Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_variability.wasp
Title produced by softwareVariability
Date of computationFri, 26 Apr 2013 11:54:17 -0400
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2013/Apr/26/t1366991691kpm06e4sfx7peql.htm/, Retrieved Sun, 10 Nov 2024 19:41:02 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=208379, Retrieved Sun, 10 Nov 2024 19:41:02 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact141
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Variability] [Spreidingsmaten e...] [2013-04-26 15:54:17] [09688f513f3d2798cb35a3603f8bd204] [Current]
Feedback Forum

Post a new message
Dataseries X:
68.906
39.556
50.669
36.432
40.891
48.428
36.222
33.425
39.401
37.967
34.801
12.657
69.116
41.519
51.321
38.529
41.547
52.073
38.401
40.898
40.439
41.888
37.898
8.771
68.184
50.530
47.221
41.756
45.633
48.138
39.486
39.341
41.117
41.629
29.722
7.054
56.676
34.870
35.117
30.169
30.936
35.699
33.228
27.733
33.666
35.429
27.438
8.170
63.410
38.040
45.389
37.353
37.024
50.957
37.994
36.454
46.080
43.373
37.395
10.963
76.058
50.179
57.452
47.568
50.050
50.856
41.992
39.284
44.521
43.832
41.153
17.100




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=208379&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=208379&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=208379&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Variability - Ungrouped Data
Absolute range69.004
Relative range (unbiased)5.23024500288767
Relative range (biased)5.26694892689729
Variance (unbiased)174.062199294992
Variance (biased)171.644668749228
Standard Deviation (unbiased)13.1932634058065
Standard Deviation (biased)13.10132316788
Coefficient of Variation (unbiased)0.325851892620497
Coefficient of Variation (biased)0.323581120059166
Mean Squared Error (MSE versus 0)1810.96555036111
Mean Squared Error (MSE versus Mean)171.644668749228
Mean Absolute Deviation from Mean (MAD Mean)8.9975424382716
Mean Absolute Deviation from Median (MAD Median)8.99616666666667
Median Absolute Deviation from Mean5.4815
Median Absolute Deviation from Median5.294
Mean Squared Deviation from Mean171.644668749228
Mean Squared Deviation from Median171.885777027778
Interquartile Difference (Weighted Average at Xnp)11.792
Interquartile Difference (Weighted Average at X(n+1)p)11.98475
Interquartile Difference (Empirical Distribution Function)11.792
Interquartile Difference (Empirical Distribution Function - Averaging)11.8305
Interquartile Difference (Empirical Distribution Function - Interpolation)11.67625
Interquartile Difference (Closest Observation)11.792
Interquartile Difference (True Basic - Statistics Graphics Toolkit)11.67625
Interquartile Difference (MS Excel (old versions))12.139
Semi Interquartile Difference (Weighted Average at Xnp)5.896
Semi Interquartile Difference (Weighted Average at X(n+1)p)5.992375
Semi Interquartile Difference (Empirical Distribution Function)5.896
Semi Interquartile Difference (Empirical Distribution Function - Averaging)5.91525
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)5.838125
Semi Interquartile Difference (Closest Observation)5.896
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)5.838125
Semi Interquartile Difference (MS Excel (old versions))6.0695
Coefficient of Quartile Variation (Weighted Average at Xnp)0.142673926194797
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.144433296877778
Coefficient of Quartile Variation (Empirical Distribution Function)0.142673926194797
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.142607448302464
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.140780752177045
Coefficient of Quartile Variation (Closest Observation)0.142673926194797
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.140780752177045
Coefficient of Quartile Variation (MS Excel (old versions))0.146258298492717
Number of all Pairs of Observations2556
Squared Differences between all Pairs of Observations348.124398589984
Mean Absolute Differences between all Pairs of Observations13.9549334898279
Gini Mean Difference13.9549334898279
Leik Measure of Dispersion0.525988036353001
