Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationWed, 22 Apr 2015 18:47:17 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2015/Apr/22/t1429724870q13ygwmznvwt2zy.htm/, Retrieved Thu, 31 Oct 2024 23:06:51 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=278800, Retrieved Thu, 31 Oct 2024 23:06:51 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact172
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Exponential Smoothing] [opgave10nr1] [2015-04-22 17:36:01] [6e96f11f3cecdcda3dd5ca25dc8c172c]
- R P     [Exponential Smoothing] [opgave10nr1-2] [2015-04-22 17:47:17] [70d22f55a70f3427b60459805adf1606] [Current]
Feedback Forum

Post a new message
Dataseries X:
2341
2115
2402
2180
2453
2507
2679
2622
2618
2648
2523
2473
2513
2466
2544
2537
2564
2582
2716
2904
2851
2932
2772
2811
2935
2783
3003
2995
3127
2985
3287
3236
3252
3228
2856
3176
3362
3036
3330
3251
3318
3238
3597
3708
3902
3745
3426
3526
3483
3458
3824
3696
3518
3814
3996
4136
4037
3915
3760
3955
4160
4115
4202
4018
4233
4029
4401
4645
4491
4379
4394
4472
4614
4160
4328
4202
4635
4542
4920
4774
4698
4916
4703
4616
4873
4375
4801
4427
4684
4648
5225
5174
5181
5266
4839
5032
5221
4658
5014
4980
4952
4946
5365
5456
5397
5436
4995
5019
5249
4799
5137
4979
4951
5265
5612
5572
5403
5373
5252
5437
5296
5011
5294
5335
5398
5396
5724
5898
5718
5625
5380
5488
5678
5224
5596
5184
5620
5531
5816
6086
6175
6112
5813
5740
5821
5294
5881
5589
5845
5706
6355
6404
6426
6375
5869
5994
6105
5792
6011
5968
6255
6208
6897
6814
6897
6596
6188
6406
6548
5842
6555
6424
6596
6645
7203
7128
7133
6778
6593
6591
6120
5612
6070
5983
6145
6303
6588
6640
6719
6575
6487
6510
6365
5844
5974
5880
6279
6342
6598
6801
6529
6369
6028
6187
6164
5866
6198
5898
6462
6063
6496
6678
6554
6513
6210
5928
6268
5582
5869
5764
6082
6062
6810
6727
6537
6175
6014
6109




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=278800&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=278800&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=278800&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.763593666620862
beta0.0660654920052931
gammaFALSE

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.763593666620862 \tabularnewline
beta & 0.0660654920052931 \tabularnewline
gamma & FALSE \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=278800&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.763593666620862[/C][/ROW]
[ROW][C]beta[/C][C]0.0660654920052931[/C][/ROW]
[ROW][C]gamma[/C][C]FALSE[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=278800&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=278800&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.763593666620862
beta0.0660654920052931
gammaFALSE







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
324021889513
421802080.6029601018399.3970398981746
524531961.39562085841491.60437914159
625072166.47538201087340.524617989134
726792273.37010493109405.629895068913
826222450.44169399741171.558306002591
926182457.43233479495160.567665205047
1026482464.13077960696183.869220393043
1125232497.8978301141325.102169885869
1224732411.6977003516661.3022996483364
1325132356.23228924278156.767710757224
1424662381.5721521286984.4278478713131
1525442355.9329016614188.067098338599
1625372418.91938334715118.080616652854
1725642434.42146632302129.578533676976
1825822465.2401589917116.759841008296
1927162492.16078515709223.83921484291
2029042612.13860269489291.861397305115
2128512798.781315686952.2186843131012
2229322805.06865674217126.931343257831
2327722874.80944073647-102.809440736468
2428112763.9351695862547.064830413749
2529352769.87823117808165.12176882192
2627832874.29875269486-91.2987526948646
2730032778.31242234923224.687577650775
2829952934.9461098016960.0538901983055
2931272968.89610628881158.103893711192
3029853085.69236183827-100.692361838271
3132872999.79378886714287.206211132863
3232363224.5808561771211.4191438228813
3332523239.3547292859112.6452707140857
3432283255.70278351378-27.7027835137751
3528563239.84379145393-383.843791453929
3631762932.67394013888243.32605986112
3733623116.68213146815245.317868531852
3830363314.58685272111-278.586852721106
3933303098.38732266594231.612677334062
4032513283.45713150959-32.4571315095864
4133183265.2475356528652.7524643471379
4232383314.76466118693-76.7646611869318
4335973261.510768398335.489231601998
4437083539.97582662064168.02417337936
4539023699.04197461788202.958025382121
4637453895.02205308284-150.022053082839
4734263813.90058798092-387.900587980917
4835263531.56808504727-5.56808504727087
4934833540.90136564563-57.9013656456304
5034583507.35232335764-49.3523233576402
5138243477.84158952003346.158410479975
5236963767.80306666716-71.803066667158
5335183734.98954393478-216.989543934775
5438143580.36603365377233.633966346234
5539963781.62195924297214.37804075703
5641363978.98895203509157.011047964914
5740374140.47163882741-103.471638827414
5839154097.83154216502-182.831542165019
5937603985.36938815124-225.369388151238
6039553829.05635171854125.943648281457
6141603947.35722822223212.64277177777
6241154142.58823691092-27.5882369109195
6342024152.9886197745349.0113802254691
6440184224.35247162208-206.352471622077
6542334090.31220090844142.687799091561
6640294229.99506900109-200.995069001095
6744014097.10423900039303.895760999614
6846454365.07553670672279.924463293283
6944914628.8639062468-137.863906246799
7043794566.67687596953-187.676875969532
7143944456.98520623602-62.9852062360233
7244724439.3298790447732.6701209552348
7346144496.36446971618117.635530283817
7441604624.21249093001-464.212490930006
7543284284.3468318857543.6531681142469
7642024334.48635330365-132.486353303647
7746354243.44328731845391.556712681551
7845424572.30912393674-30.3091239367359
7949204577.5118693769342.4881306231
8047744884.65780156839-110.657801568394
8146984840.2019946014-142.201994601395
8249164764.48555039404151.514449605958
8347034920.69260118639-217.69260118639
8446164783.9935060302-167.993506030202
8548734676.76952463999196.230475360006
8643754857.56394499573-482.563944995732
8748014495.69124939346305.308750606543
8844274750.83512319711-323.835123197108
8946844509.2321471687174.7678528313
9046484657.17579309482-9.17579309482426
9152254664.19834298723560.801657012766
9251745134.7429323585339.257067641468
9351815209.01978522583-28.0197852258289
9452665230.5109398686435.4890601313646
9548395302.2873700053-463.287370005301
9650324969.8297304587762.1702695412296
9752215041.74453202683179.255467973166
9846585212.10778445294-554.107784452938
9950144794.52632060338219.473679396619
10049804978.718593849521.28140615047505
10149524996.36527248048-44.3652724804824
10249464976.91833301966-30.9183330196638
10353654966.17964830674398.820351693262
10454565303.70606810979152.293931890214
10553975460.66927620897-63.6692762089679
10654365449.51241022508-13.512410225082
10749955475.9733463008-480.973346300799
10850195121.22031779625-102.220317796255
10952495050.52397514694198.476024853056
11047995219.45001331045-420.45001331045
11151374894.55752638149242.44247361851
11249795088.07608596244-109.076085962443
11349515007.67471757535-56.6747175753508
11452654964.42762189279300.572378107209
11556125209.13517814322402.864821856781
