
Package ‘spatstat.model’
May 22, 2025

Version 3.3-6

Date 2025-04-22

Title Parametric Statistical Modelling and Inference for the
'spatstat' Family

Maintainer Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Depends R (>= 3.5.0), spatstat.data (>= 3.1-4), spatstat.univar (>=
3.1-1), spatstat.geom (>= 3.3-4), spatstat.random (>=
3.3-3.005), spatstat.explore (>= 3.3-0), stats, graphics,
grDevices, utils, methods, nlme, rpart

Imports spatstat.utils (>= 3.1-2), spatstat.sparse (>= 3.1-0), mgcv,
Matrix, abind, tensor, goftest (>= 1.2-2)

Suggests sm, gsl, locfit, spatial, fftwtools (>= 0.9-8), nleqslv,
glmnet, spatstat.linnet (>= 3.2-2), spatstat (>= 3.3)

Description Functionality for parametric statistical modelling and inference for spatial data,
mainly spatial point patterns, in the 'spatstat' family of packages.
(Excludes analysis of spatial data on a linear network,
which is covered by the separate package 'spatstat.linnet'.)
Supports parametric modelling, formal statistical inference, and model validation.
Parametric models include Poisson point processes, Cox point processes, Neyman-Scott clus-
ter processes, Gibbs point processes and determinantal point processes. Models can be fit-
ted to data using maximum likelihood, maximum pseudolikelihood, maximum composite likeli-
hood and the method of minimum contrast. Fitted models can be simulated and predicted. For-
mal inference includes hypothesis tests (quadrat counting tests, Cressie-Read tests, Clark-
Evans test, Berman test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised permuta-
tion test, segregation test, ANOVA tests of fitted models, adjusted composite likelihood ra-
tio test, envelope tests, Dao-Genton test, balanced independent two-stage test), confidence inter-
vals for parameters, and prediction intervals for point counts. Model validation techniques in-
clude leverage, influence, partial residuals, added variable plots, diagnostic plots, pseu-
doscore residual plots, model compensators and Q-Q plots.

License GPL (>= 2)

URL http://spatstat.org/

NeedsCompilation yes

ByteCompile true

1

http://spatstat.org/

2 Contents

BugReports https://github.com/spatstat/spatstat.model/issues

Author Adrian Baddeley [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-9499-8382>),

Rolf Turner [aut, cph] (ORCID: <https://orcid.org/0000-0001-5521-5218>),
Ege Rubak [aut, cph] (ORCID: <https://orcid.org/0000-0002-6675-533X>),
Kasper Klitgaard Berthelsen [ctb],
Achmad Choiruddin [ctb, cph],
Jean-Francois Coeurjolly [ctb],
Ottmar Cronie [ctb],
Tilman Davies [ctb],
Julian Gilbey [ctb],
Yongtao Guan [ctb],
Ute Hahn [ctb],
Martin Hazelton [ctb],
Kassel Hingee [ctb],
Abdollah Jalilian [ctb],
Frederic Lavancier [ctb],
Marie-Colette van Lieshout [ctb],
Bethany Macdonald [ctb],
Greg McSwiggan [ctb],
Tuomas Rajala [ctb],
Suman Rakshit [ctb, cph],
Dominic Schuhmacher [ctb],
Rasmus Plenge Waagepetersen [ctb],
Hangsheng Wang [ctb]

Repository CRAN

Date/Publication 2025-05-22 06:30:01 UTC

Contents
spatstat.model-package . 8
addvar . 16
anova.mppm . 19
anova.ppm . 21
anova.slrm . 23
AreaInter . 24
as.function.leverage.ppm . 27
as.fv.kppm . 28
as.interact . 29
as.layered.msr . 30
as.owin.ppm . 31
as.ppm . 34
auc.ppm . 35
BadGey . 37
bc.ppm . 39
berman.test.ppm . 40
cauchy.estK . 42

https://github.com/spatstat/spatstat.model/issues
https://orcid.org/0000-0001-9499-8382
https://orcid.org/0000-0001-5521-5218
https://orcid.org/0000-0002-6675-533X