Index of Diversity0.984656878593629
Index of Qualitative Variation0.998525285334384
Coefficient of Dispersion0.224952620495571
Observations72

\begin{tabular}{lllllllll}
\hline
Variability - Ungrouped Data \tabularnewline
Absolute range & 69.004 \tabularnewline
Relative range (unbiased) & 5.23024500288767 \tabularnewline
Relative range (biased) & 5.26694892689729 \tabularnewline
Variance (unbiased) & 174.062199294992 \tabularnewline
Variance (biased) & 171.644668749228 \tabularnewline
Standard Deviation (unbiased) & 13.1932634058065 \tabularnewline
Standard Deviation (biased) & 13.10132316788 \tabularnewline
Coefficient of Variation (unbiased) & 0.325851892620497 \tabularnewline
Coefficient of Variation (biased) & 0.323581120059166 \tabularnewline
Mean Squared Error (MSE versus 0) & 1810.96555036111 \tabularnewline
Mean Squared Error (MSE versus Mean) & 171.644668749228 \tabularnewline
Mean Absolute Deviation from Mean (MAD Mean) & 8.9975424382716 \tabularnewline
Mean Absolute Deviation from Median (MAD Median) & 8.99616666666667 \tabularnewline
Median Absolute Deviation from Mean & 5.4815 \tabularnewline
Median Absolute Deviation from Median & 5.294 \tabularnewline
Mean Squared Deviation from Mean & 171.644668749228 \tabularnewline
Mean Squared Deviation from Median & 171.885777027778 \tabularnewline
Interquartile Difference (Weighted Average at Xnp) & 11.792 \tabularnewline
Interquartile Difference (Weighted Average at X(n+1)p) & 11.98475 \tabularnewline
Interquartile Difference (Empirical Distribution Function) & 11.792 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Averaging) & 11.8305 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Interpolation) & 11.67625 \tabularnewline
Interquartile Difference (Closest Observation) & 11.792 \tabularnewline
Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 11.67625 \tabularnewline
Interquartile Difference (MS Excel (old versions)) & 12.139 \tabularnewline
Semi Interquartile Difference (Weighted Average at Xnp) & 5.896 \tabularnewline
Semi Interquartile Difference (Weighted Average at X(n+1)p) & 5.992375 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function) & 5.896 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Averaging) & 5.91525 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Interpolation) & 5.838125 \tabularnewline
Semi Interquartile Difference (Closest Observation) & 5.896 \tabularnewline
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 5.838125 \tabularnewline
Semi Interquartile Difference (MS Excel (old versions)) & 6.0695 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at Xnp) & 0.142673926194797 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at X(n+1)p) & 0.144433296877778 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function) & 0.142673926194797 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) & 0.142607448302464 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) & 0.140780752177045 \tabularnewline
Coefficient of Quartile Variation (Closest Observation) & 0.142673926194797 \tabularnewline
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) & 0.140780752177045 \tabularnewline
Coefficient of Quartile Variation (MS Excel (old versions)) & 0.146258298492717 \tabularnewline
Number of all Pairs of Observations & 2556 \tabularnewline
Squared Differences between all Pairs of Observations & 348.124398589984 \tabularnewline
Mean Absolute Differences between all Pairs of Observations & 13.9549334898279 \tabularnewline
Gini Mean Difference & 13.9549334898279 \tabularnewline
Leik Measure of Dispersion & 0.525988036353001 \tabularnewline
Index of Diversity & 0.984656878593629 \tabularnewline
Index of Qualitative Variation & 0.998525285334384 \tabularnewline
Coefficient of Dispersion & 0.224952620495571 \tabularnewline
Observations & 72 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=208379&T=1

[TABLE]
[ROW][C]Variability - Ungrouped Data[/C][/ROW]
[ROW][C]Absolute range[/C][C]69.004[/C][/ROW]
[ROW][C]Relative range (unbiased)[/C][C]5.23024500288767[/C][/ROW]
[ROW][C]Relative range (biased)[/C][C]5.26694892689729[/C][/ROW]