11655725552.2759953111519.7240046888528
11754035603.847931703-200.847931703001
11853735476.86032040344-103.860320403437
11952525418.69237338338-166.692373383378
12054375304.13710660249132.862893397511
12152965425.02290413531-129.022904135308
12250115339.42552217003-328.425522170029
12352945084.99741882851209.002581171486
12453355251.4896046524883.5103953475209
12553985326.3696170586171.6303829413946
12653965395.791678861560.208321138443353
12757245410.68681583109313.31318416891
12858985680.47261333039217.52738666961
12957185888.0906281904-170.090628190399
13056255791.14538738033-166.145387380333
13153805688.83113932909-308.831139329089
13254885461.9832912145826.0167087854225
13356785492.13560908644185.864390913561
13452245653.72294113545-429.722941135452
13555965323.57336977204272.426630227957
13651845543.32392244646-359.323922446462
13756205262.54687156825357.453128431748
13855315547.12874346253-16.1287434625347
13958165545.63221420746270.367785792541
14060865776.54191560555309.45808439445
14161756052.91201261817122.087987381828
14261126192.36648628995-80.3664862899468
14358136173.17374258073-360.173742580731
14457405922.15219640823-182.152196408232
14558215797.877708721323.1222912787034
14652945831.51597440186-537.515974401857
14758815409.93823996811471.06176003189
14855895782.2678185546-193.267818554604
14958455637.56971977315207.430280226853
15057065809.30642647157-103.306426471568
15163555738.55503289205616.44496710795
15264046248.4991621591155.500837840902
15364266414.3138541621211.6861458378789
15463756470.90209141899-95.902091418985
15558696440.49864095389-571.498640953885
15659946018.10217614221-24.1021761422071
15761056012.4782979013392.5217020986729
15857926100.57513446503-308.575134465032
15960115866.83021809521144.169781904789
16059685986.07141302436-18.071413024355
16162555980.51460701111274.48539298889
16262086212.19934231938-4.19934231937896
16368976230.87033373712666.129666262882
16468146795.0046813500518.9953186499515
16568976865.9496001462331.0503998537688
16665966947.66610806091-351.666108060913
16761886719.40214700155-531.402147001551
16864066327.0851391885778.9148608114283
16965486404.78336625057143.216633749435
17058426538.80689679738-696.806896797381
17165555996.24182879998558.758171200019
17264246440.60607509614-16.6060750961424
17365966444.78809707373151.211902926274
17466456584.7430800046960.2569199953068
17572036658.28520639076544.714793609241
17671287129.23562819789-1.2356281978864
17771337183.23943165206-50.2394316520567
17867787197.28980293007-419.289802930068
17965936908.38365514702-315.383655147021
18065916682.9093641571-91.9093641571026
18161206623.44205714585-503.442057145853
18256126224.33375440703-612.333754407025
18360705711.18592325777358.81407674223
18459835957.7015876891225.2984123108763
18561455950.82303688671194.176963113291
18663036082.69476030497220.305239695026
18765886245.63165080709342.368349192913
18866406519.04668024891120.953319751091
18967196629.4923507714189.5076492285925
19065756720.44171594171-145.441715941707
19164876624.64810782754-137.648107827544
19265106527.86168908493-17.8616890849289
19363656521.64234899556-156.642348995564
19458446401.54880940705-557.548809407049
19559745947.1988643062726.8011356937268
19658805940.40687839349-60.4068783934927
19762795863.97604789634415.02395210366
19863426171.5179811796170.4820188204
19965986300.92958199734297.070418002664
20068016541.98965089817259.01034910183
20165296767.05363685915-238.053636859147
20263696600.55357388208-231.55357388208
20360286427.33569039433-399.335690394335
20461876105.8550814083681.1449185916408
20561646155.359955607598.6400443924058
20658666149.93643304126-283.936433041261
20761985906.77956975607291.220430243927
20858986117.50009733739-219.500097337388
20964625927.16450124855534.835498751449
21060636339.8157375473-276.815737547298
21164966118.73065384268377.269346157324
21266786416.13297635479261.86702364521
21365546638.6252721144-84.6252721143992
21465136592.26913800979-79.2691380097885
21562106546.00400861745-336.004008617453
21659286286.74729953567-358.747299535669
21762685992.02616391068275.973836089319
21855826195.8961724161-613.896172416101
21958695689.29774067657179.70225932343
22057645797.75151950267-33.7515195026699
22160825741.51067534061340.489324659387
22260625988.2144996605673.7855003394361
22368106034.98724411536775.012755884638
22467276656.3098965049770.6901034950324
22565376743.3823494447-206.3823494447
22661756608.47262226582-433.472622265823
22760146278.29072472056-264.290724720558
22861096063.9623279049345.0376720950735

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
3 & 2402 & 1889 & 513 \tabularnewline
4 & 2180 & 2080.60296010183 & 99.3970398981746 \tabularnewline
5 & 2453 & 1961.39562085841 & 491.60437914159 \tabularnewline
6 & 2507 & 2166.47538201087 & 340.524617989134 \tabularnewline
7 & 2679 & 2273.37010493109 & 405.629895068913 \tabularnewline
8 & 2622 & 2450.44169399741 & 171.558306002591 \tabularnewline
9 & 2618 & 2457.43233479495 & 160.567665205047 \tabularnewline
10 & 2648 & 2464.13077960696 & 183.869220393043 \tabularnewline
11 & 2523 & 2497.89783011413 & 25.102169885869 \tabularnewline
12 & 2473 & 2411.69770035166 & 61.3022996483364 \tabularnewline
13 & 2513 & 2356.23228924278 & 156.767710757224 \tabularnewline
14 & 2466 & 2381.57215212869 & 84.4278478713131 \tabularnewline
15 & 2544 & 2355.9329016614 & 188.067098338599 \tabularnewline
16 & 2537 & 2418.91938334715 & 118.080616652854 \tabularnewline
17 & 2564 & 2434.42146632302 & 129.578533676976 \tabularnewline
18 & 2582 & 2465.2401589917 & 116.759841008296 \tabularnewline
19 & 2716 & 2492.16078515709 & 223.83921484291 \tabularnewline
20 & 2904 & 2612.13860269489 & 291.861397305115 \tabularnewline
21 & 2851 & 2798.7813156869 & 52.2186843131012 \tabularnewline
22 & 2932 & 2805.06865674217 & 126.931343257831 \tabularnewline
23 & 2772 & 2874.80944073647 & -102.809440736468 \tabularnewline
24 & 2811 & 2763.93516958625 & 47.064830413749 \tabularnewline
25 & 2935 & 2769.87823117808 & 165.12176882192 \tabularnewline
26 & 2783 & 2874.29875269486 & -91.2987526948646 \tabularnewline
27 & 3003 & 2778.31242234923 & 224.687577650775 \tabularnewline
28 & 2995 & 2934.94610980169 & 60.0538901983055 \tabularnewline
29 & 3127 & 2968.89610628881 & 158.103893711192 \tabularnewline
30 & 2985 & 3085.69236183827 & -100.692361838271 \tabularnewline
31 & 3287 & 2999.79378886714 & 287.206211132863 \tabularnewline
32 & 3236 & 3224.58085617712 & 11.4191438228813 \tabularnewline
33 & 3252 & 3239.35472928591 & 12.6452707140857 \tabularnewline
34 & 3228 & 3255.70278351378 & -27.7027835137751 \tabularnewline
35 & 2856 & 3239.84379145393 & -383.843791453929 \tabularnewline
36 & 3176 & 2932.67394013888 & 243.32605986112 \tabularnewline
37 & 3362 & 3116.68213146815 & 245.317868531852 \tabularnewline
38 & 3036 & 3314.58685272111 & -278.586852721106 \tabularnewline
39 & 3330 & 3098.38732266594 & 231.612677334062 \tabularnewline
40 & 3251 & 3283.45713150959 & -32.4571315095864 \tabularnewline
41 & 3318 & 3265.24753565286 & 52.7524643471379 \tabularnewline
42 & 3238 & 3314.76466118693 & -76.7646611869318 \tabularnewline
