Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_meanversusmedian.wasp
Title produced by softwareMean versus Median
Date of computationWed, 12 Dec 2012 10:10:33 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/12/t135532504291zqbndnkqyv2gg.htm/, Retrieved Thu, 31 Oct 2024 23:06:56 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=198928, Retrieved Thu, 31 Oct 2024 23:06:56 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact116
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Mean versus Median] [esmegem] [2012-12-12 15:10:33] [e357aba3893873b930815b56a53f1005] [Current]
Feedback Forum

Post a new message
Dataseries X:
60.105502136752000
7.907312589228700
-1.629491887131730
-1.523957559467700
-1.566427606620550
-3.789554566451050
54.200457074549000
-32.163510672247400
-30.402014378527600
33.723646041332600
-53.295571899362000
-14.104598762058100
7.823650371650560
-23.492157461915400
-39.202849795559900
-54.438726552717300
-63.160118106051600
-14.485513312119400
-6.628558771563010
-37.251050153206200
7.170462889295040
-12.467581386629100
23.642668315511900
-1.088791886433090
-51.662325993329800
-35.512251522296000
5.730258768588780
-4.402113954364150
-19.401440515526700
1.520637597479090
20.301634328476600
21.129552578314700
32.299041793952500
25.405520281557300
16.249817632919000
-24.017154073341100
-24.781620945858200
-15.622858322169500
-11.764952702771900
15.385614471917900
-5.431603723902270
-13.878589038249800
24.544117388533300
28.999963471410300
1.823381546043520
9.408070370187970
3.027664330040980
-4.924275934007740
-9.914609211208590
-41.194180801578900
4.537200239685570
23.270218164366300
-20.074935132256200
-20.509042121904400
10.759626115194600
24.269471838984300
35.926564997673600
32.318324426507600
37.872923673265400
36.110268543315900
50.367586366732600
19.674537875964500
10.769621706194800
-6.487800001055580
-27.566236037334000
-51.733367569934800
-6.992290362617900
8.946225886097070
8.880187826561670
-23.810509488063200
-0.278862805984659
-15.453298389024400
-10.467075471290800
-30.767386022286500
-18.473160300275400
8.491499309968790
-40.768910811535500
-21.233091409774700
-22.881542105592100
22.788332257880100
3.887467604892780
34.557110225165300
16.986140456027500
10.877064554075900
-23.973069195609600
-13.365480154239200
12.485438612906300
-15.173816735979200
21.213182978857300
0.785421269382084
-19.008182699649100
-25.508856180444900
-0.0938131575134094
16.888358118621200
43.708864849606400
14.542044173700200
-11.240111835232900
-29.369195516860100
-20.598685634972600
4.577397673602040
11.029760211128600
14.736685076468700
-23.531866174978400
-4.921531948129910
15.326629227714100
29.089261351332600
54.294590941540900
31.116771502448300
48.848504485926100
50.654788833335300
6.259586476791070
0.125927575354126
-29.312377188536800
-14.212774692833500
-16.321899968516800
-34.789232971974500
-53.298800682701200
-14.123472139651600
-19.904078112981600
34.583810001181300
-2.725432412863600
-14.154123473298900
-30.486335606010300
-56.722391646765900
-17.097567198469700
6.781804301078700
-4.199191314862560
5.918149190913310
5.256021609625350
29.797534213448200
28.099060232233400
-5.180180836364630
-0.79512116752386
-34.218142247410400
41.416164263170000
-24.533730369838100
-19.730557989372600
35.128077583754800
-13.576465130286600
8.648082866597060
-21.862534337184900
39.644586972684100
30.126766094770500
59.366912136556700
28.053251004387100
21.594556562382100
-23.984953845749900
-29.909150799627300
-27.276039391603000
4.602911543302070
-22.207181163616600
-34.743739592739000
-26.164702208665500
-10.142329515027000
-8.798035530515340
13.884425824100000
4.869115945923970
-17.876809417712400
-4.530999113435310
-8.675883254860650
14.553069972311400
-25.444493179183200
-18.503746337647300
28.668939513433700
-12.842768894583700
-12.673935863073800
35.065571570143000
10.491911074333600
34.799821814800400
26.382577058530900
-31.450295578912300
-13.350010123360100
-4.946762703076560
10.214763212881500
-20.151738608344600
-21.200384154203700
-3.841962139071430
2.477180829386330
26.117511976917100
1.306201075903630
15.976349059390100
-4.291690398502170
-5.682394150977980
-5.665764693693010
-30.332498938452400
38.729733363233400
-47.837997290189000
3.321940198286310
-2.614714534767530
3.499491319785020
-10.994735054654900
18.505687742399500
-1.727214314555110
27.734506649469200
-23.843594079094500
12.456713506740500
-20.970587319696400
22.355040813270000
-21.669053506196000
-14.584150283879600
-6.948261888214180
-3.844300734941500
-2.592175220424280
-2.606079633912260
-7.148573088618780
-11.133931876000000
18.463790548064300
10.431606141974300
20.111394906474100
17.585817125854700
-7.287709889268740
-10.719794800931300
-7.889017955932450
4.236220472917470
-9.492926941993910
14.098999815588100
-2.340445580023980
3.813803754024780
2.058393512826170
4.052997857020270
-10.844862137151400
50.853012324373200
15.264595051509300
-18.231512532723900
14.857709931226600
10.891750422069800
-27.684531433388500
-22.296902373437300
-20.448256250686300
19.049784411625500
-9.460636400293250
-13.032621337357300
-8.549005941186380
57.140945046846900
19.424142212143000
-26.830983001473100
-2.375789422791060
-4.841984245517270
-10.430343313100500
-16.685597270849800
-8.535389246669300
-1.011460964061370
11.530320435740700
13.995248188981200
-12.322825473095300
24.042058033293400
39.967059599686800
-4.531480962211790
20.790634404711600
-6.631809056570660
-32.683088525343700
-13.213953207478000
21.010630015082000
32.219715891287000
19.962339504755600
10.717014437494100
-7.987055178677400
32.442592185996000
36.686806257020900
-3.434985112567400
8.795770356075250
-2.177042793156260
12.913345730458800
-7.731531394291040
7.113072823366450
-16.182569088679300
-11.520070591136300
-26.205387268549100
-25.197282316299900
5.070944864413150
33.521277765799400
5.463100604888840
-19.948599258901500
-25.529699094909000
1.531601015557840
-16.267856568258900
6.819238576668340
-13.621948325961600
0.640501844928622
-21.438419523167100
-25.586377618623900
3.756990400816330
24.516643860920200
8.509497665653100
-8.870562774209470
-10.818104143248300
-41.879148728358900
-16.889160341708500
-9.794453731080470
14.500002323189400
-5.710688022182180
4.477170448968650
-19.497295919848100
0.746187934154989
20.624401595029300
11.721153781144800
13.531505025554600
-26.309844364410300
13.476158699179900
2.534010682220700
29.753080445948200
9.046961144409860
-12.287076964116900
-12.523129418815900
1.327508167207160
16.347057213377300
33.449424050193600
6.395776893376880
43.777257340183200
1.295681207232460
38.135431520262000
39.459479737038400
131.183597606530000
7.175545616393490
15.292626067378000
-37.518684587387300
-26.973262898070600
-35.786051835778500
-14.023070258689400
-20.981771362873500
-23.408807568463500
-18.877586017302100
-38.708702989784300
-15.783276729274200
5.956315671720860
-7.058043321348120
-29.814249740754300
-29.324599906597200
-50.016753181472600
20.360623535237100
33.106532569123400
23.529990999874700
-20.732569468258800
-2.546910809680410
0.94132987310752
-12.591330063730200
-7.624749328039910
38.257466963522000
-22.406062405960700
-61.804184623424200
-30.868578939543700
10.934468801689900
-10.126286331900500
31.925762581573300
-10.207648081455900
-1.090251191291600
-8.301356733144980
-45.956006137348100
13.524671856492900
-1.020698593768880
18.509844184136300
-24.784269672428800
-7.760453189621440
-32.817236164421200
54.038726371657500
3.627317145533770
13.025417693240100
-9.993761806170820
-2.366689948430460
17.782239152593700