[ROW][C]Variance (unbiased)[/C][C]174.062199294992[/C][/ROW]
[ROW][C]Variance (biased)[/C][C]171.644668749228[/C][/ROW]
[ROW][C]Standard Deviation (unbiased)[/C][C]13.1932634058065[/C][/ROW]
[ROW][C]Standard Deviation (biased)[/C][C]13.10132316788[/C][/ROW]
[ROW][C]Coefficient of Variation (unbiased)[/C][C]0.325851892620497[/C][/ROW]
[ROW][C]Coefficient of Variation (biased)[/C][C]0.323581120059166[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus 0)[/C][C]1810.96555036111[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus Mean)[/C][C]171.644668749228[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Mean (MAD Mean)[/C][C]8.9975424382716[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Median (MAD Median)[/C][C]8.99616666666667[/C][/ROW]
[ROW][C]Median Absolute Deviation from Mean[/C][C]5.4815[/C][/ROW]
[ROW][C]Median Absolute Deviation from Median[/C][C]5.294[/C][/ROW]
[ROW][C]Mean Squared Deviation from Mean[/C][C]171.644668749228[/C][/ROW]
[ROW][C]Mean Squared Deviation from Median[/C][C]171.885777027778[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at Xnp)[/C][C]11.792[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]11.98475[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function)[/C][C]11.792[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]11.8305[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]11.67625[/C][/ROW]
[ROW][C]Interquartile Difference (Closest Observation)[/C][C]11.792[/C][/ROW]
[ROW][C]Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]11.67625[/C][/ROW]
[ROW][C]Interquartile Difference (MS Excel (old versions))[/C][C]12.139[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at Xnp)[/C][C]5.896[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]5.992375[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function)[/C][C]5.896[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]5.91525[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]5.838125[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Closest Observation)[/C][C]5.896[/C][/ROW]
[ROW][C]Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]5.838125[/C][/ROW]
[ROW][C]Semi Interquartile Difference (MS Excel (old versions))[/C][C]6.0695[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at Xnp)[/C][C]0.142673926194797[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at X(n+1)p)[/C][C]0.144433296877778[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function)[/C][C]0.142673926194797[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)[/C][C]0.142607448302464[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)[/C][C]0.140780752177045[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Closest Observation)[/C][C]0.142673926194797[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)[/C][C]0.140780752177045[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (MS Excel (old versions))[/C][C]0.146258298492717[/C][/ROW]
[ROW][C]Number of all Pairs of Observations[/C][C]2556[/C][/ROW]
[ROW][C]Squared Differences between all Pairs of Observations[/C][C]348.124398589984[/C][/ROW]
[ROW][C]Mean Absolute Differences between all Pairs of Observations[/C][C]13.9549334898279[/C][/ROW]
[ROW][C]Gini Mean Difference[/C][C]13.9549334898279[/C][/ROW]
[ROW][C]Leik Measure of Dispersion[/C][C]0.525988036353001[/C][/ROW]
[ROW][C]Index of Diversity[/C][C]0.984656878593629[/C][/ROW]
[ROW][C]Index of Qualitative Variation[/C][C]0.998525285334384[/C][/ROW]
[ROW][C]Coefficient of Dispersion[/C][C]0.224952620495571[/C][/ROW]
[ROW][C]Observations[/C][C]72[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=208379&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=208379&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variability - Ungrouped Data
Absolute range69.004
Relative range (unbiased)5.23024500288767
Relative range (biased)5.26694892689729
Variance (unbiased)174.062199294992
Variance (biased)171.644668749228
Standard Deviation (unbiased)13.1932634058065
Standard Deviation (biased)13.10132316788
Coefficient of Variation (unbiased)0.325851892620497
Coefficient of Variation (biased)0.323581120059166
