Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 25 Nov 2008 00:27:34 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Nov/25/t1227598107irqzvf9aze1p5mh.htm/, Retrieved Sun, 10 Nov 2024 20:03:22 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=25572, Retrieved Sun, 10 Nov 2024 20:03:22 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact245
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F     [Multiple Regression] [] [2007-11-19 20:22:41] [3a1956effdcb54c39e5044435310d6c8]
F    D    [Multiple Regression] [Q3] [2008-11-25 07:27:34] [77ff908fa699164c8765f2430a4f222b] [Current]
Feedback Forum
2008-11-25 17:44:59 [Romina Machiels] [reply
Deze vraag werd correct beantwoord. Er werd voldoende uitleg gegeven.
2008-11-30 13:55:20 [Roland Feldman] [reply
Correct en goede interpretatie

Post a new message
Dataseries X:
106.7	0
110.2	0
125.9	0
100.1	0
106.4	0
114.8	0
81.3	0
87	0
104.2	0
108	0
105	0
94.5	0
92	0
95.9	0
108.8	0
103.4	0
102.1	0
110.1	0
83.2	0
82.7	0
106.8	0
113.7	0
102.5	0
96.6	0
92.1	0
95.6	0
102.3	0
98.6	0
98.2	0
104.5	0
84	0
73.8	0
103.9	0
106	0
97.2	0
102.6	0
89	0
93.8	0
116.7	1
106.8	1
98.5	1
118.7	1
90	1
91.9	1
113.3	1
113.1	1
104.1	1
108.7	1
96.7	1
101	1
116.9	1
105.8	1
99	1
129.4	1
83	1
88.9	1
115.9	1
104.2	1
113.4	1
112.2	1
100.8	1
107.3	1
126.6	1
102.9	1
117.9	1
128.8	1
87.5	1
93.8	1
122.7	1
126.2	1
124.6	1
116.7	1
115.2	1
111.1	1
129.9	1
113.3	1
118.5	1
133.5	1
102.1	1
102.4	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time16 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 16 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=25572&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]16 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=25572&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=25572&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time16 seconds
R Server'George Udny Yule' @ 72.249.76.132







Multiple Linear Regression - Estimated Regression Equation
y[t] = + 97.545 + 5.53874999999998x[t] -5.30886408730163M1[t] -2.22558531746031M2[t] + 12.8950148809524M3[t] -0.964563492063498M4[t] + 0.304429563492081M5[t] + 14.3591369047619M6[t] -18.4290128968254M7[t] -17.2028769841270M8[t] + 6.26683035714287M9[t] + 6.88344246031746M10[t] + 2.70005456349207M11[t] + 0.116721230158731t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
y[t] =  +  97.545 +  5.53874999999998x[t] -5.30886408730163M1[t] -2.22558531746031M2[t] +  12.8950148809524M3[t] -0.964563492063498M4[t] +  0.304429563492081M5[t] +  14.3591369047619M6[t] -18.4290128968254M7[t] -17.2028769841270M8[t] +  6.26683035714287M9[t] +  6.88344246031746M10[t] +  2.70005456349207M11[t] +  0.116721230158731t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=25572&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]y[t] =  +  97.545 +  5.53874999999998x[t] -5.30886408730163M1[t] -2.22558531746031M2[t] +  12.8950148809524M3[t] -0.964563492063498M4[t] +  0.304429563492081M5[t] +  14.3591369047619M6[t] -18.4290128968254M7[t] -17.2028769841270M8[t] +  6.26683035714287M9[t] +  6.88344246031746M10[t] +  2.70005456349207M11[t] +  0.116721230158731t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=25572&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=25572&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