43 & 3597 & 3261.510768398 & 335.489231601998 \tabularnewline
44 & 3708 & 3539.97582662064 & 168.02417337936 \tabularnewline
45 & 3902 & 3699.04197461788 & 202.958025382121 \tabularnewline
46 & 3745 & 3895.02205308284 & -150.022053082839 \tabularnewline
47 & 3426 & 3813.90058798092 & -387.900587980917 \tabularnewline
48 & 3526 & 3531.56808504727 & -5.56808504727087 \tabularnewline
49 & 3483 & 3540.90136564563 & -57.9013656456304 \tabularnewline
50 & 3458 & 3507.35232335764 & -49.3523233576402 \tabularnewline
51 & 3824 & 3477.84158952003 & 346.158410479975 \tabularnewline
52 & 3696 & 3767.80306666716 & -71.803066667158 \tabularnewline
53 & 3518 & 3734.98954393478 & -216.989543934775 \tabularnewline
54 & 3814 & 3580.36603365377 & 233.633966346234 \tabularnewline
55 & 3996 & 3781.62195924297 & 214.37804075703 \tabularnewline
56 & 4136 & 3978.98895203509 & 157.011047964914 \tabularnewline
57 & 4037 & 4140.47163882741 & -103.471638827414 \tabularnewline
58 & 3915 & 4097.83154216502 & -182.831542165019 \tabularnewline
59 & 3760 & 3985.36938815124 & -225.369388151238 \tabularnewline
60 & 3955 & 3829.05635171854 & 125.943648281457 \tabularnewline
61 & 4160 & 3947.35722822223 & 212.64277177777 \tabularnewline
62 & 4115 & 4142.58823691092 & -27.5882369109195 \tabularnewline
63 & 4202 & 4152.98861977453 & 49.0113802254691 \tabularnewline
64 & 4018 & 4224.35247162208 & -206.352471622077 \tabularnewline
65 & 4233 & 4090.31220090844 & 142.687799091561 \tabularnewline
66 & 4029 & 4229.99506900109 & -200.995069001095 \tabularnewline
67 & 4401 & 4097.10423900039 & 303.895760999614 \tabularnewline
68 & 4645 & 4365.07553670672 & 279.924463293283 \tabularnewline
69 & 4491 & 4628.8639062468 & -137.863906246799 \tabularnewline
70 & 4379 & 4566.67687596953 & -187.676875969532 \tabularnewline
71 & 4394 & 4456.98520623602 & -62.9852062360233 \tabularnewline
72 & 4472 & 4439.32987904477 & 32.6701209552348 \tabularnewline
73 & 4614 & 4496.36446971618 & 117.635530283817 \tabularnewline
74 & 4160 & 4624.21249093001 & -464.212490930006 \tabularnewline
75 & 4328 & 4284.34683188575 & 43.6531681142469 \tabularnewline
76 & 4202 & 4334.48635330365 & -132.486353303647 \tabularnewline
77 & 4635 & 4243.44328731845 & 391.556712681551 \tabularnewline
78 & 4542 & 4572.30912393674 & -30.3091239367359 \tabularnewline
79 & 4920 & 4577.5118693769 & 342.4881306231 \tabularnewline
80 & 4774 & 4884.65780156839 & -110.657801568394 \tabularnewline
81 & 4698 & 4840.2019946014 & -142.201994601395 \tabularnewline
82 & 4916 & 4764.48555039404 & 151.514449605958 \tabularnewline
83 & 4703 & 4920.69260118639 & -217.69260118639 \tabularnewline
84 & 4616 & 4783.9935060302 & -167.993506030202 \tabularnewline
85 & 4873 & 4676.76952463999 & 196.230475360006 \tabularnewline
86 & 4375 & 4857.56394499573 & -482.563944995732 \tabularnewline
87 & 4801 & 4495.69124939346 & 305.308750606543 \tabularnewline
88 & 4427 & 4750.83512319711 & -323.835123197108 \tabularnewline
89 & 4684 & 4509.2321471687 & 174.7678528313 \tabularnewline
90 & 4648 & 4657.17579309482 & -9.17579309482426 \tabularnewline
91 & 5225 & 4664.19834298723 & 560.801657012766 \tabularnewline
92 & 5174 & 5134.74293235853 & 39.257067641468 \tabularnewline
93 & 5181 & 5209.01978522583 & -28.0197852258289 \tabularnewline
94 & 5266 & 5230.51093986864 & 35.4890601313646 \tabularnewline
95 & 4839 & 5302.2873700053 & -463.287370005301 \tabularnewline
96 & 5032 & 4969.82973045877 & 62.1702695412296 \tabularnewline
97 & 5221 & 5041.74453202683 & 179.255467973166 \tabularnewline
98 & 4658 & 5212.10778445294 & -554.107784452938 \tabularnewline
99 & 5014 & 4794.52632060338 & 219.473679396619 \tabularnewline
100 & 4980 & 4978.71859384952 & 1.28140615047505 \tabularnewline
101 & 4952 & 4996.36527248048 & -44.3652724804824 \tabularnewline
102 & 4946 & 4976.91833301966 & -30.9183330196638 \tabularnewline
103 & 5365 & 4966.17964830674 & 398.820351693262 \tabularnewline
104 & 5456 & 5303.70606810979 & 152.293931890214 \tabularnewline
105 & 5397 & 5460.66927620897 & -63.6692762089679 \tabularnewline
106 & 5436 & 5449.51241022508 & -13.512410225082 \tabularnewline
107 & 4995 & 5475.9733463008 & -480.973346300799 \tabularnewline
108 & 5019 & 5121.22031779625 & -102.220317796255 \tabularnewline
109 & 5249 & 5050.52397514694 & 198.476024853056 \tabularnewline
110 & 4799 & 5219.45001331045 & -420.45001331045 \tabularnewline
111 & 5137 & 4894.55752638149 & 242.44247361851 \tabularnewline
112 & 4979 & 5088.07608596244 & -109.076085962443 \tabularnewline
113 & 4951 & 5007.67471757535 & -56.6747175753508 \tabularnewline
114 & 5265 & 4964.42762189279 & 300.572378107209 \tabularnewline
115 & 5612 & 5209.13517814322 & 402.864821856781 \tabularnewline
116 & 5572 & 5552.27599531115 & 19.7240046888528 \tabularnewline
117 & 5403 & 5603.847931703 & -200.847931703001 \tabularnewline
118 & 5373 & 5476.86032040344 & -103.860320403437 \tabularnewline
119 & 5252 & 5418.69237338338 & -166.692373383378 \tabularnewline
120 & 5437 & 5304.13710660249 & 132.862893397511 \tabularnewline
121 & 5296 & 5425.02290413531 & -129.022904135308 \tabularnewline
122 & 5011 & 5339.42552217003 & -328.425522170029 \tabularnewline
123 & 5294 & 5084.99741882851 & 209.002581171486 \tabularnewline
124 & 5335 & 5251.48960465248 & 83.5103953475209 \tabularnewline
125 & 5398 & 5326.36961705861 & 71.6303829413946 \tabularnewline
126 & 5396 & 5395.79167886156 & 0.208321138443353 \tabularnewline
127 & 5724 & 5410.68681583109 & 313.31318416891 \tabularnewline
128 & 5898 & 5680.47261333039 & 217.52738666961 \tabularnewline
129 & 5718 & 5888.0906281904 & -170.090628190399 \tabularnewline
130 & 5625 & 5791.14538738033 & -166.145387380333 \tabularnewline
131 & 5380 & 5688.83113932909 & -308.831139329089 \tabularnewline
132 & 5488 & 5461.98329121458 & 26.0167087854225 \tabularnewline
133 & 5678 & 5492.13560908644 & 185.864390913561 \tabularnewline
134 & 5224 & 5653.72294113545 & -429.722941135452 \tabularnewline
135 & 5596 & 5323.57336977204 & 272.426630227957 \tabularnewline
136 & 5184 & 5543.32392244646 & -359.323922446462 \tabularnewline
137 & 5620 & 5262.54687156825 & 357.453128431748 \tabularnewline
138 & 5531 & 5547.12874346253 & -16.1287434625347 \tabularnewline
139 & 5816 & 5545.63221420746 & 270.367785792541 \tabularnewline
140 & 6086 & 5776.54191560555 & 309.45808439445 \tabularnewline
141 & 6175 & 6052.91201261817 & 122.087987381828 \tabularnewline
142 & 6112 & 6192.36648628995 & -80.3664862899468 \tabularnewline
143 & 5813 & 6173.17374258073 & -360.173742580731 \tabularnewline
144 & 5740 & 5922.15219640823 & -182.152196408232 \tabularnewline
145 & 5821 & 5797.8777087213 & 23.1222912787034 \tabularnewline
146 & 5294 & 5831.51597440186 & -537.515974401857 \tabularnewline
147 & 5881 & 5409.93823996811 & 471.06176003189 \tabularnewline
148 & 5589 & 5782.2678185546 & -193.267818554604 \tabularnewline
149 & 5845 & 5637.56971977315 & 207.430280226853 \tabularnewline
150 & 5706 & 5809.30642647157 & -103.306426471568 \tabularnewline
151 & 6355 & 5738.55503289205 & 616.44496710795 \tabularnewline
152 & 6404 & 6248.4991621591 & 155.500837840902 \tabularnewline
153 & 6426 & 6414.31385416212 & 11.6861458378789 \tabularnewline
