Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 19 Dec 2012 07:34:23 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/19/t1355920481dpjmynu4ex1op6q.htm/, Retrieved Thu, 31 Oct 2024 23:05:27 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=201877, Retrieved Thu, 31 Oct 2024 23:05:27 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact132
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Chi-Squared Test, McNemar Test, and Fisher Exact Test] [] [2012-12-19 12:27:00] [f1912b4bb415a9b8f93f295eb420982d]
- RM D    [Multiple Regression] [] [2012-12-19 12:34:23] [bf4e245843e41242b63589382448713e] [Current]
Feedback Forum

Post a new message
Dataseries X:
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
1	0
0	0
0	0
1	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
1	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
1	0
0	0
1	0
0	0
0	0
0	0
0	0
0	0
1	0
0	0
0	0
0	0
0	0
0	0
0	0
1	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
1	0
0	0
0	0
0	0
0	0
1	0
0	0
0	0
0	2
0	1
0	2
0	2
0	2
0	1
0	2
0	2
0	1
0	2
0	1
0	2
0	2
0	2
0	2
0	2
0	2
0	2
0	1
0	2
0	2
0	1
0	2
0	2
0	1
0	1
0	2
0	1
0	2
0	2
0	2
0	2
0	2
0	2
0	2
0	2
0	1
0	2
0	2
0	1
0	2
0	2
0	2
0	2
0	2
0	2
0	2
0	2
0	2
0	2
0	2
0	1
0	1
0	2
1	2
0	1
0	2
0	2
0	2
0	1
0	1
0	1
0	2
0	2
0	2
1	2
1	2
0	2




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time13 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 13 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201877&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]13 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201877&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201877&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time13 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Multiple Linear Regression - Estimated Regression Equation
CorrectAnalysis[t] = + 0.097519247219846 -0.0253610426206411T20[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
CorrectAnalysis[t] =  +  0.097519247219846 -0.0253610426206411T20[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201877&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]CorrectAnalysis[t] =  +  0.097519247219846 -0.0253610426206411T20[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201877&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201877&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
CorrectAnalysis[t] = + 0.097519247219846 -0.0253610426206411T20[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)0.0975192472198460.0283453.44040.000750.000375
T20-0.02536104262064110.023662-1.07180.2855010.14275

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 0.097519247219846 & 0.028345 & 3.4404 & 0.00075 & 0.000375 \tabularnewline
T20 & -0.0253610426206411 & 0.023662 & -1.0718 & 0.285501 & 0.14275 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201877&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]0.097519247219846[/C][C]0.028345[/C][C]3.4404[/C][C]0.00075[/C][C]0.000375[/C][/ROW]
[ROW][C]T20[/C][C]-0.0253610426206411[/C][C]0.023662[/C][C]-1.0718[/C][C]0.285501[/C][C]0.14275[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201877&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201877&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)0.0975192472198460.0283453.44040.000750.000375
T20-0.02536104262064110.023662-1.07180.2855010.14275







Multiple Linear Regression - Regression Statistics
Multiple R0.0866091995758853
R-squared0.00750115345117552
Adjusted R-squared0.000971555776512201
F-TEST (value)1.14879259411068
F-TEST (DF numerator)1
F-TEST (DF denominator)152
p-value0.285500871611207
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.268792809186371
Sum Squared Residuals10.9819352890857

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.0866091995758853 \tabularnewline
R-squared & 0.00750115345117552 \tabularnewline
Adjusted R-squared & 0.000971555776512201 \tabularnewline
F-TEST (value) & 1.14879259411068 \tabularnewline
F-TEST (DF numerator) & 1 \tabularnewline
F-TEST (DF denominator) & 152 \tabularnewline
p-value & 0.285500871611207 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 0.268792809186371 \tabularnewline
Sum Squared Residuals & 10.9819352890857 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201877&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.0866091995758853[/C][/ROW]
[ROW][C]R-squared[/C][C]0.00750115345117552[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.000971555776512201[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]1.14879259411068[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]1[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]152[/C][/ROW]
[ROW][C]p-value[/C][C]0.285500871611207[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]0.268792809186371[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]10.9819352890857[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201877&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201877&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.0866091995758853
R-squared0.00750115345117552
Adjusted R-squared0.000971555776512201
F-TEST (value)1.14879259411068
F-TEST (DF numerator)1
F-TEST (DF denominator)152
p-value0.285500871611207
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.268792809186371
Sum Squared Residuals10.9819352890857







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
100.0975192472198461-0.0975192472198461
200.097519247219846-0.097519247219846
300.097519247219846-0.097519247219846
400.097519247219846-0.097519247219846
500.097519247219846-0.097519247219846
600.097519247219846-0.097519247219846
700.097519247219846-0.097519247219846
800.097519247219846-0.097519247219846
900.097519247219846-0.097519247219846
1000.097519247219846-0.097519247219846
1100.097519247219846-0.097519247219846
1200.097519247219846-0.097519247219846
1300.097519247219846-0.097519247219846
1400.097519247219846-0.097519247219846
1500.097519247219846-0.097519247219846
1600.097519247219846-0.097519247219846
1710.0975192472198460.902480752780154
1800.097519247219846-0.097519247219846
1900.097519247219846-0.097519247219846
2010.0975192472198460.902480752780154
2100.097519247219846-0.097519247219846
2200.097519247219846-0.097519247219846
2300.097519247219846-0.097519247219846
2400.097519247219846-0.097519247219846
2500.097519247219846-0.097519247219846
2600.097519247219846-0.097519247219846
2700.097519247219846-0.097519247219846
2800.097519247219846-0.097519247219846
2900.097519247219846-0.097519247219846
3000.097519247219846-0.097519247219846
3100.097519247219846-0.097519247219846
3200.097519247219846-0.097519247219846
3300.097519247219846-0.097519247219846
3400.097519247219846-0.097519247219846
3500.097519247219846-0.097519247219846
3600.097519247219846-0.097519247219846
3700.097519247219846-0.097519247219846
3800.097519247219846-0.097519247219846
3900.097519247219846-0.097519247219846
4000.097519247219846-0.097519247219846
4110.0975192472198460.902480752780154
4200.097519247219846-0.097519247219846
4300.097519247219846-0.097519247219846
4400.097519247219846-0.097519247219846
4500.097519247219846-0.097519247219846
4600.097519247219846-0.097519247219846
4700.097519247219846-0.097519247219846
4800.097519247219846-0.097519247219846
4900.097519247219846-0.097519247219846
5000.097519247219846-0.097519247219846
5100.097519247219846-0.097519247219846
5210.0975192472198460.902480752780154
5300.097519247219846-0.097519247219846
5410.0975192472198460.902480752780154
5500.097519247219846-0.097519247219846
5600.097519247219846-0.097519247219846
5700.097519247219846-0.097519247219846
5800.097519247219846-0.097519247219846
5900.097519247219846-0.097519247219846
6010.0975192472198460.902480752780154
6100.097519247219846-0.097519247219846
6200.097519247219846-0.097519247219846
6300.097519247219846-0.097519247219846
6400.097519247219846-0.097519247219846
6500.097519247219846-0.097519247219846
6600.097519247219846-0.097519247219846
6710.0975192472198460.902480752780154
6800.097519247219846-0.097519247219846
6900.097519247219846-0.097519247219846
7000.097519247219846-0.097519247219846
7100.097519247219846-0.097519247219846
7200.097519247219846-0.097519247219846
7300.097519247219846-0.097519247219846
7400.097519247219846-0.097519247219846
7500.097519247219846-0.097519247219846
7600.097519247219846-0.097519247219846
7700.097519247219846-0.097519247219846
7800.097519247219846-0.097519247219846
7910.0975192472198460.902480752780154
8000.097519247219846-0.097519247219846
8100.097519247219846-0.097519247219846
8200.097519247219846-0.097519247219846
8300.097519247219846-0.097519247219846
8410.0975192472198460.902480752780154
8500.097519247219846-0.097519247219846
8600.097519247219846-0.097519247219846
8700.0467971619785639-0.0467971619785639
8800.072158204599205-0.072158204599205
8900.0467971619785639-0.0467971619785639
9000.0467971619785639-0.0467971619785639
9100.0467971619785639-0.0467971619785639
9200.072158204599205-0.072158204599205
9300.0467971619785639-0.0467971619785639
9400.0467971619785639-0.0467971619785639
9500.072158204599205-0.072158204599205
9600.0467971619785639-0.0467971619785639
9700.072158204599205-0.072158204599205
9800.0467971619785639-0.0467971619785639
9900.0467971619785639-0.0467971619785639
10000.0467971619785639-0.0467971619785639
10100.0467971619785639-0.0467971619785639
10200.0467971619785639-0.0467971619785639
10300.0467971619785639-0.0467971619785639
10400.0467971619785639-0.0467971619785639
10500.072158204599205-0.072158204599205
10600.0467971619785639-0.0467971619785639
10700.0467971619785639-0.0467971619785639
10800.072158204599205-0.072158204599205