Contents 3

cauchy.estpcf . 45
cdf.test.mppm . 47
cdf.test.ppm . 50
closepaircounts . 53
clusterfield.kppm . 55
clusterfit . 56
clusterkernel.kppm . 58
clusterradius.kppm . 59
coef.mppm . 60
coef.ppm . 62
coef.slrm . 63
compareFit . 64
Concom . 66
data.ppm . 68
detpointprocfamilyfun . 69
dfbetas.ppm . 72
dffit.ppm . 73
diagnose.ppm . 75
DiggleGatesStibbard . 80
DiggleGratton . 81
dim.detpointprocfamily . 83
domain.ppm . 83
dppapproxkernel . 85
dppapproxpcf . 85
dppBessel . 86
dppCauchy . 87
dppeigen . 88
dppGauss . 89
dppkernel . 90
dppm . 90
dppMatern . 95
dppparbounds . 96
dppPowerExp . 97
dppspecden . 98
dppspecdenrange . 99
dummify . 99
dummy.ppm . 100
eem . 102
effectfun . 103
emend . 105
emend.ppm . 106
emend.slrm . 107
envelope.ppm . 109
exactMPLEstrauss . 117
Extract.influence.ppm . 119
Extract.leverage.ppm . 120
Extract.msr . 122
Fiksel . 123

4 Contents

fitin.ppm . 124
fitted.mppm . 126
fitted.ppm . 127
fitted.slrm . 130
fixef.mppm . 131
formula.ppm . 132
Gcom . 133
Geyer . 136
Gres . 138
Hardcore . 140
hardcoredist . 141
harmonic . 142
harmonise.msr . 144
HierHard . 145
hierpair.family . 146
HierStrauss . 147
HierStraussHard . 149
Hybrid . 150
hybrid.family . 152
ic.kppm . 153
improve.kppm . 154
influence.ppm . 156
inforder.family . 158
integral.msr . 158
intensity.dppm . 160
intensity.ppm . 161
intensity.slrm . 162
interactionorder . 164
ippm . 165
is.dppm . 167
is.hybrid . 168
is.marked.ppm . 169
is.multitype.ppm . 171
is.poissonclusterprocess . 172
is.ppm . 173
is.stationary.ppm . 174
isf.object . 176
Kcom . 177
Kmodel . 180
Kmodel.dppm . 181
Kmodel.kppm . 182
Kmodel.ppm . 183
kppm . 185
Kres . 193
LambertW . 195
LennardJones . 196
leverage.ppm . 198
leverage.slrm . 200

Contents 5

lgcp.estK . 201
lgcp.estpcf . 204
logLik.dppm . 207
logLik.kppm . 209
logLik.mppm . 211
logLik.ppm . 213
logLik.slrm . 215
lurking . 216
lurking.mppm . 220
matclust.estK . 222
matclust.estpcf . 224
measureContinuous . 226
measureVariation . 227
measureWeighted . 229
methods.dppm . 230
methods.fii . 231
methods.influence.ppm . 233
methods.kppm . 234
methods.leverage.ppm . 235
methods.objsurf . 237
methods.slrm . 238
methods.traj . 239
methods.zclustermodel . 241
methods.zgibbsmodel . 242
mincontrast . 244
model.depends . 246
model.frame.ppm . 248
model.images . 249
model.matrix.mppm . 251
model.matrix.ppm . 253
model.matrix.slrm . 255
mppm . 256
msr . 259
MultiHard . 262
MultiStrauss . 263
MultiStraussHard . 265
npfun . 267
objsurf . 268
Ops.msr . 270
Ord . 271
ord.family . 272
OrdThresh . 273
PairPiece . 274
pairsat.family . 275
Pairwise . 276
pairwise.family . 278
palmdiagnose . 279
panel.contour . 281

