Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_edabi.wasp
Title produced by softwareBivariate Explorative Data Analysis
Date of computationFri, 30 Oct 2009 08:33:11 -0600
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Oct/30/t125691324402fp40gjmcf4vb5.htm/, Retrieved Sun, 10 Nov 2024 19:49:59 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=52123, Retrieved Sun, 10 Nov 2024 19:49:59 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact138
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Bivariate Explorative Data Analysis] [Workshop 5: Bivar...] [2009-10-30 14:33:11] [a5c6be3c0aa55fdb2a703a08e16947ef] [Current]
- RMP     [Kendall tau Rank Correlation] [Rev1-4BivEDA-Corr...] [2009-11-11 09:55:40] [f15cfb7053d35072d573abca87df96a0]
Feedback Forum

Post a new message
Dataseries X:
0.7461
0.7775
0.7790
0.7744
0.7905
0.7719
0.7811
0.7557
0.7637
0.7595
0.7471
0.7615
0.7487
0.7389
0.7337
0.7510
0.7382
0.7159
0.7542
0.7636
0.7433
0.7658
0.7627
0.7480
0.7692
0.7850
0.7913
0.7720
0.7880
0.8070
0.8268
0.8244
0.8487
0.8572
0.8214
0.8827
0.9216
0.8865
0.8816
0.8884
0.9466
0.9180
0.9337
0.9559
0.9626
0.9434
0.8639
0.7996
0.6680
0.6572
0.6928
0.6438
0.6454
0.6873
0.7265
0.7912
0.8114
0.8281
0.8393
Dataseries Y:
0.5857
0.5858
0.5717
0.5945
0.5961
0.5973
0.6036
0.6096
0.6315
0.6262
0.6121
0.6326
0.6214
0.6274
0.6175
0.6208
0.6225
0.5889
0.6020
0.5932
0.5841
0.6000
0.5947
0.5891
0.6051
0.5960
0.6012
0.5957
0.5959
0.6049
0.6064
0.6137
0.6311
0.6258
0.6010
0.6232
0.6384
0.6014
0.5980
0.5987
0.6237
0.5813
0.5991
0.6160
0.6096
0.6051
0.5857
0.5565
0.5223
0.5091
0.4919
0.4995
0.5069
0.5190
0.5460
0.5648
0.5751
0.5862
0.5877




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ 193.190.124.24 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=52123&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ 193.190.124.24[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=52123&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=52123&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24







Model: Y[t] = c + b X[t] + e[t]
c0.402851780264043
b0.238309189329749

\begin{tabular}{lllllllll}
\hline
Model: Y[t] = c + b X[t] + e[t] \tabularnewline
c & 0.402851780264043 \tabularnewline
b & 0.238309189329749 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=52123&T=1

[TABLE]
[ROW][C]Model: Y[t] = c + b X[t] + e[t][/C][/ROW]
[ROW][C]c[/C][C]0.402851780264043[/C][/ROW]
[ROW][C]b[/C][C]0.238309189329749[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=52123&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=52123&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Model: Y[t] = c + b X[t] + e[t]
c0.402851780264043
b0.238309189329749







Descriptive Statistics about e[t]
# observations59
minimum-0.0760523866316934
Q1-0.0189552476190597
median0.00607550611210374
mean5.73570513706844e-19
Q30.0156825709722247
maximum0.0484615597402052

\begin{tabular}{lllllllll}
\hline
Descriptive Statistics about e[t] \tabularnewline
# observations & 59 \tabularnewline
minimum & -0.0760523866316934 \tabularnewline
Q1 & -0.0189552476190597 \tabularnewline
median & 0.00607550611210374 \tabularnewline
mean & 5.73570513706844e-19 \tabularnewline
Q3 & 0.0156825709722247 \tabularnewline
maximum & 0.0484615597402052 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=52123&T=2

[TABLE]
[ROW][C]Descriptive Statistics about e[t][/C][/ROW]
[ROW][C]# observations[/C][C]59[/C][/ROW]
[ROW][C]minimum[/C][C]-0.0760523866316934[/C][/ROW]
[ROW][C]Q1[/C][C]-0.0189552476190597[/C][/ROW]
[ROW][C]median[/C][C]0.00607550611210374[/C][/ROW]
[ROW][C]mean[/C][C]5.73570513706844e-19[/C][/ROW]
[ROW][C]Q3[/C][C]0.0156825709722247[/C][/ROW]
[ROW][C]maximum[/C][C]0.0484615597402052[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=52123&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=52123&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Descriptive Statistics about e[t]
# observations59
minimum-0.0760523866316934
Q1-0.0189552476190597
median0.00607550611210374
mean5.73570513706844e-19
Q30.0156825709722247
maximum0.0484615597402052



Parameters (Session):
par1 = 0 ; par2 = 36 ;
Parameters (R input):
par1 = 0 ; par2 = 36 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
x <- as.ts(x)
y <- as.ts(y)
mylm <- lm(y~x)
cbind(mylm$resid)
library(lattice)
bitmap(file='pic1.png')
plot(y,type='l',main='Run Sequence Plot of Y[t]',xlab='time or index',ylab='value')
grid()
dev.off()
bitmap(file='pic1a.png')
plot(x,type='l',main='Run Sequence Plot of X[t]',xlab='time or index',ylab='value')
grid()
dev.off()
bitmap(file='pic1b.png')
plot(x,y,main='Scatter Plot',xlab='X[t]',ylab='Y[t]')
grid()
dev.off()
bitmap(file='pic1c.png')
plot(mylm$resid,type='l',main='Run Sequence Plot of e[t]',xlab='time or index',ylab='value')
grid()
dev.off()
bitmap(file='pic2.png')
hist(mylm$resid,main='Histogram of e[t]')
dev.off()
bitmap(file='pic3.png')
if (par1 > 0)
{
densityplot(~mylm$resid,col='black',main=paste('Density Plot of e[t] bw = ',par1),bw=par1)
} else {
densityplot(~mylm$resid,col='black',main='Density Plot of e[t]')
}
dev.off()
bitmap(file='pic4.png')
qqnorm(mylm$resid,main='QQ plot of e[t]')
qqline(mylm$resid)
grid()
dev.off()
if (par2 > 0)
{
bitmap(file='pic5.png')
acf(mylm$resid,lag.max=par2,main='Residual Autocorrelation Function')
grid()
dev.off()
}
summary(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Model: Y[t] = c + b X[t] + e[t]',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'c',1,TRUE)
a<-table.element(a,mylm$coeff[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'b',1,TRUE)
a<-table.element(a,mylm$coeff[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Descriptive Statistics about e[t]',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'# observations',header=TRUE)
a<-table.element(a,length(mylm$resid))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'minimum',header=TRUE)
a<-table.element(a,min(mylm$resid))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,quantile(mylm$resid,0.25))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
a<-table.element(a,median(mylm$resid))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,mean(mylm$resid))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,quantile(mylm$resid,0.75))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'maximum',header=TRUE)
a<-table.element(a,max(mylm$resid))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')