Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationSat, 21 Dec 2013 13:23:11 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2013/Dec/21/t1387650224t0ox4nvq725a16g.htm/, Retrieved Sat, 21 May 2022 15:23:29 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=232496, Retrieved Sat, 21 May 2022 15:23:29 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact128
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Notched Boxplots] [werkloosheidscijf...] [2013-10-08 18:26:09] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD  [Harrell-Davis Quantiles] [consumtieprijs va...] [2013-12-21 15:50:38] [6a1a05b03d1c87a66b915fc3d5866cc8]
-   PD    [Harrell-Davis Quantiles] [] [2013-12-21 16:11:56] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD        [(Partial) Autocorrelation Function] [] [2013-12-21 18:23:11] [4a7f7842fc88d649abcd00dd10ef7b6c] [Current]
-    D          [(Partial) Autocorrelation Function] [] [2013-12-22 16:04:51] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD          [Mean Plot] [] [2013-12-22 16:12:13] [6a1a05b03d1c87a66b915fc3d5866cc8]
- R PD          [(Partial) Autocorrelation Function] [] [2013-12-22 16:16:18] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD          [Variability] [] [2013-12-22 17:47:13] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD          [Standard Deviation Plot] [] [2013-12-22 18:10:49] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD          [Standard Deviation-Mean Plot] [] [2013-12-22 19:00:26] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD          [Variability] [] [2013-12-22 19:09:26] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD          [Standard Deviation Plot] [] [2013-12-22 19:16:43] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD          [Standard Deviation-Mean Plot] [] [2013-12-22 19:33:36] [6a1a05b03d1c87a66b915fc3d5866cc8]
Feedback Forum

Post a new message
Dataseries X:
 500 
500,01
500,02
500,03
500,04
500,05
500,06
500,07
500,08
500,09
500,10
500,11
500,12
500,13
500,14
500,15
500,16
500,17
500,18
500,19
500,20
500,21
500,22
500,23
500,24
500,25
500,26
500,27
500,28
500,29
500,30
500,31
500,32
500,33
500,34
500,35
500,36
500,37
500,38
500,39
500,40
500,41
500,42
500,43
500,44
500,45
500,46
500,47
500,48
500,49
500,50
500,51
500,52
500,53
500,54
500,55
500,56
500,57
500,58
500,59
500,60
500,61
500,62
500,63
500,64
500,65
500,66
500,67
500,68
500,69
500,70
500,71




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232496&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232496&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232496&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.9583338.13170
20.9166997.77840
30.8751297.42570
40.8336557.07380
50.792316.7230