154 & 6375 & 6470.90209141899 & -95.902091418985 \tabularnewline
155 & 5869 & 6440.49864095389 & -571.498640953885 \tabularnewline
156 & 5994 & 6018.10217614221 & -24.1021761422071 \tabularnewline
157 & 6105 & 6012.47829790133 & 92.5217020986729 \tabularnewline
158 & 5792 & 6100.57513446503 & -308.575134465032 \tabularnewline
159 & 6011 & 5866.83021809521 & 144.169781904789 \tabularnewline
160 & 5968 & 5986.07141302436 & -18.071413024355 \tabularnewline
161 & 6255 & 5980.51460701111 & 274.48539298889 \tabularnewline
162 & 6208 & 6212.19934231938 & -4.19934231937896 \tabularnewline
163 & 6897 & 6230.87033373712 & 666.129666262882 \tabularnewline
164 & 6814 & 6795.00468135005 & 18.9953186499515 \tabularnewline
165 & 6897 & 6865.94960014623 & 31.0503998537688 \tabularnewline
166 & 6596 & 6947.66610806091 & -351.666108060913 \tabularnewline
167 & 6188 & 6719.40214700155 & -531.402147001551 \tabularnewline
168 & 6406 & 6327.08513918857 & 78.9148608114283 \tabularnewline
169 & 6548 & 6404.78336625057 & 143.216633749435 \tabularnewline
170 & 5842 & 6538.80689679738 & -696.806896797381 \tabularnewline
171 & 6555 & 5996.24182879998 & 558.758171200019 \tabularnewline
172 & 6424 & 6440.60607509614 & -16.6060750961424 \tabularnewline
173 & 6596 & 6444.78809707373 & 151.211902926274 \tabularnewline
174 & 6645 & 6584.74308000469 & 60.2569199953068 \tabularnewline
175 & 7203 & 6658.28520639076 & 544.714793609241 \tabularnewline
176 & 7128 & 7129.23562819789 & -1.2356281978864 \tabularnewline
177 & 7133 & 7183.23943165206 & -50.2394316520567 \tabularnewline
178 & 6778 & 7197.28980293007 & -419.289802930068 \tabularnewline
179 & 6593 & 6908.38365514702 & -315.383655147021 \tabularnewline
180 & 6591 & 6682.9093641571 & -91.9093641571026 \tabularnewline
181 & 6120 & 6623.44205714585 & -503.442057145853 \tabularnewline
182 & 5612 & 6224.33375440703 & -612.333754407025 \tabularnewline
183 & 6070 & 5711.18592325777 & 358.81407674223 \tabularnewline
184 & 5983 & 5957.70158768912 & 25.2984123108763 \tabularnewline
185 & 6145 & 5950.82303688671 & 194.176963113291 \tabularnewline
186 & 6303 & 6082.69476030497 & 220.305239695026 \tabularnewline
187 & 6588 & 6245.63165080709 & 342.368349192913 \tabularnewline
188 & 6640 & 6519.04668024891 & 120.953319751091 \tabularnewline
189 & 6719 & 6629.49235077141 & 89.5076492285925 \tabularnewline
190 & 6575 & 6720.44171594171 & -145.441715941707 \tabularnewline
191 & 6487 & 6624.64810782754 & -137.648107827544 \tabularnewline
192 & 6510 & 6527.86168908493 & -17.8616890849289 \tabularnewline
193 & 6365 & 6521.64234899556 & -156.642348995564 \tabularnewline
194 & 5844 & 6401.54880940705 & -557.548809407049 \tabularnewline
195 & 5974 & 5947.19886430627 & 26.8011356937268 \tabularnewline
196 & 5880 & 5940.40687839349 & -60.4068783934927 \tabularnewline
197 & 6279 & 5863.97604789634 & 415.02395210366 \tabularnewline
198 & 6342 & 6171.5179811796 & 170.4820188204 \tabularnewline
199 & 6598 & 6300.92958199734 & 297.070418002664 \tabularnewline
200 & 6801 & 6541.98965089817 & 259.01034910183 \tabularnewline
201 & 6529 & 6767.05363685915 & -238.053636859147 \tabularnewline
202 & 6369 & 6600.55357388208 & -231.55357388208 \tabularnewline
203 & 6028 & 6427.33569039433 & -399.335690394335 \tabularnewline
204 & 6187 & 6105.85508140836 & 81.1449185916408 \tabularnewline
205 & 6164 & 6155.35995560759 & 8.6400443924058 \tabularnewline
206 & 5866 & 6149.93643304126 & -283.936433041261 \tabularnewline
207 & 6198 & 5906.77956975607 & 291.220430243927 \tabularnewline
208 & 5898 & 6117.50009733739 & -219.500097337388 \tabularnewline
209 & 6462 & 5927.16450124855 & 534.835498751449 \tabularnewline
210 & 6063 & 6339.8157375473 & -276.815737547298 \tabularnewline
211 & 6496 & 6118.73065384268 & 377.269346157324 \tabularnewline
212 & 6678 & 6416.13297635479 & 261.86702364521 \tabularnewline
213 & 6554 & 6638.6252721144 & -84.6252721143992 \tabularnewline
214 & 6513 & 6592.26913800979 & -79.2691380097885 \tabularnewline
215 & 6210 & 6546.00400861745 & -336.004008617453 \tabularnewline
216 & 5928 & 6286.74729953567 & -358.747299535669 \tabularnewline
217 & 6268 & 5992.02616391068 & 275.973836089319 \tabularnewline
218 & 5582 & 6195.8961724161 & -613.896172416101 \tabularnewline
219 & 5869 & 5689.29774067657 & 179.70225932343 \tabularnewline
220 & 5764 & 5797.75151950267 & -33.7515195026699 \tabularnewline
221 & 6082 & 5741.51067534061 & 340.489324659387 \tabularnewline
222 & 6062 & 5988.21449966056 & 73.7855003394361 \tabularnewline
223 & 6810 & 6034.98724411536 & 775.012755884638 \tabularnewline
224 & 6727 & 6656.30989650497 & 70.6901034950324 \tabularnewline
225 & 6537 & 6743.3823494447 & -206.3823494447 \tabularnewline
226 & 6175 & 6608.47262226582 & -433.472622265823 \tabularnewline
227 & 6014 & 6278.29072472056 & -264.290724720558 \tabularnewline
228 & 6109 & 6063.96232790493 & 45.0376720950735 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=278800&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]3[/C][C]2402[/C][C]1889[/C][C]513[/C][/ROW]
[ROW][C]4[/C][C]2180[/C][C]2080.60296010183[/C][C]99.3970398981746[/C][/ROW]
[ROW][C]5[/C][C]2453[/C][C]1961.39562085841[/C][C]491.60437914159[/C][/ROW]
[ROW][C]6[/C][C]2507[/C][C]2166.47538201087[/C][C]340.524617989134[/C][/ROW]
[ROW][C]7[/C][C]2679[/C][C]2273.37010493109[/C][C]405.629895068913[/C][/ROW]
[ROW][C]8[/C][C]2622[/C][C]2450.44169399741[/C][C]171.558306002591[/C][/ROW]
[ROW][C]9[/C][C]2618[/C][C]2457.43233479495[/C][C]160.567665205047[/C][/ROW]
[ROW][C]10[/C][C]2648[/C][C]2464.13077960696[/C][C]183.869220393043[/C][/ROW]
[ROW][C]11[/C][C]2523[/C][C]2497.89783011413[/C][C]25.102169885869[/C][/ROW]
[ROW][C]12[/C][C]2473[/C][C]2411.69770035166[/C][C]61.3022996483364[/C][/ROW]
[ROW][C]13[/C][C]2513[/C][C]2356.23228924278[/C][C]156.767710757224[/C][/ROW]
[ROW][C]14[/C][C]2466[/C][C]2381.57215212869[/C][C]84.4278478713131[/C][/ROW]
[ROW][C]15[/C][C]2544[/C][C]2355.9329016614[/C][C]188.067098338599[/C][/ROW]
[ROW][C]16[/C][C]2537[/C][C]2418.91938334715[/C][C]118.080616652854[/C][/ROW]
[ROW][C]17[/C][C]2564[/C][C]2434.42146632302[/C][C]129.578533676976[/C][/ROW]
[ROW][C]18[/C][C]2582[/C][C]2465.2401589917[/C][C]116.759841008296[/C][/ROW]
[ROW][C]19[/C][C]2716[/C][C]2492.16078515709[/C][C]223.83921484291[/C][/ROW]
[ROW][C]20[/C][C]2904[/C][C]2612.13860269489[/C][C]291.861397305115[/C][/ROW]
[ROW][C]21[/C][C]2851[/C][C]2798.7813156869[/C][C]52.2186843131012[/C][/ROW]
[ROW][C]22[/C][C]2932[/C][C]2805.06865674217[/C][C]126.931343257831[/C][/ROW]
[ROW][C]23[/C][C]2772[/C][C]2874.80944073647[/C][C]-102.809440736468[/C][/ROW]
[ROW][C]24[/C][C]2811[/C][C]2763.93516958625[/C][C]47.064830413749[/C][/ROW]
[ROW][C]25[/C][C]2935[/C][C]2769.87823117808[/C][C]165.12176882192[/C][/ROW]
[ROW][C]26[/C][C]2783[/C][C]2874.29875269486[/C][C]-91.2987526948646[/C][/ROW]
[ROW][C]27[/C][C]3003[/C][C]2778.31242234923[/C][C]224.687577650775[/C][/ROW]
[ROW][C]28[/C][C]2995[/C][C]2934.94610980169[/C][C]60.0538901983055[/C][/ROW]
[ROW][C]29[/C][C]3127[/C][C]2968.89610628881[/C][C]158.103893711192[/C][/ROW]
[ROW][C]30[/C][C]2985[/C][C]3085.69236183827[/C][C]-100.692361838271[/C][/ROW]