Mean Squared Error (MSE versus 0)1810.96555036111
Mean Squared Error (MSE versus Mean)171.644668749228
Mean Absolute Deviation from Mean (MAD Mean)8.9975424382716
Mean Absolute Deviation from Median (MAD Median)8.99616666666667
Median Absolute Deviation from Mean5.4815
Median Absolute Deviation from Median5.294
Mean Squared Deviation from Mean171.644668749228
Mean Squared Deviation from Median171.885777027778
Interquartile Difference (Weighted Average at Xnp)11.792
Interquartile Difference (Weighted Average at X(n+1)p)11.98475
Interquartile Difference (Empirical Distribution Function)11.792
Interquartile Difference (Empirical Distribution Function - Averaging)11.8305
Interquartile Difference (Empirical Distribution Function - Interpolation)11.67625
Interquartile Difference (Closest Observation)11.792
Interquartile Difference (True Basic - Statistics Graphics Toolkit)11.67625
Interquartile Difference (MS Excel (old versions))12.139
Semi Interquartile Difference (Weighted Average at Xnp)5.896
Semi Interquartile Difference (Weighted Average at X(n+1)p)5.992375
Semi Interquartile Difference (Empirical Distribution Function)5.896
Semi Interquartile Difference (Empirical Distribution Function - Averaging)5.91525
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)5.838125
Semi Interquartile Difference (Closest Observation)5.896
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)5.838125
Semi Interquartile Difference (MS Excel (old versions))6.0695
Coefficient of Quartile Variation (Weighted Average at Xnp)0.142673926194797
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.144433296877778
Coefficient of Quartile Variation (Empirical Distribution Function)0.142673926194797
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.142607448302464
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.140780752177045
Coefficient of Quartile Variation (Closest Observation)0.142673926194797
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.140780752177045
Coefficient of Quartile Variation (MS Excel (old versions))0.146258298492717
Number of all Pairs of Observations2556
Squared Differences between all Pairs of Observations348.124398589984
Mean Absolute Differences between all Pairs of Observations13.9549334898279
Gini Mean Difference13.9549334898279
Leik Measure of Dispersion0.525988036353001
Index of Diversity0.984656878593629
Index of Qualitative Variation0.998525285334384
Coefficient of Dispersion0.224952620495571
Observations72



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
num <- 50
res <- array(NA,dim=c(num,3))
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
iqd <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
iqdiff <- qvalue3 - qvalue1
return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))
}
range <- max(x) - min(x)
lx <- length(x)
biasf <- (lx-1)/lx
varx <- var(x)
bvarx <- varx*biasf
sdx <- sqrt(varx)
mx <- mean(x)
bsdx <- sqrt(bvarx)
x2 <- x*x
mse0 <- sum(x2)/lx
xmm <- x-mx
xmm2 <- xmm*xmm
msem <- sum(xmm2)/lx
axmm <- abs(x - mx)
medx <- median(x)
axmmed <- abs(x - medx)
xmmed <- x - medx
xmmed2 <- xmmed*xmmed
msemed <- sum(xmmed2)/lx
qarr <- array(NA,dim=c(8,3))
for (j in 1:8) {
qarr[j,] <- iqd(x,j)
}
sdpo <- 0
adpo <- 0
for (i in 1:(lx-1)) {
for (j in (i+1):lx) {
ldi <- x[i]-x[j]
aldi <- abs(ldi)
sdpo = sdpo + ldi * ldi
adpo = adpo + aldi
}
}
denom <- (lx*(lx-1)/2)
sdpo = sdpo / denom
adpo = adpo / denom
gmd <- 0
for (i in 1:lx) {
for (j in 1:lx) {
ldi <- abs(x[i]-x[j])
gmd = gmd + ldi
}
}
gmd <- gmd / (lx*(lx-1))
sumx <- sum(x)
pk <- x / sumx
ck <- cumsum(pk)
dk <- array(NA,dim=lx)
for (i in 1:lx) {
if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]
}
bigd <- sum(dk) * 2 / (lx-1)
iod <- 1 - sum(pk*pk)
res[1,] <- c('Absolute range','absolute.htm', range)
res[2,] <- c('Relative range (unbiased)','relative.htm', range/sd(x))
res[3,] <- c('Relative range (biased)','relative.htm', range/sqrt(varx*biasf))
res[4,] <- c('Variance (unbiased)','unbiased.htm', varx)
res[5,] <- c('Variance (biased)','biased.htm', bvarx)
res[6,] <- c('Standard Deviation (unbiased)','unbiased1.htm', sdx)