10900.0467971619785639-0.0467971619785639
11000.0467971619785639-0.0467971619785639
11100.072158204599205-0.072158204599205
11200.072158204599205-0.072158204599205
11300.0467971619785639-0.0467971619785639
11400.072158204599205-0.072158204599205
11500.0467971619785639-0.0467971619785639
11600.0467971619785639-0.0467971619785639
11700.0467971619785639-0.0467971619785639
11800.0467971619785639-0.0467971619785639
11900.0467971619785639-0.0467971619785639
12000.0467971619785639-0.0467971619785639
12100.0467971619785639-0.0467971619785639
12200.0467971619785639-0.0467971619785639
12300.072158204599205-0.072158204599205
12400.0467971619785639-0.0467971619785639
12500.0467971619785639-0.0467971619785639
12600.072158204599205-0.072158204599205
12700.0467971619785639-0.0467971619785639
12800.0467971619785639-0.0467971619785639
12900.0467971619785639-0.0467971619785639
13000.0467971619785639-0.0467971619785639
13100.0467971619785639-0.0467971619785639
13200.0467971619785639-0.0467971619785639
13300.0467971619785639-0.0467971619785639
13400.0467971619785639-0.0467971619785639
13500.0467971619785639-0.0467971619785639
13600.0467971619785639-0.0467971619785639
13700.0467971619785639-0.0467971619785639
13800.072158204599205-0.072158204599205
13900.072158204599205-0.072158204599205
14000.0467971619785639-0.0467971619785639
14110.04679716197856390.953202838021436
14200.072158204599205-0.072158204599205
14300.0467971619785639-0.0467971619785639
14400.0467971619785639-0.0467971619785639
14500.0467971619785639-0.0467971619785639
14600.072158204599205-0.072158204599205
14700.072158204599205-0.072158204599205
14800.072158204599205-0.072158204599205
14900.0467971619785639-0.0467971619785639
15000.0467971619785639-0.0467971619785639
15100.0467971619785639-0.0467971619785639
15210.04679716197856390.953202838021436
15310.04679716197856390.953202838021436
15400.0467971619785639-0.0467971619785639

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 0 & 0.0975192472198461 & -0.0975192472198461 \tabularnewline
2 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
3 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
4 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
5 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
6 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
7 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
8 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
9 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
10 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
11 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
12 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
13 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
14 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
15 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
16 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
17 & 1 & 0.097519247219846 & 0.902480752780154 \tabularnewline
18 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
19 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
20 & 1 & 0.097519247219846 & 0.902480752780154 \tabularnewline
21 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
22 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
23 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
24 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
25 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
26 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
27 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
28 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
29 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
30 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
31 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
32 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
33 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
34 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
35 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
36 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
37 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
38 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
39 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
40 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
41 & 1 & 0.097519247219846 & 0.902480752780154 \tabularnewline
42 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
43 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
44 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
45 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
46 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
47 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
48 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
49 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
50 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
51 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
52 & 1 & 0.097519247219846 & 0.902480752780154 \tabularnewline
53 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
54 & 1 & 0.097519247219846 & 0.902480752780154 \tabularnewline
55 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
56 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
57 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
58 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
59 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
60 & 1 & 0.097519247219846 & 0.902480752780154 \tabularnewline
61 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
62 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
63 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
64 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
65 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
66 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
67 & 1 & 0.097519247219846 & 0.902480752780154 \tabularnewline
68 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
69 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
70 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
71 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
72 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
73 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
74 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
75 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
76 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
77 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
78 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
79 & 1 & 0.097519247219846 & 0.902480752780154 \tabularnewline
80 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
81 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
82 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
83 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
84 & 1 & 0.097519247219846 & 0.902480752780154 \tabularnewline
85 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
86 & 0 & 0.097519247219846 & -0.097519247219846 \tabularnewline
87 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
88 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
89 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
90 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
91 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
92 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
93 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
94 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
95 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
96 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
97 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
98 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
99 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
100 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
101 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
102 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
103 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
104 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
105 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
106 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
107 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
108 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
109 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
110 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
111 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
112 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
113 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
114 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
115 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
116 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
117 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
118 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
119 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
120 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
121 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
122 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
123 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
124 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
125 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
126 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
127 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
128 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
129 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
130 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
131 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
132 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
