Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_histogram.wasp
Title produced by softwareHistogram
Date of computationWed, 09 Feb 2011 14:10:01 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Feb/09/t12972605694uwd4vy5km6j8sl.htm/, Retrieved Sun, 10 Nov 2024 19:41:06 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=118141, Retrieved Sun, 10 Nov 2024 19:41:06 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact250
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Histogram] [Datareekst Ijzerp...] [2011-02-09 14:10:01] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum

Post a new message
Dataseries X:
172
166
175
171
184
175
183
154
182
161
191
197
193
174
178
171
176
184
202
199
185
191
185
205
201
176
200
190
203
182
193
198
193
185
192
204
202
184
191
196
210
235
214
215
211
261
210
216
216
198
223
243
252
252
243
255
246
259
252
282
239
237
267
245
275
283
299
297
276
256
237
299
304
273
308
303
301
279
298
291
267
286
279
305
302
274
306
277
296
252
304
350
328
328
337
334
340
332
344
288
295
322
357
359
337
330
337
353
339
316
323
306
322
335
382
392
376
373
385
402
380
328
356
352
389
401
429
402
420
440
427
420
426
361
406
388
453
434
445
456
434
423
388
442
452
427
467
449
473
443
419
457
462
505
495
522
518
456
540
495
502
505
497
516
501
523
521
533
524
458
427
440
539
515
526
536
537
564
531
550
536
450
533
521
438
509
535
544
536
549
509
466
472
444
498
478
532
497
542
553
576
626
629
646
611
542
646
653
662
533
662
673
640
682
648
707
662
611
651
522
525
524
630
596
583
632
614
700
688
645
673
644
660
531
555
675
651
639
605
507
711
574
642
623
674
663
675
629
605
571
495
557
604
527
580
574
601
541
508
613
546
564
549
546
592
597
673
613
651
646
594
599
577
626
573
596
631
586
649
641
662
613
650
666
668
697
656
692
707
628
550
439
434
489
643
658
588
608
598
617
668
605
650
583
607
578
582
605
483
476
489
504
610
541
620
561
571
532
545
480
366
367
377
386
380
364
393
391
421
423
461
442
433
450
434
453
464
401
464
399
441
445
466
458
445
456
425
465
448
379
459
417
446
467
496
490
492
513
507
493
514
454
506
469
509
482
444
502
505
506
485
513
496
444
505
421
474
488
493
577
514
440
417
389
366
449
518
447
466
469
493
498
500
519
489
518
499
454
488
486
457
473
528
513
546
558
521
553
534
440
484
498
518
476
515
551
526
521
539
523
454
413
384
356
397
420
535
587
522
558
454
567
552
502
557
533
510
517
572
537
543
532
533
500
531
466
526
550
567
568
572
588
574
613
600
591
582
556
607
628
652
646
643
649
643
644
627
590
637
563
634
605
619
595
625
657




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R Server'Gwilym Jenkins' @ www.wessa.org

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 0 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ www.wessa.org \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=118141&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]0 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ www.wessa.org[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=118141&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=118141&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R Server'Gwilym Jenkins' @ www.wessa.org







Frequency Table (Histogram)
BinsMidpointAbs. FrequencyRel. FrequencyCumul. Rel. Freq.Density
[150,200[175340.0714290.0714290.001429
[200,250[225230.0483190.1197480.000966
[250,300[275280.0588240.1785710.001176
[300,350[325260.0546220.2331930.001092
[350,400[375310.0651260.2983190.001303
[400,450[425480.100840.399160.002017
[450,500[475640.1344540.5336130.002689
[500,550[525850.1785710.7121850.003571
[550,600[575510.1071430.8193280.002143
[600,650[625530.1113450.9306720.002227
[650,700[675290.0609240.9915970.001218
[700,750]72540.00840310.000168

