/C][C]7.0738[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.79231[/C][C]6.723[/C][C]0[/C][/ROW]
[ROW][C]6[/C][C]0.751125[/C][C]6.3735[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]0.710134[/C][C]6.0257[/C][C]0[/C][/ROW]
[ROW][C]8[/C][C]0.669368[/C][C]5.6798[/C][C]0[/C][/ROW]
[ROW][C]9[/C][C]0.628859[/C][C]5.336[/C][C]1e-06[/C][/ROW]
[ROW][C]10[/C][C]0.588639[/C][C]4.9948[/C][C]2e-06[/C][/ROW]
[ROW][C]11[/C][C]0.548741[/C][C]4.6562[/C][C]7e-06[/C][/ROW]
[ROW][C]12[/C][C]0.509197[/C][C]4.3207[/C][C]2.5e-05[/C][/ROW]
[ROW][C]13[/C][C]0.470038[/C][C]3.9884[/C][C]7.9e-05[/C][/ROW]
[ROW][C]14[/C][C]0.431298[/C][C]3.6597[/C][C]0.000239[/C][/ROW]
[ROW][C]15[/C][C]0.393008[/C][C]3.3348[/C][C]0.000676[/C][/ROW]
[ROW][C]16[/C][C]0.3552[/C][C]3.014[/C][C]0.001779[/C][/ROW]
[ROW][C]17[/C][C]0.317906[/C][C]2.6975[/C][C]0.004348[/C][/ROW]
[ROW][C]18[/C][C]0.28116[/C][C]2.3857[/C][C]0.009839[/C][/ROW]
[ROW][C]19[/C][C]0.244992[/C][C]2.0788[/C][C]0.020599[/C][/ROW]
[ROW][C]20[/C][C]0.209435[/C][C]1.7771[/C][C]0.039887[/C][/ROW]
[ROW][C]21[/C][C]0.174521[/C][C]1.4809[/C][C]0.071504[/C][/ROW]
[ROW][C]22[/C][C]0.140282[/C][C]1.1903[/C][C]0.118912[/C][/ROW]
[ROW][C]23[/C][C]0.106751[/C][C]0.9058[/C][C]0.184028[/C][/ROW]
[ROW][C]24[/C][C]0.07396[/C][C]0.6276[/C][C]0.266136[/C][/ROW]
[ROW][C]25[/C][C]0.04194[/C][C]0.3559[/C][C]0.361488[/C][/ROW]
[ROW][C]26[/C][C]0.010724[/C][C]0.091[/C][C]0.463874[/C][/ROW]
[ROW][C]27[/C][C]-0.019656[/C][C]-0.1668[/C][C]0.434004[/C][/ROW]
[ROW][C]28[/C][C]-0.049167[/C][C]-0.4172[/C][C]0.338888[/C][/ROW]
[ROW][C]29[/C][C]-0.077778[/C][C]-0.66[/C][C]0.255689[/C][/ROW]
[ROW][C]30[/C][C]-0.105457[/C][C]-0.8948[/C][C]0.186929[/C][/ROW]
[ROW][C]31[/C][C]-0.132171[/C][C]-1.1215[/C][C]0.132899[/C][/ROW]
[ROW][C]32[/C][C]-0.157888[/C][C]-1.3397[/C][C]0.092274[/C][/ROW]
[ROW][C]33[/C][C]-0.182576[/C][C]-1.5492[/C][C]0.062858[/C][/ROW]
[ROW][C]34[/C][C]-0.206203[/C][C]-1.7497[/C][C]0.042216[/C][/ROW]
[ROW][C]35[/C][C]-0.228737[/C][C]-1.9409[/C][C]0.028093[/C][/ROW]
[ROW][C]36[/C][C]-0.250145[/C][C]-2.1225[/C][C]0.018616[/C][/ROW]
[ROW][C]37[/C][C]-0.270395[/C][C]-2.2944[/C][C]0.012344[/C][/ROW]
[ROW][C]38[/C][C]-0.289456[/C][C]-2.4561[/C][C]0.008229[/C][/ROW]
[ROW][C]39[/C][C]-0.307295[/C][C]-2.6075[/C][C]0.005541[/C][/ROW]
[ROW][C]40[/C][C]-0.323879[/C][C]-2.7482[/C][C]0.003784[/C][/ROW]
[ROW][C]41[/C][C]-0.339178[/C][C]-2.878[/C][C]0.002632[/C][/ROW]
[ROW][C]42[/C][C]-0.353158[/C][C]-2.9966[/C][C]0.001871[/C][/ROW]
[ROW][C]43[/C][C]-0.365787[/C][C]-3.1038[/C][C]0.001365[/C][/ROW]
[ROW][C]44[/C][C]-0.377034[/C][C]-3.1992[/C][C]0.001025[/C][/ROW]
