Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_regression_trees1.wasp
Title produced by softwareRecursive Partitioning (Regression Trees)
Date of computationTue, 11 Dec 2012 15:01:09 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/11/t1355256082xjcznb7rni7koi5.htm/, Retrieved Thu, 31 Oct 2024 23:33:34 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=198674, Retrieved Thu, 31 Oct 2024 23:33:34 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact125
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Recursive Partitioning (Regression Trees)] [] [2010-12-05 19:50:12] [b98453cac15ba1066b407e146608df68]
- R P     [Recursive Partitioning (Regression Trees)] [] [2012-12-11 20:01:09] [8ef774223c33aeb01bbe576fe01aa7ae] [Current]
Feedback Forum

Post a new message
Dataseries X:
1	1	41	38	13	12	14
1	1	39	32	16	11	18
1	1	30	35	19	15	11
1	0	31	33	15	6	12
1	1	34	37	14	13	16
1	1	35	29	13	10	18
1	1	39	31	19	12	14
1	1	34	36	15	14	14
1	1	36	35	14	12	15
1	1	37	38	15	9	15
1	0	38	31	16	10	17
1	1	36	34	16	12	19
1	0	38	35	16	12	10
1	1	39	38	16	11	16
1	1	33	37	17	15	18
1	0	32	33	15	12	14
1	0	36	32	15	10	14
1	1	38	38	20	12	17
1	0	39	38	18	11	14
1	1	32	32	16	12	16
1	0	32	33	16	11	18
1	1	31	31	16	12	11
1	1	39	38	19	13	14
1	1	37	39	16	11	12
1	0	39	32	17	12	17
1	1	41	32	17	13	9
1	0	36	35	16	10	16
1	1	33	37	15	14	14
1	1	33	33	16	12	15
1	0	34	33	14	10	11
1	1	31	31	15	12	16
1	0	27	32	12	8	13
1	1	37	31	14	10	17
1	1	34	37	16	12	15
1	0	34	30	14	12	14
1	0	32	33	10	7	16
1	0	29	31	10	9	9
1	0	36	33	14	12	15
1	1	29	31	16	10	17
1	0	35	33	16	10	13
1	0	37	32	16	10	15
1	1	34	33	14	12	16
1	0	38	32	20	15	16
1	0	35	33	14	10	12
1	1	38	28	14	10	15
1	1	37	35	11	12	11
1	1	38	39	14	13	15
1	1	33	34	15	11	15
1	1	36	38	16	11	17
1	0	38	32	14	12	13
1	1	32	38	16	14	16
1	0	32	30	14	10	14
1	0	32	33	12	12	11
1	1	34	38	16	13	12
1	0	32	32	9	5	12
1	1	37	35	14	6	15
1	1	39	34	16	12	16
1	1	29	34	16	12	15
1	0	37	36	15	11	12
1	1	35	34	16	10	12
1	0	30	28	12	7	8
1	0	38	34	16	12	13
1	1	34	35	16	14	11
1	1	31	35	14	11	14
1	1	34	31	16	12	15
1	0	35	37	17	13	10
1	1	36	35	18	14	11
1	0	30	27	18	11	12
1	1	39	40	12	12	15
1	0	35	37	16	12	15
1	0	38	36	10	8	14
1	1	31	38	14	11	16
1	1	34	39	18	14	15
1	0	38	41	18	14	15
1	0	34	27	16	12	13
1	1	39	30	17	9	12
1	1	37	37	16	13	17
1	1	34	31	16	11	13
1	0	28	31	13	12	15
1	0	37	27	16	12	13
1	0	33	36	16	12	15
1	1	35	37	16	12	15
1	0	37	33	15	12	16
1	1	32	34	15	11	15
1	1	33	31	16	10	14
1	0	38	39	14	9	15
1	1	33	34	16	12	14
1	1	29	32	16	12	13
1	1	33	33	15	12	7
1	1	31	36	12	9	17
1	1	36	32	17	15	13
1	1	35	41	16	12	15
1	1	32	28	15	12	14
1	1	29	30	13	12	13
1	1	39	36	16	10	16
1	1	37	35	16	13	12
1	1	35	31	16	9	14
1	0	37	34	16	12	17
1	0	32	36	14	10	15
1	1	38	36	16	14	17
1	0	37	35	16	11	12
1	1	36	37	20	15	16
1	0	32	28	15	11	11
1	1	33	39	16	11	15
1	0	40	32	13	12	9
1	1	38	35	17	12	16
1	0	41	39	16	12	15
1	0	36	35	16	11	10
1	1	43	42	12	7	10
1	1	30	34	16	12	15
1	1	31	33	16	14	11
1	1	32	41	17	11	13
1	1	37	34	12	10	18
1	0	37	32	18	13	16
1	1	33	40	14	13	14
1	1	34	40	14	8	14
1	1	33	35	13	11	14
1	1	38	36	16	12	14
1	0	33	37	13	11	12
1	1	31	27	16	13	14
1	1	38	39	13	12	15
