Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationTue, 09 Dec 2008 09:57:50 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/09/t12288419554x4vcxibextupi1.htm/, Retrieved Sat, 25 May 2024 05:15:55 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=31581, Retrieved Sat, 25 May 2024 05:15:55 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact167
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F       [Standard Deviation-Mean Plot] [Toon Wouters] [2008-12-09 16:57:50] [14e94996a4178d938cb12bed20a4a373] [Current]
Feedback Forum
2008-12-15 18:42:33 [Steven Vercammen] [reply
Dit klopt. Het eerste wat we doen is kijken naar tabel 1: in deze tabel wordt een vergelijking weergegeven die het verband tussen het gemiddelde en de standaarddeviatie uitdrukt. Beta drukt hier de invloed van het gemiddelde op de standaarddeviatie uit, of nog: de helling van de regressielijn op de scatterplot op figuur 2. Alpha is een constante. De p-waarde is een getal dat uitdrukt of het gaat om een significant verband tussen het gemiddelde en de standaarddeviatie. Opdat dit het geval zou zijn moet deze waarde kleiner zijn dan 0.05. Dit is hier dus duidelijk het geval (0.001 < 0.05). We kunnen dus stellen dat beta significant verschilt van 0 er een wel degelijk een verband is tussen het gemiddelde en de standaardafwijking dat niet aan het toeval te wijten is. Bijgevolg bestaat er quasi-optimale Box-cox transformatie waarbij lambda als exponent wordt gebruikt van Yt. Wanneer de optimale lambda 0 is neemt men de ln van Yt. Deze optimale lambda lezen we af in de 2de tabel : -1.25

Post a new message
Dataseries X:
94
118,6
135
132,7
110,1
111
159,4
129,9
124,8
140,5
120,6
121,6
107,3
130,7
134,9
128,3
99,8
96,7
134,1
131,6
118
133,2
109,3
111,9
98,3
116,3
113,6
121,3
93,7
92,3
132
114,3
123,1
117,3
106
107,5
104,3
112,6
113,9
132,8
88,8
97,7
131,2
116,1
124,7
128,2
105
102,3
98,4
111,1
125,3
123,6
86,7
100,6
123,3
112,2
120,8
114,8
107,3
107,5
93,1
112,4
127,9
120,7
91
98,5
118,9
113,8
113,8
118,7
105,1
101,4
84,1
107,2
119,9
105,4
88,6
90,5
108,5
104,7
100
113,1
96,7
98,5




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31581&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31581&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31581&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1124.8516.672159700857965.4
2119.6514.167344012327738.2
3111.30833333333312.155467032898439.7
4113.13333333333314.063126080339144
5110.96666666666711.715594373105938.6
6109.60833333333311.675261985250836.9
7101.43333333333310.464079973746835.8

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 124.85 & 16.6721597008579 & 65.4 \tabularnewline
2 & 119.65 & 14.1673440123277 & 38.2 \tabularnewline
3 & 111.308333333333 & 12.1554670328984 & 39.7 \tabularnewline
4 & 113.133333333333 & 14.0631260803391 & 44 \tabularnewline
5 & 110.966666666667 & 11.7155943731059 & 38.6 \tabularnewline
6 & 109.608333333333 & 11.6752619852508 & 36.9 \tabularnewline
7 & 101.433333333333 & 10.4640799737468 & 35.8 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31581&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]124.85[/C][C]16.6721597008579[/C][C]65.4[/C][/ROW]
[ROW][C]2[/C][C]119.65[/C][C]14.1673440123277[/C][C]38.2[/C][/ROW]
[ROW][C]3[/C][C]111.308333333333[/C][C]12.1554670328984[/C][C]39.7[/C][/ROW]
[ROW][C]4[/C][C]113.133333333333[/C][C]14.0631260803391[/C][C]44[/C][/ROW]
[ROW][C]5[/C][C]110.966666666667[/C][C]11.7155943731059[/C][C]38.6[/C][/ROW]
[ROW][C]6[/C][C]109.608333333333[/C][C]11.6752619852508[/C][C]36.9[/C][/ROW]
[ROW][C]7[/C][C]101.433333333333[/C][C]10.4640799737468[/C][C]35.8[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31581&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31581&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1124.8516.672159700857965.4
2119.6514.167344012327738.2
3111.30833333333312.155467032898439.7
4113.13333333333314.063126080339144
5110.96666666666711.715594373105938.6
6109.60833333333311.675261985250836.9
7101.43333333333310.464079973746835.8







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-16.9531404615905
beta0.264978843655933
S.D.0.0412509675245952
T-STAT6.42357887722134
p-value0.00135762626224594

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & -16.9531404615905 \tabularnewline
beta & 0.264978843655933 \tabularnewline
S.D. & 0.0412509675245952 \tabularnewline
T-STAT & 6.42357887722134 \tabularnewline
p-value & 0.00135762626224594 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31581&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-16.9531404615905[/C][/ROW]
[ROW][C]beta[/C][C]0.264978843655933[/C][/ROW]
[ROW][C]S.D.[/C][C]0.0412509675245952[/C][/ROW]
[ROW][C]T-STAT[/C][C]6.42357887722134[/C][/ROW]
[ROW][C]p-value[/C][C]0.00135762626224594[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31581&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31581&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-16.9531404615905
beta0.264978843655933
S.D.0.0412509675245952
T-STAT6.42357887722134
p-value0.00135762626224594







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-8.08141833743634
beta2.25050062740054
S.D.0.338491487564736
T-STAT6.64861808960599
p-value0.00116078108421521
Lambda-1.25050062740054

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & -8.08141833743634 \tabularnewline
beta & 2.25050062740054 \tabularnewline
S.D. & 0.338491487564736 \tabularnewline
T-STAT & 6.64861808960599 \tabularnewline
p-value & 0.00116078108421521 \tabularnewline
Lambda & -1.25050062740054 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31581&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-8.08141833743634[/C][/ROW]
[ROW][C]beta[/C][C]2.25050062740054[/C][/ROW]
[ROW][C]S.D.[/C][C]0.338491487564736[/C][/ROW]
[ROW][C]T-STAT[/C][C]6.64861808960599[/C][/ROW]
[ROW][C]p-value[/C][C]0.00116078108421521[/C][/ROW]
[ROW][C]Lambda[/C][C]-1.25050062740054[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31581&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31581&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-8.08141833743634
beta2.25050062740054
S.D.0.338491487564736
T-STAT6.64861808960599
p-value0.00116078108421521
Lambda-1.25050062740054



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')