[ROW][C]45[/C][C]-0.386866[/C][C]-3.2827[/C][C]0.000794[/C][/ROW]
[ROW][C]46[/C][C]-0.39525[/C][C]-3.3538[/C][C]0.000637[/C][/ROW]
[ROW][C]47[/C][C]-0.402156[/C][C]-3.4124[/C][C]0.00053[/C][/ROW]
[ROW][C]48[/C][C]-0.40755[/C][C]-3.4582[/C][C]0.000458[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232496&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232496&T=1

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Autocorrelation Function Time lag k ACF(k) T-STAT P-value 1 0.958333 8.1317 0 2 0.916699 7.7784 0 3 0.875129 7.4257 0 4 0.833655 7.0738 0 5 0.79231 6.723 0 6 0.751125 6.3735 0 7 0.710134 6.0257 0 8 0.669368 5.6798 0 9 0.628859 5.336 1e-06 10 0.588639 4.9948 2e-06 11 0.548741 4.6562 7e-06 12 0.509197 4.3207 2.5e-05 13 0.470038 3.9884 7.9e-05 14 0.431298 3.6597 0.000239 15 0.393008 3.3348 0.000676 16 0.3552 3.014 0.001779 17 0.317906 2.6975 0.004348 18 0.28116 2.3857 0.009839 19 0.244992 2.0788 0.020599 20 0.209435 1.7771 0.039887 21 0.174521 1.4809 0.071504 22 0.140282 1.1903 0.118912 23 0.106751 0.9058 0.184028 24 0.07396 0.6276 0.266136 25 0.04194 0.3559 0.361488 26 0.010724 0.091 0.463874 27 -0.019656 -0.1668 0.434004 28 -0.049167 -0.4172 0.338888 29 -0.077778 -0.66 0.255689 30 -0.105457 -0.8948 0.186929 31 -0.132171 -1.1215 0.132899 32 -0.157888 -1.3397 0.092274 33 -0.182576 -1.5492 0.062858 34 -0.206203 -1.7497 0.042216 35 -0.228737 -1.9409 0.028093 36 -0.250145 -2.1225 0.018616 37 -0.270395 -2.2944 0.012344 38 -0.289456 -2.4561 0.008229 39 -0.307295 -2.6075 0.005541 40 -0.323879 -2.7482 0.003784 41 -0.339178 -2.878 0.002632 42 -0.353158 -2.9966 0.001871 43 -0.365787 -3.1038 0.001365 44 -0.377034 -3.1992 0.001025 45 -0.386866 -3.2827 0.000794 46 -0.39525 -3.3538 0.000637 47 -0.402156 -3.4124 0.00053 48 -0.40755 -3.4582 0.000458

 Partial Autocorrelation Function Time lag k PACF(k) T-STAT P-value 1 0.958333 8.1317 0 2 -0.020883 -0.1772 0.429927 3 -0.020933 -0.1776 0.429758 4 -0.020985 -0.1781 0.429585 5 -0.021038 -0.1785 0.429409 6 -0.021092 -0.179 0.429232 7 -0.021145 -0.1794 0.429055 8 -0.021198 -0.1799 0.42888 9 -0.02125 -0.1803 0.428707 10 -0.0213 -0.1807 0.42854 11 -0.021349 -0.1811 0.42838 12 -0.021394 -0.1815 0.428228 13 -0.021437 -0.1819 0.428087 14 -0.021475 -0.1822 0.42796 15 -0.021509 -0.1825 0.427848 16 -0.021537 -0.1827 0.427754 17 -0.021559 -0.1829 0.427681 18 -0.021574 -0.1831 0.427632 19 -0.021581 -0.1831 0.42761 20 -0.021578 -0.1831 0.427619 21 -0.021565 -0.183 0.427662 22 -0.021541 -0.1828 0.427742 23 -0.021504 -0.1825 0.427865 24 -0.021453 -0.182 0.428035 25 -0.021386 -0.1815 0.428256 