y[t] = + 97.545 + 5.53874999999998x[t] -5.30886408730163M1[t] -2.22558531746031M2[t] + 12.8950148809524M3[t] -0.964563492063498M4[t] + 0.304429563492081M5[t] + 14.3591369047619M6[t] -18.4290128968254M7[t] -17.2028769841270M8[t] + 6.26683035714287M9[t] + 6.88344246031746M10[t] + 2.70005456349207M11[t] + 0.116721230158731t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)97.5453.11727131.291800
x5.538749999999982.9694481.86520.0665930.033297
M1-5.308864087301633.660279-1.45040.1516830.075842
M2-2.225585317460313.658449-0.60830.5450490.272525
M312.89501488095243.6770183.50690.0008210.00041
M4-0.9645634920634983.671017-0.26280.7935610.39678
M50.3044295634920813.6661270.0830.9340720.467036
M614.35913690476193.6623513.92070.0002130.000106
M7-18.42901289682543.659693-5.03574e-062e-06
M8-17.20287698412703.658156-4.70261.4e-057e-06
M96.266830357142873.7990891.64960.1037850.051892
M106.883442460317463.7963861.81320.0743550.037177
M112.700054563492073.7947630.71150.4792690.239634
t0.1167212301587310.0640781.82150.0730570.036529

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 97.545 & 3.117271 & 31.2918 & 0 & 0 \tabularnewline
x & 5.53874999999998 & 2.969448 & 1.8652 & 0.066593 & 0.033297 \tabularnewline
M1 & -5.30886408730163 & 3.660279 & -1.4504 & 0.151683 & 0.075842 \tabularnewline
M2 & -2.22558531746031 & 3.658449 & -0.6083 & 0.545049 & 0.272525 \tabularnewline
M3 & 12.8950148809524 & 3.677018 & 3.5069 & 0.000821 & 0.00041 \tabularnewline
M4 & -0.964563492063498 & 3.671017 & -0.2628 & 0.793561 & 0.39678 \tabularnewline
M5 & 0.304429563492081 & 3.666127 & 0.083 & 0.934072 & 0.467036 \tabularnewline
M6 & 14.3591369047619 & 3.662351 & 3.9207 & 0.000213 & 0.000106 \tabularnewline
M7 & -18.4290128968254 & 3.659693 & -5.0357 & 4e-06 & 2e-06 \tabularnewline
M8 & -17.2028769841270 & 3.658156 & -4.7026 & 1.4e-05 & 7e-06 \tabularnewline
M9 & 6.26683035714287 & 3.799089 & 1.6496 & 0.103785 & 0.051892 \tabularnewline
M10 & 6.88344246031746 & 3.796386 & 1.8132 & 0.074355 & 0.037177 \tabularnewline
M11 & 2.70005456349207 & 3.794763 & 0.7115 & 0.479269 & 0.239634 \tabularnewline
t & 0.116721230158731 & 0.064078 & 1.8215 & 0.073057 & 0.036529 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=25572&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]97.545[/C][C]3.117271[/C][C]31.2918[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]x[/C][C]5.53874999999998[/C][C]2.969448[/C][C]1.8652[/C][C]0.066593[/C][C]0.033297[/C][/ROW]
[ROW][C]M1[/C][C]-5.30886408730163[/C][C]3.660279[/C][C]-1.4504[/C][C]0.151683[/C][C]0.075842[/C][/ROW]
[ROW][C]M2[/C][C]-2.22558531746031[/C][C]3.658449[/C][C]-0.6083[/C][C]0.545049[/C][C]0.272525[/C][/ROW]
[ROW][C]M3[/C][C]12.8950148809524[/C][C]3.677018[/C][C]3.5069[/C][C]0.000821[/C][C]0.00041[/C][/ROW]
[ROW][C]M4[/C][C]-0.964563492063498[/C][C]3.671017[/C][C]-0.2628[/C][C]0.793561[/C][C]0.39678[/C][/ROW]
[ROW][C]M5[/C][C]0.304429563492081[/C][C]3.666127[/C][C]0.083[/C][C]0.934072[/C][C]0.467036[/C][/ROW]
[ROW][C]M6[/C][C]14.3591369047619[/C][C]3.662351[/C][C]3.9207[/C][C]0.000213[/C][C]0.000106[/C][/ROW]
[ROW][C]M7[/C][C]-18.4290128968254[/C][C]3.659693[/C][C]-5.0357[/C][C]4e-06[/C][C]2e-06[/C][/ROW]
[ROW][C]M8[/C][C]-17.2028769841270[/C][C]3.658156[/C][C]-4.7026[/C][C]1.4e-05[/C][C]7e-06[/C][/ROW]
[ROW][C]M9[/C][C]6.26683035714287[/C][C]3.799089[/C][C]1.6496[/C][C]0.103785[/C][C]0.051892[/C][/ROW]
[ROW][C]M10[/C][C]6.88344246031746[/C][C]3.796386[/C][C]1.8132[/C][C]0.074355[/C][C]0.037177[/C][/ROW]
[ROW][C]M11[/C][C]2.70005456349207[/C][C]3.794763[/C][C]0.7115[/C][C]0.479269[/C][C]0.239634[/C][/ROW]