60.7511256.37350
70.7101346.02570
80.6693685.67980
90.6288595.3361e-06
100.5886394.99482e-06
110.5487414.65627e-06
120.5091974.32072.5e-05
130.4700383.98847.9e-05
140.4312983.65970.000239
150.3930083.33480.000676
160.35523.0140.001779
170.3179062.69750.004348
180.281162.38570.009839
190.2449922.07880.020599
200.2094351.77710.039887
210.1745211.48090.071504
220.1402821.19030.118912
230.1067510.90580.184028
240.073960.62760.266136
250.041940.35590.361488
260.0107240.0910.463874
27-0.019656-0.16680.434004
28-0.049167-0.41720.338888
29-0.077778-0.660.255689
30-0.105457-0.89480.186929
31-0.132171-1.12150.132899
32-0.157888-1.33970.092274
33-0.182576-1.54920.062858
34-0.206203-1.74970.042216
35-0.228737-1.94090.028093
36-0.250145-2.12250.018616
37-0.270395-2.29440.012344
38-0.289456-2.45610.008229
39-0.307295-2.60750.005541
40-0.323879-2.74820.003784
41-0.339178-2.8780.002632
42-0.353158-2.99660.001871
43-0.365787-3.10380.001365
44-0.377034-3.19920.001025
45-0.386866-3.28270.000794
46-0.39525-3.35380.000637
47-0.402156-3.41240.00053
48-0.40755-3.45820.000458

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.958333 & 8.1317 & 0 \tabularnewline
2 & 0.916699 & 7.7784 & 0 \tabularnewline
3 & 0.875129 & 7.4257 & 0 \tabularnewline
4 & 0.833655 & 7.0738 & 0 \tabularnewline
5 & 0.79231 & 6.723 & 0 \tabularnewline
6 & 0.751125 & 6.3735 & 0 \tabularnewline
7 & 0.710134 & 6.0257 & 0 \tabularnewline
8 & 0.669368 & 5.6798 & 0 \tabularnewline
9 & 0.628859 & 5.336 & 1e-06 \tabularnewline
10 & 0.588639 & 4.9948 & 2e-06 \tabularnewline
11 & 0.548741 & 4.6562 & 7e-06 \tabularnewline
12 & 0.509197 & 4.3207 & 2.5e-05 \tabularnewline
13 & 0.470038 & 3.9884 & 7.9e-05 \tabularnewline
14 & 0.431298 & 3.6597 & 0.000239 \tabularnewline
15 & 0.393008 & 3.3348 & 0.000676 \tabularnewline
16 & 0.3552 & 3.014 & 0.001779 \tabularnewline
17 & 0.317906 & 2.6975 & 0.004348 \tabularnewline
18 & 0.28116 & 2.3857 & 0.009839 \tabularnewline
19 & 0.244992 & 2.0788 & 0.020599 \tabularnewline
20 & 0.209435 & 1.7771 & 0.039887 \tabularnewline
21 & 0.174521 & 1.4809 & 0.071504 \tabularnewline
22 & 0.140282 & 1.1903 & 0.118912 \tabularnewline
23 & 0.106751 & 0.9058 & 0.184028 \tabularnewline
24 & 0.07396 & 0.6276 & 0.266136 \tabularnewline
25 & 0.04194 & 0.3559 & 0.361488 \tabularnewline
26 & 0.010724 & 0.091 & 0.463874 \tabularnewline
27 & -0.019656 & -0.1668 & 0.434004 \tabularnewline
28 & -0.049167 & -0.4172 & 0.338888 \tabularnewline
29 & -0.077778 & -0.66 & 0.255689 \tabularnewline
30 & -0.105457 & -0.8948 & 0.186929 \tabularnewline
31 & -0.132171 & -1.1215 & 0.132899 \tabularnewline
32 & -0.157888 & -1.3397 & 0.092274 \tabularnewline
33 & -0.182576 & -1.5492 & 0.062858 \tabularnewline
34 & -0.206203 & -1.7497 & 0.042216 \tabularnewline