res[7,] <- c('Standard Deviation (biased)','biased1.htm', bsdx)
res[8,] <- c('Coefficient of Variation (unbiased)','variation.htm', sdx/mx)
res[9,] <- c('Coefficient of Variation (biased)','variation.htm', bsdx/mx)
res[10,] <- c('Mean Squared Error (MSE versus 0)','mse.htm', mse0)
res[11,] <- c('Mean Squared Error (MSE versus Mean)','mse.htm', msem)
res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'mean2.htm', sum(axmm)/lx)
res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'median1.htm', sum(axmmed)/lx)
res[14,] <- c('Median Absolute Deviation from Mean', 'mean3.htm', median(axmm))
res[15,] <- c('Median Absolute Deviation from Median', 'median2.htm', median(axmmed))
res[16,] <- c('Mean Squared Deviation from Mean', 'mean1.htm', msem)
res[17,] <- c('Mean Squared Deviation from Median', 'median.htm', msemed)
load(file='createtable')
mylink1 <- hyperlink('difference.htm','Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[18,] <- c('', mylink2, qarr[1,1])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[19,] <- c('', mylink2, qarr[2,1])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[20,] <- c('', mylink2, qarr[3,1])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[21,] <- c('', mylink2, qarr[4,1])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[22,] <- c('', mylink2, qarr[5,1])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[23,] <- c('', mylink2, qarr[6,1])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[24,] <- c('', mylink2, qarr[7,1])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[25,] <- c('', mylink2, qarr[8,1])
mylink1 <- hyperlink('deviation.htm','Semi Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[26,] <- c('', mylink2, qarr[1,2])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[27,] <- c('', mylink2, qarr[2,2])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[28,] <- c('', mylink2, qarr[3,2])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[29,] <- c('', mylink2, qarr[4,2])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[30,] <- c('', mylink2, qarr[5,2])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[31,] <- c('', mylink2, qarr[6,2])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[32,] <- c('', mylink2, qarr[7,2])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[33,] <- c('', mylink2, qarr[8,2])
mylink1 <- hyperlink('variation1.htm','Coefficient of Quartile Variation','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[34,] <- c('', mylink2, qarr[1,3])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[35,] <- c('', mylink2, qarr[2,3])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[36,] <- c('', mylink2, qarr[3,3])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[37,] <- c('', mylink2, qarr[4,3])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[38,] <- c('', mylink2, qarr[5,3])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[39,] <- c('', mylink2, qarr[6,3])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[40,] <- c('', mylink2, qarr[7,3])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[41,] <- c('', mylink2, qarr[8,3])
res[42,] <- c('Number of all Pairs of Observations', 'pair_numbers.htm', lx*(lx-1)/2)
res[43,] <- c('Squared Differences between all Pairs of Observations', 'squared_differences.htm', sdpo)
res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'mean_abs_differences.htm', adpo)
res[45,] <- c('Gini Mean Difference', 'gini_mean_difference.htm', gmd)
res[46,] <- c('Leik Measure of Dispersion', 'leiks_d.htm', bigd)
res[47,] <- c('Index of Diversity', 'diversity.htm', iod)
res[48,] <- c('Index of Qualitative Variation', 'qualitative_variation.htm', iod*lx/(lx-1))
res[49,] <- c('Coefficient of Dispersion', 'dispersion.htm', sum(axmm)/lx/medx)
res[50,] <- c('Observations', '', lx)
res
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)
a<-table.row.end(a)
for (i in 1:num) {
a<-table.row.start(a)
if (res[i,1] != '') {
a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)
} else {
a<-table.element(a,res[i,2],header=TRUE)
}
a<-table.element(a,res[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')