[ROW][C]t[/C][C]0.116721230158731[/C][C]0.064078[/C][C]1.8215[/C][C]0.073057[/C][C]0.036529[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=25572&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=25572&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)97.5453.11727131.291800
x5.538749999999982.9694481.86520.0665930.033297
M1-5.308864087301633.660279-1.45040.1516830.075842
M2-2.225585317460313.658449-0.60830.5450490.272525
M312.89501488095243.6770183.50690.0008210.00041
M4-0.9645634920634983.671017-0.26280.7935610.39678
M50.3044295634920813.6661270.0830.9340720.467036
M614.35913690476193.6623513.92070.0002130.000106
M7-18.42901289682543.659693-5.03574e-062e-06
M8-17.20287698412703.658156-4.70261.4e-057e-06
M96.266830357142873.7990891.64960.1037850.051892
M106.883442460317463.7963861.81320.0743550.037177
M112.700054563492073.7947630.71150.4792690.239634
t0.1167212301587310.0640781.82150.0730570.036529







Multiple Linear Regression - Regression Statistics
Multiple R0.881461940737189
R-squared0.776975152968172
Adjusted R-squared0.733046016431599
F-TEST (value)17.6870117244694
F-TEST (DF numerator)13
F-TEST (DF denominator)66
p-value1.11022302462516e-16
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation6.57178533306778
Sum Squared Residuals2850.43192261904

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.881461940737189 \tabularnewline
R-squared & 0.776975152968172 \tabularnewline
Adjusted R-squared & 0.733046016431599 \tabularnewline
F-TEST (value) & 17.6870117244694 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 66 \tabularnewline
p-value & 1.11022302462516e-16 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 6.57178533306778 \tabularnewline
Sum Squared Residuals & 2850.43192261904 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=25572&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.881461940737189[/C][/ROW]
[ROW][C]R-squared[/C][C]0.776975152968172[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.733046016431599[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]17.6870117244694[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]66[/C][/ROW]
[ROW][C]p-value[/C][C]1.11022302462516e-16[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]6.57178533306778[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]2850.43192261904[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=25572&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=25572&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.881461940737189
R-squared0.776975152968172
Adjusted R-squared0.733046016431599
F-TEST (value)17.6870117244694
F-TEST (DF numerator)13
F-TEST (DF denominator)66
p-value1.11022302462516e-16
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation6.57178533306778
Sum Squared Residuals2850.43192261904







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1106.792.352857142857414.3471428571426
2110.295.552857142857114.6471428571429
3125.9110.79017857142915.1098214285714
4100.197.04732142857143.05267857142857
5106.498.43303571428577.9669642857143
6114.8112.6044642857142.19553571428574
781.379.93303571428571.36696428571428
88781.27589285714285.72410714285718
9104.2104.862321428571-0.662321428571399
10108105.5956547619052.40434523809523
11105101.5289880952383.47101190476192
1294.598.9456547619047-4.44565476190473
139293.7535119047619-1.75351190476185
1495.996.9535119047619-1.0535119047619
15108.8112.190833333333-3.39083333333333
16103.498.44797619047624.95202380952382
17102.199.83369047619052.26630952380952
18110.1114.005119047619-3.90511904761906
