Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_twosampletests_mean.wasp
Title produced by softwarePaired and Unpaired Two Samples Tests about the Mean
Date of computationSat, 06 Dec 2014 15:44:14 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/06/t1417880726rbfu529nlocj8ol.htm/, Retrieved Fri, 01 Nov 2024 00:03:24 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=263648, Retrieved Fri, 01 Nov 2024 00:03:24 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact146
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Cronbach Alpha] [Intrinsic Motivat...] [2010-10-12 11:42:57] [b98453cac15ba1066b407e146608df68]
- RMPD  [Survey Scores] [] [2014-10-14 11:37:37] [cc401d1001c65f55a3dfc6f2420e9570]
- RMPD      [Paired and Unpaired Two Samples Tests about the Mean] [Totale motivatie ...] [2014-12-06 15:44:14] [4ce2356216df8db4950cd852fec912aa] [Current]
- RM D        [Chi-Squared Test, McNemar Test, and Fisher Exact Test] [Chisquaredtest] [2014-12-06 17:04:15] [5c51c91cab622bcf955f01721b682696]
- RM D        [Chi-Squared Test, McNemar Test, and Fisher Exact Test] [Chisquaredtest] [2014-12-06 17:13:53] [5c51c91cab622bcf955f01721b682696]
- RM D        [Chi-Squared Test, McNemar Test, and Fisher Exact Test] [Chisquaredtest] [2014-12-06 17:16:18] [5c51c91cab622bcf955f01721b682696]
- RM D        [Chi-Squared Test, McNemar Test, and Fisher Exact Test] [Chisquaredtest] [2014-12-06 17:32:28] [5c51c91cab622bcf955f01721b682696]
- RM D        [Chi-Squared Test, McNemar Test, and Fisher Exact Test] [Chisquaredtest] [2014-12-06 17:36:41] [5c51c91cab622bcf955f01721b682696]
Feedback Forum

Post a new message
Dataseries X:
72 50
61 68
68 62
61 54
64 71
65 54
69 65
63 73
75 52
63 84
73 42
75 66
63 65
63 78
62 73
64 75
60 66
56 70
59 81
68 71
66 69
73 71
72 72
71 68
59 70
64 67
66 76
78 70
68 60
73 77
62 72
65 69
68 71
65 62
60 70
71 58
65 76
68 52
64 59
74 68
69 76
76 67
68 59
72 76
67 60
63 63
59 70
73 66
66 64
62 70
69 75
66 61
57 60
56 73
71 61
56 66
62 59
59 64
57 66
66 78
63 53
69 67
48 66
66 71
73 51
67 56
61 67
68 69
75 55
62 63
69 67
74 65
63 47
58 76
58 64
72 68
62 64
62 65
65 63
69 60
66 68
72 72
62 70
75 61
58 61
66 62
55 71
47 71
62 51
64 70
64 73
50 76
70 59
69 68
48 48
66 52
73 59
74 60
66 59
78 57
60 79
69 60
65 60
78 59
63 61
71 71
80 58
73 59
69 58
84 60
64 55
58 62
59 69
78 68
67 72
60 19
66 68
74 79
72 71
55 71
49 74
74 75
53 53
64 50
65 70
57 78
51 59
80 72
67 70
70 63
74 74
75 67
70 66
69 62
65 73
71 67
65 61
68 74
67 32
66 69
59 60
72 57
52 60
65 68
68 68
67 73
73 69
65 65
75 81
57 55
62 69
59 48
63 69
73 68
55 74
64 67
78 65
60 63
66 74
68 39
78 68
60 69
64 63
72 70
71 68
80 70
74 78
69 59
75 62
73 75
60 74
76 73
53 62
78 69
67 65
59 67
73 73
70 52
59 61
76 53
66 63
64 78
72 65
57 77
74 69
66 68
74 76
71 63
65 41
70 76
66 67
77 69
72 73
65 63
67 78
72 56
58 56
84 64
63 68
58 75
69 55
80 66
67 75
75 77
71 61
72 71
75 72
79 66
76 66
81 63
60 60
67 64
72 74
79 71
40 69
70 77
66 70
66 77
73 68
74 65
70 69
50 50
64 72
77 64
NA 76
NA 79
NA 55
NA 62
NA 69
NA 68
NA 75
NA 64
NA 63
NA 67
NA 58
NA 71
NA 79
NA 53
NA 57
NA 67
NA 58
NA 74
NA 62
NA 54
NA 62
NA 64
NA 66
NA 66
NA 63
NA 66
NA 78
NA 84
NA 67
NA 58
NA 75
NA 55
NA 72
NA 54
NA 58
NA 67
NA 77
NA 72
NA 52
NA 76
NA 72
NA 77
NA 64
NA 71
NA 73
NA 75
NA 58
NA 51
NA 75
NA 71