1	1	37	38	16	14	15
1	1	36	31	15	13	15
1	1	31	33	16	15	13
1	0	39	32	15	10	17
1	1	44	39	17	11	17
1	1	33	36	15	9	19
1	1	35	33	12	11	15
1	0	32	33	16	10	13
1	0	28	32	10	11	9
1	1	40	37	16	8	15
1	0	27	30	12	11	15
1	0	37	38	14	12	15
1	1	32	29	15	12	16
1	0	28	22	13	9	11
1	0	34	35	15	11	14
1	1	30	35	11	10	11
1	1	35	34	12	8	15
1	0	31	35	11	9	13
1	1	32	34	16	8	15
1	0	30	37	15	9	16
1	1	30	35	17	15	14
1	0	31	23	16	11	15
1	1	40	31	10	8	16
1	1	32	27	18	13	16
1	0	36	36	13	12	11
1	0	32	31	16	12	12
1	0	35	32	13	9	9
1	1	38	39	10	7	16
1	1	42	37	15	13	13
1	0	34	38	16	9	16
1	1	35	39	16	6	12
1	1	38	34	14	8	9
1	1	33	31	10	8	13
1	1	32	37	13	6	14
1	1	33	36	15	9	19
1	1	34	32	16	11	13
1	1	32	38	12	8	12
0	0	27	26	13	10	10
0	0	31	26	12	8	14
0	0	38	33	17	14	16
0	1	34	39	15	10	10
0	0	24	30	10	8	11
0	0	30	33	14	11	14
0	1	26	25	11	12	12
0	1	34	38	13	12	9
0	0	27	37	16	12	9
0	0	37	31	12	5	11
0	1	36	37	16	12	16
0	0	41	35	12	10	9
0	1	29	25	9	7	13
0	1	36	28	12	12	16
0	0	32	35	15	11	13
0	1	37	33	12	8	9
0	0	30	30	12	9	12
0	1	31	31	14	10	16
0	1	38	37	12	9	11
0	1	36	36	16	12	14
0	0	35	30	11	6	13
0	0	31	36	19	15	15
0	0	38	32	15	12	14
0	1	22	28	8	12	16
0	1	32	36	16	12	13
0	0	36	34	17	11	14
0	1	39	31	12	7	15
0	0	28	28	11	7	13
0	0	32	36	11	5	11
0	1	32	36	14	12	11
0	1	38	40	16	12	14
0	1	32	33	12	3	15
0	1	35	37	16	11	11
0	1	32	32	13	10	15
0	0	37	38	15	12	12
0	1	34	31	16	9	14
0	1	33	37	16	12	14
0	0	33	33	14	9	8
0	0	30	30	16	12	9
0	0	24	30	14	10	15
0	0	34	31	11	9	17
0	0	34	32	12	12	13
0	1	33	34	15	8	15
0	1	34	36	15	11	15
0	1	35	37	16	11	14
0	0	35	36	16	12	16
0	0	36	33	11	10	13
0	0	34	33	15	10	16
0	1	34	33	12	12	9
0	0	41	44	12	12	16
0	0	32	39	15	11	11
0	0	30	32	15	8	10
0	1	35	35	16	12	11
0	0	28	25	14	10	15
0	1	33	35	17	11	17
0	1	39	34	14	10	14
0	0	36	35	13	8	8
0	1	36	39	15	12	15
0	0	35	33	13	12	11
0	0	38	36	14	10	16
0	1	33	32	15	12	10
0	0	31	32	12	9	15
0	1	32	36	8	6	16
0	0	31	32	14	10	19
0	0	33	34	14	9	12
0	0	34	33	11	9	8
0	0	34	35	12	9	11
0	1	34	30	13	6	14
0	0	33	38	10	10	9
0	0	32	34	16	6	15
0	1	41	33	18	14	13
0	1	34	32	13	10	16
0	0	36	31	11	10	11
0	0	37	30	4	6	12
0	0	36	27	13	12	13
0	1	29	31	16	12	10
0	0	37	30	10	7	11
0	0	27	32	12	8	12
0	0	35	35	12	11	8
0	0	28	28	10	3	12
0	0	35	33	13	6	12
0	0	29	35	12	8	11
0	0	32	35	14	9	13
0	1	36	32	10	9	14
0	1	19	21	12	8	10
0	1	21	20	12	9	12
0	0	31	34	11	7	15
0	0	33	32	10	7	13
0	1	36	34	12	6	13
0	1	33	32	16	9	13
0	0	37	33	12	10	12
0	0	34	33	14	11	12
0	0	35	37	16	12	9
0	1	31	32	14	8	9
0	1	37	34	13	11	15
0	1	35	30	4	3	10
0	1	27	30	15	11	14
0	0	34	38	11	12	15
0	0	40	36	11	7	7
0	0	29	32	14	9	14
0	0	38	34	15	12	8
0	1	34	33	14	8	10
0	0	21	27	13	11	13
0	0	36	32	11	8	13
0	1	38	34	15	10	13
0	0	30	29	11	8	8
0	0	35	35	13	7	12
0	1	30	27	13	8	13
0	1	36	33	16	10	12
0	0	34	38	13	8	10
0	1	35	36	16	12	13
0	0	34	33	16	14	12
0	0	32	39	12	7	9
0	1	33	29	7	6	15
0	0	33	32	16	11	13
0	1	26	34	5	4	13
0	0	35	38	16	9	13
0	0	21	17	4	5	15
0	0	38	35	12	9	15
0	0	35	32	15	11	14
0	1	33	34	14	12	15
0	0	37	36	11	9	11
0	0	38	31	16	12	15
0	1	34	35	15	10	14
0	0	27	29	12	9	13
0	1	16	22	6	6	12
0	0	40	41	16	10	16
0	0	36	36	10	9	16
0	1	42	42	15	13	9
0	1	30	33	14	12	14