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=198928&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=198928&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=198928&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Median versus Mean
mean-0.647391233223879
median-2.46135011623574

\begin{tabular}{lllllllll}
\hline
Median versus Mean \tabularnewline
mean & -0.647391233223879 \tabularnewline
median & -2.46135011623574 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=198928&T=1

[TABLE]
[ROW][C]Median versus Mean[/C][/ROW]
[ROW][C]mean[/C][C]-0.647391233223879[/C][/ROW]
[ROW][C]median[/C][C]-2.46135011623574[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=198928&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=198928&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Median versus Mean
mean-0.647391233223879
median-2.46135011623574



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
library(Hmisc)
m <- mean(x)
e <- median(x)
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
mydensity1 <- density(x,kernel='gaussian',na.rm=TRUE)
plot(mydensity1,main='Density Plot - Gaussian Kernel',xlab='Median (0 -> full line) | Mean (0 -> dashed line)',ylab='density')
abline(v=e,lty=1)
abline(v=m,lty=5)
grid()
myseq <- seq(0.01, 0.99, 0.01)
hd <- hdquantile(x, probs = myseq, se = TRUE, na.rm = FALSE, names = TRUE, weights=FALSE)
plot(myseq,hd,col=2,main='Harrell-Davis Quantiles',xlab='quantiles',ylab='Median (0 -> full) | Mean (0 -> dashed)')
abline(h=m,lty=5)
abline(h=e,lty=1)
grid()
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Median versus Mean',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,mean(x))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
a<-table.element(a,median(x))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')