Home » date » 2009 » Nov » 19 »

Indicator voor het consumentenvertrouwen& Industriële productie

*The author of this computation has been verified*
R Software Module: /rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Thu, 19 Nov 2009 12:35:13 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3.htm/, Retrieved Thu, 19 Nov 2009 20:38:01 +0100
 
BibTeX entries for LaTeX users:
@Manual{KEY,
    author = {{YOUR NAME}},
    publisher = {Office for Research Development and Education},
    title = {Statistical Computations at FreeStatistics.org, URL http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3.htm/},
    year = {2009},
}
@Manual{R,
    title = {R: A Language and Environment for Statistical Computing},
    author = {{R Development Core Team}},
    organization = {R Foundation for Statistical Computing},
    address = {Vienna, Austria},
    year = {2009},
    note = {{ISBN} 3-900051-07-0},
    url = {http://www.R-project.org},
}
 
Original text written by user:
 
IsPrivate?
No (this computation is public)
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
19 24.4 19 23 22 22.5 19 19 23 19.4 22 18 20 18.1 23 19 14 18.1 20 19 14 20.7 14 22 14 19.1 14 23 15 18.3 14 20 11 16.9 15 14 17 17.9 11 14 16 20.2 17 14 20 21.2 16 15 24 23.8 20 11 23 24 24 17 20 26.6 23 16 21 25.3 20 20 19 27.6 21 24 23 24.7 19 23 23 26.6 23 20 23 24.4 23 21 23 24.6 23 19 27 26 23 23 26 24.8 27 23 17 24 26 23 24 22.7 17 23 26 23 24 27 24 24.1 26 26 27 24 24 17 27 22.7 27 24 26 22.6 27 26 24 23.1 26 24 23 24.4 24 27 23 23 23 27 24 22 23 26 17 21.3 24 24 21 21.5 17 23 19 21.3 21 23 22 23.2 19 24 22 21.8 22 17 18 23.3 22 21 16 21 18 19 14 22.4 16 22 12 20.4 14 22 14 19.9 12 18 16 21.3 14 16 8 18.9 16 14 3 15.6 8 12 0 12.5 3 14 5 7.8 0 16 1 5.5 5 8 1 4 1 3 3 3.3 1 0 6 3.7 3 5 7 3.1 6 1 8 5 7 1 14 6.3 8 3 14 20 14 6
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 0.633709699169343 + 0.208586394090889X[t] + 0.75975279754674`Y(t-1)`[t] -0.035428460457972`Y(t-4)`[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)0.6337096991693431.4053330.45090.6538780.326939
X0.2085863940908890.1540121.35430.1813710.090686
`Y(t-1)`0.759752797546740.1231716.168300
`Y(t-4)`-0.0354284604579720.109207-0.32440.74690.37345


Multiple Linear Regression - Regression Statistics
Multiple R0.898579324435252
R-squared0.807444802302514
Adjusted R-squared0.796545451489449
F-TEST (value)74.0819170013884
F-TEST (DF numerator)3
F-TEST (DF denominator)53
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation3.34001626392747
Sum Squared Residuals591.252558094901


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
11919.3436662778418-0.343666277841756
22219.08906597090102.91093402909904
32320.75713500231742.24286499768262
42021.210297027088-1.21029702708800
51418.9310386344478-4.93103863444777
61414.8085610924297-0.80856109242973
71414.4393944014263-0.439394401426334
81514.37881066752750.621189332472461
91115.0591132760949-4.05911327609487
101712.22868847999884.77131152000121
111617.2669539716883-1.26695397168828
122016.68035910777453.31964089222554
132420.40340876442963.59659123557038
142323.2715664706869-0.271566470686929
152023.0895667582345-3.08956675823447
162120.39743221144420.602567788555793
171921.4952198735681-2.49521987356811
182319.4062421960693.59375780393098
192322.94785291640260.0521470835974146
202322.45353438894470.546465611055345
212322.56610858867880.433891411321222
222722.71641569857414.28358430142586
232625.50512321585200.49487678414797
241724.5785013030326-7.57850130303258
252417.46956381279386.53043618720624
262622.70869547201633.29130452798368
272424.4930745610678-0.493074561067751
282723.27156647068693.72843352931307
292725.03166332780321.96833667219681
302624.93994776747821.06005223252184
312424.3553450878928-0.355345087892805
322323.0007164237436-0.000716423743563926
332321.94894267446961.05105732553042
342421.77578474083672.22421525916334
351722.4603839834357-5.46038398343572
362117.21926013988473.78073986011531
371920.2165540512535-1.21655405125347
382219.05793414447472.94206585552529
392221.29317080859350.706829191406509
401821.4643365578979-3.46433655789794
411618.0164335822179-2.01643358221787
421416.6826635574777-2.68266355747772
431214.7459851742025-2.74598517420246
441413.26390022389540.736099776104575
451615.14628369163210.853716308367904
46816.2360388618234-8.23603886182338
4739.54053830186547-6.54053830186547
4805.02429957153407-5.02429957153407
4951.693828205750723.30617179424928
5015.29627117073916-4.29627117073916
5112.12152269170572-1.12152269170572
5232.081797597216010.918202402783987
5363.507595447655992.49240455234401
5475.803415845673571.19658415432643
5586.9594827919931.04051720800701
56147.919540980941956.08045901905805
571415.2294059838937-1.22940598389366


Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
70.4187229333531650.837445866706330.581277066646835
80.2583081430702120.5166162861404240.741691856929788
90.3271208613179720.6542417226359430.672879138682028
100.4291775397778280.8583550795556570.570822460222172
110.3918157988349220.7836315976698440.608184201165078
120.3146313655195660.6292627310391330.685368634480434
130.2417482536773650.4834965073547290.758251746322635
140.1770136460926920.3540272921853840.822986353907308
150.2545547318219630.5091094636439270.745445268178037
160.1817584396719710.3635168793439410.81824156032803
170.1455974330628190.2911948661256370.854402566937181
180.1758079697223880.3516159394447760.824192030277612
190.1223153682677910.2446307365355810.87768463173221
200.08732418187791860.1746483637558370.912675818122081
210.05807942770834860.1161588554166970.941920572291651
220.0923763393940810.1847526787881620.907623660605919
230.06572121027498240.1314424205499650.934278789725018
240.2060418273055190.4120836546110380.79395817269448
250.4121725498127470.8243450996254940.587827450187253
260.447562180613290.895124361226580.55243781938671
270.3702996669643940.7405993339287880.629700333035606
280.4270985514202830.8541971028405670.572901448579717
290.3945338102843220.7890676205686440.605466189715678
300.3305277798094530.6610555596189060.669472220190547
310.2598610304954490.5197220609908980.740138969504551
320.1990512801228520.3981025602457040.800948719877148
330.1520738841659780.3041477683319560.847926115834022
340.1316629671485920.2633259342971830.868337032851408
350.2107165171556430.4214330343112870.789283482844357
360.2437165316242120.4874330632484230.756283468375789
370.1881215780958510.3762431561917030.811878421904149
380.2150257724359940.4300515448719880.784974227564006
390.1808893916481850.3617787832963690.819110608351815
400.1552629191229950.3105258382459900.844737080877005
410.1169210037775380.2338420075550760.883078996222462
420.09679292438520320.1935858487704060.903207075614797
430.07370674062268810.1474134812453760.926293259377312
440.07310114001427060.1462022800285410.92689885998573
450.1351355958440010.2702711916880020.864864404156
460.2109265341237020.4218530682474040.789073465876298
470.2559829788918980.5119659577837950.744017021108102
480.2719717851675150.5439435703350310.728028214832485
490.4563112981851380.9126225963702770.543688701814862
500.6258615626191320.7482768747617370.374138437380868


Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK
 
Charts produced by software:
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/10gw901258659309.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/10gw901258659309.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/1hfr41258659309.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/1hfr41258659309.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/24ebx1258659309.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/24ebx1258659309.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/30fsb1258659309.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/30fsb1258659309.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/404gy1258659309.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/404gy1258659309.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/5i33z1258659309.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/5i33z1258659309.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/655pu1258659309.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/655pu1258659309.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/76j1f1258659309.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/76j1f1258659309.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/8stqo1258659309.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/8stqo1258659309.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/9oikg1258659309.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258659469v2nkickzzhoqtj3/9oikg1258659309.ps (open in new window)


 
Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
 
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

  • personalize online software applications according to your needs
  • enforce strict security rules with respect to the data that you upload (e.g. statistical data)
  • manage user sessions of online applications
  • alert you about important changes or upgrades in resources or applications

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by