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 8 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=198674&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]8 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=198674&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=198674&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'George Udny Yule' @ yule.wessa.net







10-Fold Cross Validation
Prediction (training)Prediction (testing)
ActualC1C2CVC1C2CV
C112953060.8089140490.7407
C24784770.499577580.4296
Overall--0.6933--0.6111

\begin{tabular}{lllllllll}
\hline
10-Fold Cross Validation \tabularnewline
 & Prediction (training) & Prediction (testing) \tabularnewline
Actual & C1 & C2 & CV & C1 & C2 & CV \tabularnewline
C1 & 1295 & 306 & 0.8089 & 140 & 49 & 0.7407 \tabularnewline
C2 & 478 & 477 & 0.4995 & 77 & 58 & 0.4296 \tabularnewline
Overall & - & - & 0.6933 & - & - & 0.6111 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=198674&T=1

[TABLE]
[ROW][C]10-Fold Cross Validation[/C][/ROW]
[ROW][C][/C][C]Prediction (training)[/C][C]Prediction (testing)[/C][/ROW]
[ROW][C]Actual[/C][C]C1[/C][C]C2[/C][C]CV[/C][C]C1[/C][C]C2[/C][C]CV[/C][/ROW]
[ROW][C]C1[/C][C]1295[/C][C]306[/C][C]0.8089[/C][C]140[/C][C]49[/C][C]0.7407[/C][/ROW]
[ROW][C]C2[/C][C]478[/C][C]477[/C][C]0.4995[/C][C]77[/C][C]58[/C][C]0.4296[/C][/ROW]
[ROW][C]Overall[/C][C]-[/C][C]-[/C][C]0.6933[/C][C]-[/C][C]-[/C][C]0.6111[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=198674&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=198674&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

