Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_density.wasp
Title produced by softwareKernel Density Estimation
Date of computationSun, 28 Sep 2014 15:17:33 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Sep/28/t1411913913tkw6krdecq9mben.htm/, Retrieved Fri, 01 Nov 2024 00:59:19 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=236688, Retrieved Fri, 01 Nov 2024 00:59:19 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact123
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Kernel Density Estimation] [] [2014-09-28 14:17:33] [af43fcfc4e3257f4a3dbe682dec77e63] [Current]
Feedback Forum

Post a new message
Dataseries X:
80
100
60
60
100
100
100
90
120
100
80
160
50
120
100
80
100
80
100
80
80
60
60
50
80
20
80
60
100
90
80
90
100
80
80
140
120
100
80
80
80
100
100
60
80
140
100
100
120
90
40
90
100
100
90
120
80
100
100
90
100
100
100
90
100
50
70
80
80
90
120
100
90
80
200
120
100
80
120
90
100
120
90
100
90
90
100
100
100
80
90
60
80
120
80
100
120
140
90
50
120
60
40
120
40
100
80
80
140
100
140
120
50
100
60
100
100
80
80
20
60
160
80
160
100
100
80
60
60
90
100
90
80
100
100
100
140
160
80
90
90
80
100
100
70
100
80
100
120
80
90
140
90
100
100
100
100
90
90
140
60
100
70
90
100
100
110
120
80
100
100
120
90
120
40
40
100
80
90
100
100
60
90
100
100
110
90
120
100
80
100
100
80
120
80
120
200
80
80
110
80
100
140
100
100
60
60
80
80
100
120
80
100
100
100
80
80
100
100
120
90
80
100
100
70
70
80
100
100
120
100
80
100
80
80
80
90
70
90
80
60
100
100
80
100
60
90
100
100
60
50
100
120
90
60
90
100
50
70
120
100
100
160
100
100
60
100
80
100
100
100
80
120
80
100
120
90
100
100
100
200
80
200
100
140
80
80
80
80
80
100
100
100
80
80
80
80
100
70
100
90
90
120
120
30
80
100
120
200
90
80
40
100
100
100
100
70
100
80
100
120
70
80
100
90
90
80
80
100
80
80
80
80
100
80
40
80
100
120
100
200
120
120
200
60
100
100
90
80
90
120
100
70
90
90
120
160
100
80
40
80
40
60
80
60
80
120
50
60
50
80
60
50
100
80
100
100
100
120
80
100
60
60
90
40
60
40
80
100
80
80
150
80
80
80
160
100
100
120
100
40
80
100
50
60
100
80
90
90
80
100
100
100
60
160
80
80
60
100
60
80
100
80
120
200
80
100
80
120
120
100
100
50
100
100
100
80
80
80
60
80
100
60
100
200
120
80
80
100
50
60
80
80
140
90
60
70
120
90
50
50
80
80
60
100
60
80
80
100
70
120
80
100
100
100
80
80
100
80
90
60
60
90
80
40
100
80
80
60
50
80
20
80
60
60
100
100
100
60
100
90
100
80
70
90
100
140
100
100
100
140
120
90
120
200
60
100
100
80
100
100
100
50
60
90
100
100
100
100
60
80
80
60
140
120
80
90
260
80
100
90
80
100
100
80
100
60
80
50
60
40
100
60
120
140
100
100
100
100
100
160
160
100
100
80
100
100
90
100
120
100
100
120
100
100
120
100
100
80
90
90
80
100
90
100
90
160
100
100
100
90
80
140
80
140
100
90
100
100
100
100
100
160
100
120
100
80
100
100
120
90
90
80
60
60
100
100
80
80
60
100
60
80
90
100
60
60
70
20
60
100
70
160
100
100
80
120
80
100
100
100
90
90
100
100
120
100
100
100
100
80
80
100
100
100
100
80
120
100
90
120
80
80
120
100
100
120
80
100
100
100
100
120
70
60
90
90
100
90
90
100
60
80
90
70
140
80
80
80
100
100
120
60
100
90
100
100
80
100
100
100
90
100
100
80
90
120
60
120
100
80
100
100
140
90
80
100
80
80
70
80
90
100
40
80
100
80
80
120
100
80
60
80
100
40
80
100
90
90
100
100
60
100
80
40
100
60
100
140
100
60
100
100
120
100
40
90
80
100
80
80
100
90
70
120
80
100
80
100
80
100
80
90
50
120
50
90
100
100
100
100
120
120
40
90
90
100
80
90
80
100
80
60
100
80
100
80
120
60
160
100
80
90
90
120
80
160
80
100
80
100
80
200
200
100
100
160
120
90
120
80
100
100
120
100
100
80
70
70
110
100
90
60
160
160
50
50
70
50
100
100
70
100
90
60
100
60
60
60
100
60
50
90
80
80
100
80
50
40
60
50
60
100
80
80
60
60
120
80
100
90
90
200
60
100
60
100
90
70
200
80
200
80
80
120
100
80
90
100
200
160
100
100
100
100
120
160
100
120
80




