Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 07 Dec 2012 07:55:50 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/07/t135488510711bt996xt1ubvjf.htm/, Retrieved Fri, 01 Nov 2024 01:01:06 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=197345, Retrieved Fri, 01 Nov 2024 01:01:06 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact202
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [] [2010-12-05 18:56:24] [b98453cac15ba1066b407e146608df68]
- R PD    [Multiple Regression] [WS10 Multiple Reg...] [2012-12-07 12:55:50] [7ac586d7aaad1f98cbd1d1bd98b37cf0] [Current]
Feedback Forum

Post a new message
Dataseries X:
2,7	8,4	4,3	1,5	2,2	2,1
2,5	7,5	3,1	1,7	2,3	2,2
2,2	4,0	5,7	1,6	2,1	2,2
2,9	8,5	6,7	1,7	2,8	2,7
3,1	7,6	9,5	1,8	3,1	3,1
3,0	5,5	9,0	1,7	2,9	3,2
2,8	3,3	6,9	2,2	2,6	3,1
2,5	1,4	7,5	2,7	2,7	3,1
1,9	-4,4	7,0	3,0	2,3	2,8
1,9	-6,5	9,3	2,8	2,3	3,0
1,8	-8,5	7,2	2,7	2,1	2,8
2,0	-6,7	6,6	2,7	2,2	2,7
2,6	-3,3	10,4	2,5	2,9	3,2
2,5	-5,1	8,7	2,0	2,6	3,1
2,5	-3,5	7,9	1,8	2,7	3,0
1,6	-3,6	4,1	1,4	1,8	2,0
1,4	-6,3	2,2	1,5	1,3	1,7
0,8	-8,0	-0,5	1,6	0,9	1,2
1,1	-5,3	1,7	1,3	1,3	1,4
1,3	-4,0	0,4	1,1	1,3	1,3
1,2	-4,0	2,6	0,8	1,3	1,3
1,3	0,1	0,7	1,1	1,3	1,1
1,1	-0,9	0,7	1,3	1,1	0,9
1,3	1,1	0,5	1,5	1,4	1,2
1,2	3,1	-2,3	1,8	1,2	0,9
1,6	5,7	0,3	2,7	1,7	1,3
1,7	6,2	-0,2	3,0	1,8	1,4
1,5	-2,2	0,6	3,2	1,5	1,5
0,9	-4,2	-0,6	3,2	1,0	1,1
1,5	-1,6	2,7	3,3	1,6	1,6
1,4	-1,9	2,3	3,2	1,5	1,5
1,6	0,2	4,3	2,9	1,8	1,6
1,7	-1,2	5,4	2,7	1,8	1,7
1,4	-2,4	2,6	2,6	1,6	1,6
1,8	0,8	2,9	2,3	1,9	1,7
1,7	-0,1	2,9	2,2	1,7	1,6
1,4	-1,5	2,9	2,1	1,6	1,6
1,2	-4,4	1,4	2,4	1,3	1,3
1,0	-4,2	1,1	2,5	1,1	1,1
1,7	3,5	1,9	2,4	1,9	1,6
2,4	10,0	2,8	2,3	2,6	1,9
2,0	8,6	1,4	2,1	2,3	1,6
2,1	9,5	0,7	2,3	2,4	1,7
2,0	9,9	-0,8	2,2	2,2	1,6
1,8	10,4	-3,1	2,1	2,0	1,4
2,7	16,0	0,1	2,0	2,9	2,1
2,3	12,7	1,0	2,1	2,6	1,9
1,9	10,2	1,9	2,1	2,3	1,7
2,0	8,9	-0,5	2,5	2,3	1,8
2,3	12,6	1,5	2,2	2,6	2,0
2,8	13,6	3,9	2,3	3,1	2,5
2,4	14,8	1,9	2,3	2,8	2,1
2,3	9,5	2,6	2,2	2,5	2,1
2,7	13,7	1,7	2,2	2,9	2,3
2,7	17,0	1,4	1,6	3,1	2,4
2,9	14,7	2,8	1,8	3,1	2,4
3,0	17,4	0,5	1,7	3,2	2,3
2,2	9,0	1,0	1,9	2,5	1,7
2,3	9,1	1,5	1,8	2,6	2,0
2,8	12,2	1,8	1,9	2,9	2,3
2,8	15,9	2,7	1,5	2,6	2,0
2,8	12,9	3,0	1,0	2,4	2,0
2,2	10,9	-0,3	0,8	1,7	1,3
2,6	10,6	1,1	1,1	2,0	1,7
2,8	13,2	1,7	1,5	2,2	1,9
2,5	9,6	1,6	1,7	1,9	1,7
2,4	6,4	3,0	2,3	1,6	1,6
2,3	5,8	3,3	2,4	1,6	1,7
1,9	-1,0	6,7	3,0	1,2	1,8
1,7	-0,2	5,6	3,0	1,2	1,9
2,0	2,7	6,0	3,2	1,5	1,9
2,1	3,6	4,8	3,2	1,6	1,9
1,7	-0,9	5,9	3,2	1,7	2,0
1,8	0,3	4,3	3,5	1,8	2,1
1,8	-1,1	3,7	4,0	1,8	1,9
1,8	-2,5	5,6	4,3	1,8	1,9
1,3	-3,4	1,7	4,1	1,3	1,3
1,3	-3,5	3,2	4,0	1,3	1,3
1,3	-3,9	3,6	4,1	1,4	1,4
1,2	-4,6	1,7	4,2	1,1	1,2
1,4	-0,1	0,5	4,5	1,5	1,3
2,2	4,3	2,1	5,6	2,2	1,8
2,9	10,2	1,5	6,5	2,9	2,2
3,1	8,7	2,7	7,6	3,1	2,6
3,5	13,3	1,4	8,5	3,5	2,8
3,6	15,0	1,2	8,7	3,6	3,1
4,4	20,7	2,3	8,3	4,4	3,9
4,1	20,7	1,6	8,3	4,2	3,7
5,1	26,4	4,7	8,5	5,2	4,6
5,8	31,2	3,5	8,7	5,8	5,1
5,9	31,4	4,4	8,7	5,9	5,2
5,4	26,6	3,9	8,5	5,4	4,9
5,5	26,6	3,5	7,9	5,5	5,1
4,8	19,2	3,0	7,0	4,7	4,8
3,2	6,5	1,6	5,8	3,1	3,9
2,7	3,1	2,2	4,5	2,6	3,5
2,1	-0,2	4,1	3,7	2,3	3,3
1,9	-4,0	4,3	3,1	1,9	2,8
0,6	-12,6	3,5	2,7	0,6	1,6
0,7	-13,0	1,8	2,3	0,6	1,5
-0,2	-17,6	0,6	1,8	-0,4	0,7
-1,0	-21,7	-0,4	1,5	-1,1	-0,1
-1,7	-23,2	-2,5	1,2	-1,7	-0,7
-0,7	-16,8	-1,6	1,0	-0,8	-0,2
-1,0	-19,8	-1,9	0,9	-1,2	-0,6
-0,9	-17,2	-1,6	0,6	-1,0	-0,6
0,0	-10,4	-0,7	0,6	-0,1	-0,3
0,3	-6,8	-1,1	0,7	0,3	-0,3
0,8	-2,9	0,3	0,5	0,6	-0,1
0,8	-1,9	1,3	0,5	0,7	0,1
1,9	7,0	3,3	0,5	1,7	0,9
2,1	9,8	2,4	0,5	1,8	1,1
2,5	12,5	2,0	0,8	2,3	1,6
2,7	13,7	3,9	0,8	2,5	2,0
2,4	13,7	4,2	1,1	2,6	2,2
2,4	9,7	4,9	1,2	2,3	2,1
2,9	14,0	5,8	1,5	2,9	2,6
3,1	15,3	4,8	1,7	3,0	2,5
3,0	13,4	4,4	1,8	2,9	2,5
3,4	17,1	5,3	1,8	3,1	2,6
3,7	15,7	2,1	2,1	3,2	2,7
3,5	18,3	2,0	2,2	3,4	2,8
3,5	18,1	-0,9	2,5	3,5	2,9
3,3	16,3	0,1	2,7	3,4	2,9
3,1	15,8	-0,5	3,0	3,3	2,9
3,4	17,3	-0,1	3,4	3,7	3,3
4,0	18,0	0,7	3,4	3,8	3,3
3,4	17,6	-0,4	3,5	3,6	3,1
3,4	18,4	-1,5	3,5	3,6	3,0
3,4	17,4	-0,3	3,4	3,6	3,1
3,7	17,9	1,0	3,6	3,8	3,4
3,2	13,5	0,4	3,8	3,5	3,2
3,3	13,7	0,3	3,5	3,6	3,4
3,3	12,6	1,8	3,5	3,7	3,4
3,1	10,4	3,0	3,5	3,4	3,1
2,9	8,8	2,2	3,2	3,2	3,0
2,6	5,4	3,4	2,9	2,8	2,7
2,2	2,1	3,4	2,5	2,3	2,2
2,0	2,8	3,1	2,3	2,3	2,2
2,6	5,6	4,5	2,7	2,9	2,6
2,6	4,8	4,6	3,0	2,8	2,4
2,6	4,5	5,7	3,3	2,8	2,5
2,2	1,5	4,3	3,2	2,3	2,2




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 8 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197345&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]8 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197345&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197345&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Multiple Linear Regression - Estimated Regression Equation
HICP[t] = + 0.553904779893441 + 0.0592152076229676Energiedragers[t] + 0.0437540064226119`Niet-bewerkte_levensmiddelen`[t] + 0.0419357359945791Bewerkte_levensmiddelen[t] + 0.175129444142094Algemene_index[t] + 0.349896886357395Gezondheidsindex[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
HICP[t] =  +  0.553904779893441 +  0.0592152076229676Energiedragers[t] +  0.0437540064226119`Niet-bewerkte_levensmiddelen`[t] +  0.0419357359945791Bewerkte_levensmiddelen[t] +  0.175129444142094Algemene_index[t] +  0.349896886357395Gezondheidsindex[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197345&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]HICP[t] =  +  0.553904779893441 +  0.0592152076229676Energiedragers[t] +  0.0437540064226119`Niet-bewerkte_levensmiddelen`[t] +  0.0419357359945791Bewerkte_levensmiddelen[t] +  0.175129444142094Algemene_index[t] +  0.349896886357395Gezondheidsindex[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197345&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197345&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
HICP[t] = + 0.553904779893441 + 0.0592152076229676Energiedragers[t] + 0.0437540064226119`Niet-bewerkte_levensmiddelen`[t] + 0.0419357359945791Bewerkte_levensmiddelen[t] + 0.175129444142094Algemene_index[t] + 0.349896886357395Gezondheidsindex[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)0.5539047798934410.05036710.997400
Energiedragers0.05921520762296760.00475412.455900
`Niet-bewerkte_levensmiddelen`0.04375400642261190.0073715.935700
Bewerkte_levensmiddelen0.04193573599457910.0106293.94550.0001276.3e-05
Algemene_index0.1751294441420940.0698942.50560.0133940.006697
Gezondheidsindex0.3498968863573950.0526366.647500

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 0.553904779893441 & 0.050367 & 10.9974 & 0 & 0 \tabularnewline
Energiedragers & 0.0592152076229676 & 0.004754 & 12.4559 & 0 & 0 \tabularnewline
`Niet-bewerkte_levensmiddelen` & 0.0437540064226119 & 0.007371 & 5.9357 & 0 & 0 \tabularnewline
Bewerkte_levensmiddelen & 0.0419357359945791 & 0.010629 & 3.9455 & 0.000127 & 6.3e-05 \tabularnewline
Algemene_index & 0.175129444142094 & 0.069894 & 2.5056 & 0.013394 & 0.006697 \tabularnewline
Gezondheidsindex & 0.349896886357395 & 0.052636 & 6.6475 & 0 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197345&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]0.553904779893441[/C][C]0.050367[/C][C]10.9974[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]Energiedragers[/C][C]0.0592152076229676[/C][C]0.004754[/C][C]12.4559[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]`Niet-bewerkte_levensmiddelen`[/C][C]0.0437540064226119[/C][C]0.007371[/C][C]5.9357[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]Bewerkte_levensmiddelen[/C][C]0.0419357359945791[/C][C]0.010629[/C][C]3.9455[/C][C]0.000127[/C][C]6.3e-05[/C][/ROW]
[ROW][C]Algemene_index[/C][C]0.175129444142094[/C][C]0.069894[/C][C]2.5056[/C][C]0.013394[/C][C]0.006697[/C][/ROW]
[ROW][C]Gezondheidsindex[/C][C]0.349896886357395[/C][C]0.052636[/C][C]6.6475[/C][C]0[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197345&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197345&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)0.5539047798934410.05036710.997400
Energiedragers0.05921520762296760.00475412.455900
`Niet-bewerkte_levensmiddelen`0.04375400642261190.0073715.935700
Bewerkte_levensmiddelen0.04193573599457910.0106293.94550.0001276.3e-05
Algemene_index0.1751294441420940.0698942.50560.0133940.006697
Gezondheidsindex0.3498968863573950.0526366.647500







Multiple Linear Regression - Regression Statistics
Multiple R0.990988112487621
R-squared0.982057439091777
Adjusted R-squared0.981402601102426
F-TEST (value)1499.69527587243
F-TEST (DF numerator)5
F-TEST (DF denominator)137
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.167419644218962
Sum Squared Residuals3.84001920604531

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.990988112487621 \tabularnewline
R-squared & 0.982057439091777 \tabularnewline
Adjusted R-squared & 0.981402601102426 \tabularnewline
F-TEST (value) & 1499.69527587243 \tabularnewline
F-TEST (DF numerator) & 5 \tabularnewline
F-TEST (DF denominator) & 137 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 0.167419644218962 \tabularnewline
Sum Squared Residuals & 3.84001920604531 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197345&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.990988112487621[/C][/ROW]
[ROW][C]R-squared[/C][C]0.982057439091777[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.981402601102426[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]1499.69527587243[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]5[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]137[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]0.167419644218962[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]3.84001920604531[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197345&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197345&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.990988112487621
R-squared0.982057439091777
Adjusted R-squared0.981402601102426
F-TEST (value)1499.69527587243
F-TEST (DF numerator)5
F-TEST (DF denominator)137
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.167419644218962
Sum Squared Residuals3.84001920604531