\begin{tabular}{lllllllll}
\hline
Frequency Table (Histogram) \tabularnewline
Bins & Midpoint & Abs. Frequency & Rel. Frequency & Cumul. Rel. Freq. & Density \tabularnewline
[150,200[ & 175 & 34 & 0.071429 & 0.071429 & 0.001429 \tabularnewline
[200,250[ & 225 & 23 & 0.048319 & 0.119748 & 0.000966 \tabularnewline
[250,300[ & 275 & 28 & 0.058824 & 0.178571 & 0.001176 \tabularnewline
[300,350[ & 325 & 26 & 0.054622 & 0.233193 & 0.001092 \tabularnewline
[350,400[ & 375 & 31 & 0.065126 & 0.298319 & 0.001303 \tabularnewline
[400,450[ & 425 & 48 & 0.10084 & 0.39916 & 0.002017 \tabularnewline
[450,500[ & 475 & 64 & 0.134454 & 0.533613 & 0.002689 \tabularnewline
[500,550[ & 525 & 85 & 0.178571 & 0.712185 & 0.003571 \tabularnewline
[550,600[ & 575 & 51 & 0.107143 & 0.819328 & 0.002143 \tabularnewline
[600,650[ & 625 & 53 & 0.111345 & 0.930672 & 0.002227 \tabularnewline
[650,700[ & 675 & 29 & 0.060924 & 0.991597 & 0.001218 \tabularnewline
[700,750] & 725 & 4 & 0.008403 & 1 & 0.000168 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=118141&T=1

[TABLE]
[ROW][C]Frequency Table (Histogram)[/C][/ROW]
[ROW][C]Bins[/C][C]Midpoint[/C][C]Abs. Frequency[/C][C]Rel. Frequency[/C][C]Cumul. Rel. Freq.[/C][C]Density[/C][/ROW]
[ROW][C][150,200[[/C][C]175[/C][C]34[/C][C]0.071429[/C][C]0.071429[/C][C]0.001429[/C][/ROW]
[ROW][C][200,250[[/C][C]225[/C][C]23[/C][C]0.048319[/C][C]0.119748[/C][C]0.000966[/C][/ROW]
[ROW][C][250,300[[/C][C]275[/C][C]28[/C][C]0.058824[/C][C]0.178571[/C][C]0.001176[/C][/ROW]
[ROW][C][300,350[[/C][C]325[/C][C]26[/C][C]0.054622[/C][C]0.233193[/C][C]0.001092[/C][/ROW]
[ROW][C][350,400[[/C][C]375[/C][C]31[/C][C]0.065126[/C][C]0.298319[/C][C]0.001303[/C][/ROW]
[ROW][C][400,450[[/C][C]425[/C][C]48[/C][C]0.10084[/C][C]0.39916[/C][C]0.002017[/C][/ROW]
[ROW][C][450,500[[/C][C]475[/C][C]64[/C][C]0.134454[/C][C]0.533613[/C][C]0.002689[/C][/ROW]
[ROW][C][500,550[[/C][C]525[/C][C]85[/C][C]0.178571[/C][C]0.712185[/C][C]0.003571[/C][/ROW]
[ROW][C][550,600[[/C][C]575[/C][C]51[/C][C]0.107143[/C][C]0.819328[/C][C]0.002143[/C][/ROW]
[ROW][C][600,650[[/C][C]625[/C][C]53[/C][C]0.111345[/C][C]0.930672[/C][C]0.002227[/C][/ROW]
[ROW][C][650,700[[/C][C]675[/C][C]29[/C][C]0.060924[/C][C]0.991597[/C][C]0.001218[/C][/ROW]
[ROW][C][700,750][/C][C]725[/C][C]4[/C][C]0.008403[/C][C]1[/C][C]0.000168[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=118141&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=118141&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Frequency Table (Histogram)
BinsMidpointAbs. FrequencyRel. FrequencyCumul. Rel. Freq.Density
[150,200[175340.0714290.0714290.001429
[200,250[225230.0483190.1197480.000966
[250,300[275280.0588240.1785710.001176
[300,350[325260.0546220.2331930.001092
[350,400[375310.0651260.2983190.001303
[400,450[425480.100840.399160.002017
[450,500[475640.1344540.5336130.002689
[500,550[525850.1785710.7121850.003571
[550,600[575510.1071430.8193280.002143
[600,650[625530.1113450.9306720.002227
[650,700[675290.0609240.9915970.001218
[700,750]72540.00840310.000168