[ROW][C]31[/C][C]3287[/C][C]2999.79378886714[/C][C]287.206211132863[/C][/ROW]
[ROW][C]32[/C][C]3236[/C][C]3224.58085617712[/C][C]11.4191438228813[/C][/ROW]
[ROW][C]33[/C][C]3252[/C][C]3239.35472928591[/C][C]12.6452707140857[/C][/ROW]
[ROW][C]34[/C][C]3228[/C][C]3255.70278351378[/C][C]-27.7027835137751[/C][/ROW]
[ROW][C]35[/C][C]2856[/C][C]3239.84379145393[/C][C]-383.843791453929[/C][/ROW]
[ROW][C]36[/C][C]3176[/C][C]2932.67394013888[/C][C]243.32605986112[/C][/ROW]
[ROW][C]37[/C][C]3362[/C][C]3116.68213146815[/C][C]245.317868531852[/C][/ROW]
[ROW][C]38[/C][C]3036[/C][C]3314.58685272111[/C][C]-278.586852721106[/C][/ROW]
[ROW][C]39[/C][C]3330[/C][C]3098.38732266594[/C][C]231.612677334062[/C][/ROW]
[ROW][C]40[/C][C]3251[/C][C]3283.45713150959[/C][C]-32.4571315095864[/C][/ROW]
[ROW][C]41[/C][C]3318[/C][C]3265.24753565286[/C][C]52.7524643471379[/C][/ROW]
[ROW][C]42[/C][C]3238[/C][C]3314.76466118693[/C][C]-76.7646611869318[/C][/ROW]
[ROW][C]43[/C][C]3597[/C][C]3261.510768398[/C][C]335.489231601998[/C][/ROW]
[ROW][C]44[/C][C]3708[/C][C]3539.97582662064[/C][C]168.02417337936[/C][/ROW]
[ROW][C]45[/C][C]3902[/C][C]3699.04197461788[/C][C]202.958025382121[/C][/ROW]
[ROW][C]46[/C][C]3745[/C][C]3895.02205308284[/C][C]-150.022053082839[/C][/ROW]
[ROW][C]47[/C][C]3426[/C][C]3813.90058798092[/C][C]-387.900587980917[/C][/ROW]
[ROW][C]48[/C][C]3526[/C][C]3531.56808504727[/C][C]-5.56808504727087[/C][/ROW]
[ROW][C]49[/C][C]3483[/C][C]3540.90136564563[/C][C]-57.9013656456304[/C][/ROW]
[ROW][C]50[/C][C]3458[/C][C]3507.35232335764[/C][C]-49.3523233576402[/C][/ROW]
[ROW][C]51[/C][C]3824[/C][C]3477.84158952003[/C][C]346.158410479975[/C][/ROW]
[ROW][C]52[/C][C]3696[/C][C]3767.80306666716[/C][C]-71.803066667158[/C][/ROW]
[ROW][C]53[/C][C]3518[/C][C]3734.98954393478[/C][C]-216.989543934775[/C][/ROW]
[ROW][C]54[/C][C]3814[/C][C]3580.36603365377[/C][C]233.633966346234[/C][/ROW]
[ROW][C]55[/C][C]3996[/C][C]3781.62195924297[/C][C]214.37804075703[/C][/ROW]
[ROW][C]56[/C][C]4136[/C][C]3978.98895203509[/C][C]157.011047964914[/C][/ROW]
[ROW][C]57[/C][C]4037[/C][C]4140.47163882741[/C][C]-103.471638827414[/C][/ROW]
[ROW][C]58[/C][C]3915[/C][C]4097.83154216502[/C][C]-182.831542165019[/C][/ROW]
[ROW][C]59[/C][C]3760[/C][C]3985.36938815124[/C][C]-225.369388151238[/C][/ROW]
[ROW][C]60[/C][C]3955[/C][C]3829.05635171854[/C][C]125.943648281457[/C][/ROW]
[ROW][C]61[/C][C]4160[/C][C]3947.35722822223[/C][C]212.64277177777[/C][/ROW]
[ROW][C]62[/C][C]4115[/C][C]4142.58823691092[/C][C]-27.5882369109195[/C][/ROW]
[ROW][C]63[/C][C]4202[/C][C]4152.98861977453[/C][C]49.0113802254691[/C][/ROW]
[ROW][C]64[/C][C]4018[/C][C]4224.35247162208[/C][C]-206.352471622077[/C][/ROW]
[ROW][C]65[/C][C]4233[/C][C]4090.31220090844[/C][C]142.687799091561[/C][/ROW]
[ROW][C]66[/C][C]4029[/C][C]4229.99506900109[/C][C]-200.995069001095[/C][/ROW]
[ROW][C]67[/C][C]4401[/C][C]4097.10423900039[/C][C]303.895760999614[/C][/ROW]
[ROW][C]68[/C][C]4645[/C][C]4365.07553670672[/C][C]279.924463293283[/C][/ROW]
[ROW][C]69[/C][C]4491[/C][C]4628.8639062468[/C][C]-137.863906246799[/C][/ROW]
[ROW][C]70[/C][C]4379[/C][C]4566.67687596953[/C][C]-187.676875969532[/C][/ROW]
[ROW][C]71[/C][C]4394[/C][C]4456.98520623602[/C][C]-62.9852062360233[/C][/ROW]
[ROW][C]72[/C][C]4472[/C][C]4439.32987904477[/C][C]32.6701209552348[/C][/ROW]
[ROW][C]73[/C][C]4614[/C][C]4496.36446971618[/C][C]117.635530283817[/C][/ROW]
[ROW][C]74[/C][C]4160[/C][C]4624.21249093001[/C][C]-464.212490930006[/C][/ROW]
[ROW][C]75[/C][C]4328[/C][C]4284.34683188575[/C][C]43.6531681142469[/C][/ROW]
[ROW][C]76[/C][C]4202[/C][C]4334.48635330365[/C][C]-132.486353303647[/C][/ROW]
[ROW][C]77[/C][C]4635[/C][C]4243.44328731845[/C][C]391.556712681551[/C][/ROW]
[ROW][C]78[/C][C]4542[/C][C]4572.30912393674[/C][C]-30.3091239367359[/C][/ROW]
[ROW][C]79[/C][C]4920[/C][C]4577.5118693769[/C][C]342.4881306231[/C][/ROW]
[ROW][C]80[/C][C]4774[/C][C]4884.65780156839[/C][C]-110.657801568394[/C][/ROW]
[ROW][C]81[/C][C]4698[/C][C]4840.2019946014[/C][C]-142.201994601395[/C][/ROW]
[ROW][C]82[/C][C]4916[/C][C]4764.48555039404[/C][C]151.514449605958[/C][/ROW]
[ROW][C]83[/C][C]4703[/C][C]4920.69260118639[/C][C]-217.69260118639[/C][/ROW]
[ROW][C]84[/C][C]4616[/C][C]4783.9935060302[/C][C]-167.993506030202[/C][/ROW]
[ROW][C]85[/C][C]4873[/C][C]4676.76952463999[/C][C]196.230475360006[/C][/ROW]
[ROW][C]86[/C][C]4375[/C][C]4857.56394499573[/C][C]-482.563944995732[/C][/ROW]
[ROW][C]87[/C][C]4801[/C][C]4495.69124939346[/C][C]305.308750606543[/C][/ROW]
[ROW][C]88[/C][C]4427[/C][C]4750.83512319711[/C][C]-323.835123197108[/C][/ROW]
[ROW][C]89[/C][C]4684[/C][C]4509.2321471687[/C][C]174.7678528313[/C][/ROW]
[ROW][C]90[/C][C]4648[/C][C]4657.17579309482[/C][C]-9.17579309482426[/C][/ROW]
[ROW][C]91[/C][C]5225[/C][C]4664.19834298723[/C][C]560.801657012766[/C][/ROW]
[ROW][C]92[/C][C]5174[/C][C]5134.74293235853[/C][C]39.257067641468[/C][/ROW]
[ROW][C]93[/C][C]5181[/C][C]5209.01978522583[/C][C]-28.0197852258289[/C][/ROW]
[ROW][C]94[/C][C]5266[/C][C]5230.51093986864[/C][C]35.4890601313646[/C][/ROW]
[ROW][C]95[/C][C]4839[/C][C]5302.2873700053[/C][C]-463.287370005301[/C][/ROW]
[ROW][C]96[/C][C]5032[/C][C]4969.82973045877[/C][C]62.1702695412296[/C][/ROW]
[ROW][C]97[/C][C]5221[/C][C]5041.74453202683[/C][C]179.255467973166[/C][/ROW]
[ROW][C]98[/C][C]4658[/C][C]5212.10778445294[/C][C]-554.107784452938[/C][/ROW]
[ROW][C]99[/C][C]5014[/C][C]4794.52632060338[/C][C]219.473679396619[/C][/ROW]
[ROW][C]100[/C][C]4980[/C][C]4978.71859384952[/C][C]1.28140615047505[/C][/ROW]
[ROW][C]101[/C][C]4952[/C][C]4996.36527248048[/C][C]-44.3652724804824[/C][/ROW]
[ROW][C]102[/C][C]4946[/C][C]4976.91833301966[/C][C]-30.9183330196638[/C][/ROW]
[ROW][C]103[/C][C]5365[/C][C]4966.17964830674[/C][C]398.820351693262[/C][/ROW]
[ROW][C]104[/C][C]5456[/C][C]5303.70606810979[/C][C]152.293931890214[/C][/ROW]
[ROW][C]105[/C][C]5397[/C][C]5460.66927620897[/C][C]-63.6692762089679[/C][/ROW]
[ROW][C]106[/C][C]5436[/C][C]5449.51241022508[/C][C]-13.512410225082[/C][/ROW]
[ROW][C]107[/C][C]4995[/C][C]5475.9733463008[/C][C]-480.973346300799[/C][/ROW]
[ROW][C]108[/C][C]5019[/C][C]5121.22031779625[/C][C]-102.220317796255[/C][/ROW]
[ROW][C]109[/C][C]5249[/C][C]5050.52397514694[/C][C]198.476024853056[/C][/ROW]
[ROW][C]110[/C][C]4799[/C][C]5219.45001331045[/C][C]-420.45001331045[/C][/ROW]
[ROW][C]111[/C][C]5137[/C][C]4894.55752638149[/C][C]242.44247361851[/C][/ROW]
[ROW][C]112[/C][C]4979[/C][C]5088.07608596244[/C][C]-109.076085962443[/C][/ROW]
[ROW][C]113[/C][C]4951[/C][C]5007.67471757535[/C][C]-56.6747175753508[/C][/ROW]
[ROW][C]114[/C][C]5265[/C][C]4964.42762189279[/C][C]300.572378107209[/C][/ROW]
[ROW][C]115[/C][C]5612[/C][C]5209.13517814322[/C][C]402.864821856781[/C][/ROW]
[ROW][C]116[/C][C]5572[/C][C]5552.27599531115[/C][C]19.7240046888528[/C][/ROW]
[ROW][C]117[/C][C]5403[/C][C]5603.847931703[/C][C]-200.847931703001[/C][/ROW]
[ROW][C]118[/C][C]5373[/C][C]5476.86032040344[/C][C]-103.860320403437[/C][/ROW]
[ROW][C]119[/C][C]5252[/C][C]5418.69237338338[/C][C]-166.692373383378[/C][/ROW]
[ROW][C]120[/C][C]5437[/C][C]5304.13710660249[/C][C]132.862893397511[/C][/ROW]
[ROW][C]121[/C][C]5296[/C][C]5425.02290413531[/C][C]-129.022904135308[/C][/ROW]