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
12.72.42242659399860.277573406001396
22.52.377517879679660.122482120320337
32.22.24480560727019-0.044805607270191
42.92.856760675673780.0432393243262219
53.13.12266936818146-0.0226693681814646
632.972210655169790.0277893448302106
72.82.68349313103070.116506868969302
82.52.63571745281213-0.135717452812125
91.92.10795212262192-0.207952122621925
101.92.14582663145826-0.245826631458264
111.81.82631396302549-0.0263139630254875
1221.889172188671730.110827811328268
132.62.545921025874990.0540789741250056
142.52.256455451359560.243544548640445
152.52.290332686997770.209667313002232
161.61.593858261346440.00614173865356485
171.41.162504374182650.237495625817347
180.80.7028960566464790.0971039433535213
191.11.086486365488180.0135136345118198
201.31.063209091213990.236790908786013
211.21.146887184545360.0531128154546401
221.31.249138267123460.0508617328765409
231.11.093304940599510.00669505940049038
241.31.36887960090968-0.0688796009096847
251.21.23738456423504-0.0373845642350434
261.61.77037015976268-0.170370159762676
271.71.84318411421118-0.143184114211176
281.51.371617577908370.128382422091635
290.90.973158878341291-0.0731588783412908
301.51.55572632261904-0.0557263226190375
311.41.4637639511137-0.0637639511136957
321.61.75057170104715-0.150571701047145
331.71.74240235887669-0.0424023588766875
341.41.4746237406822-0.074623740682197
351.81.752186408082470.0478135919175295
361.71.624683570158180.0753164298418163
371.41.52007576147236-0.120075761472362
381.21.137793471380370.0622065286196349
3911.03569861847774-0.0356986184777352
401.71.83751734720559-0.13751734720559
412.42.48516090574246-0.085160905742456
4222.17510895972988-0.175108959729882
432.12.25866462234359-0.158664622343589
4422.14251054469524-0.142510544695243
451.81.96228509403536-0.162285094035363
462.72.83225382385494-0.132253823854943
472.32.55789760756485-0.257897607564851
481.92.32671998377368-0.426719983773676
4922.19649458148312-0.196494581483121
502.32.61303635224906-0.313036352249058
512.83.0439679141355-0.243967914135496
522.42.83502056265225-0.435020562652248
532.32.49507535990426-0.195075359904262
542.72.84443178106869-0.144431781068691
552.73.07156990016511-0.371569900165111
562.93.00501767882286-0.105017678822858
5733.04259420681188-0.0425942068118754
582.22.24292187047527-0.0429218704752668
592.32.38900883117084-0.0890088311708398
602.82.747403649478130.0525963505218728
612.82.83159632991578-0.0315963299157801
622.82.611083152147950.188916847852047
632.21.972358937158840.22764106284116
642.62.220928292447570.379071707552434
652.82.522919796618580.277080203381421
662.52.191238585218440.308761414781558
672.42.000638449534980.399361550465017
682.32.017418789123180.282581210876817
691.91.753618351699530.146381648300467
701.71.78785079936877-0.0878507993687736
7122.03800248448597-0.0380024844859684
722.12.056304308053710.0436956919462857
731.71.89046791386518-0.190467913865182
741.81.95660310658489-0.156603106584887
751.81.798437902784980.00156209721502444
761.81.81124994511416-0.0112499451141571
771.31.28142563212090.0185743678790995
781.31.33694154739306-0.0369415473930637
791.31.38745327356233-0.0874532735623282
801.21.144545379108640.0554546208913608
811.41.47613119279581-0.0761311927958099
822.22.150352880285250.049647119714754
832.92.773761729244730.126238270755267
843.12.958557678482830.141442321517171
853.53.351840742522520.148159257477478
863.63.574624951717390.0253750482826118
874.44.363527812234940.0364721877650646
884.14.22789474163921-0.12789474163921
895.15.19948263406289-0.0994826340628868
905.85.719624079808870.0803759201911336
915.95.823348360163760.0766516398362408
925.45.316317425185030.0836825748149722
935.55.361146702704920.138853297295076
944.84.618262379467640.181737620532357
953.23.15953644212180.0404635578782022
962.72.70241720665032-0.00241720665031751
972.12.43407283438772-0.334072834387717
981.91.94764418427268-0.04764418427268
990.60.739071358165642-0.139071358165642
1000.70.5892394811644440.110760518835556
101-0.2-0.2116701028336410.0116701028336408
102-1-0.913295301294175-0.086704698705825
103-1.7-1.42159804531418-0.278401954685822
104-0.7-0.679064315039169-0.0209356849608312
105-1-1.084040245634110.0840402456341088
106-0.9-0.894509335857564-0.00549066414243618
1070-0.1898817526059310.189881752605931
1080.30.08003674352400340.219963256475997
1090.80.4863627255604250.313637274439575
1100.80.6768242612916930.123175738708307
1111.91.746394575209340.153605424790662
1122.11.960310872458980.139689127541015
1132.52.377784216520070.12221578347993
1142.72.70695972124197-0.00695972124197038
1152.42.82015896565282-0.420158965652816
1162.42.53059099137786-0.130590991377864
1172.93.1172018203993-0.217201820399303
1183.13.14133798686393-0.0413379868639347
11932.99800811899650.00199188100349973
1203.43.326498570445990.0735014295540104
1213.73.16866781306980.531332186930201
1223.53.392461103310870.10753889668913
1233.53.318814797009020.181185202990976
1243.33.2468556324950.0531443675049988
1253.13.18606340121411-0.0860634012141143
1263.43.51917264181524-0.119172641815238
12743.613139436703610.386860563296386
1283.43.44051225408911-0.0405122540891142
1293.43.40476532448688-0.00476532448687548
1303.43.42885103960732-0.0288510396073238
1313.73.663720953702760.0362790462972444
1323.23.26279057299294-0.0627905729929399
1333.33.34516981476259-0.0451698147625871
1343.33.36317704042545-0.0631770404254501
1353.13.12790049221221-0.0279004922122089
1362.92.91555665661484-0.0155566566148394
1372.62.579128194041450.020871805958546
1382.22.104430549238090.095569450761915
13922.12436784544846-0.124367845448463
1402.62.61323675121047-0.0132367512104747
1412.62.495328384867050.104671615132953
1422.62.573263639079140.0267363609208568
1432.22.137635045640860.0623649543591395

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 2.7 & 2.4224265939986 & 0.277573406001396 \tabularnewline
2 & 2.5 & 2.37751787967966 & 0.122482120320337 \tabularnewline
3 & 2.2 & 2.24480560727019 & -0.044805607270191 \tabularnewline
4 & 2.9 & 2.85676067567378 & 0.0432393243262219 \tabularnewline
5 & 3.1 & 3.12266936818146 & -0.0226693681814646 \tabularnewline
6 & 3 & 2.97221065516979 & 0.0277893448302106 \tabularnewline
7 & 2.8 & 2.6834931310307 & 0.116506868969302 \tabularnewline
8 & 2.5 & 2.63571745281213 & -0.135717452812125 \tabularnewline
9 & 1.9 & 2.10795212262192 & -0.207952122621925 \tabularnewline
10 & 1.9 & 2.14582663145826 & -0.245826631458264 \tabularnewline
11 & 1.8 & 1.82631396302549 & -0.0263139630254875 \tabularnewline
12 & 2 & 1.88917218867173 & 0.110827811328268 \tabularnewline
13 & 2.6 & 2.54592102587499 & 0.0540789741250056 \tabularnewline
14 & 2.5 & 2.25645545135956 & 0.243544548640445 \tabularnewline
15 & 2.5 & 2.29033268699777 & 0.209667313002232 \tabularnewline
16 & 1.6 & 1.59385826134644 & 0.00614173865356485 \tabularnewline
17 & 1.4 & 1.16250437418265 & 0.237495625817347 \tabularnewline
18 & 0.8 & 0.702896056646479 & 0.0971039433535213 \tabularnewline
19 & 1.1 & 1.08648636548818 & 0.0135136345118198 \tabularnewline
20 & 1.3 & 1.06320909121399 & 0.236790908786013 \tabularnewline
21 & 1.2 & 1.14688718454536 & 0.0531128154546401 \tabularnewline
22 & 1.3 & 1.24913826712346 & 0.0508617328765409 \tabularnewline
23 & 1.1 & 1.09330494059951 & 0.00669505940049038 \tabularnewline
24 & 1.3 & 1.36887960090968 & -0.0688796009096847 \tabularnewline
25 & 1.2 & 1.23738456423504 & -0.0373845642350434 \tabularnewline
26 & 1.6 & 1.77037015976268 & -0.170370159762676 \tabularnewline
27 & 1.7 & 1.84318411421118 & -0.143184114211176 \tabularnewline
28 & 1.5 & 1.37161757790837 & 0.128382422091635 \tabularnewline
29 & 0.9 & 0.973158878341291 & -0.0731588783412908 \tabularnewline
30 & 1.5 & 1.55572632261904 & -0.0557263226190375 \tabularnewline
31 & 1.4 & 1.4637639511137 & -0.0637639511136957 \tabularnewline
32 & 1.6 & 1.75057170104715 & -0.150571701047145 \tabularnewline
33 & 1.7 & 1.74240235887669 & -0.0424023588766875 \tabularnewline
34 & 1.4 & 1.4746237406822 & -0.074623740682197 \tabularnewline
35 & 1.8 & 1.75218640808247 & 0.0478135919175295 \tabularnewline
36 & 1.7 & 1.62468357015818 & 0.0753164298418163 \tabularnewline
37 & 1.4 & 1.52007576147236 & -0.120075761472362 \tabularnewline
38 & 1.2 & 1.13779347138037 & 0.0622065286196349 \tabularnewline
39 & 1 & 1.03569861847774 & -0.0356986184777352 \tabularnewline
40 & 1.7 & 1.83751734720559 & -0.13751734720559 \tabularnewline
41 & 2.4 & 2.48516090574246 & -0.085160905742456 \tabularnewline
42 & 2 & 2.17510895972988 & -0.175108959729882 \tabularnewline
43 & 2.1 & 2.25866462234359 & -0.158664622343589 \tabularnewline
44 & 2 & 2.14251054469524 & -0.142510544695243 \tabularnewline
45 & 1.8 & 1.96228509403536 & -0.162285094035363 \tabularnewline
46 & 2.7 & 2.83225382385494 & -0.132253823854943 \tabularnewline
47 & 2.3 & 2.55789760756485 & -0.257897607564851 \tabularnewline
48 & 1.9 & 2.32671998377368 & -0.426719983773676 \tabularnewline
49 & 2 & 2.19649458148312 & -0.196494581483121 \tabularnewline
50 & 2.3 & 2.61303635224906 & -0.313036352249058 \tabularnewline
51 & 2.8 & 3.0439679141355 & -0.243967914135496 \tabularnewline
52 & 2.4 & 2.83502056265225 & -0.435020562652248 \tabularnewline
53 & 2.3 & 2.49507535990426 & -0.195075359904262 \tabularnewline
54 & 2.7 & 2.84443178106869 & -0.144431781068691 \tabularnewline
55 & 2.7 & 3.07156990016511 & -0.371569900165111 \tabularnewline
56 & 2.9 & 3.00501767882286 & -0.105017678822858 \tabularnewline
57 & 3 & 3.04259420681188 & -0.0425942068118754 \tabularnewline
58 & 2.2 & 2.24292187047527 & -0.0429218704752668 \tabularnewline
59 & 2.3 & 2.38900883117084 & -0.0890088311708398 \tabularnewline
60 & 2.8 & 2.74740364947813 & 0.0525963505218728 \tabularnewline
61 & 2.8 & 2.83159632991578 & -0.0315963299157801 \tabularnewline
62 & 2.8 & 2.61108315214795 & 0.188916847852047 \tabularnewline
63 & 2.2 & 1.97235893715884 & 0.22764106284116 \tabularnewline
64 & 2.6 & 2.22092829244757 & 0.379071707552434 \tabularnewline