10-Fold Cross Validation
Prediction (training)Prediction (testing)
ActualC1C2CVC1C2CV
C112953060.8089140490.7407
C24784770.499577580.4296
Overall--0.6933--0.6111







Confusion Matrix (predicted in columns / actuals in rows)
C1C2
C111069
C22188

\begin{tabular}{lllllllll}
\hline
Confusion Matrix (predicted in columns / actuals in rows) \tabularnewline
 & C1 & C2 \tabularnewline
C1 & 110 & 69 \tabularnewline
C2 & 21 & 88 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=198674&T=2

[TABLE]
[ROW][C]Confusion Matrix (predicted in columns / actuals in rows)[/C][/ROW]
[ROW][C][/C][C]C1[/C][C]C2[/C][/ROW]
[ROW][C]C1[/C][C]110[/C][C]69[/C][/ROW]
[ROW][C]C2[/C][C]21[/C][C]88[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=198674&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=198674&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Confusion Matrix (predicted in columns / actuals in rows)
C1C2
C111069
C22188



Parameters (Session):
par1 = 5 ; par2 = quantiles ; par3 = 2 ; par4 = yes ;
Parameters (R input):
par1 = 5 ; par2 = quantiles ; par3 = 2 ; par4 = yes ;
R code (references can be found in the software module):
library(party)
library(Hmisc)
par1 <- as.numeric(par1)
par3 <- as.numeric(par3)
x <- data.frame(t(y))
is.data.frame(x)
x <- x[!is.na(x[,par1]),]
k <- length(x[1,])
n <- length(x[,1])
colnames(x)[par1]
x[,par1]
if (par2 == 'kmeans') {
cl <- kmeans(x[,par1], par3)
print(cl)
clm <- matrix(cbind(cl$centers,1:par3),ncol=2)
clm <- clm[sort.list(clm[,1]),]
for (i in 1:par3) {
cl$cluster[cl$cluster==clm[i,2]] <- paste('C',i,sep='')
}
cl$cluster <- as.factor(cl$cluster)
print(cl$cluster)
x[,par1] <- cl$cluster
}
if (par2 == 'quantiles') {
x[,par1] <- cut2(x[,par1],g=par3)
}
if (par2 == 'hclust') {
hc <- hclust(dist(x[,par1])^2, 'cen')
print(hc)
memb <- cutree(hc, k = par3)
dum <- c(mean(x[memb==1,par1]))
for (i in 2:par3) {
dum <- c(dum, mean(x[memb==i,par1]))
}
hcm <- matrix(cbind(dum,1:par3),ncol=2)
hcm <- hcm[sort.list(hcm[,1]),]
for (i in 1:par3) {
memb[memb==hcm[i,2]] <- paste('C',i,sep='')
}
memb <- as.factor(memb)
print(memb)
x[,par1] <- memb
}
if (par2=='equal') {
ed <- cut(as.numeric(x[,par1]),par3,labels=paste('C',1:par3,sep=''))
x[,par1] <- as.factor(ed)
}
table(x[,par1])
colnames(x)
colnames(x)[par1]
x[,par1]
if (par2 == 'none') {
m <- ctree(as.formula(paste(colnames(x)[par1],' ~ .',sep='')),data = x)
}
load(file='createtable')
if (par2 != 'none') {
m <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data = x)
if (par4=='yes') {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'10-Fold Cross Validation',3+2*par3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',1,TRUE)
a<-table.element(a,'Prediction (training)',par3+1,TRUE)
a<-table.element(a,'Prediction (testing)',par3+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Actual',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE)
a<-table.element(a,'CV',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE)
a<-table.element(a,'CV',1,TRUE)
a<-table.row.end(a)
for (i in 1:10) {
ind <- sample(2, nrow(x), replace=T, prob=c(0.9,0.1))
m.ct <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data =x[ind==1,])
if (i==1) {
m.ct.i.pred <- predict(m.ct, newdata=x[ind==1,])
m.ct.i.actu <- x[ind==1,par1]
m.ct.x.pred <- predict(m.ct, newdata=x[ind==2,])
m.ct.x.actu <- x[ind==2,par1]
} else {
m.ct.i.pred <- c(m.ct.i.pred,predict(m.ct, newdata=x[ind==1,]))
m.ct.i.actu <- c(m.ct.i.actu,x[ind==1,par1])
m.ct.x.pred <- c(m.ct.x.pred,predict(m.ct, newdata=x[ind==2,]))
m.ct.x.actu <- c(m.ct.x.actu,x[ind==2,par1])
