| par1 <- as.numeric(par1)(n <- length(x))
 (np <- floor(n / par1))
 arr <- array(NA,dim=c(par1,np))
 j <- 0
 k <- 1
 for (i in 1:(np*par1))
 {
 j = j + 1
 arr[j,k] <- x[i]
 if (j == par1) {
 j = 0
 k=k+1
 }
 }
 arr
 arr.mean <- array(NA,dim=np)
 arr.sd <- array(NA,dim=np)
 arr.range <- array(NA,dim=np)
 for (j in 1:np)
 {
 arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
 arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
 arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[j,],na.rm=TRUE)
 }
 arr.mean
 arr.sd
 arr.range
 (lm1 <- lm(arr.sd~arr.mean))
 (lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
 (lm2 <- lm(arr.range~arr.mean))
 bitmap(file='test1.png')
 plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
 dev.off()
 bitmap(file='test2.png')
 plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
 dev.off()
 load(file='createtable')
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Section',header=TRUE)
 a<-table.element(a,'Mean',header=TRUE)
 a<-table.element(a,'Standard Deviation',header=TRUE)
 a<-table.element(a,'Range',header=TRUE)
 a<-table.row.end(a)
 for (j in 1:np) {
 a<-table.row.start(a)
 a<-table.element(a,j,header=TRUE)
 a<-table.element(a,arr.mean[j])
 a<-table.element(a,arr.sd[j] )
 a<-table.element(a,arr.range[j] )
 a<-table.row.end(a)
 }
 a<-table.end(a)
 table.save(a,file='mytable.tab')
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'alpha',header=TRUE)
 a<-table.element(a,lm1$coefficients[[1]])
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'beta',header=TRUE)
 a<-table.element(a,lm1$coefficients[[2]])
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'S.D.',header=TRUE)
 a<-table.element(a,summary(lm1)$coefficients[2,2])
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'T-STAT',header=TRUE)
 a<-table.element(a,summary(lm1)$coefficients[2,3])
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'p-value',header=TRUE)
 a<-table.element(a,summary(lm1)$coefficients[2,4])
 a<-table.row.end(a)
 a<-table.end(a)
 table.save(a,file='mytable1.tab')
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'alpha',header=TRUE)
 a<-table.element(a,lnlm1$coefficients[[1]])
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'beta',header=TRUE)
 a<-table.element(a,lnlm1$coefficients[[2]])
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'S.D.',header=TRUE)
 a<-table.element(a,summary(lnlm1)$coefficients[2,2])
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'T-STAT',header=TRUE)
 a<-table.element(a,summary(lnlm1)$coefficients[2,3])
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'p-value',header=TRUE)
 a<-table.element(a,summary(lnlm1)$coefficients[2,4])
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Lambda',header=TRUE)
 a<-table.element(a,1-lnlm1$coefficients[[2]])
 a<-table.row.end(a)
 a<-table.end(a)
 table.save(a,file='mytable2.tab')
 
 |