65 & 2.8 & 2.52291979661858 & 0.277080203381421 \tabularnewline
66 & 2.5 & 2.19123858521844 & 0.308761414781558 \tabularnewline
67 & 2.4 & 2.00063844953498 & 0.399361550465017 \tabularnewline
68 & 2.3 & 2.01741878912318 & 0.282581210876817 \tabularnewline
69 & 1.9 & 1.75361835169953 & 0.146381648300467 \tabularnewline
70 & 1.7 & 1.78785079936877 & -0.0878507993687736 \tabularnewline
71 & 2 & 2.03800248448597 & -0.0380024844859684 \tabularnewline
72 & 2.1 & 2.05630430805371 & 0.0436956919462857 \tabularnewline
73 & 1.7 & 1.89046791386518 & -0.190467913865182 \tabularnewline
74 & 1.8 & 1.95660310658489 & -0.156603106584887 \tabularnewline
75 & 1.8 & 1.79843790278498 & 0.00156209721502444 \tabularnewline
76 & 1.8 & 1.81124994511416 & -0.0112499451141571 \tabularnewline
77 & 1.3 & 1.2814256321209 & 0.0185743678790995 \tabularnewline
78 & 1.3 & 1.33694154739306 & -0.0369415473930637 \tabularnewline
79 & 1.3 & 1.38745327356233 & -0.0874532735623282 \tabularnewline
80 & 1.2 & 1.14454537910864 & 0.0554546208913608 \tabularnewline
81 & 1.4 & 1.47613119279581 & -0.0761311927958099 \tabularnewline
82 & 2.2 & 2.15035288028525 & 0.049647119714754 \tabularnewline
83 & 2.9 & 2.77376172924473 & 0.126238270755267 \tabularnewline
84 & 3.1 & 2.95855767848283 & 0.141442321517171 \tabularnewline
85 & 3.5 & 3.35184074252252 & 0.148159257477478 \tabularnewline
86 & 3.6 & 3.57462495171739 & 0.0253750482826118 \tabularnewline
87 & 4.4 & 4.36352781223494 & 0.0364721877650646 \tabularnewline
88 & 4.1 & 4.22789474163921 & -0.12789474163921 \tabularnewline
89 & 5.1 & 5.19948263406289 & -0.0994826340628868 \tabularnewline
90 & 5.8 & 5.71962407980887 & 0.0803759201911336 \tabularnewline
91 & 5.9 & 5.82334836016376 & 0.0766516398362408 \tabularnewline
92 & 5.4 & 5.31631742518503 & 0.0836825748149722 \tabularnewline
93 & 5.5 & 5.36114670270492 & 0.138853297295076 \tabularnewline
94 & 4.8 & 4.61826237946764 & 0.181737620532357 \tabularnewline
95 & 3.2 & 3.1595364421218 & 0.0404635578782022 \tabularnewline
96 & 2.7 & 2.70241720665032 & -0.00241720665031751 \tabularnewline
97 & 2.1 & 2.43407283438772 & -0.334072834387717 \tabularnewline
98 & 1.9 & 1.94764418427268 & -0.04764418427268 \tabularnewline
99 & 0.6 & 0.739071358165642 & -0.139071358165642 \tabularnewline
100 & 0.7 & 0.589239481164444 & 0.110760518835556 \tabularnewline
101 & -0.2 & -0.211670102833641 & 0.0116701028336408 \tabularnewline
102 & -1 & -0.913295301294175 & -0.086704698705825 \tabularnewline
103 & -1.7 & -1.42159804531418 & -0.278401954685822 \tabularnewline
104 & -0.7 & -0.679064315039169 & -0.0209356849608312 \tabularnewline
105 & -1 & -1.08404024563411 & 0.0840402456341088 \tabularnewline
106 & -0.9 & -0.894509335857564 & -0.00549066414243618 \tabularnewline
107 & 0 & -0.189881752605931 & 0.189881752605931 \tabularnewline
108 & 0.3 & 0.0800367435240034 & 0.219963256475997 \tabularnewline
109 & 0.8 & 0.486362725560425 & 0.313637274439575 \tabularnewline
110 & 0.8 & 0.676824261291693 & 0.123175738708307 \tabularnewline
111 & 1.9 & 1.74639457520934 & 0.153605424790662 \tabularnewline
112 & 2.1 & 1.96031087245898 & 0.139689127541015 \tabularnewline
113 & 2.5 & 2.37778421652007 & 0.12221578347993 \tabularnewline
114 & 2.7 & 2.70695972124197 & -0.00695972124197038 \tabularnewline
115 & 2.4 & 2.82015896565282 & -0.420158965652816 \tabularnewline
116 & 2.4 & 2.53059099137786 & -0.130590991377864 \tabularnewline
117 & 2.9 & 3.1172018203993 & -0.217201820399303 \tabularnewline
118 & 3.1 & 3.14133798686393 & -0.0413379868639347 \tabularnewline
119 & 3 & 2.9980081189965 & 0.00199188100349973 \tabularnewline
120 & 3.4 & 3.32649857044599 & 0.0735014295540104 \tabularnewline
121 & 3.7 & 3.1686678130698 & 0.531332186930201 \tabularnewline
122 & 3.5 & 3.39246110331087 & 0.10753889668913 \tabularnewline
123 & 3.5 & 3.31881479700902 & 0.181185202990976 \tabularnewline
124 & 3.3 & 3.246855632495 & 0.0531443675049988 \tabularnewline
125 & 3.1 & 3.18606340121411 & -0.0860634012141143 \tabularnewline
126 & 3.4 & 3.51917264181524 & -0.119172641815238 \tabularnewline
127 & 4 & 3.61313943670361 & 0.386860563296386 \tabularnewline
128 & 3.4 & 3.44051225408911 & -0.0405122540891142 \tabularnewline
129 & 3.4 & 3.40476532448688 & -0.00476532448687548 \tabularnewline
130 & 3.4 & 3.42885103960732 & -0.0288510396073238 \tabularnewline
131 & 3.7 & 3.66372095370276 & 0.0362790462972444 \tabularnewline
132 & 3.2 & 3.26279057299294 & -0.0627905729929399 \tabularnewline
133 & 3.3 & 3.34516981476259 & -0.0451698147625871 \tabularnewline
134 & 3.3 & 3.36317704042545 & -0.0631770404254501 \tabularnewline
135 & 3.1 & 3.12790049221221 & -0.0279004922122089 \tabularnewline
136 & 2.9 & 2.91555665661484 & -0.0155566566148394 \tabularnewline
137 & 2.6 & 2.57912819404145 & 0.020871805958546 \tabularnewline
138 & 2.2 & 2.10443054923809 & 0.095569450761915 \tabularnewline
139 & 2 & 2.12436784544846 & -0.124367845448463 \tabularnewline
140 & 2.6 & 2.61323675121047 & -0.0132367512104747 \tabularnewline
141 & 2.6 & 2.49532838486705 & 0.104671615132953 \tabularnewline
142 & 2.6 & 2.57326363907914 & 0.0267363609208568 \tabularnewline
143 & 2.2 & 2.13763504564086 & 0.0623649543591395 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197345&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]2.7[/C][C]2.4224265939986[/C][C]0.277573406001396[/C][/ROW]
[ROW][C]2[/C][C]2.5[/C][C]2.37751787967966[/C][C]0.122482120320337[/C][/ROW]
[ROW][C]3[/C][C]2.2[/C][C]2.24480560727019[/C][C]-0.044805607270191[/C][/ROW]
[ROW][C]4[/C][C]2.9[/C][C]2.85676067567378[/C][C]0.0432393243262219[/C][/ROW]
[ROW][C]5[/C][C]3.1[/C][C]3.12266936818146[/C][C]-0.0226693681814646[/C][/ROW]
[ROW][C]6[/C][C]3[/C][C]2.97221065516979[/C][C]0.0277893448302106[/C][/ROW]
[ROW][C]7[/C][C]2.8[/C][C]2.6834931310307[/C][C]0.116506868969302[/C][/ROW]
[ROW][C]8[/C][C]2.5[/C][C]2.63571745281213[/C][C]-0.135717452812125[/C][/ROW]
[ROW][C]9[/C][C]1.9[/C][C]2.10795212262192[/C][C]-0.207952122621925[/C][/ROW]
[ROW][C]10[/C][C]1.9[/C][C]2.14582663145826[/C][C]-0.245826631458264[/C][/ROW]
[ROW][C]11[/C][C]1.8[/C][C]1.82631396302549[/C][C]-0.0263139630254875[/C][/ROW]
[ROW][C]12[/C][C]2[/C][C]1.88917218867173[/C][C]0.110827811328268[/C][/ROW]
[ROW][C]13[/C][C]2.6[/C][C]2.54592102587499[/C][C]0.0540789741250056[/C][/ROW]
[ROW][C]14[/C][C]2.5[/C][C]2.25645545135956[/C][C]0.243544548640445[/C][/ROW]
[ROW][C]15[/C][C]2.5[/C][C]2.29033268699777[/C][C]0.209667313002232[/C][/ROW]
[ROW][C]16[/C][C]1.6[/C][C]1.59385826134644[/C][C]0.00614173865356485[/C][/ROW]
[ROW][C]17[/C][C]1.4[/C][C]1.16250437418265[/C][C]0.237495625817347[/C][/ROW]
[ROW][C]18[/C][C]0.8[/C][C]0.702896056646479[/C][C]0.0971039433535213[/C][/ROW]
[ROW][C]19[/C][C]1.1[/C][C]1.08648636548818[/C][C]0.0135136345118198[/C][/ROW]
[ROW][C]20[/C][C]1.3[/C][C]1.06320909121399[/C][C]0.236790908786013[/C][/ROW]
[ROW][C]21[/C][C]1.2[/C][C]1.14688718454536[/C][C]0.0531128154546401[/C][/ROW]
[ROW][C]22[/C][C]1.3[/C][C]1.24913826712346[/C][C]0.0508617328765409[/C][/ROW]
[ROW][C]23[/C][C]1.1[/C][C]1.09330494059951[/C][C]0.00669505940049038[/C][/ROW]
[ROW][C]24[/C][C]1.3[/C][C]1.36887960090968[/C][C]-0.0688796009096847[/C][/ROW]
[ROW][C]25[/C][C]1.2[/C][C]1.23738456423504[/C][C]-0.0373845642350434[/C][/ROW]
[ROW][C]26[/C][C]1.6[/C][C]1.77037015976268[/C][C]-0.170370159762676[/C][/ROW]
[ROW][C]27[/C][C]1.7[/C][C]1.84318411421118[/C][C]-0.143184114211176[/C][/ROW]
[ROW][C]28[/C][C]1.5[/C][C]1.37161757790837[/C][C]0.128382422091635[/C][/ROW]
[ROW][C]29[/C][C]0.9[/C][C]0.973158878341291[/C][C]-0.0731588783412908[/C][/ROW]
[ROW][C]30[/C][C]1.5[/C][C]1.55572632261904[/C][C]-0.0557263226190375[/C][/ROW]
[ROW][C]31[/C][C]1.4[/C][C]1.4637639511137[/C][C]-0.0637639511136957[/C][/ROW]
[ROW][C]32[/C][C]1.6[/C][C]1.75057170104715[/C][C]-0.150571701047145[/C][/ROW]
[ROW][C]33[/C][C]1.7[/C][C]1.74240235887669[/C][C]-0.0424023588766875[/C][/ROW]
[ROW][C]34[/C][C]1.4[/C][C]1.4746237406822[/C][C]-0.074623740682197[/C][/ROW]
[ROW][C]35[/C][C]1.8[/C][C]1.75218640808247[/C][C]0.0478135919175295[/C][/ROW]
[ROW][C]36[/C][C]1.7[/C][C]1.62468357015818[/C][C]0.0753164298418163[/C][/ROW]
[ROW][C]37[/C][C]1.4[/C][C]1.52007576147236[/C][C]-0.120075761472362[/C][/ROW]
[ROW][C]38[/C][C]1.2[/C][C]1.13779347138037[/C][C]0.0622065286196349[/C][/ROW]
[ROW][C]39[/C][C]1[/C][C]1.03569861847774[/C][C]-0.0356986184777352[/C][/ROW]
[ROW][C]40[/C][C]1.7[/C][C]1.83751734720559[/C][C]-0.13751734720559[/C][/ROW]
[ROW][C]41[/C][C]2.4[/C][C]2.48516090574246[/C][C]-0.085160905742456[/C][/ROW]
[ROW][C]42[/C][C]2[/C][C]2.17510895972988[/C][C]-0.175108959729882[/C][/ROW]
[ROW][C]43[/C][C]2.1[/C][C]2.25866462234359[/C][C]-0.158664622343589[/C][/ROW]
[ROW][C]44[/C][C]2[/C][C]2.14251054469524[/C][C]-0.142510544695243[/C][/ROW]
[ROW][C]45[/C][C]1.8[/C][C]1.96228509403536[/C][C]-0.162285094035363[/C][/ROW]
[ROW][C]46[/C][C]2.7[/C][C]2.83225382385494[/C][C]-0.132253823854943[/C][/ROW]
[ROW][C]47[/C][C]2.3[/C][C]2.55789760756485[/C][C]-0.257897607564851[/C][/ROW]
[ROW][C]48[/C][C]1.9[/C][C]2.32671998377368[/C][C]-0.426719983773676[/C][/ROW]
[ROW][C]49[/C][C]2[/C][C]2.19649458148312[/C][C]-0.196494581483121[/C][/ROW]
[ROW][C]50[/C][C]2.3[/C][C]2.61303635224906[/C][C]-0.313036352249058[/C][/ROW]
[ROW][C]51[/C][C]2.8[/C][C]3.0439679141355[/C][C]-0.243967914135496[/C][/ROW]
[ROW][C]52[/C][C]2.4[/C][C]2.83502056265225[/C][C]-0.435020562652248[/C][/ROW]
[ROW][C]53[/C][C]2.3[/C][C]2.49507535990426[/C][C]-0.195075359904262[/C][/ROW]
[ROW][C]54[/C][C]2.7[/C][C]2.84443178106869[/C][C]-0.144431781068691[/C][/ROW]
[ROW][C]55[/C][C]2.7[/C][C]3.07156990016511[/C][C]-0.371569900165111[/C][/ROW]
[ROW][C]56[/C][C]2.9[/C][C]3.00501767882286[/C][C]-0.105017678822858[/C][/ROW]
[ROW][C]57[/C][C]3[/C][C]3.04259420681188[/C][C]-0.0425942068118754[/C][/ROW]
[ROW][C]58[/C][C]2.2[/C][C]2.24292187047527[/C][C]-0.0429218704752668[/C][/ROW]
[ROW][C]59[/C][C]2.3[/C][C]2.38900883117084[/C][C]-0.0890088311708398[/C][/ROW]
[ROW][C]60[/C][C]2.8[/C][C]2.74740364947813[/C][C]0.0525963505218728[/C][/ROW]