35 & -0.228737 & -1.9409 & 0.028093 \tabularnewline
36 & -0.250145 & -2.1225 & 0.018616 \tabularnewline
37 & -0.270395 & -2.2944 & 0.012344 \tabularnewline
38 & -0.289456 & -2.4561 & 0.008229 \tabularnewline
39 & -0.307295 & -2.6075 & 0.005541 \tabularnewline
40 & -0.323879 & -2.7482 & 0.003784 \tabularnewline
41 & -0.339178 & -2.878 & 0.002632 \tabularnewline
42 & -0.353158 & -2.9966 & 0.001871 \tabularnewline
43 & -0.365787 & -3.1038 & 0.001365 \tabularnewline
44 & -0.377034 & -3.1992 & 0.001025 \tabularnewline
45 & -0.386866 & -3.2827 & 0.000794 \tabularnewline
46 & -0.39525 & -3.3538 & 0.000637 \tabularnewline
47 & -0.402156 & -3.4124 & 0.00053 \tabularnewline
48 & -0.40755 & -3.4582 & 0.000458 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232496&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.958333[/C][C]8.1317[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.916699[/C][C]7.7784[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.875129[/C][C]7.4257[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.833655[/C][C]7.0738[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.79231[/C][C]6.723[/C][C]0[/C][/ROW]
[ROW][C]6[/C][C]0.751125[/C][C]6.3735[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]0.710134[/C][C]6.0257[/C][C]0[/C][/ROW]
[ROW][C]8[/C][C]0.669368[/C][C]5.6798[/C][C]0[/C][/ROW]
[ROW][C]9[/C][C]0.628859[/C][C]5.336[/C][C]1e-06[/C][/ROW]
[ROW][C]10[/C][C]0.588639[/C][C]4.9948[/C][C]2e-06[/C][/ROW]
[ROW][C]11[/C][C]0.548741[/C][C]4.6562[/C][C]7e-06[/C][/ROW]
[ROW][C]12[/C][C]0.509197[/C][C]4.3207[/C][C]2.5e-05[/C][/ROW]
[ROW][C]13[/C][C]0.470038[/C][C]3.9884[/C][C]7.9e-05[/C][/ROW]
[ROW][C]14[/C][C]0.431298[/C][C]3.6597[/C][C]0.000239[/C][/ROW]
[ROW][C]15[/C][C]0.393008[/C][C]3.3348[/C][C]0.000676[/C][/ROW]
[ROW][C]16[/C][C]0.3552[/C][C]3.014[/C][C]0.001779[/C][/ROW]
[ROW][C]17[/C][C]0.317906[/C][C]2.6975[/C][C]0.004348[/C][/ROW]
[ROW][C]18[/C][C]0.28116[/C][C]2.3857[/C][C]0.009839[/C][/ROW]
[ROW][C]19[/C][C]0.244992[/C][C]2.0788[/C][C]0.020599[/C][/ROW]
[ROW][C]20[/C][C]0.209435[/C][C]1.7771[/C][C]0.039887[/C][/ROW]
[ROW][C]21[/C][C]0.174521[/C][C]1.4809[/C][C]0.071504[/C][/ROW]
[ROW][C]22[/C][C]0.140282[/C][C]1.1903[/C][C]0.118912[/C][/ROW]
[ROW][C]23[/C][C]0.106751[/C][C]0.9058[/C][C]0.184028[/C][/ROW]
[ROW][C]24[/C][C]0.07396[/C][C]0.6276[/C][C]0.266136[/C][/ROW]
[ROW][C]25[/C][C]0.04194[/C][C]0.3559[/C][C]0.361488[/C][/ROW]
[ROW][C]26[/C][C]0.010724[/C][C]0.091[/C][C]0.463874[/C][/ROW]
[ROW][C]27[/C][C]-0.019656[/C][C]-0.1668[/C][C]0.434004[/C][/ROW]
[ROW][C]28[/C][C]-0.049167[/C][C]-0.4172[/C][C]0.338888[/C][/ROW]
[ROW][C]29[/C][C]-0.077778[/C][C]-0.66[/C][C]0.255689[/C][/ROW]
[ROW][C]30[/C][C]-0.105457[/C][C]-0.8948[/C][C]0.186929[/C][/ROW]
[ROW][C]31[/C][C]-0.132171[/C][C]-1.1215[/C][C]0.132899[/C][/ROW]
