Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationMon, 21 Dec 2009 08:37:35 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Dec/21/t1261409937yccnlkn8t4ku2mr.htm/, Retrieved Thu, 31 Oct 2024 23:11:59 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=70282, Retrieved Thu, 31 Oct 2024 23:11:59 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsKDGP2W82
Estimated Impact175
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Standard Deviation-Mean Plot] [] [2009-12-21 15:37:35] [ab2b68d5442f7c9b7e2e9d790849a234] [Current]
- RMPD    [Variability] [] [2009-12-21 15:43:30] [e5e09c53da17fb7444fa9ceb236a5291]
- RMPD    [Standard Deviation Plot] [] [2009-12-21 15:46:56] [e5e09c53da17fb7444fa9ceb236a5291]
-    D    [Standard Deviation-Mean Plot] [] [2009-12-21 15:51:38] [e5e09c53da17fb7444fa9ceb236a5291]
-   P       [Standard Deviation-Mean Plot] [] [2010-01-12 09:03:27] [74be16979710d4c4e7c6647856088456]
- RMPD      [Classical Decomposition] [] [2010-01-12 09:15:15] [e5e09c53da17fb7444fa9ceb236a5291]
-    D        [Classical Decomposition] [] [2010-01-16 10:43:37] [74be16979710d4c4e7c6647856088456]
- RMPD        [Exponential Smoothing] [] [2010-01-16 11:07:46] [74be16979710d4c4e7c6647856088456]
-   PD          [Exponential Smoothing] [] [2010-01-16 11:41:42] [74be16979710d4c4e7c6647856088456]
- RMPD      [Classical Decomposition] [] [2010-01-12 09:35:07] [e5e09c53da17fb7444fa9ceb236a5291]
-   P     [Standard Deviation-Mean Plot] [] [2010-01-12 08:55:46] [74be16979710d4c4e7c6647856088456]
Feedback Forum

Post a new message
Dataseries X:
41086
39690
43129
37863
35953
29133
24693
22205
21725
27192
21790
13253
37702
30364
32609
30212
29965
28352
25814
22414
20506
28806
22228
13971
36845
35338
35022
34777
26887
23970
22780
17351
21382
24561
17409
11514
31514
27071
29462
26105
22397
23843
21705
18089
20764
25316
17704
15548
28029
29383
36438
32034
22679
24319
18004
17537
20366
22782
19169
13807
29743
25591
29096
26482
22405
27044
17970
18730
19684
19785
18479
10698




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=70282&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=70282&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=70282&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1404422224.968164566265266
2279966029.1543906808913748
3209905759.230214765413939
432721.753496.35203938817490
526636.253292.813627178647551
621377.756097.040723443914835
735495.5928.5115328668062068
8227473989.704834529329536
918716.55622.8294478847613047
10285382434.606744425065409
1121508.52447.509959121725754
12198334235.717806149679768
13314713705.633818930318409
1420634.753379.820347789716782
15190313793.039502386798975
16277282004.240005588154152
1721537.254150.630905858379074
1817161.54349.651212070539087

