Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_boxcoxlin.wasp
Title produced by softwareBox-Cox Linearity Plot
Date of computationSun, 04 Nov 2007 08:34:54 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2007/Nov/04/286599gedqyg9j31194190425.htm/, Retrieved Fri, 01 Nov 2024 00:01:51 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=269, Retrieved Fri, 01 Nov 2024 00:01:51 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsTaak4.3G19
Estimated Impact263
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Box-Cox Linearity Plot] [Box-Cox linearity...] [2007-11-04 15:34:54] [40a229849a2b804e343854d9b3fa1a24] [Current]
Feedback Forum

Post a new message
Dataseries X:
106.48
106.83
107.14
107.94
108.46
108.81
108.92
108.99
109.16
109.22
109.43
109.23
109.93
110.09
110.33
110.11
110.35
110.09
110.44
110.39
110.62
110.43
110.46
110.55
110.94
111.56
111.82
111.73
111.57
111.85
112.06
112.2
112.47
112.15
112.36
112.32
112.67
113.02
113.05
113.5
113.67
113.65
114
114.03
114.08
114.49
114.48
114.25
114.68
115.28
115.9
115.87
116.09
116.29
116.76
116.78
116.65
116.46
116.82
116.91
Dataseries Y:
107,97
108,13
108,54
109,86
109,75
109,99
112,01
111,96
111,41
112,11
111,67
111,95
112,31
113,26
113,5
114,43
115,02
115,1
117,11
117,52
116,1
116,39
116,01
116,74
116,68
117,45
117,8
119,37
118,9
119,05
120,46
120,99
119,86
120,18
119,81
120,15
119,8
120,27
120,71
121,87
121,87
121,92
123,72
124,38
123,21
123,17
122,95
123,46
123,24
123,86
124,28
124,78
125,19
125,46
127,6
127,8
126,63
127,06
126,77
127,05




Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of compuational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269&T=0

[TABLE]
[ROW][C]Summary of compuational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Box-Cox Linearity Plot
# observations x60
maximum correlation0.98274366000763
optimal lambda(x)-2
Residual SD (orginial)1.11309014472009
Residual SD (transformed)1.03480070149473

\begin{tabular}{lllllllll}
\hline
Box-Cox Linearity Plot \tabularnewline
# observations x & 60 \tabularnewline
maximum correlation & 0.98274366000763 \tabularnewline
optimal lambda(x) & -2 \tabularnewline
Residual SD (orginial) & 1.11309014472009 \tabularnewline
Residual SD (transformed) & 1.03480070149473 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269&T=1

[TABLE]
[ROW][C]Box-Cox Linearity Plot[/C][/ROW]
[ROW][C]# observations x[/C][C]60[/C][/ROW]
[ROW][C]maximum correlation[/C][C]0.98274366000763[/C][/ROW]
[ROW][C]optimal lambda(x)[/C][C]-2[/C][/ROW]
[ROW][C]Residual SD (orginial)[/C][C]1.11309014472009[/C][/ROW]
[ROW][C]Residual SD (transformed)[/C][C]1.03480070149473[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Box-Cox Linearity Plot
# observations x60
maximum correlation0.98274366000763
optimal lambda(x)-2
Residual SD (orginial)1.11309014472009
Residual SD (transformed)1.03480070149473



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
n <- length(x)
c <- array(NA,dim=c(401))
l <- array(NA,dim=c(401))
mx <- 0
mxli <- -999
for (i in 1:401)
{
l[i] <- (i-201)/100
if (l[i] != 0)
{
x1 <- (x^l[i] - 1) / l[i]
} else {
x1 <- log(x)
}
c[i] <- cor(x1,y)
if (mx < abs(c[i]))
{
mx <- abs(c[i])
mxli <- l[i]
}
}
c
mx
mxli
if (mxli != 0)
{
x1 <- (x^mxli - 1) / mxli
} else {
x1 <- log(x)
}
r<-lm(y~x)
se <- sqrt(var(r$residuals))
r1 <- lm(y~x1)
se1 <- sqrt(var(r1$residuals))
bitmap(file='test1.png')
plot(l,c,main='Box-Cox Linearity Plot',xlab='Lambda',ylab='correlation')
grid()
dev.off()
bitmap(file='test2.png')
plot(x,y,main='Linear Fit of Original Data',xlab='x',ylab='y')
abline(r)
grid()
mtext(paste('Residual Standard Deviation = ',se))
dev.off()
bitmap(file='test3.png')
plot(x1,y,main='Linear Fit of Transformed Data',xlab='x',ylab='y')
abline(r1)
grid()
mtext(paste('Residual Standard Deviation = ',se1))
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Box-Cox Linearity Plot',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'# observations x',header=TRUE)
a<-table.element(a,n)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'maximum correlation',header=TRUE)
a<-table.element(a,mx)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'optimal lambda(x)',header=TRUE)
a<-table.element(a,mxli)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Residual SD (orginial)',header=TRUE)
a<-table.element(a,se)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Residual SD (transformed)',header=TRUE)
a<-table.element(a,se1)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')