1983.281.33369047619051.86630952380953
2082.782.67654761904760.0234523809523808
21106.8106.2629761904760.537023809523803
22113.7106.9963095238106.70369047619048
23102.5102.929642857143-0.429642857142853
2496.6100.346309523810-3.74630952380952
2592.195.1541666666666-3.05416666666662
2695.698.3541666666667-2.75416666666667
27102.3113.591488095238-11.2914880952381
2898.699.848630952381-1.24863095238096
2998.2101.234345238095-3.03434523809524
30104.5115.405773809524-10.9057738095238
318482.73434523809521.26565476190476
3273.884.0772023809524-10.2772023809524
33103.9107.663630952381-3.76363095238096
34106108.396964285714-2.39696428571429
3597.2104.330297619048-7.13029761904762
36102.6101.7469642857140.85303571428571
378996.5548214285714-7.55482142857139
3893.899.7548214285714-5.95482142857143
39116.7120.530892857143-3.83089285714285
40106.8106.7880357142860.0119642857142910
4198.5108.17375-9.67375
42118.7122.345178571429-3.64517857142857
439089.673750.326250000000014
4491.991.01660714285710.883392857142863
45113.3114.603035714286-1.30303571428572
46113.1115.336369047619-2.23636904761905
47104.1111.269702380952-7.16970238095238
48108.7108.6863690476190.0136309523809659
4996.7103.494226190476-6.79422619047614
50101106.694226190476-5.69422619047618
51116.9121.931547619048-5.03154761904762
52105.8108.188690476190-2.38869047619048
5399109.574404761905-10.5744047619048
54129.4123.7458333333335.65416666666667
558391.0744047619048-8.07440476190475
5688.992.4172619047619-3.51726190476191
57115.9116.003690476190-0.103690476190482
58104.2116.737023809524-12.5370238095238
59113.4112.6703571428570.72964285714286
60112.2110.0870238095242.11297619047620
61100.8104.894880952381-4.09488095238091
62107.3108.094880952381-0.794880952380956
63126.6123.3322023809523.2677976190476
64102.9109.589345238095-6.68934523809524
65117.9110.9750595238106.92494047619047
66128.8125.1464880952383.6535119047619
6787.592.4750595238095-4.97505952380952
6893.893.8179166666667-0.0179166666666888
69122.7117.4043452380955.29565476190475
70126.2118.1376785714298.06232142857142
71124.6114.07101190476210.5289880952381
72116.7111.4876785714295.21232142857142
73115.2106.2955357142868.90446428571433
74111.1109.4955357142861.60446428571427
75129.9124.7328571428575.16714285714284
76113.3110.992.30999999999998
77118.5112.3757142857146.1242857142857
78133.5126.5471428571436.95285714285712
79102.193.87571428571438.2242857142857
80102.495.21857142857157.18142857142855

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 106.7 & 92.3528571428574 & 14.3471428571426 \tabularnewline
2 & 110.2 & 95.5528571428571 & 14.6471428571429 \tabularnewline
3 & 125.9 & 110.790178571429 & 15.1098214285714 \tabularnewline
4 & 100.1 & 97.0473214285714 & 3.05267857142857 \tabularnewline
5 & 106.4 & 98.4330357142857 & 7.9669642857143 \tabularnewline
6 & 114.8 & 112.604464285714 & 2.19553571428574 \tabularnewline
7 & 81.3 & 79.9330357142857 & 1.36696428571428 \tabularnewline
8 & 87 & 81.2758928571428 & 5.72410714285718 \tabularnewline
9 & 104.2 & 104.862321428571 & -0.662321428571399 \tabularnewline
10 & 108 & 105.595654761905 & 2.40434523809523 \tabularnewline
11 & 105 & 101.528988095238 & 3.47101190476192 \tabularnewline
12 & 94.5 & 98.9456547619047 & -4.44565476190473 \tabularnewline
13 & 92 & 93.7535119047619 & -1.75351190476185 \tabularnewline
14 & 95.9 & 96.9535119047619 & -1.0535119047619 \tabularnewline
15 & 108.8 & 112.190833333333 & -3.39083333333333 \tabularnewline