[ROW][C]61[/C][C]2.8[/C][C]2.83159632991578[/C][C]-0.0315963299157801[/C][/ROW]
[ROW][C]62[/C][C]2.8[/C][C]2.61108315214795[/C][C]0.188916847852047[/C][/ROW]
[ROW][C]63[/C][C]2.2[/C][C]1.97235893715884[/C][C]0.22764106284116[/C][/ROW]
[ROW][C]64[/C][C]2.6[/C][C]2.22092829244757[/C][C]0.379071707552434[/C][/ROW]
[ROW][C]65[/C][C]2.8[/C][C]2.52291979661858[/C][C]0.277080203381421[/C][/ROW]
[ROW][C]66[/C][C]2.5[/C][C]2.19123858521844[/C][C]0.308761414781558[/C][/ROW]
[ROW][C]67[/C][C]2.4[/C][C]2.00063844953498[/C][C]0.399361550465017[/C][/ROW]
[ROW][C]68[/C][C]2.3[/C][C]2.01741878912318[/C][C]0.282581210876817[/C][/ROW]
[ROW][C]69[/C][C]1.9[/C][C]1.75361835169953[/C][C]0.146381648300467[/C][/ROW]
[ROW][C]70[/C][C]1.7[/C][C]1.78785079936877[/C][C]-0.0878507993687736[/C][/ROW]
[ROW][C]71[/C][C]2[/C][C]2.03800248448597[/C][C]-0.0380024844859684[/C][/ROW]
[ROW][C]72[/C][C]2.1[/C][C]2.05630430805371[/C][C]0.0436956919462857[/C][/ROW]
[ROW][C]73[/C][C]1.7[/C][C]1.89046791386518[/C][C]-0.190467913865182[/C][/ROW]
[ROW][C]74[/C][C]1.8[/C][C]1.95660310658489[/C][C]-0.156603106584887[/C][/ROW]
[ROW][C]75[/C][C]1.8[/C][C]1.79843790278498[/C][C]0.00156209721502444[/C][/ROW]
[ROW][C]76[/C][C]1.8[/C][C]1.81124994511416[/C][C]-0.0112499451141571[/C][/ROW]
[ROW][C]77[/C][C]1.3[/C][C]1.2814256321209[/C][C]0.0185743678790995[/C][/ROW]
[ROW][C]78[/C][C]1.3[/C][C]1.33694154739306[/C][C]-0.0369415473930637[/C][/ROW]
[ROW][C]79[/C][C]1.3[/C][C]1.38745327356233[/C][C]-0.0874532735623282[/C][/ROW]
[ROW][C]80[/C][C]1.2[/C][C]1.14454537910864[/C][C]0.0554546208913608[/C][/ROW]
[ROW][C]81[/C][C]1.4[/C][C]1.47613119279581[/C][C]-0.0761311927958099[/C][/ROW]
[ROW][C]82[/C][C]2.2[/C][C]2.15035288028525[/C][C]0.049647119714754[/C][/ROW]
[ROW][C]83[/C][C]2.9[/C][C]2.77376172924473[/C][C]0.126238270755267[/C][/ROW]
[ROW][C]84[/C][C]3.1[/C][C]2.95855767848283[/C][C]0.141442321517171[/C][/ROW]
[ROW][C]85[/C][C]3.5[/C][C]3.35184074252252[/C][C]0.148159257477478[/C][/ROW]
[ROW][C]86[/C][C]3.6[/C][C]3.57462495171739[/C][C]0.0253750482826118[/C][/ROW]
[ROW][C]87[/C][C]4.4[/C][C]4.36352781223494[/C][C]0.0364721877650646[/C][/ROW]
[ROW][C]88[/C][C]4.1[/C][C]4.22789474163921[/C][C]-0.12789474163921[/C][/ROW]
[ROW][C]89[/C][C]5.1[/C][C]5.19948263406289[/C][C]-0.0994826340628868[/C][/ROW]
[ROW][C]90[/C][C]5.8[/C][C]5.71962407980887[/C][C]0.0803759201911336[/C][/ROW]
[ROW][C]91[/C][C]5.9[/C][C]5.82334836016376[/C][C]0.0766516398362408[/C][/ROW]
[ROW][C]92[/C][C]5.4[/C][C]5.31631742518503[/C][C]0.0836825748149722[/C][/ROW]
[ROW][C]93[/C][C]5.5[/C][C]5.36114670270492[/C][C]0.138853297295076[/C][/ROW]
[ROW][C]94[/C][C]4.8[/C][C]4.61826237946764[/C][C]0.181737620532357[/C][/ROW]
[ROW][C]95[/C][C]3.2[/C][C]3.1595364421218[/C][C]0.0404635578782022[/C][/ROW]
[ROW][C]96[/C][C]2.7[/C][C]2.70241720665032[/C][C]-0.00241720665031751[/C][/ROW]
[ROW][C]97[/C][C]2.1[/C][C]2.43407283438772[/C][C]-0.334072834387717[/C][/ROW]
[ROW][C]98[/C][C]1.9[/C][C]1.94764418427268[/C][C]-0.04764418427268[/C][/ROW]
[ROW][C]99[/C][C]0.6[/C][C]0.739071358165642[/C][C]-0.139071358165642[/C][/ROW]
[ROW][C]100[/C][C]0.7[/C][C]0.589239481164444[/C][C]0.110760518835556[/C][/ROW]
[ROW][C]101[/C][C]-0.2[/C][C]-0.211670102833641[/C][C]0.0116701028336408[/C][/ROW]
[ROW][C]102[/C][C]-1[/C][C]-0.913295301294175[/C][C]-0.086704698705825[/C][/ROW]
[ROW][C]103[/C][C]-1.7[/C][C]-1.42159804531418[/C][C]-0.278401954685822[/C][/ROW]
[ROW][C]104[/C][C]-0.7[/C][C]-0.679064315039169[/C][C]-0.0209356849608312[/C][/ROW]
[ROW][C]105[/C][C]-1[/C][C]-1.08404024563411[/C][C]0.0840402456341088[/C][/ROW]
[ROW][C]106[/C][C]-0.9[/C][C]-0.894509335857564[/C][C]-0.00549066414243618[/C][/ROW]
[ROW][C]107[/C][C]0[/C][C]-0.189881752605931[/C][C]0.189881752605931[/C][/ROW]
[ROW][C]108[/C][C]0.3[/C][C]0.0800367435240034[/C][C]0.219963256475997[/C][/ROW]
[ROW][C]109[/C][C]0.8[/C][C]0.486362725560425[/C][C]0.313637274439575[/C][/ROW]
[ROW][C]110[/C][C]0.8[/C][C]0.676824261291693[/C][C]0.123175738708307[/C][/ROW]
[ROW][C]111[/C][C]1.9[/C][C]1.74639457520934[/C][C]0.153605424790662[/C][/ROW]
[ROW][C]112[/C][C]2.1[/C][C]1.96031087245898[/C][C]0.139689127541015[/C][/ROW]
[ROW][C]113[/C][C]2.5[/C][C]2.37778421652007[/C][C]0.12221578347993[/C][/ROW]
[ROW][C]114[/C][C]2.7[/C][C]2.70695972124197[/C][C]-0.00695972124197038[/C][/ROW]
[ROW][C]115[/C][C]2.4[/C][C]2.82015896565282[/C][C]-0.420158965652816[/C][/ROW]
[ROW][C]116[/C][C]2.4[/C][C]2.53059099137786[/C][C]-0.130590991377864[/C][/ROW]
[ROW][C]117[/C][C]2.9[/C][C]3.1172018203993[/C][C]-0.217201820399303[/C][/ROW]
[ROW][C]118[/C][C]3.1[/C][C]3.14133798686393[/C][C]-0.0413379868639347[/C][/ROW]
[ROW][C]119[/C][C]3[/C][C]2.9980081189965[/C][C]0.00199188100349973[/C][/ROW]
[ROW][C]120[/C][C]3.4[/C][C]3.32649857044599[/C][C]0.0735014295540104[/C][/ROW]
[ROW][C]121[/C][C]3.7[/C][C]3.1686678130698[/C][C]0.531332186930201[/C][/ROW]
[ROW][C]122[/C][C]3.5[/C][C]3.39246110331087[/C][C]0.10753889668913[/C][/ROW]
[ROW][C]123[/C][C]3.5[/C][C]3.31881479700902[/C][C]0.181185202990976[/C][/ROW]
[ROW][C]124[/C][C]3.3[/C][C]3.246855632495[/C][C]0.0531443675049988[/C][/ROW]
[ROW][C]125[/C][C]3.1[/C][C]3.18606340121411[/C][C]-0.0860634012141143[/C][/ROW]
[ROW][C]126[/C][C]3.4[/C][C]3.51917264181524[/C][C]-0.119172641815238[/C][/ROW]
[ROW][C]127[/C][C]4[/C][C]3.61313943670361[/C][C]0.386860563296386[/C][/ROW]
[ROW][C]128[/C][C]3.4[/C][C]3.44051225408911[/C][C]-0.0405122540891142[/C][/ROW]
[ROW][C]129[/C][C]3.4[/C][C]3.40476532448688[/C][C]-0.00476532448687548[/C][/ROW]
[ROW][C]130[/C][C]3.4[/C][C]3.42885103960732[/C][C]-0.0288510396073238[/C][/ROW]
[ROW][C]131[/C][C]3.7[/C][C]3.66372095370276[/C][C]0.0362790462972444[/C][/ROW]
[ROW][C]132[/C][C]3.2[/C][C]3.26279057299294[/C][C]-0.0627905729929399[/C][/ROW]
[ROW][C]133[/C][C]3.3[/C][C]3.34516981476259[/C][C]-0.0451698147625871[/C][/ROW]
[ROW][C]134[/C][C]3.3[/C][C]3.36317704042545[/C][C]-0.0631770404254501[/C][/ROW]
[ROW][C]135[/C][C]3.1[/C][C]3.12790049221221[/C][C]-0.0279004922122089[/C][/ROW]
[ROW][C]136[/C][C]2.9[/C][C]2.91555665661484[/C][C]-0.0155566566148394[/C][/ROW]
[ROW][C]137[/C][C]2.6[/C][C]2.57912819404145[/C][C]0.020871805958546[/C][/ROW]
[ROW][C]138[/C][C]2.2[/C][C]2.10443054923809[/C][C]0.095569450761915[/C][/ROW]
[ROW][C]139[/C][C]2[/C][C]2.12436784544846[/C][C]-0.124367845448463[/C][/ROW]
[ROW][C]140[/C][C]2.6[/C][C]2.61323675121047[/C][C]-0.0132367512104747[/C][/ROW]
[ROW][C]141[/C][C]2.6[/C][C]2.49532838486705[/C][C]0.104671615132953[/C][/ROW]
[ROW][C]142[/C][C]2.6[/C][C]2.57326363907914[/C][C]0.0267363609208568[/C][/ROW]
[ROW][C]143[/C][C]2.2[/C][C]2.13763504564086[/C][C]0.0623649543591395[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197345&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197345&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
12.72.42242659399860.277573406001396
22.52.377517879679660.122482120320337
32.22.24480560727019-0.044805607270191
42.92.856760675673780.0432393243262219
53.13.12266936818146-0.0226693681814646
632.972210655169790.0277893448302106
72.82.68349313103070.116506868969302
82.52.63571745281213-0.135717452812125
91.92.10795212262192-0.207952122621925
101.92.14582663145826-0.245826631458264
111.81.82631396302549-0.0263139630254875
1221.889172188671730.110827811328268
132.62.545921025874990.0540789741250056
142.52.256455451359560.243544548640445
152.52.290332686997770.209667313002232
161.61.593858261346440.00614173865356485
171.41.162504374182650.237495625817347
180.80.7028960566464790.0971039433535213
191.11.086486365488180.0135136345118198
201.31.063209091213990.236790908786013
211.21.146887184545360.0531128154546401
221.31.249138267123460.0508617328765409
231.11.093304940599510.00669505940049038
241.31.36887960090968-0.0688796009096847
251.21.23738456423504-0.0373845642350434
261.61.77037015976268-0.170370159762676
271.71.84318411421118-0.143184114211176
281.51.371617577908370.128382422091635
290.90.973158878341291-0.0731588783412908
301.51.55572632261904-0.0557263226190375
311.41.4637639511137-0.0637639511136957
321.61.75057170104715-0.150571701047145
331.71.74240235887669-0.0424023588766875
341.41.4746237406822-0.074623740682197
351.81.752186408082470.0478135919175295
361.71.624683570158180.0753164298418163
371.41.52007576147236-0.120075761472362
381.21.137793471380370.0622065286196349
3911.03569861847774-0.0356986184777352
401.71.83751734720559-0.13751734720559
412.42.48516090574246-0.085160905742456
4222.17510895972988-0.175108959729882
432.12.25866462234359-0.158664622343589
4422.14251054469524-0.142510544695243
451.81.96228509403536-0.162285094035363
462.72.83225382385494-0.132253823854943
472.32.55789760756485-0.257897607564851
481.92.32671998377368-0.426719983773676
4922.19649458148312-0.196494581483121
502.32.61303635224906-0.313036352249058
512.83.0439679141355-0.243967914135496
522.42.83502056265225-0.435020562652248
532.32.49507535990426-0.195075359904262
542.72.84443178106869-0.144431781068691
552.73.07156990016511-0.371569900165111
562.93.00501767882286-0.105017678822858
5733.04259420681188-0.0425942068118754
582.22.24292187047527-0.0429218704752668
592.32.38900883117084-0.0890088311708398
602.82.747403649478130.0525963505218728
612.82.83159632991578-0.0315963299157801
622.82.611083152147950.188916847852047
632.21.972358937158840.22764106284116
642.62.220928292447570.379071707552434
652.82.522919796618580.277080203381421
662.52.191238585218440.308761414781558
672.42.000638449534980.399361550465017
682.32.017418789123180.282581210876817
691.91.753618351699530.146381648300467
701.71.78785079936877-0.0878507993687736
7122.03800248448597-0.0380024844859684
722.12.056304308053710.0436956919462857
731.71.89046791386518-0.190467913865182
741.81.95660310658489-0.156603106584887
751.81.798437902784980.00156209721502444
761.81.81124994511416-0.0112499451141571
771.31.28142563212090.0185743678790995
781.31.33694154739306-0.0369415473930637
791.31.38745327356233-0.0874532735623282
801.21.144545379108640.0554546208913608
811.41.47613119279581-0.0761311927958099