26 -0.021302 -0.1808 0.428534 27 -0.0212 -0.1799 0.428874 28 -0.021077 -0.1788 0.429282 29 -0.020931 -0.1776 0.429765 30 -0.020761 -0.1762 0.430329 31 -0.020565 -0.1745 0.430981 32 -0.02034 -0.1726 0.43173 33 -0.020083 -0.1704 0.432583 34 -0.019792 -0.1679 0.433549 35 -0.019465 -0.1652 0.434638 36 -0.019098 -0.1621 0.435859 37 -0.018689 -0.1586 0.437222 38 -0.018234 -0.1547 0.438739 39 -0.017729 -0.1504 0.44042 40 -0.017172 -0.1457 0.442278 41 -0.016559 -0.1405 0.444325 42 -0.015886 -0.1348 0.446574 43 -0.015149 -0.1285 0.449039 44 -0.014344 -0.1217 0.451733 45 -0.013467 -0.1143 0.454669 46 -0.012515 -0.1062 0.457864 47 -0.011482 -0.0974 0.46133 48 -0.010364 -0.0879 0.465083

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.958333 & 8.1317 & 0 \tabularnewline
2 & -0.020883 & -0.1772 & 0.429927 \tabularnewline
3 & -0.020933 & -0.1776 & 0.429758 \tabularnewline
4 & -0.020985 & -0.1781 & 0.429585 \tabularnewline
5 & -0.021038 & -0.1785 & 0.429409 \tabularnewline
6 & -0.021092 & -0.179 & 0.429232 \tabularnewline
7 & -0.021145 & -0.1794 & 0.429055 \tabularnewline
8 & -0.021198 & -0.1799 & 0.42888 \tabularnewline
9 & -0.02125 & -0.1803 & 0.428707 \tabularnewline
10 & -0.0213 & -0.1807 & 0.42854 \tabularnewline
11 & -0.021349 & -0.1811 & 0.42838 \tabularnewline
12 & -0.021394 & -0.1815 & 0.428228 \tabularnewline
13 & -0.021437 & -0.1819 & 0.428087 \tabularnewline
14 & -0.021475 & -0.1822 & 0.42796 \tabularnewline
15 & -0.021509 & -0.1825 & 0.427848 \tabularnewline
16 & -0.021537 & -0.1827 & 0.427754 \tabularnewline
17 & -0.021559 & -0.1829 & 0.427681 \tabularnewline
18 & -0.021574 & -0.1831 & 0.427632 \tabularnewline
19 & -0.021581 & -0.1831 & 0.42761 \tabularnewline
20 & -0.021578 & -0.1831 & 0.427619 \tabularnewline
21 & -0.021565 & -0.183 & 0.427662 \tabularnewline
22 & -0.021541 & -0.1828 & 0.427742 \tabularnewline
23 & -0.021504 & -0.1825 & 0.427865 \tabularnewline
24 & -0.021453 & -0.182 & 0.428035 \tabularnewline
25 & -0.021386 & -0.1815 & 0.428256 \tabularnewline
26 & -0.021302 & -0.1808 & 0.428534 \tabularnewline
27 & -0.0212 & -0.1799 & 0.428874 \tabularnewline
28 & -0.021077 & -0.1788 & 0.429282 \tabularnewline
29 & -0.020931 & -0.1776 & 0.429765 \tabularnewline
30 & -0.020761 & -0.1762 & 0.430329 \tabularnewline
31 & -0.020565 & -0.1745 & 0.430981 \tabularnewline
32 & -0.02034 & -0.1726 & 0.43173 \tabularnewline
33 & -0.020083 & -0.1704 & 0.432583 \tabularnewline
34 & -0.019792 & -0.1679 & 0.433549 \tabularnewline
35 & -0.019465 & -0.1652 & 0.434638 \tabularnewline
36 & -0.019098 & -0.1621 & 0.435859 \tabularnewline