[ROW][C]32[/C][C]-0.157888[/C][C]-1.3397[/C][C]0.092274[/C][/ROW]
[ROW][C]33[/C][C]-0.182576[/C][C]-1.5492[/C][C]0.062858[/C][/ROW]
[ROW][C]34[/C][C]-0.206203[/C][C]-1.7497[/C][C]0.042216[/C][/ROW]
[ROW][C]35[/C][C]-0.228737[/C][C]-1.9409[/C][C]0.028093[/C][/ROW]
[ROW][C]36[/C][C]-0.250145[/C][C]-2.1225[/C][C]0.018616[/C][/ROW]
[ROW][C]37[/C][C]-0.270395[/C][C]-2.2944[/C][C]0.012344[/C][/ROW]
[ROW][C]38[/C][C]-0.289456[/C][C]-2.4561[/C][C]0.008229[/C][/ROW]
[ROW][C]39[/C][C]-0.307295[/C][C]-2.6075[/C][C]0.005541[/C][/ROW]
[ROW][C]40[/C][C]-0.323879[/C][C]-2.7482[/C][C]0.003784[/C][/ROW]
[ROW][C]41[/C][C]-0.339178[/C][C]-2.878[/C][C]0.002632[/C][/ROW]
[ROW][C]42[/C][C]-0.353158[/C][C]-2.9966[/C][C]0.001871[/C][/ROW]
[ROW][C]43[/C][C]-0.365787[/C][C]-3.1038[/C][C]0.001365[/C][/ROW]
[ROW][C]44[/C][C]-0.377034[/C][C]-3.1992[/C][C]0.001025[/C][/ROW]
[ROW][C]45[/C][C]-0.386866[/C][C]-3.2827[/C][C]0.000794[/C][/ROW]
[ROW][C]46[/C][C]-0.39525[/C][C]-3.3538[/C][C]0.000637[/C][/ROW]
[ROW][C]47[/C][C]-0.402156[/C][C]-3.4124[/C][C]0.00053[/C][/ROW]
[ROW][C]48[/C][C]-0.40755[/C][C]-3.4582[/C][C]0.000458[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232496&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232496&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.9583338.13170
20.9166997.77840
30.8751297.42570
40.8336557.07380
50.792316.7230
60.7511256.37350
70.7101346.02570
80.6693685.67980
90.6288595.3361e-06
100.5886394.99482e-06
110.5487414.65627e-06
120.5091974.32072.5e-05
130.4700383.98847.9e-05
140.4312983.65970.000239
150.3930083.33480.000676
160.35523.0140.001779
170.3179062.69750.004348
180.281162.38570.009839
190.2449922.07880.020599
200.2094351.77710.039887
210.1745211.48090.071504
220.1402821.19030.118912
230.1067510.90580.184028
240.073960.62760.266136
250.041940.35590.361488
260.0107240.0910.463874
27-0.019656-0.16680.434004
28-0.049167-0.41720.338888
29-0.077778-0.660.255689
30-0.105457-0.89480.186929
31-0.132171-1.12150.132899
32-0.157888-1.33970.092274
33-0.182576-1.54920.062858
34-0.206203-1.74970.042216
35-0.228737-1.94090.028093
36-0.250145-2.12250.018616
37-0.270395-2.29440.012344
38-0.289456-2.45610.008229
39-0.307295-2.60750.005541
40-0.323879-2.74820.003784
41-0.339178-2.8780.002632
42-0.353158-2.99660.001871
43-0.365787-3.10380.001365
44-0.377034-3.19920.001025
45-0.386866-3.28270.000794
46-0.39525-3.35380.000637
47-0.402156-3.41240.00053
48-0.40755-3.45820.000458







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.9583338.13170
2-0.020883-0.17720.429927
3-0.020933-0.17760.429758
4-0.020985-0.17810.429585
5-0.021038-0.17850.429409
6-0.021092-0.1790.429232
7-0.021145-0.17940.429055
8-0.021198-0.17990.42888
9-0.02125-0.18030.428707
10-0.0213-0.18070.42854