822.22.150352880285250.049647119714754
832.92.773761729244730.126238270755267
843.12.958557678482830.141442321517171
853.53.351840742522520.148159257477478
863.63.574624951717390.0253750482826118
874.44.363527812234940.0364721877650646
884.14.22789474163921-0.12789474163921
895.15.19948263406289-0.0994826340628868
905.85.719624079808870.0803759201911336
915.95.823348360163760.0766516398362408
925.45.316317425185030.0836825748149722
935.55.361146702704920.138853297295076
944.84.618262379467640.181737620532357
953.23.15953644212180.0404635578782022
962.72.70241720665032-0.00241720665031751
972.12.43407283438772-0.334072834387717
981.91.94764418427268-0.04764418427268
990.60.739071358165642-0.139071358165642
1000.70.5892394811644440.110760518835556
101-0.2-0.2116701028336410.0116701028336408
102-1-0.913295301294175-0.086704698705825
103-1.7-1.42159804531418-0.278401954685822
104-0.7-0.679064315039169-0.0209356849608312
105-1-1.084040245634110.0840402456341088
106-0.9-0.894509335857564-0.00549066414243618
1070-0.1898817526059310.189881752605931
1080.30.08003674352400340.219963256475997
1090.80.4863627255604250.313637274439575
1100.80.6768242612916930.123175738708307
1111.91.746394575209340.153605424790662
1122.11.960310872458980.139689127541015
1132.52.377784216520070.12221578347993
1142.72.70695972124197-0.00695972124197038
1152.42.82015896565282-0.420158965652816
1162.42.53059099137786-0.130590991377864
1172.93.1172018203993-0.217201820399303
1183.13.14133798686393-0.0413379868639347
11932.99800811899650.00199188100349973
1203.43.326498570445990.0735014295540104
1213.73.16866781306980.531332186930201
1223.53.392461103310870.10753889668913
1233.53.318814797009020.181185202990976
1243.33.2468556324950.0531443675049988
1253.13.18606340121411-0.0860634012141143
1263.43.51917264181524-0.119172641815238
12743.613139436703610.386860563296386
1283.43.44051225408911-0.0405122540891142
1293.43.40476532448688-0.00476532448687548
1303.43.42885103960732-0.0288510396073238
1313.73.663720953702760.0362790462972444
1323.23.26279057299294-0.0627905729929399
1333.33.34516981476259-0.0451698147625871
1343.33.36317704042545-0.0631770404254501
1353.13.12790049221221-0.0279004922122089
1362.92.91555665661484-0.0155566566148394
1372.62.579128194041450.020871805958546
1382.22.104430549238090.095569450761915
13922.12436784544846-0.124367845448463
1402.62.61323675121047-0.0132367512104747
1412.62.495328384867050.104671615132953
1422.62.573263639079140.0267363609208568
1432.22.137635045640860.0623649543591395







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
90.1420175710288620.2840351420577250.857982428971138
100.07492376295475690.1498475259095140.925076237045243
110.1100000968943070.2200001937886150.889999903105693
120.1331796974106050.266359394821210.866820302589395
130.1123683352494660.2247366704989310.887631664750534
140.0667418174269230.1334836348538460.933258182573077
150.06426111867799180.1285222373559840.935738881322008
160.1486014787051760.2972029574103510.851398521294824
170.1149884979241320.2299769958482630.885011502075868
180.08728414780692170.1745682956138430.912715852193078
190.07949456323170480.158989126463410.920505436768295
200.0558601246598350.111720249319670.944139875340165
210.03841174459615720.07682348919231450.961588255403843
220.02385032800385960.04770065600771920.97614967199614
230.01576930803938850.03153861607877710.984230691960611
240.01227707015683340.02455414031366670.987722929843167
250.007424178451579760.01484835690315950.99257582154842
260.005052097570836880.01010419514167380.994947902429163
270.003211867989740040.006423735979480080.99678813201026
280.0158399766058470.0316799532116940.984160023394153
290.01278518743882880.02557037487765760.987214812561171
300.01269762869909410.02539525739818820.987302371300906
310.009953107153849430.01990621430769890.990046892846151
320.00657711028945950.0131542205789190.99342288971054
330.005574455152349040.01114891030469810.994425544847651
340.003510184771613940.007020369543227880.996489815228386
350.002232534003114560.004465068006229120.997767465996885
360.001688986354689830.003377972709379660.99831101364531
370.001380331654288060.002760663308576120.998619668345712
380.0009809701110387770.001961940222077550.999019029888961
390.0005911138752136490.00118222775042730.999408886124786
400.0005704495333291610.001140899066658320.999429550466671
410.0004123969674959750.000824793934991950.999587603032504
420.000512060035762140.001024120071524280.999487939964238
430.0004524323391714570.0009048646783429130.999547567660829
440.0003816112510655950.0007632225021311910.999618388748934
450.0003796190993576660.0007592381987153320.999620380900642
460.0002556195514810120.0005112391029620240.999744380448519
470.0003547984460562380.0007095968921124760.999645201553944
480.003387809791902760.006775619583805520.996612190208097
490.003023267934533670.006046535869067330.996976732065466
500.005219448450986940.01043889690197390.994780551549013
510.004849366951688890.009698733903377780.995150633048311
520.02002223178274110.04004446356548210.979977768217259
530.01879690164975720.03759380329951430.981203098350243
540.01669196963171080.03338393926342170.983308030368289
550.04962268697034130.09924537394068260.950377313029659
560.04647269771196190.09294539542392370.953527302288038
570.05247287870291130.1049457574058230.947527121297089
580.04840917650222390.09681835300444780.951590823497776
590.04183345515513620.08366691031027250.958166544844864
600.04481284653768460.08962569307536910.955187153462315
610.04383407540462490.08766815080924980.956165924595375
620.0527815745502930.1055631491005860.947218425449707
630.0549510704187610.1099021408375220.945048929581239
640.1317054696350230.2634109392700460.868294530364977
650.1759549375324180.3519098750648350.824045062467582
660.2491793520507730.4983587041015470.750820647949227
670.4845821677867930.9691643355735850.515417832213207
680.5781756902717320.8436486194565360.421824309728268
690.6333278890507990.7333442218984010.366672110949201
700.6988133418632370.6023733162735270.301186658136763
710.678207327117050.6435853457659010.32179267288295
720.6771321810562120.6457356378875760.322867818943788
730.665886876099470.668226247801060.33411312390053
740.6330992976560990.7338014046878020.366900702343901
750.644564586066040.710870827867920.35543541393396
760.6561176326527470.6877647346945060.343882367347253
770.6531409820500470.6937180358999060.346859017949953
780.6231204755183980.7537590489632050.376879524481602
790.5990539373404320.8018921253191370.400946062659568
800.5835150590988950.832969881802210.416484940901105
810.5836204064637850.8327591870724310.416379593536215
820.6735527501287070.6528944997425860.326447249871293
830.791739450035890.4165210999282190.20826054996411
840.8265872741046180.3468254517907640.173412725895382
850.8287195441138140.3425609117723710.171280455886186
860.7976300134113870.4047399731772270.202369986588613
870.7599102610155650.4801794779688710.240089738984435
880.7808375181844760.4383249636310470.219162481815524
890.7878933458920270.4242133082159450.212106654107973
900.7588785778695610.4822428442608780.241121422130439
910.7298602955828650.540279408834270.270139704417135
920.7039054861625220.5921890276749570.296094513837478
930.6629930059018950.6740139881962110.337006994098105
940.6400420881652160.7199158236695670.359957911834784
950.6824465646701010.6351068706597970.317553435329899
960.7407905309162180.5184189381675640.259209469083782
970.8105042785859620.3789914428280750.189495721414038
980.7946316665625970.4107366668748050.205368333437403
990.7728718358370870.4542563283258250.227128164162913
1000.7995420540814070.4009158918371850.200457945918593
1010.8291876702781930.3416246594436130.170812329721807
1020.8116743386032510.3766513227934980.188325661396749
1030.8155482495560480.3689035008879030.184451750443952
1040.7758109481067340.4483781037865320.224189051893266
1050.7751200002783010.4497599994433990.224879999721699
1060.7565376629415580.4869246741168850.243462337058442
1070.7737497333562060.4525005332875870.226250266643794
1080.7568401994751360.4863196010497280.243159800524864
1090.7608979969180140.4782040061639710.239102003081986
1100.7165141506835190.5669716986329620.283485849316481
1110.6823413961753630.6353172076492740.317658603824637
1120.6306518694624360.7386962610751270.369348130537564
1130.5760416933959940.8479166132080120.423958306604006
1140.5112575500592290.9774848998815410.488742449940771
1150.8003565882580480.3992868234839050.199643411741952
1160.7568670372503930.4862659254992140.243132962749607
1170.7882159354735690.4235681290528610.211784064526431
1180.7975221861623090.4049556276753820.202477813837691
1190.784146963984520.4317060720309610.21585303601548
1200.8505502754729770.2988994490540450.149449724527023
1210.9758834600208150.048233079958370.024116539979185
1220.9681763821965250.06364723560694930.0318236178034746
1230.9638647631031690.07227047379366260.0361352368968313
1240.9419024866104220.1161950267791550.0580975133895775
1250.9229437906053040.1541124187893930.0770562093946964
1260.9218213961649840.1563572076700310.0781786038350156
1270.9996363577525760.0007272844948475410.00036364224742377
1280.9989912879078970.002017424184205970.00100871209210298
1290.9970460948469290.005907810306142650.00295390515307132
1300.9920866277353930.01582674452921310.00791337226460655
1310.9953112311541460.009377537691708690.00468876884585434
1320.9851917085221640.02961658295567110.0148082914778355
1330.9785469045882660.04290619082346730.0214530954117337
1340.9404088215657770.1191823568684470.0595911784342233

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
9 & 0.142017571028862 & 0.284035142057725 & 0.857982428971138 \tabularnewline
10 & 0.0749237629547569 & 0.149847525909514 & 0.925076237045243 \tabularnewline
11 & 0.110000096894307 & 0.220000193788615 & 0.889999903105693 \tabularnewline
12 & 0.133179697410605 & 0.26635939482121 & 0.866820302589395 \tabularnewline