133 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
134 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
135 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
136 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
137 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
138 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
139 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
140 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
141 & 1 & 0.0467971619785639 & 0.953202838021436 \tabularnewline
142 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
143 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
144 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
145 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
146 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
147 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
148 & 0 & 0.072158204599205 & -0.072158204599205 \tabularnewline
149 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
150 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
151 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
152 & 1 & 0.0467971619785639 & 0.953202838021436 \tabularnewline
153 & 1 & 0.0467971619785639 & 0.953202838021436 \tabularnewline
154 & 0 & 0.0467971619785639 & -0.0467971619785639 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201877&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]0[/C][C]0.0975192472198461[/C][C]-0.0975192472198461[/C][/ROW]
[ROW][C]2[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]3[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]4[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]5[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]6[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]7[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]8[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]9[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]10[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]11[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]12[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]13[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]14[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]15[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]16[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]17[/C][C]1[/C][C]0.097519247219846[/C][C]0.902480752780154[/C][/ROW]
[ROW][C]18[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]19[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]20[/C][C]1[/C][C]0.097519247219846[/C][C]0.902480752780154[/C][/ROW]
[ROW][C]21[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]22[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]23[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]24[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]25[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]26[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]27[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]28[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]29[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]30[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]31[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]32[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]33[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]34[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]35[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]36[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]37[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]38[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]39[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]40[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]41[/C][C]1[/C][C]0.097519247219846[/C][C]0.902480752780154[/C][/ROW]
[ROW][C]42[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]43[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]44[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]45[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]46[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]47[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]48[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]49[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]50[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]51[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]52[/C][C]1[/C][C]0.097519247219846[/C][C]0.902480752780154[/C][/ROW]
[ROW][C]53[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]54[/C][C]1[/C][C]0.097519247219846[/C][C]0.902480752780154[/C][/ROW]
[ROW][C]55[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]56[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]57[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]58[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]59[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]60[/C][C]1[/C][C]0.097519247219846[/C][C]0.902480752780154[/C][/ROW]
[ROW][C]61[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]62[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]63[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]64[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]65[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]66[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]67[/C][C]1[/C][C]0.097519247219846[/C][C]0.902480752780154[/C][/ROW]
[ROW][C]68[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]69[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]70[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]71[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]72[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]73[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]74[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]75[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]76[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]77[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]78[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]79[/C][C]1[/C][C]0.097519247219846[/C][C]0.902480752780154[/C][/ROW]
[ROW][C]80[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]81[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]82[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]83[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]84[/C][C]1[/C][C]0.097519247219846[/C][C]0.902480752780154[/C][/ROW]
[ROW][C]85[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]86[/C][C]0[/C][C]0.097519247219846[/C][C]-0.097519247219846[/C][/ROW]
[ROW][C]87[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]88[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]89[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]90[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]91[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]92[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]93[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]94[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]95[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]96[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]97[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]98[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]99[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]100[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]101[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]102[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]103[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]104[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]105[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]106[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]107[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]108[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]109[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]110[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]111[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]112[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]113[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]114[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]115[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]116[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]117[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]118[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]119[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]120[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]121[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]122[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]123[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]124[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]125[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]126[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]127[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]128[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]129[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]130[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]131[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]132[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]133[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]134[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]135[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]136[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]137[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]138[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]139[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]140[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]141[/C][C]1[/C][C]0.0467971619785639[/C][C]0.953202838021436[/C][/ROW]