11-0.021349-0.18110.42838
12-0.021394-0.18150.428228
13-0.021437-0.18190.428087
14-0.021475-0.18220.42796
15-0.021509-0.18250.427848
16-0.021537-0.18270.427754
17-0.021559-0.18290.427681
18-0.021574-0.18310.427632
19-0.021581-0.18310.42761
20-0.021578-0.18310.427619
21-0.021565-0.1830.427662
22-0.021541-0.18280.427742
23-0.021504-0.18250.427865
24-0.021453-0.1820.428035
25-0.021386-0.18150.428256
26-0.021302-0.18080.428534
27-0.0212-0.17990.428874
28-0.021077-0.17880.429282
29-0.020931-0.17760.429765
30-0.020761-0.17620.430329
31-0.020565-0.17450.430981
32-0.02034-0.17260.43173
33-0.020083-0.17040.432583
34-0.019792-0.16790.433549
35-0.019465-0.16520.434638
36-0.019098-0.16210.435859
37-0.018689-0.15860.437222
38-0.018234-0.15470.438739
39-0.017729-0.15040.44042
40-0.017172-0.14570.442278
41-0.016559-0.14050.444325
42-0.015886-0.13480.446574
43-0.015149-0.12850.449039
44-0.014344-0.12170.451733
45-0.013467-0.11430.454669
46-0.012515-0.10620.457864
47-0.011482-0.09740.46133
48-0.010364-0.08790.465083

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.958333 & 8.1317 & 0 \tabularnewline
2 & -0.020883 & -0.1772 & 0.429927 \tabularnewline
3 & -0.020933 & -0.1776 & 0.429758 \tabularnewline
4 & -0.020985 & -0.1781 & 0.429585 \tabularnewline
5 & -0.021038 & -0.1785 & 0.429409 \tabularnewline
6 & -0.021092 & -0.179 & 0.429232 \tabularnewline
7 & -0.021145 & -0.1794 & 0.429055 \tabularnewline
8 & -0.021198 & -0.1799 & 0.42888 \tabularnewline
9 & -0.02125 & -0.1803 & 0.428707 \tabularnewline
10 & -0.0213 & -0.1807 & 0.42854 \tabularnewline
11 & -0.021349 & -0.1811 & 0.42838 \tabularnewline
12 & -0.021394 & -0.1815 & 0.428228 \tabularnewline
13 & -0.021437 & -0.1819 & 0.428087 \tabularnewline
14 & -0.021475 & -0.1822 & 0.42796 \tabularnewline
15 & -0.021509 & -0.1825 & 0.427848 \tabularnewline
16 & -0.021537 & -0.1827 & 0.427754 \tabularnewline
17 & -0.021559 & -0.1829 & 0.427681 \tabularnewline
18 & -0.021574 & -0.1831 & 0.427632 \tabularnewline
19 & -0.021581 & -0.1831 & 0.42761 \tabularnewline
20 & -0.021578 & -0.1831 & 0.427619 \tabularnewline
21 & -0.021565 & -0.183 & 0.427662 \tabularnewline
22 & -0.021541 & -0.1828 & 0.427742 \tabularnewline
23 & -0.021504 & -0.1825 & 0.427865 \tabularnewline
24 & -0.021453 & -0.182 & 0.428035 \tabularnewline
25 & -0.021386 & -0.1815 & 0.428256 \tabularnewline
26 & -0.021302 & -0.1808 & 0.428534 \tabularnewline
27 & -0.0212 & -0.1799 & 0.428874 \tabularnewline
28 & -0.021077 & -0.1788 & 0.429282 \tabularnewline
29 & -0.020931 & -0.1776 & 0.429765 \tabularnewline
30 & -0.020761 & -0.1762 & 0.430329 \tabularnewline
31 & -0.020565 & -0.1745 & 0.430981 \tabularnewline
32 & -0.02034 & -0.1726 & 0.43173 \tabularnewline
33 & -0.020083 & -0.1704 & 0.432583 \tabularnewline
