Home » date » 2010 » Aug » 20 »

Tijdreeks B Stap 9

*Unverified author*
R Software Module: /rwasp_centraltendency.wasp (opens new window with default values)
Title produced by software: Central Tendency
Date of computation: Fri, 20 Aug 2010 01:07:48 +0000
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2010/Aug/20/t1282266462fyvrynyz662jtzj.htm/, Retrieved Fri, 20 Aug 2010 03:07:44 +0200
 
BibTeX entries for LaTeX users:
@Manual{KEY,
    author = {{YOUR NAME}},
    publisher = {Office for Research Development and Education},
    title = {Statistical Computations at FreeStatistics.org, URL http://www.freestatistics.org/blog/date/2010/Aug/20/t1282266462fyvrynyz662jtzj.htm/},
    year = {2010},
}
@Manual{R,
    title = {R: A Language and Environment for Statistical Computing},
    author = {{R Development Core Team}},
    organization = {R Foundation for Statistical Computing},
    address = {Vienna, Austria},
    year = {2010},
    note = {{ISBN} 3-900051-07-0},
    url = {http://www.R-project.org},
}
 
Original text written by user:
 
IsPrivate?
No (this computation is public)
 
User-defined keywords:
Willem Van Tendeloo MAR 201 A
 
Dataseries X:
» Textbox « » Textfile « » CSV «
76 75 74 72 70 69 70 72 73 73 74 76 74 67 66 58 55 58 64 68 66 76 75 88 85 83 77 66 65 65 63 62 57 68 69 79 74 76 82 75 75 76 78 77 67 74 68 87 76 88 95 96 96 105 108 113 101 107 102 116 105 121 134 140 131 141 131 128 123 129 125 144 135 141 156 159 146 154 145 133 126 127 122 148
 
Output produced by software:


Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Central Tendency - Ungrouped Data
MeasureValueS.E.Value/S.E.
Arithmetic Mean93.85714285714293.2335528870609529.0260113674688
Geometric Mean89.6193747825546
Harmonic Mean85.8836537259258
Quadratic Mean98.3717439105356
Winsorized Mean ( 1 / 28 )93.84523809523813.2217034211597629.1290742278988
Winsorized Mean ( 2 / 28 )93.82142857142863.2075445661886829.2502338269645
Winsorized Mean ( 3 / 28 )93.60714285714293.1610989730601929.6122151362201
Winsorized Mean ( 4 / 28 )93.7023809523813.1169948420020430.0617696538105
Winsorized Mean ( 5 / 28 )93.7023809523813.0978394448421230.2476557035242
Winsorized Mean ( 6 / 28 )93.7023809523813.0752551802987530.4697904592353
Winsorized Mean ( 7 / 28 )93.53571428571433.0173264444245330.9995341931103
Winsorized Mean ( 8 / 28 )93.53571428571433.0173264444245330.9995341931103
Winsorized Mean ( 9 / 28 )93.53571428571432.9850673698743131.3345404628683
Winsorized Mean ( 10 / 28 )92.94047619047622.8767646529009332.3072921855999
Winsorized Mean ( 11 / 28 )92.80952380952382.8538444338024932.5208770002448
Winsorized Mean ( 12 / 28 )92.80952380952382.8131461425420132.9913623775193
Winsorized Mean ( 13 / 28 )92.52.7604960599219333.5084702140875
Winsorized Mean ( 14 / 28 )92.66666666666672.7421893111886733.7929501397181
Winsorized Mean ( 15 / 28 )92.30952380952382.682681553698334.4094227964804
Winsorized Mean ( 16 / 28 )92.11904761904762.6514593326372234.7427722104352
Winsorized Mean ( 17 / 28 )92.11904761904762.5966351832296835.4763149686937
Winsorized Mean ( 18 / 28 )91.90476190476192.5621152607142935.8706586366220
Winsorized Mean ( 19 / 28 )91.90476190476192.5018420664883936.7348375566170
Winsorized Mean ( 20 / 28 )91.42857142857142.4265625655984137.6782254555321
Winsorized Mean ( 21 / 28 )91.67857142857142.3354117892901239.2558485184484
Winsorized Mean ( 22 / 28 )91.41666666666672.2945849306192239.8401756443143
Winsorized Mean ( 23 / 28 )90.32142857142862.0572807553226243.9033069928584
Winsorized Mean ( 24 / 28 )89.46428571428571.929810114096546.3591132934710
Winsorized Mean ( 25 / 28 )88.27380952380951.6847286802024852.3964544327698
Winsorized Mean ( 26 / 28 )87.96428571428571.6412677212474553.5953303507537
Winsorized Mean ( 27 / 28 )87.32142857142861.5522235004221156.2557057973173
Winsorized Mean ( 28 / 28 )87.32142857142861.5522235004221156.2557057973173
Trimmed Mean ( 1 / 28 )93.53658536585373.1792857074728929.420629025569
Trimmed Mean ( 2 / 28 )93.21253.1293675175866729.7863704010976
Trimmed Mean ( 3 / 28 )92.88461538461543.0792604758284030.1645853326608
Trimmed Mean ( 4 / 28 )92.61842105263163.0403120283807930.4634590752708
Trimmed Mean ( 5 / 28 )92.31081081081083.0084987403591530.6833470037588
Trimmed Mean ( 6 / 28 )91.98611111111112.9752166880723530.9174493003766
Trimmed Mean ( 7 / 28 )91.64285714285712.9401930694120331.1689929808534
Trimmed Mean ( 8 / 28 )91.30882352941182.9107485523042931.3695332622006
Trimmed Mean ( 9 / 28 )90.95454545454552.8738376037241431.6491597634742
Trimmed Mean ( 10 / 28 )90.5781252.8344539702164531.9561107542287
Trimmed Mean ( 11 / 28 )90.2580645161292.8074969029002132.1489453551633
Trimmed Mean ( 12 / 28 )89.93333333333332.7771125380445532.383755465905
Trimmed Mean ( 13 / 28 )89.58620689655172.7451805079133932.633994973484
Trimmed Mean ( 14 / 28 )89.252.7137516562773532.8880499413239
Trimmed Mean ( 15 / 28 )88.87037037037042.6750453141529633.2220055862907
Trimmed Mean ( 16 / 28 )88.52.6359705754828633.5739711296999
Trimmed Mean ( 17 / 28 )88.122.5903494366748334.0185763173008
Trimmed Mean ( 18 / 28 )87.70833333333332.5399220846745534.5318991722425
Trimmed Mean ( 19 / 28 )87.28260869565222.4798050109332235.1973676602924
Trimmed Mean ( 20 / 28 )86.81818181818182.4110546864668936.0083835117831
Trimmed Mean ( 21 / 28 )86.35714285714292.3361078813239836.9662478122373
Trimmed Mean ( 22 / 28 )85.8252.2517478965780338.1148352044329
Trimmed Mean ( 23 / 28 )85.26315789473682.1450542574636139.7487185221856
Trimmed Mean ( 24 / 28 )84.752.0634287230815841.0724145942061
Trimmed Mean ( 25 / 28 )84.2647058823531.9849293254342042.4522449251035
Trimmed Mean ( 26 / 28 )83.843751.9433039369929443.1449493843662
Trimmed Mean ( 27 / 28 )83.41.8898397426431644.1307260706431
Trimmed Mean ( 28 / 28 )82.96428571428571.8354836904557245.2002304055816
Median77.5
Midrange107
Midmean - Weighted Average at Xnp85.6136363636364
Midmean - Weighted Average at X(n+1)p86.3571428571429
Midmean - Empirical Distribution Function85.6136363636364
Midmean - Empirical Distribution Function - Averaging86.3571428571429
Midmean - Empirical Distribution Function - Interpolation86.3571428571429
Midmean - Closest Observation85.6136363636364
Midmean - True Basic - Statistics Graphics Toolkit86.3571428571429
Midmean - MS Excel (old versions)86.4444444444444
Number of observations84
 
Charts produced by software:
http://www.freestatistics.org/blog/date/2010/Aug/20/t1282266462fyvrynyz662jtzj/157gv1282266466.png (open in new window)
http://www.freestatistics.org/blog/date/2010/Aug/20/t1282266462fyvrynyz662jtzj/157gv1282266466.ps (open in new window)


http://www.freestatistics.org/blog/date/2010/Aug/20/t1282266462fyvrynyz662jtzj/2fgfx1282266466.png (open in new window)
http://www.freestatistics.org/blog/date/2010/Aug/20/t1282266462fyvrynyz662jtzj/2fgfx1282266466.ps (open in new window)


 
Parameters (Session):
 
Parameters (R input):
 