6 Contents

panysib . 282
parameters . 283
parres . 285
Penttinen . 287
plot.dppm . 289
plot.influence.ppm . 290
plot.kppm . 291
plot.leverage.ppm . 293
plot.mppm . 295
plot.msr . 296
plot.palmdiag . 298
plot.plotppm . 300
plot.ppm . 301
plot.profilepl . 304
plot.rppm . 306
plot.slrm . 307
Poisson . 308
polynom . 309
ppm . 310
ppm.object . 316
ppm.ppp . 319
ppmInfluence . 329
predict.dppm . 331
predict.kppm . 332
predict.mppm . 333
predict.ppm . 335
predict.rppm . 340
predict.slrm . 342
print.ppm . 343
profilepl . 344
prune.rppm . 347
pseudoR2 . 348
psib . 350
psst . 351
psstA . 353
psstG . 356
qqplot.ppm . 358
quad.ppm . 363
quadrat.test.mppm . 365
quadrat.test.ppm . 366
ranef.mppm . 370
rdpp . 371
reach . 372
reach.dppm . 374
reach.kppm . 375
relrisk.ppm . 376
repul.dppm . 378
residualMeasure . 379

Contents 7

residuals.dppm . 381
residuals.kppm . 382
residuals.mppm . 383
residuals.ppm . 384
residuals.rppm . 387
residuals.slrm . 388
response . 390
rex . 391
rhohat.ppm . 393
rmh.ppm . 399
rmhmodel.ppm . 403
roc.ppm . 405
rppm . 407
SatPiece . 408
Saturated . 410
simulate.dppm . 410
simulate.kppm . 412
simulate.mppm . 415
simulate.ppm . 416
simulate.slrm . 418
slrm . 419
Smooth.msr . 422
Softcore . 423
split.msr . 425
Strauss . 427
StraussHard . 428
subfits . 430
suffstat . 431
summary.dppm . 433
summary.kppm . 434
summary.ppm . 436
thomas.estK . 437
thomas.estpcf . 440
traj . 442
triplet.family . 443
Triplets . 444
unitname . 445
unstack.msr . 447
update.detpointprocfamily . 448
update.dppm . 448
update.interact . 450
update.kppm . 451
update.ppm . 452
update.rppm . 455
valid . 456
valid.detpointprocfamily . 457
valid.ppm . 458
valid.slrm . 459

8 spatstat.model-package

varcount . 460
vargamma.estK . 462
vargamma.estpcf . 464
vcov.kppm . 466
vcov.mppm . 468
vcov.ppm . 469
vcov.slrm . 473
Window.ppm . 475
with.msr . 476
zclustermodel . 478
zgibbsmodel . 479

Index 480

spatstat.model-package

The spatstat.model Package

Description

The spatstat.model package belongs to the spatstat family of packages. It contains the core func-
tionality for parametric statistical modelling of spatial data.

Details

spatstat is a family of R packages for the statistical analysis of spatial data. Its main focus is the
analysis of spatial patterns of points in two-dimensional space.

The original spatstat package has now been split into several sub-packages.

This sub-package spatstat.model contains all the main user-level functions that perform parametric
statistical modelling of spatial data.

(The main exception is that functions for linear networks are in the separate sub-package spat-
stat.linnet.)

Structure of the spatstat family

The orginal spatstat package grew to be very large. It has now been divided into several sub-
packages:

• spatstat.utils containing basic utilities

• spatstat.sparse containing linear algebra utilities

• spatstat.data containing datasets

• spatstat.univar containing functions for estimating probability distributions of random vari-
ables

• spatstat.geom containing geometrical objects and geometrical operations

• spatstat.explore containing the functionality for exploratory analysis and nonparametric mod-
elling of spatial data

spatstat.model-package 9

• spatstat.model containing the main functionality for parametric modelling, analysis and in-
ference for spatial data

• spatstat.linnet containing functions for spatial data on a linear network

• spatstat, which simply loads the other sub-packages listed above, and provides documenta-
tion.