34 & -0.019792 & -0.1679 & 0.433549 \tabularnewline
35 & -0.019465 & -0.1652 & 0.434638 \tabularnewline
36 & -0.019098 & -0.1621 & 0.435859 \tabularnewline
37 & -0.018689 & -0.1586 & 0.437222 \tabularnewline
38 & -0.018234 & -0.1547 & 0.438739 \tabularnewline
39 & -0.017729 & -0.1504 & 0.44042 \tabularnewline
40 & -0.017172 & -0.1457 & 0.442278 \tabularnewline
41 & -0.016559 & -0.1405 & 0.444325 \tabularnewline
42 & -0.015886 & -0.1348 & 0.446574 \tabularnewline
43 & -0.015149 & -0.1285 & 0.449039 \tabularnewline
44 & -0.014344 & -0.1217 & 0.451733 \tabularnewline
45 & -0.013467 & -0.1143 & 0.454669 \tabularnewline
46 & -0.012515 & -0.1062 & 0.457864 \tabularnewline
47 & -0.011482 & -0.0974 & 0.46133 \tabularnewline
48 & -0.010364 & -0.0879 & 0.465083 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232496&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.958333[/C][C]8.1317[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]-0.020883[/C][C]-0.1772[/C][C]0.429927[/C][/ROW]
[ROW][C]3[/C][C]-0.020933[/C][C]-0.1776[/C][C]0.429758[/C][/ROW]
[ROW][C]4[/C][C]-0.020985[/C][C]-0.1781[/C][C]0.429585[/C][/ROW]
[ROW][C]5[/C][C]-0.021038[/C][C]-0.1785[/C][C]0.429409[/C][/ROW]
[ROW][C]6[/C][C]-0.021092[/C][C]-0.179[/C][C]0.429232[/C][/ROW]
[ROW][C]7[/C][C]-0.021145[/C][C]-0.1794[/C][C]0.429055[/C][/ROW]
[ROW][C]8[/C][C]-0.021198[/C][C]-0.1799[/C][C]0.42888[/C][/ROW]
[ROW][C]9[/C][C]-0.02125[/C][C]-0.1803[/C][C]0.428707[/C][/ROW]
[ROW][C]10[/C][C]-0.0213[/C][C]-0.1807[/C][C]0.42854[/C][/ROW]
[ROW][C]11[/C][C]-0.021349[/C][C]-0.1811[/C][C]0.42838[/C][/ROW]
[ROW][C]12[/C][C]-0.021394[/C][C]-0.1815[/C][C]0.428228[/C][/ROW]
[ROW][C]13[/C][C]-0.021437[/C][C]-0.1819[/C][C]0.428087[/C][/ROW]
[ROW][C]14[/C][C]-0.021475[/C][C]-0.1822[/C][C]0.42796[/C][/ROW]
[ROW][C]15[/C][C]-0.021509[/C][C]-0.1825[/C][C]0.427848[/C][/ROW]
[ROW][C]16[/C][C]-0.021537[/C][C]-0.1827[/C][C]0.427754[/C][/ROW]
[ROW][C]17[/C][C]-0.021559[/C][C]-0.1829[/C][C]0.427681[/C][/ROW]
[ROW][C]18[/C][C]-0.021574[/C][C]-0.1831[/C][C]0.427632[/C][/ROW]
[ROW][C]19[/C][C]-0.021581[/C][C]-0.1831[/C][C]0.42761[/C][/ROW]
[ROW][C]20[/C][C]-0.021578[/C][C]-0.1831[/C][C]0.427619[/C][/ROW]
[ROW][C]21[/C][C]-0.021565[/C][C]-0.183[/C][C]0.427662[/C][/ROW]
[ROW][C]22[/C][C]-0.021541[/C][C]-0.1828[/C][C]0.427742[/C][/ROW]
[ROW][C]23[/C][C]-0.021504[/C][C]-0.1825[/C][C]0.427865[/C][/ROW]
[ROW][C]24[/C][C]-0.021453[/C][C]-0.182[/C][C]0.428035[/C][/ROW]
[ROW][C]25[/C][C]-0.021386[/C][C]-0.1815[/C][C]0.428256[/C][/ROW]
[ROW][C]26[/C][C]-0.021302[/C][C]-0.1808[/C][C]0.428534[/C][/ROW]
[ROW][C]27[/C][C]-0.0212[/C][C]-0.1799[/C][C]0.428874[/C][/ROW]
[ROW][C]28[/C][C]-0.021077[/C][C]-0.1788[/C][C]0.429282[/C][/ROW]
[ROW][C]29[/C][C]-0.020931[/C][C]-0.1776[/C][C]0.429765[/C][/ROW]