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 40442 & 2224.96816456626 & 5266 \tabularnewline
2 & 27996 & 6029.15439068089 & 13748 \tabularnewline
3 & 20990 & 5759.2302147654 & 13939 \tabularnewline
4 & 32721.75 & 3496.3520393881 & 7490 \tabularnewline
5 & 26636.25 & 3292.81362717864 & 7551 \tabularnewline
6 & 21377.75 & 6097.0407234439 & 14835 \tabularnewline
7 & 35495.5 & 928.511532866806 & 2068 \tabularnewline
8 & 22747 & 3989.70483452932 & 9536 \tabularnewline
9 & 18716.5 & 5622.82944788476 & 13047 \tabularnewline
10 & 28538 & 2434.60674442506 & 5409 \tabularnewline
11 & 21508.5 & 2447.50995912172 & 5754 \tabularnewline
12 & 19833 & 4235.71780614967 & 9768 \tabularnewline
13 & 31471 & 3705.63381893031 & 8409 \tabularnewline
14 & 20634.75 & 3379.82034778971 & 6782 \tabularnewline
15 & 19031 & 3793.03950238679 & 8975 \tabularnewline
16 & 27728 & 2004.24000558815 & 4152 \tabularnewline
17 & 21537.25 & 4150.63090585837 & 9074 \tabularnewline
18 & 17161.5 & 4349.65121207053 & 9087 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=70282&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]40442[/C][C]2224.96816456626[/C][C]5266[/C][/ROW]
[ROW][C]2[/C][C]27996[/C][C]6029.15439068089[/C][C]13748[/C][/ROW]
[ROW][C]3[/C][C]20990[/C][C]5759.2302147654[/C][C]13939[/C][/ROW]
[ROW][C]4[/C][C]32721.75[/C][C]3496.3520393881[/C][C]7490[/C][/ROW]
[ROW][C]5[/C][C]26636.25[/C][C]3292.81362717864[/C][C]7551[/C][/ROW]
[ROW][C]6[/C][C]21377.75[/C][C]6097.0407234439[/C][C]14835[/C][/ROW]
[ROW][C]7[/C][C]35495.5[/C][C]928.511532866806[/C][C]2068[/C][/ROW]
[ROW][C]8[/C][C]22747[/C][C]3989.70483452932[/C][C]9536[/C][/ROW]
[ROW][C]9[/C][C]18716.5[/C][C]5622.82944788476[/C][C]13047[/C][/ROW]
[ROW][C]10[/C][C]28538[/C][C]2434.60674442506[/C][C]5409[/C][/ROW]
[ROW][C]11[/C][C]21508.5[/C][C]2447.50995912172[/C][C]5754[/C][/ROW]
[ROW][C]12[/C][C]19833[/C][C]4235.71780614967[/C][C]9768[/C][/ROW]
[ROW][C]13[/C][C]31471[/C][C]3705.63381893031[/C][C]8409[/C][/ROW]
[ROW][C]14[/C][C]20634.75[/C][C]3379.82034778971[/C][C]6782[/C][/ROW]
[ROW][C]15[/C][C]19031[/C][C]3793.03950238679[/C][C]8975[/C][/ROW]
[ROW][C]16[/C][C]27728[/C][C]2004.24000558815[/C][C]4152[/C][/ROW]
[ROW][C]17[/C][C]21537.25[/C][C]4150.63090585837[/C][C]9074[/C][/ROW]
[ROW][C]18[/C][C]17161.5[/C][C]4349.65121207053[/C][C]9087[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=70282&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=70282&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1404422224.968164566265266
2279966029.1543906808913748
3209905759.230214765413939
432721.753496.35203938817490
526636.253292.813627178647551
621377.756097.040723443914835
735495.5928.5115328668062068
8227473989.704834529329536
918716.55622.8294478847613047
10285382434.606744425065409
1121508.52447.509959121725754
12198334235.717806149679768
13314713705.633818930318409
1420634.753379.820347789716782
15190313793.039502386798975
16277282004.240005588154152
1721537.254150.630905858379074
1817161.54349.651212070539087







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha6939.88725485111
beta-0.125342737128117
S.D.0.0464418715448356
T-STAT-2.69891658020521
p-value0.0158070386551277

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & 6939.88725485111 \tabularnewline
beta & -0.125342737128117 \tabularnewline
S.D. & 0.0464418715448356 \tabularnewline
T-STAT & -2.69891658020521 \tabularnewline
p-value & 0.0158070386551277 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=70282&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]6939.88725485111[/C][/ROW]
[ROW][C]beta[/C][C]-0.125342737128117[/C][/ROW]
[ROW][C]S.D.[/C][C]0.0464418715448356[/C][/ROW]
[ROW][C]T-STAT[/C][C]-2.69891658020521[/C][/ROW]
[ROW][C]p-value[/C][C]0.0158070386551277[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=70282&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=70282&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha6939.88725485111
beta-0.125342737128117
S.D.0.0464418715448356
T-STAT-2.69891658020521
p-value0.0158070386551277







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha19.6651702697103
beta-1.13952897506419
S.D.0.386695145349028
T-STAT-2.94684065411698
p-value0.00947258946498072
Lambda2.13952897506419

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & 19.6651702697103 \tabularnewline
beta & -1.13952897506419 \tabularnewline
S.D. & 0.386695145349028 \tabularnewline
T-STAT & -2.94684065411698 \tabularnewline
p-value & 0.00947258946498072 \tabularnewline
Lambda & 2.13952897506419 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=70282&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]19.6651702697103[/C][/ROW]
[ROW][C]beta[/C][C]-1.13952897506419[/C][/ROW]
[ROW][C]S.D.[/C][C]0.386695145349028[/C][/ROW]
[ROW][C]T-STAT[/C][C]-2.94684065411698[/C][/ROW]
[ROW][C]p-value[/C][C]0.00947258946498072[/C][/ROW]
[ROW][C]Lambda[/C][C]2.13952897506419[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=70282&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=70282&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha19.6651702697103
beta-1.13952897506419
S.D.0.386695145349028
T-STAT-2.94684065411698
p-value0.00947258946498072
Lambda2.13952897506419



Parameters (Session):
par1 = 4 ;
Parameters (R input):
par1 = 4 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')