R code (references can be found in the software module):
geomean <- function(x) {
return(exp(mean(log(x))))
}
harmean <- function(x) {
return(1/mean(1/x))
}
quamean <- function(x) {
return(sqrt(mean(x*x)))
}
winmean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
win <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
win[j,1] <- (j*x[j+1]+sum(x[(j+1):(n-j)])+j*x[n-j])/n
win[j,2] <- sd(c(rep(x[j+1],j),x[(j+1):(n-j)],rep(x[n-j],j)))/sqrtn
}
return(win)
}
trimean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
tri <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
tri[j,1] <- mean(x,trim=j/n)
tri[j,2] <- sd(x[(j+1):(n-j)]) / sqrt(n-j*2)
}
return(tri)
}
midrange <- function(x) {
return((max(x)+min(x))/2)
}
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
midmean <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
midm <- 0
myn <- 0
roundno4 <- round(n/4)
round3no4 <- round(3*n/4)
for (i in 1:n) {
if ((x[i]>=qvalue1) & (x[i]<=qvalue3)){
midm = midm + x[i]
myn = myn + 1
}
}
midm = midm / myn
return(midm)
}
(arm <- mean(x))
sqrtn <- sqrt(length(x))
(armse <- sd(x) / sqrtn)
(armose <- arm / armse)
(geo <- geomean(x))
(har <- harmean(x))
(qua <- quamean(x))
(win <- winmean(x))
(tri <- trimean(x))
(midr <- midrange(x))
midm <- array(NA,dim=8)
for (j in 1:8) midm[j] <- midmean(x,j)
midm
bitmap(file='test1.png')
lb <- win[,1] - 2*win[,2]
ub <- win[,1] + 2*win[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(win[,1],type='b',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(win[,1],type='l',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
bitmap(file='test2.png')
lb <- tri[,1] - 2*tri[,2]
ub <- tri[,1] + 2*tri[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(tri[,1],type='b',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(tri[,1],type='l',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Central Tendency - Ungrouped Data',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Measure',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.element(a,'S.E.',header=TRUE)
a<-table.element(a,'Value/S.E.',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', 'Arithmetic Mean', 'click to view the definition of the Arithmetic Mean'),header=TRUE)
a<-table.element(a,arm)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean_standard_error.htm', armse, 'click to view the definition of the Standard Error of the Arithmetic Mean'))
a<-table.element(a,armose)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/geometric_mean.htm', 'Geometric Mean', 'click to view the definition of the Geometric Mean'),header=TRUE)
a<-table.element(a,geo)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/harmonic_mean.htm', 'Harmonic Mean', 'click to view the definition of the Harmonic Mean'),header=TRUE)
a<-table.element(a,har)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/quadratic_mean.htm', 'Quadratic Mean', 'click to view the definition of the Quadratic Mean'),header=TRUE)
a<-table.element(a,qua)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
for (j in 1:length(win[,1])) {
a<-table.row.start(a)
mylabel <- paste('Winsorized Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(win[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/winsorized_mean.htm', mylabel, 'click to view the definition of the Winsorized Mean'),header=TRUE)
a<-table.element(a,win[j,1])
a<-table.element(a,win[j,2])
a<-table.element(a,win[j,1]/win[j,2])
a<-table.row.end(a)
}
for (j in 1:length(tri[,1])) {
a<-table.row.start(a)
mylabel <- paste('Trimmed Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(tri[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', mylabel, 'click to view the definition of the Trimmed Mean'),header=TRUE)
a<-table.element(a,tri[j,1])
a<-table.element(a,tri[j,2])
a<-table.element(a,tri[j,1]/tri[j,2])
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/median_1.htm', 'Median', 'click to view the definition of the Median'),header=TRUE)
a<-table.element(a,median(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/midrange.htm', 'Midrange', 'click to view the definition of the Midrange'),header=TRUE)
a<-table.element(a,midr)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_1.htm','Weighted Average at Xnp',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[1])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_2.htm','Weighted Average at X(n+1)p',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[2])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_3.htm','Empirical Distribution Function',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[3])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_4.htm','Empirical Distribution Function - Averaging',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[4])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_5.htm','Empirical Distribution Function - Interpolation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[5])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_6.htm','Closest Observation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[6])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_7.htm','True Basic - Statistics Graphics Toolkit',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[7])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_8.htm','MS Excel (old versions)',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[8])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of observations',header=TRUE)
a<-table.element(a,length(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

  • personalize online software applications according to your needs
  • enforce strict security rules with respect to the data that you upload (e.g. statistical data)
  • manage user sessions of online applications
  • alert you about important changes or upgrades in resources or applications

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by