[ROW][C]30[/C][C]-0.020761[/C][C]-0.1762[/C][C]0.430329[/C][/ROW]
[ROW][C]31[/C][C]-0.020565[/C][C]-0.1745[/C][C]0.430981[/C][/ROW]
[ROW][C]32[/C][C]-0.02034[/C][C]-0.1726[/C][C]0.43173[/C][/ROW]
[ROW][C]33[/C][C]-0.020083[/C][C]-0.1704[/C][C]0.432583[/C][/ROW]
[ROW][C]34[/C][C]-0.019792[/C][C]-0.1679[/C][C]0.433549[/C][/ROW]
[ROW][C]35[/C][C]-0.019465[/C][C]-0.1652[/C][C]0.434638[/C][/ROW]
[ROW][C]36[/C][C]-0.019098[/C][C]-0.1621[/C][C]0.435859[/C][/ROW]
[ROW][C]37[/C][C]-0.018689[/C][C]-0.1586[/C][C]0.437222[/C][/ROW]
[ROW][C]38[/C][C]-0.018234[/C][C]-0.1547[/C][C]0.438739[/C][/ROW]
[ROW][C]39[/C][C]-0.017729[/C][C]-0.1504[/C][C]0.44042[/C][/ROW]
[ROW][C]40[/C][C]-0.017172[/C][C]-0.1457[/C][C]0.442278[/C][/ROW]
[ROW][C]41[/C][C]-0.016559[/C][C]-0.1405[/C][C]0.444325[/C][/ROW]
[ROW][C]42[/C][C]-0.015886[/C][C]-0.1348[/C][C]0.446574[/C][/ROW]
[ROW][C]43[/C][C]-0.015149[/C][C]-0.1285[/C][C]0.449039[/C][/ROW]
[ROW][C]44[/C][C]-0.014344[/C][C]-0.1217[/C][C]0.451733[/C][/ROW]
[ROW][C]45[/C][C]-0.013467[/C][C]-0.1143[/C][C]0.454669[/C][/ROW]
[ROW][C]46[/C][C]-0.012515[/C][C]-0.1062[/C][C]0.457864[/C][/ROW]
[ROW][C]47[/C][C]-0.011482[/C][C]-0.0974[/C][C]0.46133[/C][/ROW]
[ROW][C]48[/C][C]-0.010364[/C][C]-0.0879[/C][C]0.465083[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232496&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232496&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.9583338.13170
2-0.020883-0.17720.429927
3-0.020933-0.17760.429758
4-0.020985-0.17810.429585
5-0.021038-0.17850.429409
6-0.021092-0.1790.429232
7-0.021145-0.17940.429055
8-0.021198-0.17990.42888
9-0.02125-0.18030.428707
10-0.0213-0.18070.42854
11-0.021349-0.18110.42838
12-0.021394-0.18150.428228
13-0.021437-0.18190.428087
14-0.021475-0.18220.42796
15-0.021509-0.18250.427848
16-0.021537-0.18270.427754
17-0.021559-0.18290.427681
18-0.021574-0.18310.427632
19-0.021581-0.18310.42761
20-0.021578-0.18310.427619
21-0.021565-0.1830.427662
22-0.021541-0.18280.427742
23-0.021504-0.18250.427865
24-0.021453-0.1820.428035
25-0.021386-0.18150.428256
26-0.021302-0.18080.428534
27-0.0212-0.17990.428874
28-0.021077-0.17880.429282
29-0.020931-0.17760.429765
30-0.020761-0.17620.430329
31-0.020565-0.17450.430981
32-0.02034-0.17260.43173
33-0.020083-0.17040.432583
34-0.019792-0.16790.433549
35-0.019465-0.16520.434638
36-0.019098-0.16210.435859
37-0.018689-0.15860.437222
38-0.018234-0.15470.438739
39-0.017729-0.15040.44042
40-0.017172-0.14570.442278
41-0.016559-0.14050.444325
42-0.015886-0.13480.446574
43-0.015149-0.12850.449039
44-0.014344-0.12170.451733
45-0.013467-0.11430.454669
46-0.012515-0.10620.457864
47-0.011482-0.09740.46133
48-0.010364-0.08790.465083



Parameters (Session):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')