Parameters (Session):
par2 = grey ; par3 = FALSE ; par4 = Unknown ;
Parameters (R input):
par1 = ; par2 = grey ; par3 = FALSE ; par4 = Unknown ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
if (par3 == 'TRUE') par3 <- TRUE
if (par3 == 'FALSE') par3 <- FALSE
if (par4 == 'Unknown') par1 <- as.numeric(par1)
if (par4 == 'Interval/Ratio') par1 <- as.numeric(par1)
if (par4 == '3-point Likert') par1 <- c(1:3 - 0.5, 3.5)
if (par4 == '4-point Likert') par1 <- c(1:4 - 0.5, 4.5)
if (par4 == '5-point Likert') par1 <- c(1:5 - 0.5, 5.5)
if (par4 == '6-point Likert') par1 <- c(1:6 - 0.5, 6.5)
if (par4 == '7-point Likert') par1 <- c(1:7 - 0.5, 7.5)
if (par4 == '8-point Likert') par1 <- c(1:8 - 0.5, 8.5)
if (par4 == '9-point Likert') par1 <- c(1:9 - 0.5, 9.5)
if (par4 == '10-point Likert') par1 <- c(1:10 - 0.5, 10.5)
bitmap(file='test1.png')
if(is.numeric(x[1])) {
if (is.na(par1)) {
myhist<-hist(x,col=par2,main=main,xlab=xlab,right=par3)
} else {
if (par1 < 0) par1 <- 3
if (par1 > 50) par1 <- 50
myhist<-hist(x,breaks=par1,col=par2,main=main,xlab=xlab,right=par3)
}
} else {
plot(mytab <- table(x),col=par2,main='Frequency Plot',xlab=xlab,ylab='Absolute Frequency')
}
dev.off()
if(is.numeric(x[1])) {
myhist
n <- length(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('histogram.htm','Frequency Table (Histogram)',''),6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Bins',header=TRUE)
a<-table.element(a,'Midpoint',header=TRUE)
a<-table.element(a,'Abs. Frequency',header=TRUE)
a<-table.element(a,'Rel. Frequency',header=TRUE)
a<-table.element(a,'Cumul. Rel. Freq.',header=TRUE)
a<-table.element(a,'Density',header=TRUE)
a<-table.row.end(a)
crf <- 0
if (par3 == FALSE) mybracket <- '[' else mybracket <- ']'
mynumrows <- (length(myhist$breaks)-1)
for (i in 1:mynumrows) {
a<-table.row.start(a)
if (i == 1)
dum <- paste('[',myhist$breaks[i],sep='')
else
dum <- paste(mybracket,myhist$breaks[i],sep='')
dum <- paste(dum,myhist$breaks[i+1],sep=',')
if (i==mynumrows)
dum <- paste(dum,']',sep='')
else
dum <- paste(dum,mybracket,sep='')
a<-table.element(a,dum,header=TRUE)
a<-table.element(a,myhist$mids[i])
a<-table.element(a,myhist$counts[i])
rf <- myhist$counts[i]/n
crf <- crf + rf
a<-table.element(a,round(rf,6))
a<-table.element(a,round(crf,6))
a<-table.element(a,round(myhist$density[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
} else {
mytab
reltab <- mytab / sum(mytab)
n <- length(mytab)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Frequency Table (Categorical Data)',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Category',header=TRUE)
a<-table.element(a,'Abs. Frequency',header=TRUE)
a<-table.element(a,'Rel. Frequency',header=TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,labels(mytab)$x[i],header=TRUE)
a<-table.element(a,mytab[i])
a<-table.element(a,round(reltab[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
}