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=236688&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=236688&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=236688&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'George Udny Yule' @ yule.wessa.net







Properties of Density Trace
Bandwidth30
#Observations900

\begin{tabular}{lllllllll}
\hline
Properties of Density Trace \tabularnewline
Bandwidth & 30 \tabularnewline
#Observations & 900 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=236688&T=1

[TABLE]
[ROW][C]Properties of Density Trace[/C][/ROW]
[ROW][C]Bandwidth[/C][C]30[/C][/ROW]
[ROW][C]#Observations[/C][C]900[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=236688&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=236688&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Properties of Density Trace
Bandwidth30
#Observations900







Maximum Density Values
Kernelx-valuemax. density
Gaussian90.27397260273970.0106018547129334
Epanechnikov89.45205479452050.00969094943661747
Rectangular89.45205479452050.00916276260547239
Triangular90.27397260273970.0102127495387792
Biweight90.27397260273970.00996939319467137
Cosine90.27397260273970.0100693999008908
Optcosine89.45205479452050.00977435388231761

\begin{tabular}{lllllllll}
\hline
Maximum Density Values \tabularnewline
Kernel & x-value & max. density \tabularnewline
Gaussian & 90.2739726027397 & 0.0106018547129334 \tabularnewline
Epanechnikov & 89.4520547945205 & 0.00969094943661747 \tabularnewline
Rectangular & 89.4520547945205 & 0.00916276260547239 \tabularnewline
Triangular & 90.2739726027397 & 0.0102127495387792 \tabularnewline
Biweight & 90.2739726027397 & 0.00996939319467137 \tabularnewline
Cosine & 90.2739726027397 & 0.0100693999008908 \tabularnewline
Optcosine & 89.4520547945205 & 0.00977435388231761 \tabularnewline
 \hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=236688&T=2

[TABLE]
[ROW][C]Maximum Density Values[/C][/ROW]
[ROW][C]Kernel[/C][C]x-value[/C][C]max. density[/C][/ROW]
[ROW][C]Gaussian[/C][C]90.2739726027397[/C][C]0.0106018547129334[/C][/ROW]
[ROW][C]Epanechnikov[/C][C]89.4520547945205[/C][C]0.00969094943661747[/C][/ROW]
[ROW][C]Rectangular[/C][C]89.4520547945205[/C][C]0.00916276260547239[/C][/ROW]
[ROW][C]Triangular[/C][C]90.2739726027397[/C][C]0.0102127495387792[/C][/ROW]
[ROW][C]Biweight[/C][C]90.2739726027397[/C][C]0.00996939319467137[/C][/ROW]
[ROW][C]Cosine[/C][C]90.2739726027397[/C][C]0.0100693999008908[/C][/ROW]
[ROW][C]Optcosine[/C][C]89.4520547945205[/C][C]0.00977435388231761[/C][/ROW]
 [/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=236688&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=236688&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Maximum Density Values
Kernelx-valuemax. density
Gaussian90.27397260273970.0106018547129334
Epanechnikov89.45205479452050.00969094943661747
Rectangular89.45205479452050.00916276260547239
Triangular90.27397260273970.0102127495387792
Biweight90.27397260273970.00996939319467137
Cosine90.27397260273970.0100693999008908
Optcosine89.45205479452050.00977435388231761