16 & 103.4 & 98.4479761904762 & 4.95202380952382 \tabularnewline
17 & 102.1 & 99.8336904761905 & 2.26630952380952 \tabularnewline
18 & 110.1 & 114.005119047619 & -3.90511904761906 \tabularnewline
19 & 83.2 & 81.3336904761905 & 1.86630952380953 \tabularnewline
20 & 82.7 & 82.6765476190476 & 0.0234523809523808 \tabularnewline
21 & 106.8 & 106.262976190476 & 0.537023809523803 \tabularnewline
22 & 113.7 & 106.996309523810 & 6.70369047619048 \tabularnewline
23 & 102.5 & 102.929642857143 & -0.429642857142853 \tabularnewline
24 & 96.6 & 100.346309523810 & -3.74630952380952 \tabularnewline
25 & 92.1 & 95.1541666666666 & -3.05416666666662 \tabularnewline
26 & 95.6 & 98.3541666666667 & -2.75416666666667 \tabularnewline
27 & 102.3 & 113.591488095238 & -11.2914880952381 \tabularnewline
28 & 98.6 & 99.848630952381 & -1.24863095238096 \tabularnewline
29 & 98.2 & 101.234345238095 & -3.03434523809524 \tabularnewline
30 & 104.5 & 115.405773809524 & -10.9057738095238 \tabularnewline
31 & 84 & 82.7343452380952 & 1.26565476190476 \tabularnewline
32 & 73.8 & 84.0772023809524 & -10.2772023809524 \tabularnewline
33 & 103.9 & 107.663630952381 & -3.76363095238096 \tabularnewline
34 & 106 & 108.396964285714 & -2.39696428571429 \tabularnewline
35 & 97.2 & 104.330297619048 & -7.13029761904762 \tabularnewline
36 & 102.6 & 101.746964285714 & 0.85303571428571 \tabularnewline
37 & 89 & 96.5548214285714 & -7.55482142857139 \tabularnewline
38 & 93.8 & 99.7548214285714 & -5.95482142857143 \tabularnewline
39 & 116.7 & 120.530892857143 & -3.83089285714285 \tabularnewline
40 & 106.8 & 106.788035714286 & 0.0119642857142910 \tabularnewline
41 & 98.5 & 108.17375 & -9.67375 \tabularnewline
42 & 118.7 & 122.345178571429 & -3.64517857142857 \tabularnewline
43 & 90 & 89.67375 & 0.326250000000014 \tabularnewline
44 & 91.9 & 91.0166071428571 & 0.883392857142863 \tabularnewline
45 & 113.3 & 114.603035714286 & -1.30303571428572 \tabularnewline
46 & 113.1 & 115.336369047619 & -2.23636904761905 \tabularnewline
47 & 104.1 & 111.269702380952 & -7.16970238095238 \tabularnewline
48 & 108.7 & 108.686369047619 & 0.0136309523809659 \tabularnewline
49 & 96.7 & 103.494226190476 & -6.79422619047614 \tabularnewline
50 & 101 & 106.694226190476 & -5.69422619047618 \tabularnewline
51 & 116.9 & 121.931547619048 & -5.03154761904762 \tabularnewline
52 & 105.8 & 108.188690476190 & -2.38869047619048 \tabularnewline
53 & 99 & 109.574404761905 & -10.5744047619048 \tabularnewline
54 & 129.4 & 123.745833333333 & 5.65416666666667 \tabularnewline
55 & 83 & 91.0744047619048 & -8.07440476190475 \tabularnewline
56 & 88.9 & 92.4172619047619 & -3.51726190476191 \tabularnewline
57 & 115.9 & 116.003690476190 & -0.103690476190482 \tabularnewline
58 & 104.2 & 116.737023809524 & -12.5370238095238 \tabularnewline
59 & 113.4 & 112.670357142857 & 0.72964285714286 \tabularnewline
60 & 112.2 & 110.087023809524 & 2.11297619047620 \tabularnewline
61 & 100.8 & 104.894880952381 & -4.09488095238091 \tabularnewline
62 & 107.3 & 108.094880952381 & -0.794880952380956 \tabularnewline
63 & 126.6 & 123.332202380952 & 3.2677976190476 \tabularnewline
64 & 102.9 & 109.589345238095 & -6.68934523809524 \tabularnewline
65 & 117.9 & 110.975059523810 & 6.92494047619047 \tabularnewline
66 & 128.8 & 125.146488095238 & 3.6535119047619 \tabularnewline
67 & 87.5 & 92.4750595238095 & -4.97505952380952 \tabularnewline
68 & 93.8 & 93.8179166666667 & -0.0179166666666888 \tabularnewline
69 & 122.7 & 117.404345238095 & 5.29565476190475 \tabularnewline