[ROW][C]142[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]143[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]144[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]145[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]146[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]147[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]148[/C][C]0[/C][C]0.072158204599205[/C][C]-0.072158204599205[/C][/ROW]
[ROW][C]149[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]150[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]151[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[ROW][C]152[/C][C]1[/C][C]0.0467971619785639[/C][C]0.953202838021436[/C][/ROW]
[ROW][C]153[/C][C]1[/C][C]0.0467971619785639[/C][C]0.953202838021436[/C][/ROW]
[ROW][C]154[/C][C]0[/C][C]0.0467971619785639[/C][C]-0.0467971619785639[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201877&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201877&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
100.0975192472198461-0.0975192472198461
200.097519247219846-0.097519247219846
300.097519247219846-0.097519247219846
400.097519247219846-0.097519247219846
500.097519247219846-0.097519247219846
600.097519247219846-0.097519247219846
700.097519247219846-0.097519247219846
800.097519247219846-0.097519247219846
900.097519247219846-0.097519247219846
1000.097519247219846-0.097519247219846
1100.097519247219846-0.097519247219846
1200.097519247219846-0.097519247219846
1300.097519247219846-0.097519247219846
1400.097519247219846-0.097519247219846
1500.097519247219846-0.097519247219846
1600.097519247219846-0.097519247219846
1710.0975192472198460.902480752780154
1800.097519247219846-0.097519247219846
1900.097519247219846-0.097519247219846
2010.0975192472198460.902480752780154
2100.097519247219846-0.097519247219846
2200.097519247219846-0.097519247219846
2300.097519247219846-0.097519247219846
2400.097519247219846-0.097519247219846
2500.097519247219846-0.097519247219846
2600.097519247219846-0.097519247219846
2700.097519247219846-0.097519247219846
2800.097519247219846-0.097519247219846
2900.097519247219846-0.097519247219846
3000.097519247219846-0.097519247219846
3100.097519247219846-0.097519247219846
3200.097519247219846-0.097519247219846
3300.097519247219846-0.097519247219846
3400.097519247219846-0.097519247219846
3500.097519247219846-0.097519247219846
3600.097519247219846-0.097519247219846
3700.097519247219846-0.097519247219846
3800.097519247219846-0.097519247219846
3900.097519247219846-0.097519247219846
4000.097519247219846-0.097519247219846
4110.0975192472198460.902480752780154
4200.097519247219846-0.097519247219846
4300.097519247219846-0.097519247219846
4400.097519247219846-0.097519247219846
4500.097519247219846-0.097519247219846
4600.097519247219846-0.097519247219846
4700.097519247219846-0.097519247219846
4800.097519247219846-0.097519247219846
4900.097519247219846-0.097519247219846
5000.097519247219846-0.097519247219846
5100.097519247219846-0.097519247219846
5210.0975192472198460.902480752780154
5300.097519247219846-0.097519247219846
5410.0975192472198460.902480752780154
5500.097519247219846-0.097519247219846
5600.097519247219846-0.097519247219846
5700.097519247219846-0.097519247219846
5800.097519247219846-0.097519247219846
5900.097519247219846-0.097519247219846
6010.0975192472198460.902480752780154
6100.097519247219846-0.097519247219846
6200.097519247219846-0.097519247219846
6300.097519247219846-0.097519247219846
6400.097519247219846-0.097519247219846
6500.097519247219846-0.097519247219846
6600.097519247219846-0.097519247219846
6710.0975192472198460.902480752780154
6800.097519247219846-0.097519247219846
6900.097519247219846-0.097519247219846
7000.097519247219846-0.097519247219846
7100.097519247219846-0.097519247219846
7200.097519247219846-0.097519247219846
7300.097519247219846-0.097519247219846
7400.097519247219846-0.097519247219846
7500.097519247219846-0.097519247219846
7600.097519247219846-0.097519247219846
7700.097519247219846-0.097519247219846
7800.097519247219846-0.097519247219846
7910.0975192472198460.902480752780154
8000.097519247219846-0.097519247219846
8100.097519247219846-0.097519247219846
8200.097519247219846-0.097519247219846
8300.097519247219846-0.097519247219846
8410.0975192472198460.902480752780154
8500.097519247219846-0.097519247219846
8600.097519247219846-0.097519247219846
8700.0467971619785639-0.0467971619785639
8800.072158204599205-0.072158204599205
8900.0467971619785639-0.0467971619785639
9000.0467971619785639-0.0467971619785639
9100.0467971619785639-0.0467971619785639
9200.072158204599205-0.072158204599205
9300.0467971619785639-0.0467971619785639
9400.0467971619785639-0.0467971619785639
9500.072158204599205-0.072158204599205
9600.0467971619785639-0.0467971619785639
9700.072158204599205-0.072158204599205
9800.0467971619785639-0.0467971619785639
9900.0467971619785639-0.0467971619785639
10000.0467971619785639-0.0467971619785639
10100.0467971619785639-0.0467971619785639
10200.0467971619785639-0.0467971619785639
10300.0467971619785639-0.0467971619785639
10400.0467971619785639-0.0467971619785639
10500.072158204599205-0.072158204599205
10600.0467971619785639-0.0467971619785639
10700.0467971619785639-0.0467971619785639
10800.072158204599205-0.072158204599205
10900.0467971619785639-0.0467971619785639
11000.0467971619785639-0.0467971619785639
11100.072158204599205-0.072158204599205
11200.072158204599205-0.072158204599205
11300.0467971619785639-0.0467971619785639
11400.072158204599205-0.072158204599205
11500.0467971619785639-0.0467971619785639
11600.0467971619785639-0.0467971619785639
11700.0467971619785639-0.0467971619785639
11800.0467971619785639-0.0467971619785639
11900.0467971619785639-0.0467971619785639
12000.0467971619785639-0.0467971619785639
12100.0467971619785639-0.0467971619785639
12200.0467971619785639-0.0467971619785639
12300.072158204599205-0.072158204599205
12400.0467971619785639-0.0467971619785639
12500.0467971619785639-0.0467971619785639
12600.072158204599205-0.072158204599205
12700.0467971619785639-0.0467971619785639
12800.0467971619785639-0.0467971619785639
12900.0467971619785639-0.0467971619785639
13000.0467971619785639-0.0467971619785639
13100.0467971619785639-0.0467971619785639
13200.0467971619785639-0.0467971619785639
13300.0467971619785639-0.0467971619785639
13400.0467971619785639-0.0467971619785639
13500.0467971619785639-0.0467971619785639
13600.0467971619785639-0.0467971619785639
13700.0467971619785639-0.0467971619785639
13800.072158204599205-0.072158204599205
13900.072158204599205-0.072158204599205
14000.0467971619785639-0.0467971619785639
14110.04679716197856390.953202838021436
14200.072158204599205-0.072158204599205
14300.0467971619785639-0.0467971619785639
14400.0467971619785639-0.0467971619785639
14500.0467971619785639-0.0467971619785639
14600.072158204599205-0.072158204599205
14700.072158204599205-0.072158204599205
14800.072158204599205-0.072158204599205
14900.0467971619785639-0.0467971619785639
15000.0467971619785639-0.0467971619785639
15100.0467971619785639-0.0467971619785639
15210.04679716197856390.953202838021436
15310.04679716197856390.953202838021436
15400.0467971619785639-0.0467971619785639







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
5001
6001
7001
8001
9001
10001
11001
12001
13001
14001
15001
16001
170.3750095424875840.7500190849751680.624990457512416
180.3065967865921320.6131935731842640.693403213407868
190.2453743086337050.4907486172674090.754625691366295
200.8757404267541790.2485191464916420.124259573245821
210.841923435003950.3161531299920990.15807656499605
220.8029532825875640.3940934348248720.197046717412436
230.7591033463185290.4817933073629430.240896653681471
240.7108930342111930.5782139315776140.289106965788807
250.6590692146043470.6818615707913060.340930785395653
260.604567372415120.790865255169760.39543262758488
270.5484563385134340.9030873229731330.451543661486566
280.4918724057613670.9837448115227340.508127594238633
290.4359497282504120.8718994565008240.564050271749588
300.3817539814940520.7635079629881040.618246018505948
310.330225404555240.660450809110480.66977459544476
320.2821357651864620.5642715303729240.717864234813538
330.2380617955066970.4761235910133940.761938204493303
340.1983755750890.3967511501780.801624424911
350.1632504914839510.3265009829679020.836749508516049
360.1326800045116510.2653600090233010.867319995488349
370.1065055951202710.2130111902405420.893494404879729
380.08445000326531390.1689000065306280.915549996734686
390.06615207797332580.1323041559466520.933847922026674
400.05120014689450390.1024002937890080.948799853105496
410.4713031119633180.9426062239266370.528696888036681
420.4242937386691170.8485874773382340.575706261330883
430.3786294835490740.7572589670981470.621370516450926
440.3348839106971110.6697678213942210.665116089302889
450.2935439163521260.5870878327042520.706456083647874
460.2549961804817050.5099923609634090.745003819518295
470.2195202089174540.4390404178349070.780479791082546
480.1872877701558630.3745755403117270.812712229844137
490.1583680458229590.3167360916459170.841631954177041
500.1327374517345720.2654749034691450.867262548265428
510.1102928680830980.2205857361661960.889707131916902
520.5435290109473410.9129419781053180.456470989052659
530.5007959047257280.9984081905485440.499204095274272
540.8855675588686680.2288648822626640.114432441131332
550.8639355769157440.2721288461685130.136064423084256
560.8397836183642580.3204327632714840.160216381635742
570.8131375160004050.373724967999190.186862483999595