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=263648&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=263648&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=263648&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Two Sample t-test (unpaired)
Mean of Sample 166.7232142857143
Mean of Sample 265.7810218978102
t-stat1.28263235878515
df496
p-value0.200219980237811
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.501074099065542,2.38545887487369]
F-test to compare two variances
F-stat0.721805064723339
df223
p-value0.0114830554404073
H0 value1
Alternativetwo.sided
CI Level0.95
CI[0.562608666804316,0.929026352256541]

\begin{tabular}{lllllllll}
\hline
Two Sample t-test (unpaired) \tabularnewline
Mean of Sample 1 & 66.7232142857143 \tabularnewline
Mean of Sample 2 & 65.7810218978102 \tabularnewline
t-stat & 1.28263235878515 \tabularnewline
df & 496 \tabularnewline
p-value & 0.200219980237811 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [-0.501074099065542,2.38545887487369] \tabularnewline
F-test to compare two variances \tabularnewline
F-stat & 0.721805064723339 \tabularnewline
df & 223 \tabularnewline
p-value & 0.0114830554404073 \tabularnewline
H0 value & 1 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [0.562608666804316,0.929026352256541] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=263648&T=1

[TABLE]
[ROW][C]Two Sample t-test (unpaired)[/C][/ROW]
[ROW][C]Mean of Sample 1[/C][C]66.7232142857143[/C][/ROW]
[ROW][C]Mean of Sample 2[/C][C]65.7810218978102[/C][/ROW]
[ROW][C]t-stat[/C][C]1.28263235878515[/C][/ROW]
[ROW][C]df[/C][C]496[/C][/ROW]
[ROW][C]p-value[/C][C]0.200219980237811[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][-0.501074099065542,2.38545887487369][/C][/ROW]
[ROW][C]F-test to compare two variances[/C][/ROW]
[ROW][C]F-stat[/C][C]0.721805064723339[/C][/ROW]
[ROW][C]df[/C][C]223[/C][/ROW]
[ROW][C]p-value[/C][C]0.0114830554404073[/C][/ROW]
[ROW][C]H0 value[/C][C]1[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][0.562608666804316,0.929026352256541][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=263648&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=263648&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Two Sample t-test (unpaired)
Mean of Sample 166.7232142857143
Mean of Sample 265.7810218978102
t-stat1.28263235878515
df496
p-value0.200219980237811
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.501074099065542,2.38545887487369]
F-test to compare two variances
F-stat0.721805064723339
df223
p-value0.0114830554404073
H0 value1
Alternativetwo.sided
CI Level0.95
CI[0.562608666804316,0.929026352256541]







Welch Two Sample t-test (unpaired)
Mean of Sample 166.7232142857143
Mean of Sample 265.7810218978102
t-stat1.30365278441879
df495.253445827699
p-value0.192957649842377
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.477807742713077,2.36219251852122]

\begin{tabular}{lllllllll}
\hline
Welch Two Sample t-test (unpaired) \tabularnewline
Mean of Sample 1 & 66.7232142857143 \tabularnewline
Mean of Sample 2 & 65.7810218978102 \tabularnewline
t-stat & 1.30365278441879 \tabularnewline
df & 495.253445827699 \tabularnewline
p-value & 0.192957649842377 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [-0.477807742713077,2.36219251852122] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=263648&T=2

[TABLE]
[ROW][C]Welch Two Sample t-test (unpaired)[/C][/ROW]
[ROW][C]Mean of Sample 1[/C][C]66.7232142857143[/C][/ROW]
[ROW][C]Mean of Sample 2[/C][C]65.7810218978102[/C][/ROW]
[ROW][C]t-stat[/C][C]1.30365278441879[/C][/ROW]
[ROW][C]df[/C][C]495.253445827699[/C][/ROW]
[ROW][C]p-value[/C][C]0.192957649842377[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][-0.477807742713077,2.36219251852122][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=263648&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=263648&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Welch Two Sample t-test (unpaired)
Mean of Sample 166.7232142857143
Mean of Sample 265.7810218978102
t-stat1.30365278441879
df495.253445827699
p-value0.192957649842377
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.477807742713077,2.36219251852122]







Wicoxon rank sum test with continuity correction (unpaired)
W31889
p-value0.452003585988058
H0 value0
Alternativetwo.sided
Kolmogorov-Smirnov Test to compare Distributions of two Samples
KS Statistic0.0630865484880083
p-value0.710635666990937
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples
KS Statistic0.0685284150156413
p-value0.609063242925398

\begin{tabular}{lllllllll}
\hline
Wicoxon rank sum test with continuity correction (unpaired) \tabularnewline
W & 31889 \tabularnewline
p-value & 0.452003585988058 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
Kolmogorov-Smirnov Test to compare Distributions of two Samples \tabularnewline
KS Statistic & 0.0630865484880083 \tabularnewline
p-value & 0.710635666990937 \tabularnewline
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples \tabularnewline
KS Statistic & 0.0685284150156413 \tabularnewline
p-value & 0.609063242925398 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=263648&T=3