[ROW][C]122[/C][C]5011[/C][C]5339.42552217003[/C][C]-328.425522170029[/C][/ROW]
[ROW][C]123[/C][C]5294[/C][C]5084.99741882851[/C][C]209.002581171486[/C][/ROW]
[ROW][C]124[/C][C]5335[/C][C]5251.48960465248[/C][C]83.5103953475209[/C][/ROW]
[ROW][C]125[/C][C]5398[/C][C]5326.36961705861[/C][C]71.6303829413946[/C][/ROW]
[ROW][C]126[/C][C]5396[/C][C]5395.79167886156[/C][C]0.208321138443353[/C][/ROW]
[ROW][C]127[/C][C]5724[/C][C]5410.68681583109[/C][C]313.31318416891[/C][/ROW]
[ROW][C]128[/C][C]5898[/C][C]5680.47261333039[/C][C]217.52738666961[/C][/ROW]
[ROW][C]129[/C][C]5718[/C][C]5888.0906281904[/C][C]-170.090628190399[/C][/ROW]
[ROW][C]130[/C][C]5625[/C][C]5791.14538738033[/C][C]-166.145387380333[/C][/ROW]
[ROW][C]131[/C][C]5380[/C][C]5688.83113932909[/C][C]-308.831139329089[/C][/ROW]
[ROW][C]132[/C][C]5488[/C][C]5461.98329121458[/C][C]26.0167087854225[/C][/ROW]
[ROW][C]133[/C][C]5678[/C][C]5492.13560908644[/C][C]185.864390913561[/C][/ROW]
[ROW][C]134[/C][C]5224[/C][C]5653.72294113545[/C][C]-429.722941135452[/C][/ROW]
[ROW][C]135[/C][C]5596[/C][C]5323.57336977204[/C][C]272.426630227957[/C][/ROW]
[ROW][C]136[/C][C]5184[/C][C]5543.32392244646[/C][C]-359.323922446462[/C][/ROW]
[ROW][C]137[/C][C]5620[/C][C]5262.54687156825[/C][C]357.453128431748[/C][/ROW]
[ROW][C]138[/C][C]5531[/C][C]5547.12874346253[/C][C]-16.1287434625347[/C][/ROW]
[ROW][C]139[/C][C]5816[/C][C]5545.63221420746[/C][C]270.367785792541[/C][/ROW]
[ROW][C]140[/C][C]6086[/C][C]5776.54191560555[/C][C]309.45808439445[/C][/ROW]
[ROW][C]141[/C][C]6175[/C][C]6052.91201261817[/C][C]122.087987381828[/C][/ROW]
[ROW][C]142[/C][C]6112[/C][C]6192.36648628995[/C][C]-80.3664862899468[/C][/ROW]
[ROW][C]143[/C][C]5813[/C][C]6173.17374258073[/C][C]-360.173742580731[/C][/ROW]
[ROW][C]144[/C][C]5740[/C][C]5922.15219640823[/C][C]-182.152196408232[/C][/ROW]
[ROW][C]145[/C][C]5821[/C][C]5797.8777087213[/C][C]23.1222912787034[/C][/ROW]
[ROW][C]146[/C][C]5294[/C][C]5831.51597440186[/C][C]-537.515974401857[/C][/ROW]
[ROW][C]147[/C][C]5881[/C][C]5409.93823996811[/C][C]471.06176003189[/C][/ROW]
[ROW][C]148[/C][C]5589[/C][C]5782.2678185546[/C][C]-193.267818554604[/C][/ROW]
[ROW][C]149[/C][C]5845[/C][C]5637.56971977315[/C][C]207.430280226853[/C][/ROW]
[ROW][C]150[/C][C]5706[/C][C]5809.30642647157[/C][C]-103.306426471568[/C][/ROW]
[ROW][C]151[/C][C]6355[/C][C]5738.55503289205[/C][C]616.44496710795[/C][/ROW]
[ROW][C]152[/C][C]6404[/C][C]6248.4991621591[/C][C]155.500837840902[/C][/ROW]
[ROW][C]153[/C][C]6426[/C][C]6414.31385416212[/C][C]11.6861458378789[/C][/ROW]
[ROW][C]154[/C][C]6375[/C][C]6470.90209141899[/C][C]-95.902091418985[/C][/ROW]
[ROW][C]155[/C][C]5869[/C][C]6440.49864095389[/C][C]-571.498640953885[/C][/ROW]
[ROW][C]156[/C][C]5994[/C][C]6018.10217614221[/C][C]-24.1021761422071[/C][/ROW]
[ROW][C]157[/C][C]6105[/C][C]6012.47829790133[/C][C]92.5217020986729[/C][/ROW]
[ROW][C]158[/C][C]5792[/C][C]6100.57513446503[/C][C]-308.575134465032[/C][/ROW]
[ROW][C]159[/C][C]6011[/C][C]5866.83021809521[/C][C]144.169781904789[/C][/ROW]
[ROW][C]160[/C][C]5968[/C][C]5986.07141302436[/C][C]-18.071413024355[/C][/ROW]
[ROW][C]161[/C][C]6255[/C][C]5980.51460701111[/C][C]274.48539298889[/C][/ROW]
[ROW][C]162[/C][C]6208[/C][C]6212.19934231938[/C][C]-4.19934231937896[/C][/ROW]
[ROW][C]163[/C][C]6897[/C][C]6230.87033373712[/C][C]666.129666262882[/C][/ROW]
[ROW][C]164[/C][C]6814[/C][C]6795.00468135005[/C][C]18.9953186499515[/C][/ROW]
[ROW][C]165[/C][C]6897[/C][C]6865.94960014623[/C][C]31.0503998537688[/C][/ROW]
[ROW][C]166[/C][C]6596[/C][C]6947.66610806091[/C][C]-351.666108060913[/C][/ROW]
[ROW][C]167[/C][C]6188[/C][C]6719.40214700155[/C][C]-531.402147001551[/C][/ROW]
[ROW][C]168[/C][C]6406[/C][C]6327.08513918857[/C][C]78.9148608114283[/C][/ROW]
[ROW][C]169[/C][C]6548[/C][C]6404.78336625057[/C][C]143.216633749435[/C][/ROW]
[ROW][C]170[/C][C]5842[/C][C]6538.80689679738[/C][C]-696.806896797381[/C][/ROW]
[ROW][C]171[/C][C]6555[/C][C]5996.24182879998[/C][C]558.758171200019[/C][/ROW]
[ROW][C]172[/C][C]6424[/C][C]6440.60607509614[/C][C]-16.6060750961424[/C][/ROW]
[ROW][C]173[/C][C]6596[/C][C]6444.78809707373[/C][C]151.211902926274[/C][/ROW]
[ROW][C]174[/C][C]6645[/C][C]6584.74308000469[/C][C]60.2569199953068[/C][/ROW]
[ROW][C]175[/C][C]7203[/C][C]6658.28520639076[/C][C]544.714793609241[/C][/ROW]
[ROW][C]176[/C][C]7128[/C][C]7129.23562819789[/C][C]-1.2356281978864[/C][/ROW]
[ROW][C]177[/C][C]7133[/C][C]7183.23943165206[/C][C]-50.2394316520567[/C][/ROW]
[ROW][C]178[/C][C]6778[/C][C]7197.28980293007[/C][C]-419.289802930068[/C][/ROW]
[ROW][C]179[/C][C]6593[/C][C]6908.38365514702[/C][C]-315.383655147021[/C][/ROW]
[ROW][C]180[/C][C]6591[/C][C]6682.9093641571[/C][C]-91.9093641571026[/C][/ROW]
[ROW][C]181[/C][C]6120[/C][C]6623.44205714585[/C][C]-503.442057145853[/C][/ROW]
[ROW][C]182[/C][C]5612[/C][C]6224.33375440703[/C][C]-612.333754407025[/C][/ROW]
[ROW][C]183[/C][C]6070[/C][C]5711.18592325777[/C][C]358.81407674223[/C][/ROW]
[ROW][C]184[/C][C]5983[/C][C]5957.70158768912[/C][C]25.2984123108763[/C][/ROW]
[ROW][C]185[/C][C]6145[/C][C]5950.82303688671[/C][C]194.176963113291[/C][/ROW]
[ROW][C]186[/C][C]6303[/C][C]6082.69476030497[/C][C]220.305239695026[/C][/ROW]
[ROW][C]187[/C][C]6588[/C][C]6245.63165080709[/C][C]342.368349192913[/C][/ROW]
[ROW][C]188[/C][C]6640[/C][C]6519.04668024891[/C][C]120.953319751091[/C][/ROW]
[ROW][C]189[/C][C]6719[/C][C]6629.49235077141[/C][C]89.5076492285925[/C][/ROW]
[ROW][C]190[/C][C]6575[/C][C]6720.44171594171[/C][C]-145.441715941707[/C][/ROW]
[ROW][C]191[/C][C]6487[/C][C]6624.64810782754[/C][C]-137.648107827544[/C][/ROW]
[ROW][C]192[/C][C]6510[/C][C]6527.86168908493[/C][C]-17.8616890849289[/C][/ROW]
[ROW][C]193[/C][C]6365[/C][C]6521.64234899556[/C][C]-156.642348995564[/C][/ROW]
[ROW][C]194[/C][C]5844[/C][C]6401.54880940705[/C][C]-557.548809407049[/C][/ROW]
[ROW][C]195[/C][C]5974[/C][C]5947.19886430627[/C][C]26.8011356937268[/C][/ROW]
[ROW][C]196[/C][C]5880[/C][C]5940.40687839349[/C][C]-60.4068783934927[/C][/ROW]
[ROW][C]197[/C][C]6279[/C][C]5863.97604789634[/C][C]415.02395210366[/C][/ROW]
[ROW][C]198[/C][C]6342[/C][C]6171.5179811796[/C][C]170.4820188204[/C][/ROW]
[ROW][C]199[/C][C]6598[/C][C]6300.92958199734[/C][C]297.070418002664[/C][/ROW]
[ROW][C]200[/C][C]6801[/C][C]6541.98965089817[/C][C]259.01034910183[/C][/ROW]
[ROW][C]201[/C][C]6529[/C][C]6767.05363685915[/C][C]-238.053636859147[/C][/ROW]
[ROW][C]202[/C][C]6369[/C][C]6600.55357388208[/C][C]-231.55357388208[/C][/ROW]
[ROW][C]203[/C][C]6028[/C][C]6427.33569039433[/C][C]-399.335690394335[/C][/ROW]
[ROW][C]204[/C][C]6187[/C][C]6105.85508140836[/C][C]81.1449185916408[/C][/ROW]
[ROW][C]205[/C][C]6164[/C][C]6155.35995560759[/C][C]8.6400443924058[/C][/ROW]
[ROW][C]206[/C][C]5866[/C][C]6149.93643304126[/C][C]-283.936433041261[/C][/ROW]
[ROW][C]207[/C][C]6198[/C][C]5906.77956975607[/C][C]291.220430243927[/C][/ROW]
[ROW][C]208[/C][C]5898[/C][C]6117.50009733739[/C][C]-219.500097337388[/C][/ROW]
[ROW][C]209[/C][C]6462[/C][C]5927.16450124855[/C][C]534.835498751449[/C][/ROW]
[ROW][C]210[/C][C]6063[/C][C]6339.8157375473[/C][C]-276.815737547298[/C][/ROW]
[ROW][C]211[/C][C]6496[/C][C]6118.73065384268[/C][C]377.269346157324[/C][/ROW]