13 & 0.112368335249466 & 0.224736670498931 & 0.887631664750534 \tabularnewline
14 & 0.066741817426923 & 0.133483634853846 & 0.933258182573077 \tabularnewline
15 & 0.0642611186779918 & 0.128522237355984 & 0.935738881322008 \tabularnewline
16 & 0.148601478705176 & 0.297202957410351 & 0.851398521294824 \tabularnewline
17 & 0.114988497924132 & 0.229976995848263 & 0.885011502075868 \tabularnewline
18 & 0.0872841478069217 & 0.174568295613843 & 0.912715852193078 \tabularnewline
19 & 0.0794945632317048 & 0.15898912646341 & 0.920505436768295 \tabularnewline
20 & 0.055860124659835 & 0.11172024931967 & 0.944139875340165 \tabularnewline
21 & 0.0384117445961572 & 0.0768234891923145 & 0.961588255403843 \tabularnewline
22 & 0.0238503280038596 & 0.0477006560077192 & 0.97614967199614 \tabularnewline
23 & 0.0157693080393885 & 0.0315386160787771 & 0.984230691960611 \tabularnewline
24 & 0.0122770701568334 & 0.0245541403136667 & 0.987722929843167 \tabularnewline
25 & 0.00742417845157976 & 0.0148483569031595 & 0.99257582154842 \tabularnewline
26 & 0.00505209757083688 & 0.0101041951416738 & 0.994947902429163 \tabularnewline
27 & 0.00321186798974004 & 0.00642373597948008 & 0.99678813201026 \tabularnewline
28 & 0.015839976605847 & 0.031679953211694 & 0.984160023394153 \tabularnewline
29 & 0.0127851874388288 & 0.0255703748776576 & 0.987214812561171 \tabularnewline
30 & 0.0126976286990941 & 0.0253952573981882 & 0.987302371300906 \tabularnewline
31 & 0.00995310715384943 & 0.0199062143076989 & 0.990046892846151 \tabularnewline
32 & 0.0065771102894595 & 0.013154220578919 & 0.99342288971054 \tabularnewline
33 & 0.00557445515234904 & 0.0111489103046981 & 0.994425544847651 \tabularnewline
34 & 0.00351018477161394 & 0.00702036954322788 & 0.996489815228386 \tabularnewline
35 & 0.00223253400311456 & 0.00446506800622912 & 0.997767465996885 \tabularnewline
36 & 0.00168898635468983 & 0.00337797270937966 & 0.99831101364531 \tabularnewline
37 & 0.00138033165428806 & 0.00276066330857612 & 0.998619668345712 \tabularnewline
38 & 0.000980970111038777 & 0.00196194022207755 & 0.999019029888961 \tabularnewline
39 & 0.000591113875213649 & 0.0011822277504273 & 0.999408886124786 \tabularnewline
40 & 0.000570449533329161 & 0.00114089906665832 & 0.999429550466671 \tabularnewline
41 & 0.000412396967495975 & 0.00082479393499195 & 0.999587603032504 \tabularnewline
42 & 0.00051206003576214 & 0.00102412007152428 & 0.999487939964238 \tabularnewline
43 & 0.000452432339171457 & 0.000904864678342913 & 0.999547567660829 \tabularnewline
44 & 0.000381611251065595 & 0.000763222502131191 & 0.999618388748934 \tabularnewline
45 & 0.000379619099357666 & 0.000759238198715332 & 0.999620380900642 \tabularnewline
46 & 0.000255619551481012 & 0.000511239102962024 & 0.999744380448519 \tabularnewline
47 & 0.000354798446056238 & 0.000709596892112476 & 0.999645201553944 \tabularnewline
48 & 0.00338780979190276 & 0.00677561958380552 & 0.996612190208097 \tabularnewline
49 & 0.00302326793453367 & 0.00604653586906733 & 0.996976732065466 \tabularnewline
50 & 0.00521944845098694 & 0.0104388969019739 & 0.994780551549013 \tabularnewline
51 & 0.00484936695168889 & 0.00969873390337778 & 0.995150633048311 \tabularnewline
52 & 0.0200222317827411 & 0.0400444635654821 & 0.979977768217259 \tabularnewline
53 & 0.0187969016497572 & 0.0375938032995143 & 0.981203098350243 \tabularnewline
54 & 0.0166919696317108 & 0.0333839392634217 & 0.983308030368289 \tabularnewline
55 & 0.0496226869703413 & 0.0992453739406826 & 0.950377313029659 \tabularnewline
56 & 0.0464726977119619 & 0.0929453954239237 & 0.953527302288038 \tabularnewline
57 & 0.0524728787029113 & 0.104945757405823 & 0.947527121297089 \tabularnewline
58 & 0.0484091765022239 & 0.0968183530044478 & 0.951590823497776 \tabularnewline
59 & 0.0418334551551362 & 0.0836669103102725 & 0.958166544844864 \tabularnewline
60 & 0.0448128465376846 & 0.0896256930753691 & 0.955187153462315 \tabularnewline
61 & 0.0438340754046249 & 0.0876681508092498 & 0.956165924595375 \tabularnewline
62 & 0.052781574550293 & 0.105563149100586 & 0.947218425449707 \tabularnewline
63 & 0.054951070418761 & 0.109902140837522 & 0.945048929581239 \tabularnewline
64 & 0.131705469635023 & 0.263410939270046 & 0.868294530364977 \tabularnewline
65 & 0.175954937532418 & 0.351909875064835 & 0.824045062467582 \tabularnewline
66 & 0.249179352050773 & 0.498358704101547 & 0.750820647949227 \tabularnewline
67 & 0.484582167786793 & 0.969164335573585 & 0.515417832213207 \tabularnewline
68 & 0.578175690271732 & 0.843648619456536 & 0.421824309728268 \tabularnewline
69 & 0.633327889050799 & 0.733344221898401 & 0.366672110949201 \tabularnewline
70 & 0.698813341863237 & 0.602373316273527 & 0.301186658136763 \tabularnewline
71 & 0.67820732711705 & 0.643585345765901 & 0.32179267288295 \tabularnewline
72 & 0.677132181056212 & 0.645735637887576 & 0.322867818943788 \tabularnewline
73 & 0.66588687609947 & 0.66822624780106 & 0.33411312390053 \tabularnewline
74 & 0.633099297656099 & 0.733801404687802 & 0.366900702343901 \tabularnewline
75 & 0.64456458606604 & 0.71087082786792 & 0.35543541393396 \tabularnewline
76 & 0.656117632652747 & 0.687764734694506 & 0.343882367347253 \tabularnewline
77 & 0.653140982050047 & 0.693718035899906 & 0.346859017949953 \tabularnewline
78 & 0.623120475518398 & 0.753759048963205 & 0.376879524481602 \tabularnewline
79 & 0.599053937340432 & 0.801892125319137 & 0.400946062659568 \tabularnewline
80 & 0.583515059098895 & 0.83296988180221 & 0.416484940901105 \tabularnewline
81 & 0.583620406463785 & 0.832759187072431 & 0.416379593536215 \tabularnewline
82 & 0.673552750128707 & 0.652894499742586 & 0.326447249871293 \tabularnewline
83 & 0.79173945003589 & 0.416521099928219 & 0.20826054996411 \tabularnewline
84 & 0.826587274104618 & 0.346825451790764 & 0.173412725895382 \tabularnewline
85 & 0.828719544113814 & 0.342560911772371 & 0.171280455886186 \tabularnewline
86 & 0.797630013411387 & 0.404739973177227 & 0.202369986588613 \tabularnewline
87 & 0.759910261015565 & 0.480179477968871 & 0.240089738984435 \tabularnewline
88 & 0.780837518184476 & 0.438324963631047 & 0.219162481815524 \tabularnewline
89 & 0.787893345892027 & 0.424213308215945 & 0.212106654107973 \tabularnewline
90 & 0.758878577869561 & 0.482242844260878 & 0.241121422130439 \tabularnewline
91 & 0.729860295582865 & 0.54027940883427 & 0.270139704417135 \tabularnewline
92 & 0.703905486162522 & 0.592189027674957 & 0.296094513837478 \tabularnewline
93 & 0.662993005901895 & 0.674013988196211 & 0.337006994098105 \tabularnewline
94 & 0.640042088165216 & 0.719915823669567 & 0.359957911834784 \tabularnewline
95 & 0.682446564670101 & 0.635106870659797 & 0.317553435329899 \tabularnewline
96 & 0.740790530916218 & 0.518418938167564 & 0.259209469083782 \tabularnewline
97 & 0.810504278585962 & 0.378991442828075 & 0.189495721414038 \tabularnewline
98 & 0.794631666562597 & 0.410736666874805 & 0.205368333437403 \tabularnewline
99 & 0.772871835837087 & 0.454256328325825 & 0.227128164162913 \tabularnewline
100 & 0.799542054081407 & 0.400915891837185 & 0.200457945918593 \tabularnewline
101 & 0.829187670278193 & 0.341624659443613 & 0.170812329721807 \tabularnewline
102 & 0.811674338603251 & 0.376651322793498 & 0.188325661396749 \tabularnewline
103 & 0.815548249556048 & 0.368903500887903 & 0.184451750443952 \tabularnewline
104 & 0.775810948106734 & 0.448378103786532 & 0.224189051893266 \tabularnewline
105 & 0.775120000278301 & 0.449759999443399 & 0.224879999721699 \tabularnewline
106 & 0.756537662941558 & 0.486924674116885 & 0.243462337058442 \tabularnewline
107 & 0.773749733356206 & 0.452500533287587 & 0.226250266643794 \tabularnewline
108 & 0.756840199475136 & 0.486319601049728 & 0.243159800524864 \tabularnewline
109 & 0.760897996918014 & 0.478204006163971 & 0.239102003081986 \tabularnewline
110 & 0.716514150683519 & 0.566971698632962 & 0.283485849316481 \tabularnewline
111 & 0.682341396175363 & 0.635317207649274 & 0.317658603824637 \tabularnewline
112 & 0.630651869462436 & 0.738696261075127 & 0.369348130537564 \tabularnewline
113 & 0.576041693395994 & 0.847916613208012 & 0.423958306604006 \tabularnewline
114 & 0.511257550059229 & 0.977484899881541 & 0.488742449940771 \tabularnewline
115 & 0.800356588258048 & 0.399286823483905 & 0.199643411741952 \tabularnewline
116 & 0.756867037250393 & 0.486265925499214 & 0.243132962749607 \tabularnewline
117 & 0.788215935473569 & 0.423568129052861 & 0.211784064526431 \tabularnewline
118 & 0.797522186162309 & 0.404955627675382 & 0.202477813837691 \tabularnewline
119 & 0.78414696398452 & 0.431706072030961 & 0.21585303601548 \tabularnewline
120 & 0.850550275472977 & 0.298899449054045 & 0.149449724527023 \tabularnewline
121 & 0.975883460020815 & 0.04823307995837 & 0.024116539979185 \tabularnewline
122 & 0.968176382196525 & 0.0636472356069493 & 0.0318236178034746 \tabularnewline
123 & 0.963864763103169 & 0.0722704737936626 & 0.0361352368968313 \tabularnewline
124 & 0.941902486610422 & 0.116195026779155 & 0.0580975133895775 \tabularnewline
125 & 0.922943790605304 & 0.154112418789393 & 0.0770562093946964 \tabularnewline
126 & 0.921821396164984 & 0.156357207670031 & 0.0781786038350156 \tabularnewline
127 & 0.999636357752576 & 0.000727284494847541 & 0.00036364224742377 \tabularnewline
128 & 0.998991287907897 & 0.00201742418420597 & 0.00100871209210298 \tabularnewline
129 & 0.997046094846929 & 0.00590781030614265 & 0.00295390515307132 \tabularnewline
130 & 0.992086627735393 & 0.0158267445292131 & 0.00791337226460655 \tabularnewline
131 & 0.995311231154146 & 0.00937753769170869 & 0.00468876884585434 \tabularnewline
132 & 0.985191708522164 & 0.0296165829556711 & 0.0148082914778355 \tabularnewline
133 & 0.978546904588266 & 0.0429061908234673 & 0.0214530954117337 \tabularnewline
134 & 0.940408821565777 & 0.119182356868447 & 0.0595911784342233 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197345&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]9[/C][C]0.142017571028862[/C][C]0.284035142057725[/C][C]0.857982428971138[/C][/ROW]