37 & -0.018689 & -0.1586 & 0.437222 \tabularnewline
38 & -0.018234 & -0.1547 & 0.438739 \tabularnewline
39 & -0.017729 & -0.1504 & 0.44042 \tabularnewline
40 & -0.017172 & -0.1457 & 0.442278 \tabularnewline
41 & -0.016559 & -0.1405 & 0.444325 \tabularnewline
42 & -0.015886 & -0.1348 & 0.446574 \tabularnewline
43 & -0.015149 & -0.1285 & 0.449039 \tabularnewline
44 & -0.014344 & -0.1217 & 0.451733 \tabularnewline
45 & -0.013467 & -0.1143 & 0.454669 \tabularnewline
46 & -0.012515 & -0.1062 & 0.457864 \tabularnewline
47 & -0.011482 & -0.0974 & 0.46133 \tabularnewline
48 & -0.010364 & -0.0879 & 0.465083 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232496&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.958333[/C][C]8.1317[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]-0.020883[/C][C]-0.1772[/C][C]0.429927[/C][/ROW]
[ROW][C]3[/C][C]-0.020933[/C][C]-0.1776[/C][C]0.429758[/C][/ROW]
[ROW][C]4[/C][C]-0.020985[/C][C]-0.1781[/C][C]0.429585[/C][/ROW]
[ROW][C]5[/C][C]-0.021038[/C][C]-0.1785[/C][C]0.429409[/C][/ROW]
[ROW][C]6[/C][C]-0.021092[/C][C]-0.179[/C][C]0.429232[/C][/ROW]
[ROW][C]7[/C][C]-0.021145[/C][C]-0.1794[/C][C]0.429055[/C][/ROW]
[ROW][C]8[/C][C]-0.021198[/C][C]-0.1799[/C][C]0.42888[/C][/ROW]
[ROW][C]9[/C][C]-0.02125[/C][C]-0.1803[/C][C]0.428707[/C][/ROW]
[ROW][C]10[/C][C]-0.0213[/C][C]-0.1807[/C][C]0.42854[/C][/ROW]
[ROW][C]11[/C][C]-0.021349[/C][C]-0.1811[/C][C]0.42838[/C][/ROW]
[ROW][C]12[/C][C]-0.021394[/C][C]-0.1815[/C][C]0.428228[/C][/ROW]
[ROW][C]13[/C][C]-0.021437[/C][C]-0.1819[/C][C]0.428087[/C][/ROW]
[ROW][C]14[/C][C]-0.021475[/C][C]-0.1822[/C][C]0.42796[/C][/ROW]
[ROW][C]15[/C][C]-0.021509[/C][C]-0.1825[/C][C]0.427848[/C][/ROW]
[ROW][C]16[/C][C]-0.021537[/C][C]-0.1827[/C][C]0.427754[/C][/ROW]
[ROW][C]17[/C][C]-0.021559[/C][C]-0.1829[/C][C]0.427681[/C][/ROW]
[ROW][C]18[/C][C]-0.021574[/C][C]-0.1831[/C][C]0.427632[/C][/ROW]
[ROW][C]19[/C][C]-0.021581[/C][C]-0.1831[/C][C]0.42761[/C][/ROW]
[ROW][C]20[/C][C]-0.021578[/C][C]-0.1831[/C][C]0.427619[/C][/ROW]
[ROW][C]21[/C][C]-0.021565[/C][C]-0.183[/C][C]0.427662[/C][/ROW]
[ROW][C]22[/C][C]-0.021541[/C][C]-0.1828[/C][C]0.427742[/C][/ROW]
[ROW][C]23[/C][C]-0.021504[/C][C]-0.1825[/C][C]0.427865[/C][/ROW]
[ROW][C]24[/C][C]-0.021453[/C][C]-0.182[/C][C]0.428035[/C][/ROW]
[ROW][C]25[/C][C]-0.021386[/C][C]-0.1815[/C][C]0.428256[/C][/ROW]
[ROW][C]26[/C][C]-0.021302[/C][C]-0.1808[/C][C]0.428534[/C][/ROW]
[ROW][C]27[/C][C]-0.0212[/C][C]-0.1799[/C][C]0.428874[/C][/ROW]
[ROW][C]28[/C][C]-0.021077[/C][C]-0.1788[/C][C]0.429282[/C][/ROW]
[ROW][C]29[/C][C]-0.020931[/C][C]-0.1776[/C][C]0.429765[/C][/ROW]