70 & 126.2 & 118.137678571429 & 8.06232142857142 \tabularnewline
71 & 124.6 & 114.071011904762 & 10.5289880952381 \tabularnewline
72 & 116.7 & 111.487678571429 & 5.21232142857142 \tabularnewline
73 & 115.2 & 106.295535714286 & 8.90446428571433 \tabularnewline
74 & 111.1 & 109.495535714286 & 1.60446428571427 \tabularnewline
75 & 129.9 & 124.732857142857 & 5.16714285714284 \tabularnewline
76 & 113.3 & 110.99 & 2.30999999999998 \tabularnewline
77 & 118.5 & 112.375714285714 & 6.1242857142857 \tabularnewline
78 & 133.5 & 126.547142857143 & 6.95285714285712 \tabularnewline
79 & 102.1 & 93.8757142857143 & 8.2242857142857 \tabularnewline
80 & 102.4 & 95.2185714285715 & 7.18142857142855 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=25572&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]106.7[/C][C]92.3528571428574[/C][C]14.3471428571426[/C][/ROW]
[ROW][C]2[/C][C]110.2[/C][C]95.5528571428571[/C][C]14.6471428571429[/C][/ROW]
[ROW][C]3[/C][C]125.9[/C][C]110.790178571429[/C][C]15.1098214285714[/C][/ROW]
[ROW][C]4[/C][C]100.1[/C][C]97.0473214285714[/C][C]3.05267857142857[/C][/ROW]
[ROW][C]5[/C][C]106.4[/C][C]98.4330357142857[/C][C]7.9669642857143[/C][/ROW]
[ROW][C]6[/C][C]114.8[/C][C]112.604464285714[/C][C]2.19553571428574[/C][/ROW]
[ROW][C]7[/C][C]81.3[/C][C]79.9330357142857[/C][C]1.36696428571428[/C][/ROW]
[ROW][C]8[/C][C]87[/C][C]81.2758928571428[/C][C]5.72410714285718[/C][/ROW]
[ROW][C]9[/C][C]104.2[/C][C]104.862321428571[/C][C]-0.662321428571399[/C][/ROW]
[ROW][C]10[/C][C]108[/C][C]105.595654761905[/C][C]2.40434523809523[/C][/ROW]
[ROW][C]11[/C][C]105[/C][C]101.528988095238[/C][C]3.47101190476192[/C][/ROW]
[ROW][C]12[/C][C]94.5[/C][C]98.9456547619047[/C][C]-4.44565476190473[/C][/ROW]
[ROW][C]13[/C][C]92[/C][C]93.7535119047619[/C][C]-1.75351190476185[/C][/ROW]
[ROW][C]14[/C][C]95.9[/C][C]96.9535119047619[/C][C]-1.0535119047619[/C][/ROW]
[ROW][C]15[/C][C]108.8[/C][C]112.190833333333[/C][C]-3.39083333333333[/C][/ROW]
[ROW][C]16[/C][C]103.4[/C][C]98.4479761904762[/C][C]4.95202380952382[/C][/ROW]
[ROW][C]17[/C][C]102.1[/C][C]99.8336904761905[/C][C]2.26630952380952[/C][/ROW]
[ROW][C]18[/C][C]110.1[/C][C]114.005119047619[/C][C]-3.90511904761906[/C][/ROW]
[ROW][C]19[/C][C]83.2[/C][C]81.3336904761905[/C][C]1.86630952380953[/C][/ROW]
[ROW][C]20[/C][C]82.7[/C][C]82.6765476190476[/C][C]0.0234523809523808[/C][/ROW]
[ROW][C]21[/C][C]106.8[/C][C]106.262976190476[/C][C]0.537023809523803[/C][/ROW]
[ROW][C]22[/C][C]113.7[/C][C]106.996309523810[/C][C]6.70369047619048[/C][/ROW]
[ROW][C]23[/C][C]102.5[/C][C]102.929642857143[/C][C]-0.429642857142853[/C][/ROW]
[ROW][C]24[/C][C]96.6[/C][C]100.346309523810[/C][C]-3.74630952380952[/C][/ROW]
[ROW][C]25[/C][C]92.1[/C][C]95.1541666666666[/C][C]-3.05416666666662[/C][/ROW]
[ROW][C]26[/C][C]95.6[/C][C]98.3541666666667[/C][C]-2.75416666666667[/C][/ROW]
[ROW][C]27[/C][C]102.3[/C][C]113.591488095238[/C][C]-11.2914880952381[/C][/ROW]
[ROW][C]28[/C][C]98.6[/C][C]99.848630952381[/C][C]-1.24863095238096[/C][/ROW]
[ROW][C]29[/C][C]98.2[/C][C]101.234345238095[/C][C]-3.03434523809524[/C][/ROW]
[ROW][C]30[/C][C]104.5[/C][C]115.405773809524[/C][C]-10.9057738095238[/C][/ROW]
[ROW][C]31[/C][C]84[/C][C]82.7343452380952[/C][C]1.26565476190476[/C][/ROW]
[ROW][C]32[/C][C]73.8[/C][C]84.0772023809524[/C][C]-10.2772023809524[/C][/ROW]
[ROW][C]33[/C][C]103.9[/C][C]107.663630952381[/C][C]-3.76363095238096[/C][/ROW]
[ROW][C]34[/C][C]106[/C][C]108.396964285714[/C][C]-2.39696428571429[/C][/ROW]