Maximum Density Values
Kernelx-valuemax. density
Gaussian90.27397260273970.0106018547129334
Epanechnikov89.45205479452050.00969094943661747
Rectangular90.27397260273970.00916276260547239
Triangular90.27397260273970.0102127495387792
Biweight90.27397260273970.00996939319467137
Cosine90.27397260273970.0100693999008908
Optcosine89.45205479452050.00977435388231761

\begin{tabular}{lllllllll}
\hline
Maximum Density Values \tabularnewline
Kernel & x-value & max. density \tabularnewline
Gaussian & 90.2739726027397 & 0.0106018547129334 \tabularnewline
Epanechnikov & 89.4520547945205 & 0.00969094943661747 \tabularnewline
Rectangular & 90.2739726027397 & 0.00916276260547239 \tabularnewline
Triangular & 90.2739726027397 & 0.0102127495387792 \tabularnewline
Biweight & 90.2739726027397 & 0.00996939319467137 \tabularnewline
Cosine & 90.2739726027397 & 0.0100693999008908 \tabularnewline
Optcosine & 89.4520547945205 & 0.00977435388231761 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=236688&T=3

[TABLE]
[ROW][C]Maximum Density Values[/C][/ROW]
[ROW][C]Kernel[/C][C]x-value[/C][C]max. density[/C][/ROW]
[ROW][C]Gaussian[/C][C]90.2739726027397[/C][C]0.0106018547129334[/C][/ROW]
[ROW][C]Epanechnikov[/C][C]89.4520547945205[/C][C]0.00969094943661747[/C][/ROW]
[ROW][C]Rectangular[/C][C]90.2739726027397[/C][C]0.00916276260547239[/C][/ROW]
[ROW][C]Triangular[/C][C]90.2739726027397[/C][C]0.0102127495387792[/C][/ROW]
[ROW][C]Biweight[/C][C]90.2739726027397[/C][C]0.00996939319467137[/C][/ROW]
[ROW][C]Cosine[/C][C]90.2739726027397[/C][C]0.0100693999008908[/C][/ROW]
[ROW][C]Optcosine[/C][C]89.4520547945205[/C][C]0.00977435388231761[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=236688&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=236688&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Maximum Density Values
Kernelx-valuemax. density
Gaussian90.27397260273970.0106018547129334
Epanechnikov89.45205479452050.00969094943661747
Rectangular90.27397260273970.00916276260547239
Triangular90.27397260273970.0102127495387792
Biweight90.27397260273970.00996939319467137
Cosine90.27397260273970.0100693999008908
Optcosine89.45205479452050.00977435388231761