[TABLE]
[ROW][C]Wicoxon rank sum test with continuity correction (unpaired)[/C][/ROW]
[ROW][C]W[/C][C]31889[/C][/ROW]
[ROW][C]p-value[/C][C]0.452003585988058[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]Kolmogorov-Smirnov Test to compare Distributions of two Samples[/C][/ROW]
[ROW][C]KS Statistic[/C][C]0.0630865484880083[/C][/ROW]
[ROW][C]p-value[/C][C]0.710635666990937[/C][/ROW]
[ROW][C]Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples[/C][/ROW]
[ROW][C]KS Statistic[/C][C]0.0685284150156413[/C][/ROW]
[ROW][C]p-value[/C][C]0.609063242925398[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=263648&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=263648&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Wicoxon rank sum test with continuity correction (unpaired)
W31889
p-value0.452003585988058
H0 value0
Alternativetwo.sided
Kolmogorov-Smirnov Test to compare Distributions of two Samples
KS Statistic0.0630865484880083
p-value0.710635666990937
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples
KS Statistic0.0685284150156413
p-value0.609063242925398



Parameters (Session):
par1 = black ;
Parameters (R input):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = unpaired ; par6 = 0.0 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #column number of first sample
par2 <- as.numeric(par2) #column number of second sample
par3 <- as.numeric(par3) #confidence (= 1 - alpha)
if (par5 == 'unpaired') paired <- FALSE else paired <- TRUE
par6 <- as.numeric(par6) #H0
z <- t(y)
if (par1 == par2) stop('Please, select two different column numbers')
if (par1 < 1) stop('Please, select a column number greater than zero for the first sample')
if (par2 < 1) stop('Please, select a column number greater than zero for the second sample')
if (par1 > length(z[1,])) stop('The column number for the first sample should be smaller')
if (par2 > length(z[1,])) stop('The column number for the second sample should be smaller')
if (par3 <= 0) stop('The confidence level should be larger than zero')
if (par3 >= 1) stop('The confidence level should be smaller than zero')
(r.t <- t.test(z[,par1],z[,par2],var.equal=TRUE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
(v.t <- var.test(z[,par1],z[,par2],conf.level=par3))
(r.w <- t.test(z[,par1],z[,par2],var.equal=FALSE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
(w.t <- wilcox.test(z[,par1],z[,par2],alternative=par4,paired=paired,mu=par6,conf.level=par3))
(ks.t <- ks.test(z[,par1],z[,par2],alternative=par4))
m1 <- mean(z[,par1],na.rm=T)
m2 <- mean(z[,par2],na.rm=T)
mdiff <- m1 - m2
newsam1 <- z[!is.na(z[,par1]),par1]
newsam2 <- z[,par2]+mdiff
newsam2 <- newsam2[!is.na(newsam2)]
(ks1.t <- ks.test(newsam1,newsam2,alternative=par4))
mydf <- data.frame(cbind(z[,par1],z[,par2]))
colnames(mydf) <- c('Variable 1','Variable 2')
bitmap(file='test1.png')
boxplot(mydf, notch=TRUE, ylab='value',main=main)
dev.off()
bitmap(file='test2.png')
qqnorm(z[,par1],main='Normal QQplot - Variable 1')
qqline(z[,par1])
dev.off()
bitmap(file='test3.png')
qqnorm(z[,par2],main='Normal QQplot - Variable 2')
qqline(z[,par2])
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Two Sample t-test (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
if(!paired){
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 1',header=TRUE)
a<-table.element(a,r.t$estimate[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 2',header=TRUE)
a<-table.element(a,r.t$estimate[[2]])
a<-table.row.end(a)
} else {
a<-table.row.start(a)
a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
a<-table.element(a,r.t$estimate)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'t-stat',header=TRUE)
a<-table.element(a,r.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,r.t$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,r.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,r.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,r.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(r.t$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',r.t$conf.int[1],',',r.t$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'F-test to compare two variances',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'F-stat',header=TRUE)
a<-table.element(a,v.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,v.t$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,v.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,v.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,v.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(v.t$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',v.t$conf.int[1],',',v.t$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Welch Two Sample t-test (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
if(!paired){
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 1',header=TRUE)
a<-table.element(a,r.w$estimate[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 2',header=TRUE)
a<-table.element(a,r.w$estimate[[2]])
a<-table.row.end(a)
} else {
a<-table.row.start(a)
a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
a<-table.element(a,r.w$estimate)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'t-stat',header=TRUE)
a<-table.element(a,r.w$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,r.w$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,r.w$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,r.w$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,r.w$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(r.w$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',r.w$conf.int[1],',',r.w$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Wicoxon rank sum test with continuity correction (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'W',header=TRUE)
a<-table.element(a,w.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,w.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,w.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,w.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributions of two Samples',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'KS Statistic',header=TRUE)
a<-table.element(a,ks.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,ks.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'KS Statistic',header=TRUE)
a<-table.element(a,ks1.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,ks1.t$p.value)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')