[ROW][C]35[/C][C]97.2[/C][C]104.330297619048[/C][C]-7.13029761904762[/C][/ROW]
[ROW][C]36[/C][C]102.6[/C][C]101.746964285714[/C][C]0.85303571428571[/C][/ROW]
[ROW][C]37[/C][C]89[/C][C]96.5548214285714[/C][C]-7.55482142857139[/C][/ROW]
[ROW][C]38[/C][C]93.8[/C][C]99.7548214285714[/C][C]-5.95482142857143[/C][/ROW]
[ROW][C]39[/C][C]116.7[/C][C]120.530892857143[/C][C]-3.83089285714285[/C][/ROW]
[ROW][C]40[/C][C]106.8[/C][C]106.788035714286[/C][C]0.0119642857142910[/C][/ROW]
[ROW][C]41[/C][C]98.5[/C][C]108.17375[/C][C]-9.67375[/C][/ROW]
[ROW][C]42[/C][C]118.7[/C][C]122.345178571429[/C][C]-3.64517857142857[/C][/ROW]
[ROW][C]43[/C][C]90[/C][C]89.67375[/C][C]0.326250000000014[/C][/ROW]
[ROW][C]44[/C][C]91.9[/C][C]91.0166071428571[/C][C]0.883392857142863[/C][/ROW]
[ROW][C]45[/C][C]113.3[/C][C]114.603035714286[/C][C]-1.30303571428572[/C][/ROW]
[ROW][C]46[/C][C]113.1[/C][C]115.336369047619[/C][C]-2.23636904761905[/C][/ROW]
[ROW][C]47[/C][C]104.1[/C][C]111.269702380952[/C][C]-7.16970238095238[/C][/ROW]
[ROW][C]48[/C][C]108.7[/C][C]108.686369047619[/C][C]0.0136309523809659[/C][/ROW]
[ROW][C]49[/C][C]96.7[/C][C]103.494226190476[/C][C]-6.79422619047614[/C][/ROW]
[ROW][C]50[/C][C]101[/C][C]106.694226190476[/C][C]-5.69422619047618[/C][/ROW]
[ROW][C]51[/C][C]116.9[/C][C]121.931547619048[/C][C]-5.03154761904762[/C][/ROW]
[ROW][C]52[/C][C]105.8[/C][C]108.188690476190[/C][C]-2.38869047619048[/C][/ROW]
[ROW][C]53[/C][C]99[/C][C]109.574404761905[/C][C]-10.5744047619048[/C][/ROW]
[ROW][C]54[/C][C]129.4[/C][C]123.745833333333[/C][C]5.65416666666667[/C][/ROW]
[ROW][C]55[/C][C]83[/C][C]91.0744047619048[/C][C]-8.07440476190475[/C][/ROW]
[ROW][C]56[/C][C]88.9[/C][C]92.4172619047619[/C][C]-3.51726190476191[/C][/ROW]
[ROW][C]57[/C][C]115.9[/C][C]116.003690476190[/C][C]-0.103690476190482[/C][/ROW]
[ROW][C]58[/C][C]104.2[/C][C]116.737023809524[/C][C]-12.5370238095238[/C][/ROW]
[ROW][C]59[/C][C]113.4[/C][C]112.670357142857[/C][C]0.72964285714286[/C][/ROW]
[ROW][C]60[/C][C]112.2[/C][C]110.087023809524[/C][C]2.11297619047620[/C][/ROW]
[ROW][C]61[/C][C]100.8[/C][C]104.894880952381[/C][C]-4.09488095238091[/C][/ROW]
[ROW][C]62[/C][C]107.3[/C][C]108.094880952381[/C][C]-0.794880952380956[/C][/ROW]
[ROW][C]63[/C][C]126.6[/C][C]123.332202380952[/C][C]3.2677976190476[/C][/ROW]
[ROW][C]64[/C][C]102.9[/C][C]109.589345238095[/C][C]-6.68934523809524[/C][/ROW]
[ROW][C]65[/C][C]117.9[/C][C]110.975059523810[/C][C]6.92494047619047[/C][/ROW]
[ROW][C]66[/C][C]128.8[/C][C]125.146488095238[/C][C]3.6535119047619[/C][/ROW]
[ROW][C]67[/C][C]87.5[/C][C]92.4750595238095[/C][C]-4.97505952380952[/C][/ROW]
[ROW][C]68[/C][C]93.8[/C][C]93.8179166666667[/C][C]-0.0179166666666888[/C][/ROW]
[ROW][C]69[/C][C]122.7[/C][C]117.404345238095[/C][C]5.29565476190475[/C][/ROW]
[ROW][C]70[/C][C]126.2[/C][C]118.137678571429[/C][C]8.06232142857142[/C][/ROW]
[ROW][C]71[/C][C]124.6[/C][C]114.071011904762[/C][C]10.5289880952381[/C][/ROW]
[ROW][C]72[/C][C]116.7[/C][C]111.487678571429[/C][C]5.21232142857142[/C][/ROW]
[ROW][C]73[/C][C]115.2[/C][C]106.295535714286[/C][C]8.90446428571433[/C][/ROW]
[ROW][C]74[/C][C]111.1[/C][C]109.495535714286[/C][C]1.60446428571427[/C][/ROW]
[ROW][C]75[/C][C]129.9[/C][C]124.732857142857[/C][C]5.16714285714284[/C][/ROW]
[ROW][C]76[/C][C]113.3[/C][C]110.99[/C][C]2.30999999999998[/C][/ROW]
[ROW][C]77[/C][C]118.5[/C][C]112.375714285714[/C][C]6.1242857142857[/C][/ROW]
[ROW][C]78[/C][C]133.5[/C][C]126.547142857143[/C][C]6.95285714285712[/C][/ROW]
[ROW][C]79[/C][C]102.1[/C][C]93.8757142857143[/C][C]8.2242857142857[/C][/ROW]