[ROW][C]10[/C][C]0.0749237629547569[/C][C]0.149847525909514[/C][C]0.925076237045243[/C][/ROW]
[ROW][C]11[/C][C]0.110000096894307[/C][C]0.220000193788615[/C][C]0.889999903105693[/C][/ROW]
[ROW][C]12[/C][C]0.133179697410605[/C][C]0.26635939482121[/C][C]0.866820302589395[/C][/ROW]
[ROW][C]13[/C][C]0.112368335249466[/C][C]0.224736670498931[/C][C]0.887631664750534[/C][/ROW]
[ROW][C]14[/C][C]0.066741817426923[/C][C]0.133483634853846[/C][C]0.933258182573077[/C][/ROW]
[ROW][C]15[/C][C]0.0642611186779918[/C][C]0.128522237355984[/C][C]0.935738881322008[/C][/ROW]
[ROW][C]16[/C][C]0.148601478705176[/C][C]0.297202957410351[/C][C]0.851398521294824[/C][/ROW]
[ROW][C]17[/C][C]0.114988497924132[/C][C]0.229976995848263[/C][C]0.885011502075868[/C][/ROW]
[ROW][C]18[/C][C]0.0872841478069217[/C][C]0.174568295613843[/C][C]0.912715852193078[/C][/ROW]
[ROW][C]19[/C][C]0.0794945632317048[/C][C]0.15898912646341[/C][C]0.920505436768295[/C][/ROW]
[ROW][C]20[/C][C]0.055860124659835[/C][C]0.11172024931967[/C][C]0.944139875340165[/C][/ROW]
[ROW][C]21[/C][C]0.0384117445961572[/C][C]0.0768234891923145[/C][C]0.961588255403843[/C][/ROW]
[ROW][C]22[/C][C]0.0238503280038596[/C][C]0.0477006560077192[/C][C]0.97614967199614[/C][/ROW]
[ROW][C]23[/C][C]0.0157693080393885[/C][C]0.0315386160787771[/C][C]0.984230691960611[/C][/ROW]
[ROW][C]24[/C][C]0.0122770701568334[/C][C]0.0245541403136667[/C][C]0.987722929843167[/C][/ROW]
[ROW][C]25[/C][C]0.00742417845157976[/C][C]0.0148483569031595[/C][C]0.99257582154842[/C][/ROW]
[ROW][C]26[/C][C]0.00505209757083688[/C][C]0.0101041951416738[/C][C]0.994947902429163[/C][/ROW]
[ROW][C]27[/C][C]0.00321186798974004[/C][C]0.00642373597948008[/C][C]0.99678813201026[/C][/ROW]
[ROW][C]28[/C][C]0.015839976605847[/C][C]0.031679953211694[/C][C]0.984160023394153[/C][/ROW]
[ROW][C]29[/C][C]0.0127851874388288[/C][C]0.0255703748776576[/C][C]0.987214812561171[/C][/ROW]
[ROW][C]30[/C][C]0.0126976286990941[/C][C]0.0253952573981882[/C][C]0.987302371300906[/C][/ROW]
[ROW][C]31[/C][C]0.00995310715384943[/C][C]0.0199062143076989[/C][C]0.990046892846151[/C][/ROW]
[ROW][C]32[/C][C]0.0065771102894595[/C][C]0.013154220578919[/C][C]0.99342288971054[/C][/ROW]
[ROW][C]33[/C][C]0.00557445515234904[/C][C]0.0111489103046981[/C][C]0.994425544847651[/C][/ROW]
[ROW][C]34[/C][C]0.00351018477161394[/C][C]0.00702036954322788[/C][C]0.996489815228386[/C][/ROW]
[ROW][C]35[/C][C]0.00223253400311456[/C][C]0.00446506800622912[/C][C]0.997767465996885[/C][/ROW]
[ROW][C]36[/C][C]0.00168898635468983[/C][C]0.00337797270937966[/C][C]0.99831101364531[/C][/ROW]
[ROW][C]37[/C][C]0.00138033165428806[/C][C]0.00276066330857612[/C][C]0.998619668345712[/C][/ROW]
[ROW][C]38[/C][C]0.000980970111038777[/C][C]0.00196194022207755[/C][C]0.999019029888961[/C][/ROW]
[ROW][C]39[/C][C]0.000591113875213649[/C][C]0.0011822277504273[/C][C]0.999408886124786[/C][/ROW]
[ROW][C]40[/C][C]0.000570449533329161[/C][C]0.00114089906665832[/C][C]0.999429550466671[/C][/ROW]
[ROW][C]41[/C][C]0.000412396967495975[/C][C]0.00082479393499195[/C][C]0.999587603032504[/C][/ROW]
[ROW][C]42[/C][C]0.00051206003576214[/C][C]0.00102412007152428[/C][C]0.999487939964238[/C][/ROW]
[ROW][C]43[/C][C]0.000452432339171457[/C][C]0.000904864678342913[/C][C]0.999547567660829[/C][/ROW]
[ROW][C]44[/C][C]0.000381611251065595[/C][C]0.000763222502131191[/C][C]0.999618388748934[/C][/ROW]
[ROW][C]45[/C][C]0.000379619099357666[/C][C]0.000759238198715332[/C][C]0.999620380900642[/C][/ROW]
[ROW][C]46[/C][C]0.000255619551481012[/C][C]0.000511239102962024[/C][C]0.999744380448519[/C][/ROW]
[ROW][C]47[/C][C]0.000354798446056238[/C][C]0.000709596892112476[/C][C]0.999645201553944[/C][/ROW]
[ROW][C]48[/C][C]0.00338780979190276[/C][C]0.00677561958380552[/C][C]0.996612190208097[/C][/ROW]
[ROW][C]49[/C][C]0.00302326793453367[/C][C]0.00604653586906733[/C][C]0.996976732065466[/C][/ROW]
[ROW][C]50[/C][C]0.00521944845098694[/C][C]0.0104388969019739[/C][C]0.994780551549013[/C][/ROW]
[ROW][C]51[/C][C]0.00484936695168889[/C][C]0.00969873390337778[/C][C]0.995150633048311[/C][/ROW]
[ROW][C]52[/C][C]0.0200222317827411[/C][C]0.0400444635654821[/C][C]0.979977768217259[/C][/ROW]
[ROW][C]53[/C][C]0.0187969016497572[/C][C]0.0375938032995143[/C][C]0.981203098350243[/C][/ROW]
[ROW][C]54[/C][C]0.0166919696317108[/C][C]0.0333839392634217[/C][C]0.983308030368289[/C][/ROW]
[ROW][C]55[/C][C]0.0496226869703413[/C][C]0.0992453739406826[/C][C]0.950377313029659[/C][/ROW]
[ROW][C]56[/C][C]0.0464726977119619[/C][C]0.0929453954239237[/C][C]0.953527302288038[/C][/ROW]
[ROW][C]57[/C][C]0.0524728787029113[/C][C]0.104945757405823[/C][C]0.947527121297089[/C][/ROW]
[ROW][C]58[/C][C]0.0484091765022239[/C][C]0.0968183530044478[/C][C]0.951590823497776[/C][/ROW]
[ROW][C]59[/C][C]0.0418334551551362[/C][C]0.0836669103102725[/C][C]0.958166544844864[/C][/ROW]
[ROW][C]60[/C][C]0.0448128465376846[/C][C]0.0896256930753691[/C][C]0.955187153462315[/C][/ROW]
[ROW][C]61[/C][C]0.0438340754046249[/C][C]0.0876681508092498[/C][C]0.956165924595375[/C][/ROW]
[ROW][C]62[/C][C]0.052781574550293[/C][C]0.105563149100586[/C][C]0.947218425449707[/C][/ROW]
[ROW][C]63[/C][C]0.054951070418761[/C][C]0.109902140837522[/C][C]0.945048929581239[/C][/ROW]
[ROW][C]64[/C][C]0.131705469635023[/C][C]0.263410939270046[/C][C]0.868294530364977[/C][/ROW]
[ROW][C]65[/C][C]0.175954937532418[/C][C]0.351909875064835[/C][C]0.824045062467582[/C][/ROW]
[ROW][C]66[/C][C]0.249179352050773[/C][C]0.498358704101547[/C][C]0.750820647949227[/C][/ROW]
[ROW][C]67[/C][C]0.484582167786793[/C][C]0.969164335573585[/C][C]0.515417832213207[/C][/ROW]
[ROW][C]68[/C][C]0.578175690271732[/C][C]0.843648619456536[/C][C]0.421824309728268[/C][/ROW]
[ROW][C]69[/C][C]0.633327889050799[/C][C]0.733344221898401[/C][C]0.366672110949201[/C][/ROW]
[ROW][C]70[/C][C]0.698813341863237[/C][C]0.602373316273527[/C][C]0.301186658136763[/C][/ROW]
[ROW][C]71[/C][C]0.67820732711705[/C][C]0.643585345765901[/C][C]0.32179267288295[/C][/ROW]
[ROW][C]72[/C][C]0.677132181056212[/C][C]0.645735637887576[/C][C]0.322867818943788[/C][/ROW]
[ROW][C]73[/C][C]0.66588687609947[/C][C]0.66822624780106[/C][C]0.33411312390053[/C][/ROW]
[ROW][C]74[/C][C]0.633099297656099[/C][C]0.733801404687802[/C][C]0.366900702343901[/C][/ROW]
[ROW][C]75[/C][C]0.64456458606604[/C][C]0.71087082786792[/C][C]0.35543541393396[/C][/ROW]
[ROW][C]76[/C][C]0.656117632652747[/C][C]0.687764734694506[/C][C]0.343882367347253[/C][/ROW]
[ROW][C]77[/C][C]0.653140982050047[/C][C]0.693718035899906[/C][C]0.346859017949953[/C][/ROW]
[ROW][C]78[/C][C]0.623120475518398[/C][C]0.753759048963205[/C][C]0.376879524481602[/C][/ROW]
[ROW][C]79[/C][C]0.599053937340432[/C][C]0.801892125319137[/C][C]0.400946062659568[/C][/ROW]
[ROW][C]80[/C][C]0.583515059098895[/C][C]0.83296988180221[/C][C]0.416484940901105[/C][/ROW]
[ROW][C]81[/C][C]0.583620406463785[/C][C]0.832759187072431[/C][C]0.416379593536215[/C][/ROW]
[ROW][C]82[/C][C]0.673552750128707[/C][C]0.652894499742586[/C][C]0.326447249871293[/C][/ROW]
[ROW][C]83[/C][C]0.79173945003589[/C][C]0.416521099928219[/C][C]0.20826054996411[/C][/ROW]
[ROW][C]84[/C][C]0.826587274104618[/C][C]0.346825451790764[/C][C]0.173412725895382[/C][/ROW]
[ROW][C]85[/C][C]0.828719544113814[/C][C]0.342560911772371[/C][C]0.171280455886186[/C][/ROW]
[ROW][C]86[/C][C]0.797630013411387[/C][C]0.404739973177227[/C][C]0.202369986588613[/C][/ROW]
[ROW][C]87[/C][C]0.759910261015565[/C][C]0.480179477968871[/C][C]0.240089738984435[/C][/ROW]
[ROW][C]88[/C][C]0.780837518184476[/C][C]0.438324963631047[/C][C]0.219162481815524[/C][/ROW]
[ROW][C]89[/C][C]0.787893345892027[/C][C]0.424213308215945[/C][C]0.212106654107973[/C][/ROW]
[ROW][C]90[/C][C]0.758878577869561[/C][C]0.482242844260878[/C][C]0.241121422130439[/C][/ROW]
[ROW][C]91[/C][C]0.729860295582865[/C][C]0.54027940883427[/C][C]0.270139704417135[/C][/ROW]
[ROW][C]92[/C][C]0.703905486162522[/C][C]0.592189027674957[/C][C]0.296094513837478[/C][/ROW]
[ROW][C]93[/C][C]0.662993005901895[/C][C]0.674013988196211[/C][C]0.337006994098105[/C][/ROW]
[ROW][C]94[/C][C]0.640042088165216[/C][C]0.719915823669567[/C][C]0.359957911834784[/C][/ROW]
[ROW][C]95[/C][C]0.682446564670101[/C][C]0.635106870659797[/C][C]0.317553435329899[/C][/ROW]
[ROW][C]96[/C][C]0.740790530916218[/C][C]0.518418938167564[/C][C]0.259209469083782[/C][/ROW]
[ROW][C]97[/C][C]0.810504278585962[/C][C]0.378991442828075[/C][C]0.189495721414038[/C][/ROW]
[ROW][C]98[/C][C]0.794631666562597[/C][C]0.410736666874805[/C][C]0.205368333437403[/C][/ROW]
[ROW][C]99[/C][C]0.772871835837087[/C][C]0.454256328325825[/C][C]0.227128164162913[/C][/ROW]
[ROW][C]100[/C][C]0.799542054081407[/C][C]0.400915891837185[/C][C]0.200457945918593[/C][/ROW]
[ROW][C]101[/C][C]0.829187670278193[/C][C]0.341624659443613[/C][C]0.170812329721807[/C][/ROW]
[ROW][C]102[/C][C]0.811674338603251[/C][C]0.376651322793498[/C][C]0.188325661396749[/C][/ROW]
[ROW][C]103[/C][C]0.815548249556048[/C][C]0.368903500887903[/C][C]0.184451750443952[/C][/ROW]
[ROW][C]104[/C][C]0.775810948106734[/C][C]0.448378103786532[/C][C]0.224189051893266[/C][/ROW]
[ROW][C]105[/C][C]0.775120000278301[/C][C]0.449759999443399[/C][C]0.224879999721699[/C][/ROW]
[ROW][C]106[/C][C]0.756537662941558[/C][C]0.486924674116885[/C][C]0.243462337058442[/C][/ROW]
[ROW][C]107[/C][C]0.773749733356206[/C][C]0.452500533287587[/C][C]0.226250266643794[/C][/ROW]
[ROW][C]108[/C][C]0.756840199475136[/C][C]0.486319601049728[/C][C]0.243159800524864[/C][/ROW]
[ROW][C]109[/C][C]0.760897996918014[/C][C]0.478204006163971[/C][C]0.239102003081986[/C][/ROW]
[ROW][C]110[/C][C]0.716514150683519[/C][C]0.566971698632962[/C][C]0.283485849316481[/C][/ROW]
[ROW][C]111[/C][C]0.682341396175363[/C][C]0.635317207649274[/C][C]0.317658603824637[/C][/ROW]
[ROW][C]112[/C][C]0.630651869462436[/C][C]0.738696261075127[/C][C]0.369348130537564[/C][/ROW]
[ROW][C]113[/C][C]0.576041693395994[/C][C]0.847916613208012[/C][C]0.423958306604006[/C][/ROW]
[ROW][C]114[/C][C]0.511257550059229[/C][C]0.977484899881541[/C][C]0.488742449940771[/C][/ROW]
[ROW][C]115[/C][C]0.800356588258048[/C][C]0.399286823483905[/C][C]0.199643411741952[/C][/ROW]