}
}
print(m.ct.i.tab <- table(m.ct.i.actu,m.ct.i.pred))
numer <- 0
for (i in 1:par3) {
print(m.ct.i.tab[i,i] / sum(m.ct.i.tab[i,]))
numer <- numer + m.ct.i.tab[i,i]
}
print(m.ct.i.cp <- numer / sum(m.ct.i.tab))
print(m.ct.x.tab <- table(m.ct.x.actu,m.ct.x.pred))
numer <- 0
for (i in 1:par3) {
print(m.ct.x.tab[i,i] / sum(m.ct.x.tab[i,]))
numer <- numer + m.ct.x.tab[i,i]
}
print(m.ct.x.cp <- numer / sum(m.ct.x.tab))
for (i in 1:par3) {
a<-table.row.start(a)
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
for (jjj in 1:par3) a<-table.element(a,m.ct.i.tab[i,jjj])
a<-table.element(a,round(m.ct.i.tab[i,i]/sum(m.ct.i.tab[i,]),4))
for (jjj in 1:par3) a<-table.element(a,m.ct.x.tab[i,jjj])
a<-table.element(a,round(m.ct.x.tab[i,i]/sum(m.ct.x.tab[i,]),4))
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'Overall',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,'-')
a<-table.element(a,round(m.ct.i.cp,4))
for (jjj in 1:par3) a<-table.element(a,'-')
a<-table.element(a,round(m.ct.x.cp,4))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
}
}
m
bitmap(file='test1.png')
plot(m)
dev.off()
bitmap(file='test1a.png')
plot(x[,par1] ~ as.factor(where(m)),main='Response by Terminal Node',xlab='Terminal Node',ylab='Response')
dev.off()
if (par2 == 'none') {
forec <- predict(m)
result <- as.data.frame(cbind(x[,par1],forec,x[,par1]-forec))
colnames(result) <- c('Actuals','Forecasts','Residuals')
print(result)
}
if (par2 != 'none') {
print(cbind(as.factor(x[,par1]),predict(m)))
myt <- table(as.factor(x[,par1]),predict(m))
print(myt)
}
bitmap(file='test2.png')
if(par2=='none') {
op <- par(mfrow=c(2,2))
plot(density(result$Actuals),main='Kernel Density Plot of Actuals')
plot(density(result$Residuals),main='Kernel Density Plot of Residuals')
plot(result$Forecasts,result$Actuals,main='Actuals versus Predictions',xlab='Predictions',ylab='Actuals')
plot(density(result$Forecasts),main='Kernel Density Plot of Predictions')
par(op)
}
if(par2!='none') {
plot(myt,main='Confusion Matrix',xlab='Actual',ylab='Predicted')
}
dev.off()
if (par2 == 'none') {
detcoef <- cor(result$Forecasts,result$Actuals)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goodness of Fit',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Correlation',1,TRUE)
a<-table.element(a,round(detcoef,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'R-squared',1,TRUE)
a<-table.element(a,round(detcoef*detcoef,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'RMSE',1,TRUE)
a<-table.element(a,round(sqrt(mean((result$Residuals)^2)),4))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Actuals, Predictions, and Residuals',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'#',header=TRUE)
a<-table.element(a,'Actuals',header=TRUE)
a<-table.element(a,'Forecasts',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(result$Actuals)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,result$Actuals[i])
a<-table.element(a,result$Forecasts[i])
a<-table.element(a,result$Residuals[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
}
if (par2 != 'none') {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Confusion Matrix (predicted in columns / actuals in rows)',par3+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',1,TRUE)
for (i in 1:par3) {
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
}
a<-table.row.end(a)
for (i in 1:par3) {
a<-table.row.start(a)
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
for (j in 1:par3) {
a<-table.element(a,myt[i,j])
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}