[ROW][C]30[/C][C]-0.020761[/C][C]-0.1762[/C][C]0.430329[/C][/ROW]
[ROW][C]31[/C][C]-0.020565[/C][C]-0.1745[/C][C]0.430981[/C][/ROW]
[ROW][C]32[/C][C]-0.02034[/C][C]-0.1726[/C][C]0.43173[/C][/ROW]
[ROW][C]33[/C][C]-0.020083[/C][C]-0.1704[/C][C]0.432583[/C][/ROW]
[ROW][C]34[/C][C]-0.019792[/C][C]-0.1679[/C][C]0.433549[/C][/ROW]
[ROW][C]35[/C][C]-0.019465[/C][C]-0.1652[/C][C]0.434638[/C][/ROW]
[ROW][C]36[/C][C]-0.019098[/C][C]-0.1621[/C][C]0.435859[/C][/ROW]
[ROW][C]37[/C][C]-0.018689[/C][C]-0.1586[/C][C]0.437222[/C][/ROW]
[ROW][C]38[/C][C]-0.018234[/C][C]-0.1547[/C][C]0.438739[/C][/ROW]
[ROW][C]39[/C][C]-0.017729[/C][C]-0.1504[/C][C]0.44042[/C][/ROW]
[ROW][C]40[/C][C]-0.017172[/C][C]-0.1457[/C][C]0.442278[/C][/ROW]
[ROW][C]41[/C][C]-0.016559[/C][C]-0.1405[/C][C]0.444325[/C][/ROW]
[ROW][C]42[/C][C]-0.015886[/C][C]-0.1348[/C][C]0.446574[/C][/ROW]
[ROW][C]43[/C][C]-0.015149[/C][C]-0.1285[/C][C]0.449039[/C][/ROW]
[ROW][C]44[/C][C]-0.014344[/C][C]-0.1217[/C][C]0.451733[/C][/ROW]
[ROW][C]45[/C][C]-0.013467[/C][C]-0.1143[/C][C]0.454669[/C][/ROW]
[ROW][C]46[/C][C]-0.012515[/C][C]-0.1062[/C][C]0.457864[/C][/ROW]
[ROW][C]47[/C][C]-0.011482[/C][C]-0.0974[/C][C]0.46133[/C][/ROW]
[ROW][C]48[/C][C]-0.010364[/C][C]-0.0879[/C][C]0.465083[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232496&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232496&T=2

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Partial Autocorrelation Function Time lag k PACF(k) T-STAT P-value 1 0.958333 8.1317 0 2 -0.020883 -0.1772 0.429927 3 -0.020933 -0.1776 0.429758 4 -0.020985 -0.1781 0.429585 5 -0.021038 -0.1785 0.429409 6 -0.021092 -0.179 0.429232 7 -0.021145 -0.1794 0.429055 8 -0.021198 -0.1799 0.42888 9 -0.02125 -0.1803 0.428707 10 -0.0213 -0.1807 0.42854 11 -0.021349 -0.1811 0.42838 12 -0.021394 -0.1815 0.428228 13 -0.021437 -0.1819 0.428087 14 -0.021475 -0.1822 0.42796 15 -0.021509 -0.1825 0.427848 16 -0.021537 -0.1827 0.427754 17 -0.021559 -0.1829 0.427681 18 -0.021574 -0.1831 0.427632 19 -0.021581 -0.1831 0.42761 20 -0.021578 -0.1831 0.427619 21 -0.021565 -0.183 0.427662 22 -0.021541 -0.1828 0.427742 23 -0.021504 -0.1825 0.427865 24 -0.021453 -0.182 0.428035 25 -0.021386 -0.1815 0.428256 26 -0.021302 -0.1808 0.428534 27 -0.0212 -0.1799 0.428874 28 -0.021077 -0.1788 0.429282 29 -0.020931 -0.1776 0.429765 30 -0.020761 -0.1762 0.430329 31 -0.020565 -0.1745 0.430981 32 -0.02034 -0.1726 0.43173 33 -0.020083 -0.1704 0.432583 34 -0.019792 -0.1679 0.433549 35 -0.019465 -0.1652 0.434638 36 -0.019098 -0.1621 0.435859 37 -0.018689 -0.1586 0.437222 38 -0.018234 -0.1547 0.438739 39 -0.017729 -0.1504 0.44042 40 -0.017172 -0.1457 0.442278 41 -0.016559 -0.1405 0.444325 42 -0.015886 -0.1348 0.446574 43 -0.015149 -0.1285 0.449039 44 -0.014344 -0.1217 0.451733 45 -0.013467 -0.1143 0.454669 46 -0.012515 -0.1062 0.457864 47 -0.011482 -0.0974 0.46133 48 -0.010364 -0.0879 0.465083