[ROW][C]212[/C][C]6678[/C][C]6416.13297635479[/C][C]261.86702364521[/C][/ROW]
[ROW][C]213[/C][C]6554[/C][C]6638.6252721144[/C][C]-84.6252721143992[/C][/ROW]
[ROW][C]214[/C][C]6513[/C][C]6592.26913800979[/C][C]-79.2691380097885[/C][/ROW]
[ROW][C]215[/C][C]6210[/C][C]6546.00400861745[/C][C]-336.004008617453[/C][/ROW]
[ROW][C]216[/C][C]5928[/C][C]6286.74729953567[/C][C]-358.747299535669[/C][/ROW]
[ROW][C]217[/C][C]6268[/C][C]5992.02616391068[/C][C]275.973836089319[/C][/ROW]
[ROW][C]218[/C][C]5582[/C][C]6195.8961724161[/C][C]-613.896172416101[/C][/ROW]
[ROW][C]219[/C][C]5869[/C][C]5689.29774067657[/C][C]179.70225932343[/C][/ROW]
[ROW][C]220[/C][C]5764[/C][C]5797.75151950267[/C][C]-33.7515195026699[/C][/ROW]
[ROW][C]221[/C][C]6082[/C][C]5741.51067534061[/C][C]340.489324659387[/C][/ROW]
[ROW][C]222[/C][C]6062[/C][C]5988.21449966056[/C][C]73.7855003394361[/C][/ROW]
[ROW][C]223[/C][C]6810[/C][C]6034.98724411536[/C][C]775.012755884638[/C][/ROW]
[ROW][C]224[/C][C]6727[/C][C]6656.30989650497[/C][C]70.6901034950324[/C][/ROW]
[ROW][C]225[/C][C]6537[/C][C]6743.3823494447[/C][C]-206.3823494447[/C][/ROW]
[ROW][C]226[/C][C]6175[/C][C]6608.47262226582[/C][C]-433.472622265823[/C][/ROW]
[ROW][C]227[/C][C]6014[/C][C]6278.29072472056[/C][C]-264.290724720558[/C][/ROW]
[ROW][C]228[/C][C]6109[/C][C]6063.96232790493[/C][C]45.0376720950735[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=278800&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=278800&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
324021889513
421802080.6029601018399.3970398981746
524531961.39562085841491.60437914159
625072166.47538201087340.524617989134
726792273.37010493109405.629895068913
826222450.44169399741171.558306002591
926182457.43233479495160.567665205047
1026482464.13077960696183.869220393043
1125232497.8978301141325.102169885869
1224732411.6977003516661.3022996483364
1325132356.23228924278156.767710757224
1424662381.5721521286984.4278478713131
1525442355.9329016614188.067098338599
1625372418.91938334715118.080616652854
1725642434.42146632302129.578533676976
1825822465.2401589917116.759841008296
1927162492.16078515709223.83921484291
2029042612.13860269489291.861397305115
2128512798.781315686952.2186843131012
2229322805.06865674217126.931343257831
2327722874.80944073647-102.809440736468
2428112763.9351695862547.064830413749
2529352769.87823117808165.12176882192
2627832874.29875269486-91.2987526948646
2730032778.31242234923224.687577650775
2829952934.9461098016960.0538901983055
2931272968.89610628881158.103893711192
3029853085.69236183827-100.692361838271
3132872999.79378886714287.206211132863
3232363224.5808561771211.4191438228813
3332523239.3547292859112.6452707140857
3432283255.70278351378-27.7027835137751
3528563239.84379145393-383.843791453929
3631762932.67394013888243.32605986112
3733623116.68213146815245.317868531852
3830363314.58685272111-278.586852721106
3933303098.38732266594231.612677334062
4032513283.45713150959-32.4571315095864
4133183265.2475356528652.7524643471379
4232383314.76466118693-76.7646611869318
4335973261.510768398335.489231601998
4437083539.97582662064168.02417337936
4539023699.04197461788202.958025382121
4637453895.02205308284-150.022053082839
4734263813.90058798092-387.900587980917
4835263531.56808504727-5.56808504727087
4934833540.90136564563-57.9013656456304
5034583507.35232335764-49.3523233576402
5138243477.84158952003346.158410479975
5236963767.80306666716-71.803066667158
5335183734.98954393478-216.989543934775
5438143580.36603365377233.633966346234
5539963781.62195924297214.37804075703
5641363978.98895203509157.011047964914
5740374140.47163882741-103.471638827414
5839154097.83154216502-182.831542165019
5937603985.36938815124-225.369388151238
6039553829.05635171854125.943648281457
6141603947.35722822223212.64277177777
6241154142.58823691092-27.5882369109195
6342024152.9886197745349.0113802254691
6440184224.35247162208-206.352471622077
6542334090.31220090844142.687799091561
6640294229.99506900109-200.995069001095
6744014097.10423900039303.895760999614
6846454365.07553670672279.924463293283
6944914628.8639062468-137.863906246799
7043794566.67687596953-187.676875969532
7143944456.98520623602-62.9852062360233
7244724439.3298790447732.6701209552348
7346144496.36446971618117.635530283817
7441604624.21249093001-464.212490930006
7543284284.3468318857543.6531681142469
7642024334.48635330365-132.486353303647
7746354243.44328731845391.556712681551
7845424572.30912393674-30.3091239367359
7949204577.5118693769342.4881306231
8047744884.65780156839-110.657801568394
8146984840.2019946014-142.201994601395
8249164764.48555039404151.514449605958
8347034920.69260118639-217.69260118639
8446164783.9935060302-167.993506030202
8548734676.76952463999196.230475360006
8643754857.56394499573-482.563944995732
8748014495.69124939346305.308750606543
8844274750.83512319711-323.835123197108
8946844509.2321471687174.7678528313
9046484657.17579309482-9.17579309482426
9152254664.19834298723560.801657012766
9251745134.7429323585339.257067641468
9351815209.01978522583-28.0197852258289
9452665230.5109398686435.4890601313646
9548395302.2873700053-463.287370005301
9650324969.8297304587762.1702695412296
9752215041.74453202683179.255467973166
9846585212.10778445294-554.107784452938
9950144794.52632060338219.473679396619
10049804978.718593849521.28140615047505
10149524996.36527248048-44.3652724804824
10249464976.91833301966-30.9183330196638
10353654966.17964830674398.820351693262
10454565303.70606810979152.293931890214
10553975460.66927620897-63.6692762089679
10654365449.51241022508-13.512410225082
10749955475.9733463008-480.973346300799
10850195121.22031779625-102.220317796255
10952495050.52397514694198.476024853056
11047995219.45001331045-420.45001331045
11151374894.55752638149242.44247361851
11249795088.07608596244-109.076085962443
11349515007.67471757535-56.6747175753508
11452654964.42762189279300.572378107209
11556125209.13517814322402.864821856781
11655725552.2759953111519.7240046888528
11754035603.847931703-200.847931703001
11853735476.86032040344-103.860320403437
11952525418.69237338338-166.692373383378
12054375304.13710660249132.862893397511
12152965425.02290413531-129.022904135308
12250115339.42552217003-328.425522170029
12352945084.99741882851209.002581171486
12453355251.4896046524883.5103953475209
12553985326.3696170586171.6303829413946
12653965395.791678861560.208321138443353
12757245410.68681583109313.31318416891
12858985680.47261333039217.52738666961
12957185888.0906281904-170.090628190399
13056255791.14538738033-166.145387380333
13153805688.83113932909-308.831139329089
13254885461.9832912145826.0167087854225
13356785492.13560908644185.864390913561
13452245653.72294113545-429.722941135452
13555965323.57336977204272.426630227957
13651845543.32392244646-359.323922446462
13756205262.54687156825357.453128431748
13855315547.12874346253-16.1287434625347
13958165545.63221420746270.367785792541
14060865776.54191560555309.45808439445
14161756052.91201261817122.087987381828
14261126192.36648628995-80.3664862899468
14358136173.17374258073-360.173742580731
14457405922.15219640823-182.152196408232
14558215797.877708721323.1222912787034
14652945831.51597440186-537.515974401857
14758815409.93823996811471.06176003189