580.7840857995826610.4318284008346790.215914200417339
590.7527818610038150.494436277992370.247218138996185
600.9672110679408280.06557786411834440.0327889320591722
610.9589182486283710.08216350274325890.0410817513716294
620.949046118038010.101907763923980.0509538819619902
630.9374325802741050.125134839451790.0625674197258948
640.9239322197409860.1521355605180280.076067780259014
650.90842511295920.1831497740815990.0915748870407997
660.8908259757085520.2183480485828960.109174024291448
670.9918764862253010.01624702754939740.00812351377469868
680.9892746204681060.02145075906378790.010725379531894
690.9859889129287240.02802217414255160.0140110870712758
700.9818906194378390.03621876112432290.0181093805621615
710.9768428007416640.04631439851667250.0231571992583363
720.9707051613457470.05858967730850650.0292948386542533
730.9633408896739150.07331822065217080.0366591103260854
740.9546258234289730.09074835314205430.0453741765710272
750.9444603134124110.1110793731751780.0555396865875892
760.9327842861139380.1344314277721250.0672157138860624
770.919596291432970.160807417134060.0804037085670302
780.9049779168499920.1900441663000150.0950220831500077
790.9940294139364010.01194117212719730.00597058606359867
800.9919912255745760.01601754885084810.00800877442542407
810.9893951321236850.02120973575263050.0106048678763152
820.9861508926771520.02769821464569660.0138491073228483
830.982190186612310.03561962677538010.0178098133876901
840.9998256531293230.0003486937413545440.000174346870677272
850.9997343057513930.000531388497213950.000265694248606975
860.9996011729254090.0007976541491830070.000398827074591503
870.9993984262094510.00120314758109760.0006015737905488
880.9990910795062620.001817840987476250.000908920493738125
890.9986624369983750.00267512600324930.00133756300162465
900.9980550762571750.003889847485650620.00194492374282531
910.9972060202408090.005587959518382960.00279397975919148
920.9959783132833470.008043373433305410.00402168671665271
930.9943605464736740.01127890705265180.00563945352632588
940.9921867969831090.01562640603378210.00781320301689107
950.9891529371902930.02169412561941320.0108470628097066
960.9853277032323920.02934459353521620.0146722967676081
970.9801170447383180.03976591052336510.0198829552616825
980.9737385185967320.05252296280653690.0262614814032684
990.9657227902869980.06855441942600310.0342772097130015
1000.9557859916717460.08842801665650860.0442140083282543
1010.9436351923225340.1127296153549330.0563648076774664
1020.9289800317483490.1420399365033010.0710199682516506
1030.9115469115672720.1769061768654550.0884530884327275
1040.8910952249314660.2178095501370690.108904775068534
1050.865632418097850.2687351638042990.13436758190215
1060.8382738603986070.3234522792027860.161726139601393
1070.8075032158265640.3849935683468720.192496784173436
1080.7705147380692530.4589705238614940.229485261930747
1090.7327669856976860.5344660286046280.267233014302314
1100.6921023421252230.6157953157495540.307897657874777
1110.6449050654284710.7101898691430590.355094934571529
1120.5950840805104260.8098318389791480.404915919489574
1130.5476602151092190.9046795697815610.452339784890781
1140.4949064625739960.9898129251479930.505093537426004
1150.4464887514230620.8929775028461230.553511248576938
1160.3988382143154940.7976764286309890.601161785684506
1170.3526501573220.7053003146440.647349842678
1180.3085580809706850.6171161619413690.691441919029315
1190.2671069526253740.5342139052507490.732893047374626
1200.2287327063217730.4574654126435460.771267293678227
1210.193749293709610.3874985874192190.806250706290391
1220.1623438755598640.3246877511197270.837656124440136
1230.1299683581581370.2599367163162740.870031641841863
1240.1060188523886210.2120377047772420.893981147611379
1250.08554079726852510.171081594537050.914459202731475
1260.06494898399846560.1298979679969310.935051016001534
1270.05092947869719970.1018589573943990.9490705213028
1280.03952493293930020.07904986587860040.9604750670607
1290.03038814643145750.06077629286291490.969611853568543
1300.02317700850849390.04635401701698780.976822991491506
1310.01756850633900610.03513701267801230.982431493660994
1320.01326873155455110.02653746310910230.986731268445449
1330.01001905976449170.02003811952898350.989980940235508
1340.007599025464745270.01519805092949050.992400974535255
1350.005826683739771250.01165336747954250.994173316260229
1360.004557497046452110.009114994092904230.995442502953548
1370.003683182959343240.007366365918686480.996316817040657
1380.002152721537919470.004305443075838950.997847278462081
1390.001208601272559920.002417202545119840.99879139872744
1400.0009786249484343210.001957249896868640.999021375051566
1410.01966023138230770.03932046276461540.980339768617692
1420.01172981798092340.02345963596184680.988270182019077
1430.008662085296792220.01732417059358440.991337914703208
1440.006719595319277970.01343919063855590.993280404680722
1450.005752213565702050.01150442713140410.994247786434298
1460.002792184182725110.005584368365450220.997207815817275
1470.001226629406462050.00245325881292410.998773370593538
1480.0004758329102899770.0009516658205799550.99952416708971
1490.0003854771499382910.0007709542998765810.999614522850062

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
5 & 0 & 0 & 1 \tabularnewline
6 & 0 & 0 & 1 \tabularnewline
7 & 0 & 0 & 1 \tabularnewline
8 & 0 & 0 & 1 \tabularnewline
9 & 0 & 0 & 1 \tabularnewline
10 & 0 & 0 & 1 \tabularnewline
11 & 0 & 0 & 1 \tabularnewline
12 & 0 & 0 & 1 \tabularnewline
13 & 0 & 0 & 1 \tabularnewline
14 & 0 & 0 & 1 \tabularnewline
15 & 0 & 0 & 1 \tabularnewline
16 & 0 & 0 & 1 \tabularnewline
17 & 0.375009542487584 & 0.750019084975168 & 0.624990457512416 \tabularnewline
18 & 0.306596786592132 & 0.613193573184264 & 0.693403213407868 \tabularnewline
19 & 0.245374308633705 & 0.490748617267409 & 0.754625691366295 \tabularnewline
20 & 0.875740426754179 & 0.248519146491642 & 0.124259573245821 \tabularnewline
21 & 0.84192343500395 & 0.316153129992099 & 0.15807656499605 \tabularnewline
22 & 0.802953282587564 & 0.394093434824872 & 0.197046717412436 \tabularnewline
23 & 0.759103346318529 & 0.481793307362943 & 0.240896653681471 \tabularnewline
24 & 0.710893034211193 & 0.578213931577614 & 0.289106965788807 \tabularnewline
25 & 0.659069214604347 & 0.681861570791306 & 0.340930785395653 \tabularnewline
26 & 0.60456737241512 & 0.79086525516976 & 0.39543262758488 \tabularnewline
27 & 0.548456338513434 & 0.903087322973133 & 0.451543661486566 \tabularnewline
28 & 0.491872405761367 & 0.983744811522734 & 0.508127594238633 \tabularnewline
29 & 0.435949728250412 & 0.871899456500824 & 0.564050271749588 \tabularnewline
30 & 0.381753981494052 & 0.763507962988104 & 0.618246018505948 \tabularnewline
31 & 0.33022540455524 & 0.66045080911048 & 0.66977459544476 \tabularnewline
32 & 0.282135765186462 & 0.564271530372924 & 0.717864234813538 \tabularnewline
33 & 0.238061795506697 & 0.476123591013394 & 0.761938204493303 \tabularnewline
34 & 0.198375575089 & 0.396751150178 & 0.801624424911 \tabularnewline
35 & 0.163250491483951 & 0.326500982967902 & 0.836749508516049 \tabularnewline
36 & 0.132680004511651 & 0.265360009023301 & 0.867319995488349 \tabularnewline
37 & 0.106505595120271 & 0.213011190240542 & 0.893494404879729 \tabularnewline
38 & 0.0844500032653139 & 0.168900006530628 & 0.915549996734686 \tabularnewline
39 & 0.0661520779733258 & 0.132304155946652 & 0.933847922026674 \tabularnewline
40 & 0.0512001468945039 & 0.102400293789008 & 0.948799853105496 \tabularnewline
41 & 0.471303111963318 & 0.942606223926637 & 0.528696888036681 \tabularnewline
42 & 0.424293738669117 & 0.848587477338234 & 0.575706261330883 \tabularnewline
43 & 0.378629483549074 & 0.757258967098147 & 0.621370516450926 \tabularnewline
44 & 0.334883910697111 & 0.669767821394221 & 0.665116089302889 \tabularnewline
45 & 0.293543916352126 & 0.587087832704252 & 0.706456083647874 \tabularnewline
46 & 0.254996180481705 & 0.509992360963409 & 0.745003819518295 \tabularnewline
47 & 0.219520208917454 & 0.439040417834907 & 0.780479791082546 \tabularnewline
48 & 0.187287770155863 & 0.374575540311727 & 0.812712229844137 \tabularnewline
49 & 0.158368045822959 & 0.316736091645917 & 0.841631954177041 \tabularnewline
50 & 0.132737451734572 & 0.265474903469145 & 0.867262548265428 \tabularnewline
51 & 0.110292868083098 & 0.220585736166196 & 0.889707131916902 \tabularnewline
52 & 0.543529010947341 & 0.912941978105318 & 0.456470989052659 \tabularnewline
53 & 0.500795904725728 & 0.998408190548544 & 0.499204095274272 \tabularnewline
54 & 0.885567558868668 & 0.228864882262664 & 0.114432441131332 \tabularnewline
55 & 0.863935576915744 & 0.272128846168513 & 0.136064423084256 \tabularnewline
56 & 0.839783618364258 & 0.320432763271484 & 0.160216381635742 \tabularnewline
57 & 0.813137516000405 & 0.37372496799919 & 0.186862483999595 \tabularnewline
58 & 0.784085799582661 & 0.431828400834679 & 0.215914200417339 \tabularnewline
59 & 0.752781861003815 & 0.49443627799237 & 0.247218138996185 \tabularnewline
60 & 0.967211067940828 & 0.0655778641183444 & 0.0327889320591722 \tabularnewline
61 & 0.958918248628371 & 0.0821635027432589 & 0.0410817513716294 \tabularnewline
62 & 0.94904611803801 & 0.10190776392398 & 0.0509538819619902 \tabularnewline
63 & 0.937432580274105 & 0.12513483945179 & 0.0625674197258948 \tabularnewline
64 & 0.923932219740986 & 0.152135560518028 & 0.076067780259014 \tabularnewline
65 & 0.9084251129592 & 0.183149774081599 & 0.0915748870407997 \tabularnewline
66 & 0.890825975708552 & 0.218348048582896 & 0.109174024291448 \tabularnewline
67 & 0.991876486225301 & 0.0162470275493974 & 0.00812351377469868 \tabularnewline