Parameters (Session):
par1 = 30 ; par2 = no ; par3 = 512 ;
Parameters (R input):
par1 = 30 ; par2 = no ; par3 = 512 ;
R code (references can be found in the software module):
par3 <- '512'
par2 <- 'no'
par1 <- '0'
if (par1 == '0') bw <- 'nrd0'
if (par1 != '0') bw <- as.numeric(par1)
par3 <- as.numeric(par3)
mydensity <- array(NA, dim=c(par3,8))
bitmap(file='density1.png')
mydensity1<-density(x,bw=bw,kernel='gaussian',na.rm=TRUE)
mydensity[,8] = signif(mydensity1$x,3)
mydensity[,1] = signif(mydensity1$y,3)
plot(mydensity1,main='Gaussian Kernel',xlab=xlab,ylab=ylab)
grid()
dev.off()
mydensity1
bitmap(file='density2.png')
mydensity2<-density(x,bw=bw,kernel='epanechnikov',na.rm=TRUE)
mydensity[,2] = signif(mydensity2$y,3)
plot(mydensity2,main='Epanechnikov Kernel',xlab=xlab,ylab=ylab)
grid()
dev.off()
bitmap(file='density3.png')
mydensity3<-density(x,bw=bw,kernel='rectangular',na.rm=TRUE)
mydensity[,3] = signif(mydensity3$y,3)
plot(mydensity3,main='Rectangular Kernel',xlab=xlab,ylab=ylab)
grid()
dev.off()
bitmap(file='density4.png')
mydensity4<-density(x,bw=bw,kernel='triangular',na.rm=TRUE)
mydensity[,4] = signif(mydensity4$y,3)
plot(mydensity4,main='Triangular Kernel',xlab=xlab,ylab=ylab)
grid()
dev.off()
bitmap(file='density5.png')
mydensity5<-density(x,bw=bw,kernel='biweight',na.rm=TRUE)
mydensity[,5] = signif(mydensity5$y,3)
plot(mydensity5,main='Biweight Kernel',xlab=xlab,ylab=ylab)
grid()
dev.off()
bitmap(file='density6.png')
mydensity6<-density(x,bw=bw,kernel='cosine',na.rm=TRUE)
mydensity[,6] = signif(mydensity6$y,3)
plot(mydensity6,main='Cosine Kernel',xlab=xlab,ylab=ylab)
grid()
dev.off()
bitmap(file='density7.png')
mydensity7<-density(x,bw=bw,kernel='optcosine',na.rm=TRUE)
mydensity[,7] = signif(mydensity7$y,3)
plot(mydensity7,main='Optcosine Kernel',xlab=xlab,ylab=ylab)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Properties of Density Trace',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Bandwidth',header=TRUE)
a<-table.element(a,mydensity1$bw)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'#Observations',header=TRUE)
a<-table.element(a,mydensity1$n)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Maximum Density Values',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kernel',1,TRUE)
a<-table.element(a,'x-value',1,TRUE)
a<-table.element(a,'max. density',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Gaussian',1,TRUE)
a<-table.element(a,mydensity1$x[mydensity1$y==max(mydensity1$y)],1)
a<-table.element(a,mydensity1$y[mydensity1$y==max(mydensity1$y)],1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Epanechnikov',1,TRUE)
a<-table.element(a,mydensity2$x[mydensity2$y==max(mydensity2$y)],1)
a<-table.element(a,mydensity2$y[mydensity2$y==max(mydensity2$y)],1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Rectangular',1,TRUE)
a<-table.element(a,mydensity3$x[mydensity3$y==max(mydensity3$y)],1)
a<-table.element(a,mydensity3$y[mydensity3$y==max(mydensity3$y)],1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Triangular',1,TRUE)
a<-table.element(a,mydensity4$x[mydensity4$y==max(mydensity4$y)],1)
a<-table.element(a,mydensity4$y[mydensity4$y==max(mydensity4$y)],1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Biweight',1,TRUE)
a<-table.element(a,mydensity5$x[mydensity5$y==max(mydensity5$y)],1)
a<-table.element(a,mydensity5$y[mydensity5$y==max(mydensity5$y)],1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Cosine',1,TRUE)
a<-table.element(a,mydensity6$x[mydensity6$y==max(mydensity6$y)],1)
a<-table.element(a,mydensity6$y[mydensity6$y==max(mydensity6$y)],1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Optcosine',1,TRUE)
a<-table.element(a,mydensity7$x[mydensity7$y==max(mydensity7$y)],1)
a<-table.element(a,mydensity7$y[mydensity7$y==max(mydensity7$y)],1)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')
if (par2=='yes') {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Kernel Density Values',8,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'x-value',1,TRUE)
a<-table.element(a,'Gaussian',1,TRUE)
a<-table.element(a,'Epanechnikov',1,TRUE)
a<-table.element(a,'Rectangular',1,TRUE)
a<-table.element(a,'Triangular',1,TRUE)
a<-table.element(a,'Biweight',1,TRUE)
a<-table.element(a,'Cosine',1,TRUE)
a<-table.element(a,'Optcosine',1,TRUE)
a<-table.row.end(a)
for(i in 1:par3) {
a<-table.row.start(a)
a<-table.element(a,mydensity[i,8],1,TRUE)
for(j in 1:7) {
a<-table.element(a,mydensity[i,j],1)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
}