[ROW][C]116[/C][C]0.756867037250393[/C][C]0.486265925499214[/C][C]0.243132962749607[/C][/ROW]
[ROW][C]117[/C][C]0.788215935473569[/C][C]0.423568129052861[/C][C]0.211784064526431[/C][/ROW]
[ROW][C]118[/C][C]0.797522186162309[/C][C]0.404955627675382[/C][C]0.202477813837691[/C][/ROW]
[ROW][C]119[/C][C]0.78414696398452[/C][C]0.431706072030961[/C][C]0.21585303601548[/C][/ROW]
[ROW][C]120[/C][C]0.850550275472977[/C][C]0.298899449054045[/C][C]0.149449724527023[/C][/ROW]
[ROW][C]121[/C][C]0.975883460020815[/C][C]0.04823307995837[/C][C]0.024116539979185[/C][/ROW]
[ROW][C]122[/C][C]0.968176382196525[/C][C]0.0636472356069493[/C][C]0.0318236178034746[/C][/ROW]
[ROW][C]123[/C][C]0.963864763103169[/C][C]0.0722704737936626[/C][C]0.0361352368968313[/C][/ROW]
[ROW][C]124[/C][C]0.941902486610422[/C][C]0.116195026779155[/C][C]0.0580975133895775[/C][/ROW]
[ROW][C]125[/C][C]0.922943790605304[/C][C]0.154112418789393[/C][C]0.0770562093946964[/C][/ROW]
[ROW][C]126[/C][C]0.921821396164984[/C][C]0.156357207670031[/C][C]0.0781786038350156[/C][/ROW]
[ROW][C]127[/C][C]0.999636357752576[/C][C]0.000727284494847541[/C][C]0.00036364224742377[/C][/ROW]
[ROW][C]128[/C][C]0.998991287907897[/C][C]0.00201742418420597[/C][C]0.00100871209210298[/C][/ROW]
[ROW][C]129[/C][C]0.997046094846929[/C][C]0.00590781030614265[/C][C]0.00295390515307132[/C][/ROW]
[ROW][C]130[/C][C]0.992086627735393[/C][C]0.0158267445292131[/C][C]0.00791337226460655[/C][/ROW]
[ROW][C]131[/C][C]0.995311231154146[/C][C]0.00937753769170869[/C][C]0.00468876884585434[/C][/ROW]
[ROW][C]132[/C][C]0.985191708522164[/C][C]0.0296165829556711[/C][C]0.0148082914778355[/C][/ROW]
[ROW][C]133[/C][C]0.978546904588266[/C][C]0.0429061908234673[/C][C]0.0214530954117337[/C][/ROW]
[ROW][C]134[/C][C]0.940408821565777[/C][C]0.119182356868447[/C][C]0.0595911784342233[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197345&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197345&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
90.1420175710288620.2840351420577250.857982428971138
100.07492376295475690.1498475259095140.925076237045243
110.1100000968943070.2200001937886150.889999903105693
120.1331796974106050.266359394821210.866820302589395
130.1123683352494660.2247366704989310.887631664750534
140.0667418174269230.1334836348538460.933258182573077
150.06426111867799180.1285222373559840.935738881322008
160.1486014787051760.2972029574103510.851398521294824
170.1149884979241320.2299769958482630.885011502075868
180.08728414780692170.1745682956138430.912715852193078
190.07949456323170480.158989126463410.920505436768295
200.0558601246598350.111720249319670.944139875340165
210.03841174459615720.07682348919231450.961588255403843
220.02385032800385960.04770065600771920.97614967199614
230.01576930803938850.03153861607877710.984230691960611
240.01227707015683340.02455414031366670.987722929843167
250.007424178451579760.01484835690315950.99257582154842
260.005052097570836880.01010419514167380.994947902429163
270.003211867989740040.006423735979480080.99678813201026
280.0158399766058470.0316799532116940.984160023394153
290.01278518743882880.02557037487765760.987214812561171
300.01269762869909410.02539525739818820.987302371300906
310.009953107153849430.01990621430769890.990046892846151
320.00657711028945950.0131542205789190.99342288971054
330.005574455152349040.01114891030469810.994425544847651
340.003510184771613940.007020369543227880.996489815228386
350.002232534003114560.004465068006229120.997767465996885
360.001688986354689830.003377972709379660.99831101364531
370.001380331654288060.002760663308576120.998619668345712
380.0009809701110387770.001961940222077550.999019029888961
390.0005911138752136490.00118222775042730.999408886124786
400.0005704495333291610.001140899066658320.999429550466671
410.0004123969674959750.000824793934991950.999587603032504
420.000512060035762140.001024120071524280.999487939964238
430.0004524323391714570.0009048646783429130.999547567660829
440.0003816112510655950.0007632225021311910.999618388748934
450.0003796190993576660.0007592381987153320.999620380900642
460.0002556195514810120.0005112391029620240.999744380448519
470.0003547984460562380.0007095968921124760.999645201553944
480.003387809791902760.006775619583805520.996612190208097
490.003023267934533670.006046535869067330.996976732065466
500.005219448450986940.01043889690197390.994780551549013
510.004849366951688890.009698733903377780.995150633048311
520.02002223178274110.04004446356548210.979977768217259
530.01879690164975720.03759380329951430.981203098350243
540.01669196963171080.03338393926342170.983308030368289
550.04962268697034130.09924537394068260.950377313029659
560.04647269771196190.09294539542392370.953527302288038
570.05247287870291130.1049457574058230.947527121297089
580.04840917650222390.09681835300444780.951590823497776
590.04183345515513620.08366691031027250.958166544844864
600.04481284653768460.08962569307536910.955187153462315
610.04383407540462490.08766815080924980.956165924595375
620.0527815745502930.1055631491005860.947218425449707
630.0549510704187610.1099021408375220.945048929581239
640.1317054696350230.2634109392700460.868294530364977
650.1759549375324180.3519098750648350.824045062467582
660.2491793520507730.4983587041015470.750820647949227
670.4845821677867930.9691643355735850.515417832213207
680.5781756902717320.8436486194565360.421824309728268
690.6333278890507990.7333442218984010.366672110949201
700.6988133418632370.6023733162735270.301186658136763
710.678207327117050.6435853457659010.32179267288295
720.6771321810562120.6457356378875760.322867818943788
730.665886876099470.668226247801060.33411312390053
740.6330992976560990.7338014046878020.366900702343901
750.644564586066040.710870827867920.35543541393396
760.6561176326527470.6877647346945060.343882367347253
770.6531409820500470.6937180358999060.346859017949953
780.6231204755183980.7537590489632050.376879524481602
790.5990539373404320.8018921253191370.400946062659568
800.5835150590988950.832969881802210.416484940901105
810.5836204064637850.8327591870724310.416379593536215
820.6735527501287070.6528944997425860.326447249871293
830.791739450035890.4165210999282190.20826054996411
840.8265872741046180.3468254517907640.173412725895382
850.8287195441138140.3425609117723710.171280455886186
860.7976300134113870.4047399731772270.202369986588613
870.7599102610155650.4801794779688710.240089738984435
880.7808375181844760.4383249636310470.219162481815524
890.7878933458920270.4242133082159450.212106654107973
900.7588785778695610.4822428442608780.241121422130439
910.7298602955828650.540279408834270.270139704417135
920.7039054861625220.5921890276749570.296094513837478
930.6629930059018950.6740139881962110.337006994098105
940.6400420881652160.7199158236695670.359957911834784
950.6824465646701010.6351068706597970.317553435329899
960.7407905309162180.5184189381675640.259209469083782
970.8105042785859620.3789914428280750.189495721414038
980.7946316665625970.4107366668748050.205368333437403
990.7728718358370870.4542563283258250.227128164162913
1000.7995420540814070.4009158918371850.200457945918593
1010.8291876702781930.3416246594436130.170812329721807
1020.8116743386032510.3766513227934980.188325661396749
1030.8155482495560480.3689035008879030.184451750443952
1040.7758109481067340.4483781037865320.224189051893266
1050.7751200002783010.4497599994433990.224879999721699
1060.7565376629415580.4869246741168850.243462337058442
1070.7737497333562060.4525005332875870.226250266643794
1080.7568401994751360.4863196010497280.243159800524864
1090.7608979969180140.4782040061639710.239102003081986
1100.7165141506835190.5669716986329620.283485849316481
1110.6823413961753630.6353172076492740.317658603824637
1120.6306518694624360.7386962610751270.369348130537564
1130.5760416933959940.8479166132080120.423958306604006
1140.5112575500592290.9774848998815410.488742449940771
1150.8003565882580480.3992868234839050.199643411741952
1160.7568670372503930.4862659254992140.243132962749607
1170.7882159354735690.4235681290528610.211784064526431
1180.7975221861623090.4049556276753820.202477813837691
1190.784146963984520.4317060720309610.21585303601548
1200.8505502754729770.2988994490540450.149449724527023
1210.9758834600208150.048233079958370.024116539979185
1220.9681763821965250.06364723560694930.0318236178034746
1230.9638647631031690.07227047379366260.0361352368968313
1240.9419024866104220.1161950267791550.0580975133895775
1250.9229437906053040.1541124187893930.0770562093946964
1260.9218213961649840.1563572076700310.0781786038350156
1270.9996363577525760.0007272844948475410.00036364224742377
1280.9989912879078970.002017424184205970.00100871209210298
1290.9970460948469290.005907810306142650.00295390515307132
1300.9920866277353930.01582674452921310.00791337226460655
1310.9953112311541460.009377537691708690.00468876884585434
1320.9851917085221640.02961658295567110.0148082914778355
1330.9785469045882660.04290619082346730.0214530954117337
1340.9404088215657770.1191823568684470.0595911784342233







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level220.174603174603175NOK
5% type I error level410.325396825396825NOK
10% type I error level500.396825396825397NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 22 & 0.174603174603175 & NOK \tabularnewline
5% type I error level & 41 & 0.325396825396825 & NOK \tabularnewline
10% type I error level & 50 & 0.396825396825397 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197345&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]22[/C][C]0.174603174603175[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]41[/C][C]0.325396825396825[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]50[/C][C]0.396825396825397[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197345&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197345&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level220.174603174603175NOK
5% type I error level410.325396825396825NOK
10% type I error level500.396825396825397NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}