68 & 0.989274620468106 & 0.0214507590637879 & 0.010725379531894 \tabularnewline
69 & 0.985988912928724 & 0.0280221741425516 & 0.0140110870712758 \tabularnewline
70 & 0.981890619437839 & 0.0362187611243229 & 0.0181093805621615 \tabularnewline
71 & 0.976842800741664 & 0.0463143985166725 & 0.0231571992583363 \tabularnewline
72 & 0.970705161345747 & 0.0585896773085065 & 0.0292948386542533 \tabularnewline
73 & 0.963340889673915 & 0.0733182206521708 & 0.0366591103260854 \tabularnewline
74 & 0.954625823428973 & 0.0907483531420543 & 0.0453741765710272 \tabularnewline
75 & 0.944460313412411 & 0.111079373175178 & 0.0555396865875892 \tabularnewline
76 & 0.932784286113938 & 0.134431427772125 & 0.0672157138860624 \tabularnewline
77 & 0.91959629143297 & 0.16080741713406 & 0.0804037085670302 \tabularnewline
78 & 0.904977916849992 & 0.190044166300015 & 0.0950220831500077 \tabularnewline
79 & 0.994029413936401 & 0.0119411721271973 & 0.00597058606359867 \tabularnewline
80 & 0.991991225574576 & 0.0160175488508481 & 0.00800877442542407 \tabularnewline
81 & 0.989395132123685 & 0.0212097357526305 & 0.0106048678763152 \tabularnewline
82 & 0.986150892677152 & 0.0276982146456966 & 0.0138491073228483 \tabularnewline
83 & 0.98219018661231 & 0.0356196267753801 & 0.0178098133876901 \tabularnewline
84 & 0.999825653129323 & 0.000348693741354544 & 0.000174346870677272 \tabularnewline
85 & 0.999734305751393 & 0.00053138849721395 & 0.000265694248606975 \tabularnewline
86 & 0.999601172925409 & 0.000797654149183007 & 0.000398827074591503 \tabularnewline
87 & 0.999398426209451 & 0.0012031475810976 & 0.0006015737905488 \tabularnewline
88 & 0.999091079506262 & 0.00181784098747625 & 0.000908920493738125 \tabularnewline
89 & 0.998662436998375 & 0.0026751260032493 & 0.00133756300162465 \tabularnewline
90 & 0.998055076257175 & 0.00388984748565062 & 0.00194492374282531 \tabularnewline
91 & 0.997206020240809 & 0.00558795951838296 & 0.00279397975919148 \tabularnewline
92 & 0.995978313283347 & 0.00804337343330541 & 0.00402168671665271 \tabularnewline
93 & 0.994360546473674 & 0.0112789070526518 & 0.00563945352632588 \tabularnewline
94 & 0.992186796983109 & 0.0156264060337821 & 0.00781320301689107 \tabularnewline
95 & 0.989152937190293 & 0.0216941256194132 & 0.0108470628097066 \tabularnewline
96 & 0.985327703232392 & 0.0293445935352162 & 0.0146722967676081 \tabularnewline
97 & 0.980117044738318 & 0.0397659105233651 & 0.0198829552616825 \tabularnewline
98 & 0.973738518596732 & 0.0525229628065369 & 0.0262614814032684 \tabularnewline
99 & 0.965722790286998 & 0.0685544194260031 & 0.0342772097130015 \tabularnewline
100 & 0.955785991671746 & 0.0884280166565086 & 0.0442140083282543 \tabularnewline
101 & 0.943635192322534 & 0.112729615354933 & 0.0563648076774664 \tabularnewline
102 & 0.928980031748349 & 0.142039936503301 & 0.0710199682516506 \tabularnewline
103 & 0.911546911567272 & 0.176906176865455 & 0.0884530884327275 \tabularnewline
104 & 0.891095224931466 & 0.217809550137069 & 0.108904775068534 \tabularnewline
105 & 0.86563241809785 & 0.268735163804299 & 0.13436758190215 \tabularnewline
106 & 0.838273860398607 & 0.323452279202786 & 0.161726139601393 \tabularnewline
107 & 0.807503215826564 & 0.384993568346872 & 0.192496784173436 \tabularnewline
108 & 0.770514738069253 & 0.458970523861494 & 0.229485261930747 \tabularnewline
109 & 0.732766985697686 & 0.534466028604628 & 0.267233014302314 \tabularnewline
110 & 0.692102342125223 & 0.615795315749554 & 0.307897657874777 \tabularnewline
111 & 0.644905065428471 & 0.710189869143059 & 0.355094934571529 \tabularnewline
112 & 0.595084080510426 & 0.809831838979148 & 0.404915919489574 \tabularnewline
113 & 0.547660215109219 & 0.904679569781561 & 0.452339784890781 \tabularnewline
114 & 0.494906462573996 & 0.989812925147993 & 0.505093537426004 \tabularnewline
115 & 0.446488751423062 & 0.892977502846123 & 0.553511248576938 \tabularnewline
116 & 0.398838214315494 & 0.797676428630989 & 0.601161785684506 \tabularnewline
117 & 0.352650157322 & 0.705300314644 & 0.647349842678 \tabularnewline
118 & 0.308558080970685 & 0.617116161941369 & 0.691441919029315 \tabularnewline
119 & 0.267106952625374 & 0.534213905250749 & 0.732893047374626 \tabularnewline
120 & 0.228732706321773 & 0.457465412643546 & 0.771267293678227 \tabularnewline
121 & 0.19374929370961 & 0.387498587419219 & 0.806250706290391 \tabularnewline
122 & 0.162343875559864 & 0.324687751119727 & 0.837656124440136 \tabularnewline
123 & 0.129968358158137 & 0.259936716316274 & 0.870031641841863 \tabularnewline
124 & 0.106018852388621 & 0.212037704777242 & 0.893981147611379 \tabularnewline
125 & 0.0855407972685251 & 0.17108159453705 & 0.914459202731475 \tabularnewline
126 & 0.0649489839984656 & 0.129897967996931 & 0.935051016001534 \tabularnewline
127 & 0.0509294786971997 & 0.101858957394399 & 0.9490705213028 \tabularnewline
128 & 0.0395249329393002 & 0.0790498658786004 & 0.9604750670607 \tabularnewline
129 & 0.0303881464314575 & 0.0607762928629149 & 0.969611853568543 \tabularnewline
130 & 0.0231770085084939 & 0.0463540170169878 & 0.976822991491506 \tabularnewline
131 & 0.0175685063390061 & 0.0351370126780123 & 0.982431493660994 \tabularnewline
132 & 0.0132687315545511 & 0.0265374631091023 & 0.986731268445449 \tabularnewline
133 & 0.0100190597644917 & 0.0200381195289835 & 0.989980940235508 \tabularnewline
134 & 0.00759902546474527 & 0.0151980509294905 & 0.992400974535255 \tabularnewline
135 & 0.00582668373977125 & 0.0116533674795425 & 0.994173316260229 \tabularnewline
136 & 0.00455749704645211 & 0.00911499409290423 & 0.995442502953548 \tabularnewline
137 & 0.00368318295934324 & 0.00736636591868648 & 0.996316817040657 \tabularnewline
138 & 0.00215272153791947 & 0.00430544307583895 & 0.997847278462081 \tabularnewline
139 & 0.00120860127255992 & 0.00241720254511984 & 0.99879139872744 \tabularnewline
140 & 0.000978624948434321 & 0.00195724989686864 & 0.999021375051566 \tabularnewline
141 & 0.0196602313823077 & 0.0393204627646154 & 0.980339768617692 \tabularnewline
142 & 0.0117298179809234 & 0.0234596359618468 & 0.988270182019077 \tabularnewline
143 & 0.00866208529679222 & 0.0173241705935844 & 0.991337914703208 \tabularnewline
144 & 0.00671959531927797 & 0.0134391906385559 & 0.993280404680722 \tabularnewline
145 & 0.00575221356570205 & 0.0115044271314041 & 0.994247786434298 \tabularnewline
146 & 0.00279218418272511 & 0.00558436836545022 & 0.997207815817275 \tabularnewline
147 & 0.00122662940646205 & 0.0024532588129241 & 0.998773370593538 \tabularnewline
148 & 0.000475832910289977 & 0.000951665820579955 & 0.99952416708971 \tabularnewline
149 & 0.000385477149938291 & 0.000770954299876581 & 0.999614522850062 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201877&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]5[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]6[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]7[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]8[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]9[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]10[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]11[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]12[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]13[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]14[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]15[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]16[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]17[/C][C]0.375009542487584[/C][C]0.750019084975168[/C][C]0.624990457512416[/C][/ROW]
[ROW][C]18[/C][C]0.306596786592132[/C][C]0.613193573184264[/C][C]0.693403213407868[/C][/ROW]
[ROW][C]19[/C][C]0.245374308633705[/C][C]0.490748617267409[/C][C]0.754625691366295[/C][/ROW]
[ROW][C]20[/C][C]0.875740426754179[/C][C]0.248519146491642[/C][C]0.124259573245821[/C][/ROW]
[ROW][C]21[/C][C]0.84192343500395[/C][C]0.316153129992099[/C][C]0.15807656499605[/C][/ROW]
[ROW][C]22[/C][C]0.802953282587564[/C][C]0.394093434824872[/C][C]0.197046717412436[/C][/ROW]
[ROW][C]23[/C][C]0.759103346318529[/C][C]0.481793307362943[/C][C]0.240896653681471[/C][/ROW]
[ROW][C]24[/C][C]0.710893034211193[/C][C]0.578213931577614[/C][C]0.289106965788807[/C][/ROW]
[ROW][C]25[/C][C]0.659069214604347[/C][C]0.681861570791306[/C][C]0.340930785395653[/C][/ROW]
[ROW][C]26[/C][C]0.60456737241512[/C][C]0.79086525516976[/C][C]0.39543262758488[/C][/ROW]
[ROW][C]27[/C][C]0.548456338513434[/C][C]0.903087322973133[/C][C]0.451543661486566[/C][/ROW]
[ROW][C]28[/C][C]0.491872405761367[/C][C]0.983744811522734[/C][C]0.508127594238633[/C][/ROW]
[ROW][C]29[/C][C]0.435949728250412[/C][C]0.871899456500824[/C][C]0.564050271749588[/C][/ROW]
[ROW][C]30[/C][C]0.381753981494052[/C][C]0.763507962988104[/C][C]0.618246018505948[/C][/ROW]
[ROW][C]31[/C][C]0.33022540455524[/C][C]0.66045080911048[/C][C]0.66977459544476[/C][/ROW]
[ROW][C]32[/C][C]0.282135765186462[/C][C]0.564271530372924[/C][C]0.717864234813538[/C][/ROW]
[ROW][C]33[/C][C]0.238061795506697[/C][C]0.476123591013394[/C][C]0.761938204493303[/C][/ROW]
[ROW][C]34[/C][C]0.198375575089[/C][C]0.396751150178[/C][C]0.801624424911[/C][/ROW]
[ROW][C]35[/C][C]0.163250491483951[/C][C]0.326500982967902[/C][C]0.836749508516049[/C][/ROW]
[ROW][C]36[/C][C]0.132680004511651[/C][C]0.265360009023301[/C][C]0.867319995488349[/C][/ROW]
[ROW][C]37[/C][C]0.106505595120271[/C][C]0.213011190240542[/C][C]0.893494404879729[/C][/ROW]
[ROW][C]38[/C][C]0.0844500032653139[/C][C]0.168900006530628[/C][C]0.915549996734686[/C][/ROW]
[ROW][C]39[/C][C]0.0661520779733258[/C][C]0.132304155946652[/C][C]0.933847922026674[/C][/ROW]