14855895782.2678185546-193.267818554604
14958455637.56971977315207.430280226853
15057065809.30642647157-103.306426471568
15163555738.55503289205616.44496710795
15264046248.4991621591155.500837840902
15364266414.3138541621211.6861458378789
15463756470.90209141899-95.902091418985
15558696440.49864095389-571.498640953885
15659946018.10217614221-24.1021761422071
15761056012.4782979013392.5217020986729
15857926100.57513446503-308.575134465032
15960115866.83021809521144.169781904789
16059685986.07141302436-18.071413024355
16162555980.51460701111274.48539298889
16262086212.19934231938-4.19934231937896
16368976230.87033373712666.129666262882
16468146795.0046813500518.9953186499515
16568976865.9496001462331.0503998537688
16665966947.66610806091-351.666108060913
16761886719.40214700155-531.402147001551
16864066327.0851391885778.9148608114283
16965486404.78336625057143.216633749435
17058426538.80689679738-696.806896797381
17165555996.24182879998558.758171200019
17264246440.60607509614-16.6060750961424
17365966444.78809707373151.211902926274
17466456584.7430800046960.2569199953068
17572036658.28520639076544.714793609241
17671287129.23562819789-1.2356281978864
17771337183.23943165206-50.2394316520567
17867787197.28980293007-419.289802930068
17965936908.38365514702-315.383655147021
18065916682.9093641571-91.9093641571026
18161206623.44205714585-503.442057145853
18256126224.33375440703-612.333754407025
18360705711.18592325777358.81407674223
18459835957.7015876891225.2984123108763
18561455950.82303688671194.176963113291
18663036082.69476030497220.305239695026
18765886245.63165080709342.368349192913
18866406519.04668024891120.953319751091
18967196629.4923507714189.5076492285925
19065756720.44171594171-145.441715941707
19164876624.64810782754-137.648107827544
19265106527.86168908493-17.8616890849289
19363656521.64234899556-156.642348995564
19458446401.54880940705-557.548809407049
19559745947.1988643062726.8011356937268
19658805940.40687839349-60.4068783934927
19762795863.97604789634415.02395210366
19863426171.5179811796170.4820188204
19965986300.92958199734297.070418002664
20068016541.98965089817259.01034910183
20165296767.05363685915-238.053636859147
20263696600.55357388208-231.55357388208
20360286427.33569039433-399.335690394335
20461876105.8550814083681.1449185916408
20561646155.359955607598.6400443924058
20658666149.93643304126-283.936433041261
20761985906.77956975607291.220430243927
20858986117.50009733739-219.500097337388
20964625927.16450124855534.835498751449
21060636339.8157375473-276.815737547298
21164966118.73065384268377.269346157324
21266786416.13297635479261.86702364521
21365546638.6252721144-84.6252721143992
21465136592.26913800979-79.2691380097885
21562106546.00400861745-336.004008617453
21659286286.74729953567-358.747299535669
21762685992.02616391068275.973836089319
21855826195.8961724161-613.896172416101
21958695689.29774067657179.70225932343
22057645797.75151950267-33.7515195026699
22160825741.51067534061340.489324659387
22260625988.2144996605673.7855003394361
22368106034.98724411536775.012755884638
22467276656.3098965049770.6901034950324
22565376743.3823494447-206.3823494447
22661756608.47262226582-433.472622265823
22760146278.29072472056-264.290724720558
22861096063.9623279049345.0376720950735







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
2296088.107159862575569.305069215046606.90925051009
2306077.861510649065408.895933721016746.82708757712
2316067.615861435565262.218080818376873.01364205275
2326057.370212222055122.502578013126992.23784643099
2336047.124563008554986.548951830557107.70017418655
2346036.878913795054852.579566445927221.17826114418
2356026.633264581544719.506490578617333.76003858447
2366016.387615368044586.619465253237446.15576548285
2376006.141966154534453.433177636937558.85075467214
2385995.896316941034319.604809358757672.1878245233
2395985.650667727534184.886154820127786.41518063493
2405975.405018514024049.094197771867901.71583925618

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
229 & 6088.10715986257 & 5569.30506921504 & 6606.90925051009 \tabularnewline
230 & 6077.86151064906 & 5408.89593372101 & 6746.82708757712 \tabularnewline
231 & 6067.61586143556 & 5262.21808081837 & 6873.01364205275 \tabularnewline
232 & 6057.37021222205 & 5122.50257801312 & 6992.23784643099 \tabularnewline
233 & 6047.12456300855 & 4986.54895183055 & 7107.70017418655 \tabularnewline
234 & 6036.87891379505 & 4852.57956644592 & 7221.17826114418 \tabularnewline
235 & 6026.63326458154 & 4719.50649057861 & 7333.76003858447 \tabularnewline
236 & 6016.38761536804 & 4586.61946525323 & 7446.15576548285 \tabularnewline
237 & 6006.14196615453 & 4453.43317763693 & 7558.85075467214 \tabularnewline
238 & 5995.89631694103 & 4319.60480935875 & 7672.1878245233 \tabularnewline
239 & 5985.65066772753 & 4184.88615482012 & 7786.41518063493 \tabularnewline
240 & 5975.40501851402 & 4049.09419777186 & 7901.71583925618 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=278800&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]229[/C][C]6088.10715986257[/C][C]5569.30506921504[/C][C]6606.90925051009[/C][/ROW]
[ROW][C]230[/C][C]6077.86151064906[/C][C]5408.89593372101[/C][C]6746.82708757712[/C][/ROW]
[ROW][C]231[/C][C]6067.61586143556[/C][C]5262.21808081837[/C][C]6873.01364205275[/C][/ROW]
[ROW][C]232[/C][C]6057.37021222205[/C][C]5122.50257801312[/C][C]6992.23784643099[/C][/ROW]
[ROW][C]233[/C][C]6047.12456300855[/C][C]4986.54895183055[/C][C]7107.70017418655[/C][/ROW]
[ROW][C]234[/C][C]6036.87891379505[/C][C]4852.57956644592[/C][C]7221.17826114418[/C][/ROW]
[ROW][C]235[/C][C]6026.63326458154[/C][C]4719.50649057861[/C][C]7333.76003858447[/C][/ROW]
[ROW][C]236[/C][C]6016.38761536804[/C][C]4586.61946525323[/C][C]7446.15576548285[/C][/ROW]
[ROW][C]237[/C][C]6006.14196615453[/C][C]4453.43317763693[/C][C]7558.85075467214[/C][/ROW]
[ROW][C]238[/C][C]5995.89631694103[/C][C]4319.60480935875[/C][C]7672.1878245233[/C][/ROW]
[ROW][C]239[/C][C]5985.65066772753[/C][C]4184.88615482012[/C][C]7786.41518063493[/C][/ROW]
[ROW][C]240[/C][C]5975.40501851402[/C][C]4049.09419777186[/C][C]7901.71583925618[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=278800&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=278800&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
2296088.107159862575569.305069215046606.90925051009
2306077.861510649065408.895933721016746.82708757712
2316067.615861435565262.218080818376873.01364205275
2326057.370212222055122.502578013126992.23784643099
2336047.124563008554986.548951830557107.70017418655
2346036.878913795054852.579566445927221.17826114418
2356026.633264581544719.506490578617333.76003858447
2366016.387615368044586.619465253237446.15576548285
2376006.141966154534453.433177636937558.85075467214
2385995.896316941034319.604809358757672.1878245233
2395985.650667727534184.886154820127786.41518063493
2405975.405018514024049.094197771867901.71583925618



Parameters (Session):
par1 = 12 ; par2 = Double ; par3 = additive ;
Parameters (R input):
par1 = 12 ; par2 = Double ; par3 = additive ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par1, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')