if (par1 == 'Default') {par1 = 10*log10(length(x))} else {par1 <- as.numeric(par1)}par2 <- as.numeric(par2)par3 <- as.numeric(par3)par4 <- as.numeric(par4)par5 <- as.numeric(par5)if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'par7 <- as.numeric(par7)if (par8 != '') par8 <- as.numeric(par8)ox <- xif (par8 == '') {if (par2 == 0) {x <- log(x)} else {x <- (x ^ par2 - 1) / par2}} else {x <- log(x,base=par8)}if (par3 > 0) x <- diff(x,lag=1,difference=par3)if (par4 > 0) x <- diff(x,lag=par5,difference=par4)bitmap(file='picts.png')op <- par(mfrow=c(2,1))plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')if (par8=='') {mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')} else {mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')}plot(x,type='l', main=mytitle,xlab='time',ylab='value')par(op)dev.off()bitmap(file='pic1.png')racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)dev.off()bitmap(file='pic2.png')rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)dev.off()(myacf <- c(racf$acf))(mypacf <- c(rpacf$acf))lengthx <- length(x)sqrtn <- sqrt(lengthx)load(file='createtable')a<-table.start()a<-table.row.start(a)a<-table.element(a,'Autocorrelation Function',4,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Time lag k',header=TRUE)a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)a<-table.element(a,'T-STAT',header=TRUE)a<-table.element(a,'P-value',header=TRUE)a<-table.row.end(a)for (i in 2:(par1+1)) {a<-table.row.start(a)a<-table.element(a,i-1,header=TRUE)a<-table.element(a,round(myacf[i],6))mytstat <- myacf[i]*sqrtna<-table.element(a,round(mytstat,4))a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))a<-table.row.end(a)}a<-table.end(a)table.save(a,file='mytable.tab')a<-table.start()a<-table.row.start(a)a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Time lag k',header=TRUE)a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)a<-table.element(a,'T-STAT',header=TRUE)a<-table.element(a,'P-value',header=TRUE)a<-table.row.end(a)for (i in 1:par1) {a<-table.row.start(a)a<-table.element(a,i,header=TRUE)a<-table.element(a,round(mypacf[i],6))mytstat <- mypacf[i]*sqrtna<-table.element(a,round(mytstat,4))a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))a<-table.row.end(a)}a<-table.end(a)table.save(a,file='mytable1.tab')