[ROW][C]40[/C][C]0.0512001468945039[/C][C]0.102400293789008[/C][C]0.948799853105496[/C][/ROW]
[ROW][C]41[/C][C]0.471303111963318[/C][C]0.942606223926637[/C][C]0.528696888036681[/C][/ROW]
[ROW][C]42[/C][C]0.424293738669117[/C][C]0.848587477338234[/C][C]0.575706261330883[/C][/ROW]
[ROW][C]43[/C][C]0.378629483549074[/C][C]0.757258967098147[/C][C]0.621370516450926[/C][/ROW]
[ROW][C]44[/C][C]0.334883910697111[/C][C]0.669767821394221[/C][C]0.665116089302889[/C][/ROW]
[ROW][C]45[/C][C]0.293543916352126[/C][C]0.587087832704252[/C][C]0.706456083647874[/C][/ROW]
[ROW][C]46[/C][C]0.254996180481705[/C][C]0.509992360963409[/C][C]0.745003819518295[/C][/ROW]
[ROW][C]47[/C][C]0.219520208917454[/C][C]0.439040417834907[/C][C]0.780479791082546[/C][/ROW]
[ROW][C]48[/C][C]0.187287770155863[/C][C]0.374575540311727[/C][C]0.812712229844137[/C][/ROW]
[ROW][C]49[/C][C]0.158368045822959[/C][C]0.316736091645917[/C][C]0.841631954177041[/C][/ROW]
[ROW][C]50[/C][C]0.132737451734572[/C][C]0.265474903469145[/C][C]0.867262548265428[/C][/ROW]
[ROW][C]51[/C][C]0.110292868083098[/C][C]0.220585736166196[/C][C]0.889707131916902[/C][/ROW]
[ROW][C]52[/C][C]0.543529010947341[/C][C]0.912941978105318[/C][C]0.456470989052659[/C][/ROW]
[ROW][C]53[/C][C]0.500795904725728[/C][C]0.998408190548544[/C][C]0.499204095274272[/C][/ROW]
[ROW][C]54[/C][C]0.885567558868668[/C][C]0.228864882262664[/C][C]0.114432441131332[/C][/ROW]
[ROW][C]55[/C][C]0.863935576915744[/C][C]0.272128846168513[/C][C]0.136064423084256[/C][/ROW]
[ROW][C]56[/C][C]0.839783618364258[/C][C]0.320432763271484[/C][C]0.160216381635742[/C][/ROW]
[ROW][C]57[/C][C]0.813137516000405[/C][C]0.37372496799919[/C][C]0.186862483999595[/C][/ROW]
[ROW][C]58[/C][C]0.784085799582661[/C][C]0.431828400834679[/C][C]0.215914200417339[/C][/ROW]
[ROW][C]59[/C][C]0.752781861003815[/C][C]0.49443627799237[/C][C]0.247218138996185[/C][/ROW]
[ROW][C]60[/C][C]0.967211067940828[/C][C]0.0655778641183444[/C][C]0.0327889320591722[/C][/ROW]
[ROW][C]61[/C][C]0.958918248628371[/C][C]0.0821635027432589[/C][C]0.0410817513716294[/C][/ROW]
[ROW][C]62[/C][C]0.94904611803801[/C][C]0.10190776392398[/C][C]0.0509538819619902[/C][/ROW]
[ROW][C]63[/C][C]0.937432580274105[/C][C]0.12513483945179[/C][C]0.0625674197258948[/C][/ROW]
[ROW][C]64[/C][C]0.923932219740986[/C][C]0.152135560518028[/C][C]0.076067780259014[/C][/ROW]
[ROW][C]65[/C][C]0.9084251129592[/C][C]0.183149774081599[/C][C]0.0915748870407997[/C][/ROW]
[ROW][C]66[/C][C]0.890825975708552[/C][C]0.218348048582896[/C][C]0.109174024291448[/C][/ROW]
[ROW][C]67[/C][C]0.991876486225301[/C][C]0.0162470275493974[/C][C]0.00812351377469868[/C][/ROW]
[ROW][C]68[/C][C]0.989274620468106[/C][C]0.0214507590637879[/C][C]0.010725379531894[/C][/ROW]
[ROW][C]69[/C][C]0.985988912928724[/C][C]0.0280221741425516[/C][C]0.0140110870712758[/C][/ROW]
[ROW][C]70[/C][C]0.981890619437839[/C][C]0.0362187611243229[/C][C]0.0181093805621615[/C][/ROW]
[ROW][C]71[/C][C]0.976842800741664[/C][C]0.0463143985166725[/C][C]0.0231571992583363[/C][/ROW]
[ROW][C]72[/C][C]0.970705161345747[/C][C]0.0585896773085065[/C][C]0.0292948386542533[/C][/ROW]
[ROW][C]73[/C][C]0.963340889673915[/C][C]0.0733182206521708[/C][C]0.0366591103260854[/C][/ROW]
[ROW][C]74[/C][C]0.954625823428973[/C][C]0.0907483531420543[/C][C]0.0453741765710272[/C][/ROW]
[ROW][C]75[/C][C]0.944460313412411[/C][C]0.111079373175178[/C][C]0.0555396865875892[/C][/ROW]
[ROW][C]76[/C][C]0.932784286113938[/C][C]0.134431427772125[/C][C]0.0672157138860624[/C][/ROW]
[ROW][C]77[/C][C]0.91959629143297[/C][C]0.16080741713406[/C][C]0.0804037085670302[/C][/ROW]
[ROW][C]78[/C][C]0.904977916849992[/C][C]0.190044166300015[/C][C]0.0950220831500077[/C][/ROW]
[ROW][C]79[/C][C]0.994029413936401[/C][C]0.0119411721271973[/C][C]0.00597058606359867[/C][/ROW]
[ROW][C]80[/C][C]0.991991225574576[/C][C]0.0160175488508481[/C][C]0.00800877442542407[/C][/ROW]
[ROW][C]81[/C][C]0.989395132123685[/C][C]0.0212097357526305[/C][C]0.0106048678763152[/C][/ROW]
[ROW][C]82[/C][C]0.986150892677152[/C][C]0.0276982146456966[/C][C]0.0138491073228483[/C][/ROW]
[ROW][C]83[/C][C]0.98219018661231[/C][C]0.0356196267753801[/C][C]0.0178098133876901[/C][/ROW]
[ROW][C]84[/C][C]0.999825653129323[/C][C]0.000348693741354544[/C][C]0.000174346870677272[/C][/ROW]
[ROW][C]85[/C][C]0.999734305751393[/C][C]0.00053138849721395[/C][C]0.000265694248606975[/C][/ROW]
[ROW][C]86[/C][C]0.999601172925409[/C][C]0.000797654149183007[/C][C]0.000398827074591503[/C][/ROW]
[ROW][C]87[/C][C]0.999398426209451[/C][C]0.0012031475810976[/C][C]0.0006015737905488[/C][/ROW]
[ROW][C]88[/C][C]0.999091079506262[/C][C]0.00181784098747625[/C][C]0.000908920493738125[/C][/ROW]
[ROW][C]89[/C][C]0.998662436998375[/C][C]0.0026751260032493[/C][C]0.00133756300162465[/C][/ROW]
[ROW][C]90[/C][C]0.998055076257175[/C][C]0.00388984748565062[/C][C]0.00194492374282531[/C][/ROW]
[ROW][C]91[/C][C]0.997206020240809[/C][C]0.00558795951838296[/C][C]0.00279397975919148[/C][/ROW]
[ROW][C]92[/C][C]0.995978313283347[/C][C]0.00804337343330541[/C][C]0.00402168671665271[/C][/ROW]
[ROW][C]93[/C][C]0.994360546473674[/C][C]0.0112789070526518[/C][C]0.00563945352632588[/C][/ROW]
[ROW][C]94[/C][C]0.992186796983109[/C][C]0.0156264060337821[/C][C]0.00781320301689107[/C][/ROW]
[ROW][C]95[/C][C]0.989152937190293[/C][C]0.0216941256194132[/C][C]0.0108470628097066[/C][/ROW]
[ROW][C]96[/C][C]0.985327703232392[/C][C]0.0293445935352162[/C][C]0.0146722967676081[/C][/ROW]
[ROW][C]97[/C][C]0.980117044738318[/C][C]0.0397659105233651[/C][C]0.0198829552616825[/C][/ROW]
[ROW][C]98[/C][C]0.973738518596732[/C][C]0.0525229628065369[/C][C]0.0262614814032684[/C][/ROW]
[ROW][C]99[/C][C]0.965722790286998[/C][C]0.0685544194260031[/C][C]0.0342772097130015[/C][/ROW]
[ROW][C]100[/C][C]0.955785991671746[/C][C]0.0884280166565086[/C][C]0.0442140083282543[/C][/ROW]
[ROW][C]101[/C][C]0.943635192322534[/C][C]0.112729615354933[/C][C]0.0563648076774664[/C][/ROW]
[ROW][C]102[/C][C]0.928980031748349[/C][C]0.142039936503301[/C][C]0.0710199682516506[/C][/ROW]
[ROW][C]103[/C][C]0.911546911567272[/C][C]0.176906176865455[/C][C]0.0884530884327275[/C][/ROW]
[ROW][C]104[/C][C]0.891095224931466[/C][C]0.217809550137069[/C][C]0.108904775068534[/C][/ROW]
[ROW][C]105[/C][C]0.86563241809785[/C][C]0.268735163804299[/C][C]0.13436758190215[/C][/ROW]
[ROW][C]106[/C][C]0.838273860398607[/C][C]0.323452279202786[/C][C]0.161726139601393[/C][/ROW]
[ROW][C]107[/C][C]0.807503215826564[/C][C]0.384993568346872[/C][C]0.192496784173436[/C][/ROW]
[ROW][C]108[/C][C]0.770514738069253[/C][C]0.458970523861494[/C][C]0.229485261930747[/C][/ROW]
[ROW][C]109[/C][C]0.732766985697686[/C][C]0.534466028604628[/C][C]0.267233014302314[/C][/ROW]
[ROW][C]110[/C][C]0.692102342125223[/C][C]0.615795315749554[/C][C]0.307897657874777[/C][/ROW]
[ROW][C]111[/C][C]0.644905065428471[/C][C]0.710189869143059[/C][C]0.355094934571529[/C][/ROW]
[ROW][C]112[/C][C]0.595084080510426[/C][C]0.809831838979148[/C][C]0.404915919489574[/C][/ROW]
[ROW][C]113[/C][C]0.547660215109219[/C][C]0.904679569781561[/C][C]0.452339784890781[/C][/ROW]
[ROW][C]114[/C][C]0.494906462573996[/C][C]0.989812925147993[/C][C]0.505093537426004[/C][/ROW]
[ROW][C]115[/C][C]0.446488751423062[/C][C]0.892977502846123[/C][C]0.553511248576938[/C][/ROW]
[ROW][C]116[/C][C]0.398838214315494[/C][C]0.797676428630989[/C][C]0.601161785684506[/C][/ROW]
[ROW][C]117[/C][C]0.352650157322[/C][C]0.705300314644[/C][C]0.647349842678[/C][/ROW]
[ROW][C]118[/C][C]0.308558080970685[/C][C]0.617116161941369[/C][C]0.691441919029315[/C][/ROW]
[ROW][C]119[/C][C]0.267106952625374[/C][C]0.534213905250749[/C][C]0.732893047374626[/C][/ROW]
[ROW][C]120[/C][C]0.228732706321773[/C][C]0.457465412643546[/C][C]0.771267293678227[/C][/ROW]
[ROW][C]121[/C][C]0.19374929370961[/C][C]0.387498587419219[/C][C]0.806250706290391[/C][/ROW]
[ROW][C]122[/C][C]0.162343875559864[/C][C]0.324687751119727[/C][C]0.837656124440136[/C][/ROW]
[ROW][C]123[/C][C]0.129968358158137[/C][C]0.259936716316274[/C][C]0.870031641841863[/C][/ROW]
[ROW][C]124[/C][C]0.106018852388621[/C][C]0.212037704777242[/C][C]0.893981147611379[/C][/ROW]
[ROW][C]125[/C][C]0.0855407972685251[/C][C]0.17108159453705[/C][C]0.914459202731475[/C][/ROW]
[ROW][C]126[/C][C]0.0649489839984656[/C][C]0.129897967996931[/C][C]0.935051016001534[/C][/ROW]
[ROW][C]127[/C][C]0.0509294786971997[/C][C]0.101858957394399[/C][C]0.9490705213028[/C][/ROW]
[ROW][C]128[/C][C]0.0395249329393002[/C][C]0.0790498658786004[/C][C]0.9604750670607[/C][/ROW]
[ROW][C]129[/C][C]0.0303881464314575[/C][C]0.0607762928629149[/C][C]0.969611853568543[/C][/ROW]
[ROW][C]130[/C][C]0.0231770085084939[/C][C]0.0463540170169878[/C][C]0.976822991491506[/C][/ROW]
[ROW][C]131[/C][C]0.0175685063390061[/C][C]0.0351370126780123[/C][C]0.982431493660994[/C][/ROW]
[ROW][C]132[/C][C]0.0132687315545511[/C][C]0.0265374631091023[/C][C]0.986731268445449[/C][/ROW]
[ROW][C]133[/C][C]0.0100190597644917[/C][C]0.0200381195289835[/C][C]0.989980940235508[/C][/ROW]
[ROW][C]134[/C][C]0.00759902546474527[/C][C]0.0151980509294905[/C][C]0.992400974535255[/C][/ROW]
[ROW][C]135[/C][C]0.00582668373977125[/C][C]0.0116533674795425[/C][C]0.994173316260229[/C][/ROW]
[ROW][C]136[/C][C]0.00455749704645211[/C][C]0.00911499409290423[/C][C]0.995442502953548[/C][/ROW]
[ROW][C]137[/C][C]0.00368318295934324[/C][C]0.00736636591868648[/C][C]0.996316817040657[/C][/ROW]
[ROW][C]138[/C][C]0.00215272153791947[/C][C]0.00430544307583895[/C][C]0.997847278462081[/C][/ROW]
[ROW][C]139[/C][C]0.00120860127255992[/C][C]0.00241720254511984[/C][C]0.99879139872744[/C][/ROW]
[ROW][C]140[/C][C]0.000978624948434321[/C][C]0.00195724989686864[/C][C]0.999021375051566[/C][/ROW]