[ROW][C]80[/C][C]102.4[/C][C]95.2185714285715[/C][C]7.18142857142855[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=25572&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=25572&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1106.792.352857142857414.3471428571426
2110.295.552857142857114.6471428571429
3125.9110.79017857142915.1098214285714
4100.197.04732142857143.05267857142857
5106.498.43303571428577.9669642857143
6114.8112.6044642857142.19553571428574
781.379.93303571428571.36696428571428
88781.27589285714285.72410714285718
9104.2104.862321428571-0.662321428571399
10108105.5956547619052.40434523809523
11105101.5289880952383.47101190476192
1294.598.9456547619047-4.44565476190473
139293.7535119047619-1.75351190476185
1495.996.9535119047619-1.0535119047619
15108.8112.190833333333-3.39083333333333
16103.498.44797619047624.95202380952382
17102.199.83369047619052.26630952380952
18110.1114.005119047619-3.90511904761906
1983.281.33369047619051.86630952380953
2082.782.67654761904760.0234523809523808
21106.8106.2629761904760.537023809523803
22113.7106.9963095238106.70369047619048
23102.5102.929642857143-0.429642857142853
2496.6100.346309523810-3.74630952380952
2592.195.1541666666666-3.05416666666662
2695.698.3541666666667-2.75416666666667
27102.3113.591488095238-11.2914880952381
2898.699.848630952381-1.24863095238096
2998.2101.234345238095-3.03434523809524
30104.5115.405773809524-10.9057738095238
318482.73434523809521.26565476190476
3273.884.0772023809524-10.2772023809524
33103.9107.663630952381-3.76363095238096
34106108.396964285714-2.39696428571429
3597.2104.330297619048-7.13029761904762
36102.6101.7469642857140.85303571428571
378996.5548214285714-7.55482142857139
3893.899.7548214285714-5.95482142857143
39116.7120.530892857143-3.83089285714285
40106.8106.7880357142860.0119642857142910
4198.5108.17375-9.67375
42118.7122.345178571429-3.64517857142857
439089.673750.326250000000014
4491.991.01660714285710.883392857142863
45113.3114.603035714286-1.30303571428572
46113.1115.336369047619-2.23636904761905
47104.1111.269702380952-7.16970238095238
48108.7108.6863690476190.0136309523809659
4996.7103.494226190476-6.79422619047614
50101106.694226190476-5.69422619047618
51116.9121.931547619048-5.03154761904762
52105.8108.188690476190-2.38869047619048
5399109.574404761905-10.5744047619048
54129.4123.7458333333335.65416666666667
558391.0744047619048-8.07440476190475
5688.992.4172619047619-3.51726190476191
57115.9116.003690476190-0.103690476190482
58104.2116.737023809524-12.5370238095238
59113.4112.6703571428570.72964285714286
60112.2110.0870238095242.11297619047620
61100.8104.894880952381-4.09488095238091
62107.3108.094880952381-0.794880952380956
63126.6123.3322023809523.2677976190476
64102.9109.589345238095-6.68934523809524
65117.9110.9750595238106.92494047619047
66128.8125.1464880952383.6535119047619
6787.592.4750595238095-4.97505952380952
6893.893.8179166666667-0.0179166666666888
69122.7117.4043452380955.29565476190475
70126.2118.1376785714298.06232142857142
71124.6114.07101190476210.5289880952381
72116.7111.4876785714295.21232142857142
73115.2106.2955357142868.90446428571433
74111.1109.4955357142861.60446428571427
75129.9124.7328571428575.16714285714284
76113.3110.992.30999999999998
77118.5112.3757142857146.1242857142857
78133.5126.5471428571436.95285714285712
79102.193.87571428571438.2242857142857
80102.495.21857142857157.18142857142855



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')