[ROW][C]141[/C][C]0.0196602313823077[/C][C]0.0393204627646154[/C][C]0.980339768617692[/C][/ROW]
[ROW][C]142[/C][C]0.0117298179809234[/C][C]0.0234596359618468[/C][C]0.988270182019077[/C][/ROW]
[ROW][C]143[/C][C]0.00866208529679222[/C][C]0.0173241705935844[/C][C]0.991337914703208[/C][/ROW]
[ROW][C]144[/C][C]0.00671959531927797[/C][C]0.0134391906385559[/C][C]0.993280404680722[/C][/ROW]
[ROW][C]145[/C][C]0.00575221356570205[/C][C]0.0115044271314041[/C][C]0.994247786434298[/C][/ROW]
[ROW][C]146[/C][C]0.00279218418272511[/C][C]0.00558436836545022[/C][C]0.997207815817275[/C][/ROW]
[ROW][C]147[/C][C]0.00122662940646205[/C][C]0.0024532588129241[/C][C]0.998773370593538[/C][/ROW]
[ROW][C]148[/C][C]0.000475832910289977[/C][C]0.000951665820579955[/C][C]0.99952416708971[/C][/ROW]
[ROW][C]149[/C][C]0.000385477149938291[/C][C]0.000770954299876581[/C][C]0.999614522850062[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201877&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201877&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
5001
6001
7001
8001
9001
10001
11001
12001
13001
14001
15001
16001
170.3750095424875840.7500190849751680.624990457512416
180.3065967865921320.6131935731842640.693403213407868
190.2453743086337050.4907486172674090.754625691366295
200.8757404267541790.2485191464916420.124259573245821
210.841923435003950.3161531299920990.15807656499605
220.8029532825875640.3940934348248720.197046717412436
230.7591033463185290.4817933073629430.240896653681471
240.7108930342111930.5782139315776140.289106965788807
250.6590692146043470.6818615707913060.340930785395653
260.604567372415120.790865255169760.39543262758488
270.5484563385134340.9030873229731330.451543661486566
280.4918724057613670.9837448115227340.508127594238633
290.4359497282504120.8718994565008240.564050271749588
300.3817539814940520.7635079629881040.618246018505948
310.330225404555240.660450809110480.66977459544476
320.2821357651864620.5642715303729240.717864234813538
330.2380617955066970.4761235910133940.761938204493303
340.1983755750890.3967511501780.801624424911
350.1632504914839510.3265009829679020.836749508516049
360.1326800045116510.2653600090233010.867319995488349
370.1065055951202710.2130111902405420.893494404879729
380.08445000326531390.1689000065306280.915549996734686
390.06615207797332580.1323041559466520.933847922026674
400.05120014689450390.1024002937890080.948799853105496
410.4713031119633180.9426062239266370.528696888036681
420.4242937386691170.8485874773382340.575706261330883
430.3786294835490740.7572589670981470.621370516450926
440.3348839106971110.6697678213942210.665116089302889
450.2935439163521260.5870878327042520.706456083647874
460.2549961804817050.5099923609634090.745003819518295
470.2195202089174540.4390404178349070.780479791082546
480.1872877701558630.3745755403117270.812712229844137
490.1583680458229590.3167360916459170.841631954177041
500.1327374517345720.2654749034691450.867262548265428
510.1102928680830980.2205857361661960.889707131916902
520.5435290109473410.9129419781053180.456470989052659
530.5007959047257280.9984081905485440.499204095274272
540.8855675588686680.2288648822626640.114432441131332
550.8639355769157440.2721288461685130.136064423084256
560.8397836183642580.3204327632714840.160216381635742
570.8131375160004050.373724967999190.186862483999595
580.7840857995826610.4318284008346790.215914200417339
590.7527818610038150.494436277992370.247218138996185
600.9672110679408280.06557786411834440.0327889320591722
610.9589182486283710.08216350274325890.0410817513716294
620.949046118038010.101907763923980.0509538819619902
630.9374325802741050.125134839451790.0625674197258948
640.9239322197409860.1521355605180280.076067780259014
650.90842511295920.1831497740815990.0915748870407997
660.8908259757085520.2183480485828960.109174024291448
670.9918764862253010.01624702754939740.00812351377469868
680.9892746204681060.02145075906378790.010725379531894
690.9859889129287240.02802217414255160.0140110870712758
700.9818906194378390.03621876112432290.0181093805621615
710.9768428007416640.04631439851667250.0231571992583363
720.9707051613457470.05858967730850650.0292948386542533
730.9633408896739150.07331822065217080.0366591103260854
740.9546258234289730.09074835314205430.0453741765710272
750.9444603134124110.1110793731751780.0555396865875892
760.9327842861139380.1344314277721250.0672157138860624
770.919596291432970.160807417134060.0804037085670302
780.9049779168499920.1900441663000150.0950220831500077
790.9940294139364010.01194117212719730.00597058606359867
800.9919912255745760.01601754885084810.00800877442542407
810.9893951321236850.02120973575263050.0106048678763152
820.9861508926771520.02769821464569660.0138491073228483
830.982190186612310.03561962677538010.0178098133876901
840.9998256531293230.0003486937413545440.000174346870677272
850.9997343057513930.000531388497213950.000265694248606975
860.9996011729254090.0007976541491830070.000398827074591503
870.9993984262094510.00120314758109760.0006015737905488
880.9990910795062620.001817840987476250.000908920493738125
890.9986624369983750.00267512600324930.00133756300162465
900.9980550762571750.003889847485650620.00194492374282531
910.9972060202408090.005587959518382960.00279397975919148
920.9959783132833470.008043373433305410.00402168671665271
930.9943605464736740.01127890705265180.00563945352632588
940.9921867969831090.01562640603378210.00781320301689107
950.9891529371902930.02169412561941320.0108470628097066
960.9853277032323920.02934459353521620.0146722967676081
970.9801170447383180.03976591052336510.0198829552616825
980.9737385185967320.05252296280653690.0262614814032684
990.9657227902869980.06855441942600310.0342772097130015
1000.9557859916717460.08842801665650860.0442140083282543
1010.9436351923225340.1127296153549330.0563648076774664
1020.9289800317483490.1420399365033010.0710199682516506
1030.9115469115672720.1769061768654550.0884530884327275
1040.8910952249314660.2178095501370690.108904775068534
1050.865632418097850.2687351638042990.13436758190215
1060.8382738603986070.3234522792027860.161726139601393
1070.8075032158265640.3849935683468720.192496784173436
1080.7705147380692530.4589705238614940.229485261930747
1090.7327669856976860.5344660286046280.267233014302314
1100.6921023421252230.6157953157495540.307897657874777
1110.6449050654284710.7101898691430590.355094934571529
1120.5950840805104260.8098318389791480.404915919489574
1130.5476602151092190.9046795697815610.452339784890781
1140.4949064625739960.9898129251479930.505093537426004
1150.4464887514230620.8929775028461230.553511248576938
1160.3988382143154940.7976764286309890.601161785684506
1170.3526501573220.7053003146440.647349842678
1180.3085580809706850.6171161619413690.691441919029315
1190.2671069526253740.5342139052507490.732893047374626
1200.2287327063217730.4574654126435460.771267293678227
1210.193749293709610.3874985874192190.806250706290391
1220.1623438755598640.3246877511197270.837656124440136
1230.1299683581581370.2599367163162740.870031641841863
1240.1060188523886210.2120377047772420.893981147611379
1250.08554079726852510.171081594537050.914459202731475
1260.06494898399846560.1298979679969310.935051016001534
1270.05092947869719970.1018589573943990.9490705213028
1280.03952493293930020.07904986587860040.9604750670607
1290.03038814643145750.06077629286291490.969611853568543
1300.02317700850849390.04635401701698780.976822991491506
1310.01756850633900610.03513701267801230.982431493660994
1320.01326873155455110.02653746310910230.986731268445449
1330.01001905976449170.02003811952898350.989980940235508
1340.007599025464745270.01519805092949050.992400974535255
1350.005826683739771250.01165336747954250.994173316260229
1360.004557497046452110.009114994092904230.995442502953548
1370.003683182959343240.007366365918686480.996316817040657
1380.002152721537919470.004305443075838950.997847278462081
1390.001208601272559920.002417202545119840.99879139872744
1400.0009786249484343210.001957249896868640.999021375051566
1410.01966023138230770.03932046276461540.980339768617692
1420.01172981798092340.02345963596184680.988270182019077
1430.008662085296792220.01732417059358440.991337914703208
1440.006719595319277970.01343919063855590.993280404680722
1450.005752213565702050.01150442713140410.994247786434298
1460.002792184182725110.005584368365450220.997207815817275
1470.001226629406462050.00245325881292410.998773370593538
1480.0004758329102899770.0009516658205799550.99952416708971
1490.0003854771499382910.0007709542998765810.999614522850062







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level300.206896551724138NOK
5% type I error level560.386206896551724NOK
10% type I error level660.455172413793103NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 30 & 0.206896551724138 & NOK \tabularnewline
5% type I error level & 56 & 0.386206896551724 & NOK \tabularnewline
10% type I error level & 66 & 0.455172413793103 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201877&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]30[/C][C]0.206896551724138[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]56[/C][C]0.386206896551724[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]66[/C][C]0.455172413793103[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201877&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201877&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level300.206896551724138NOK
5% type I error level560.386206896551724NOK
10% type I error level660.455172413793103NOK



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = Exact Pearson Chi-Squared by Simulation ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}