When you install spatstat, these sub-packages are also installed. Then if you load the spatstat
package by typing library(spatstat), the other sub-packages listed above will automatically be
loaded or imported.

For an overview of all the functions available in the sub-packages of spatstat, see the help file for
"spatstat-package" in the spatstat package.

Additionally there are several extension packages:

• spatstat.gui for interactive graphics

• spatstat.local for local likelihood (including geographically weighted regression)

• spatstat.Knet for additional, computationally efficient code for linear networks

• spatstat.sphere (under development) for spatial data on a sphere, including spatial data on the
earth’s surface

The extension packages must be installed separately and loaded explicitly if needed. They also have
separate documentation.

Overview of Functionality in spatstat.model

The spatstat family of packages is designed to support a complete statistical analysis of spatial
data. It supports

• creation, manipulation and plotting of point patterns;

• exploratory data analysis;

• spatial random sampling;

• simulation of point process models;

• parametric model-fitting;

• non-parametric smoothing and regression;

• formal inference (hypothesis tests, confidence intervals);

• model diagnostics.

For an overview, see the help file for "spatstat-package" in the spatstat package.

Following is a list of the functionality provided in the spatstat.model package only.

To simulate a random point pattern:
Functions for generating random point patterns are now contained in the spatstat.random package.

Exploratory analysis
Exploratory graphics, smoothing, and exploratory analysis of spatial data are now provided in the
spatstat.explore package.

Model fitting (Cox and cluster models)

10 spatstat.model-package

Cluster process models (with homogeneous or inhomogeneous intensity) and Cox processes can be
fitted by the function kppm. Its result is an object of class "kppm". The fitted model can be printed,
plotted, predicted, simulated and updated.

kppm Fit model
plot.kppm Plot the fitted model
summary.kppm Summarise the fitted model
fitted.kppm Compute fitted intensity
predict.kppm Compute fitted intensity
update.kppm Update the model
improve.kppm Refine the estimate of trend
simulate.kppm Generate simulated realisations
vcov.kppm Variance-covariance matrix of coefficients
coef.kppm Extract trend coefficients
formula.kppm Extract trend formula
parameters Extract all model parameters
clusterfield.kppm Compute offspring density
clusterradius.kppm Radius of support of offspring density
Kmodel.kppm K function of fitted model
pcfmodel.kppm Pair correlation of fitted model

For model selection, you can also use the generic functions step, drop1 and AIC on fitted point
process models. For variable selection, see sdr.

The theoretical models can also be simulated, for any choice of parameter values, using rThomas,
rMatClust, rCauchy, rVarGamma, and rLGCP.

Lower-level fitting functions include:

lgcp.estK fit a log-Gaussian Cox process model
lgcp.estpcf fit a log-Gaussian Cox process model
thomas.estK fit the Thomas process model
thomas.estpcf fit the Thomas process model
matclust.estK fit the Matérn Cluster process model
matclust.estpcf fit the Matérn Cluster process model
cauchy.estK fit a Neyman-Scott Cauchy cluster process
cauchy.estpcf fit a Neyman-Scott Cauchy cluster process
vargamma.estK fit a Neyman-Scott Variance Gamma process
vargamma.estpcf fit a Neyman-Scott Variance Gamma process
mincontrast low-level algorithm for fitting models

by the method of minimum contrast

Model fitting (Poisson and Gibbs models)
Poisson point processes are the simplest models for point patterns. A Poisson model assumes that
the points are stochastically independent. It may allow the points to have a non-uniform spatial den-
sity. The special case of a Poisson process with a uniform spatial density is often called Complete
Spatial Randomness.

Poisson point processes are included in the more general class of Gibbs point process models. In a
Gibbs model, there is interaction or dependence between points. Many different types of interaction
can be specified.

spatstat.model-package 11

For a detailed explanation of how to fit Poisson or Gibbs point process models to point pattern data
using spatstat, see Baddeley and Turner (2005b) or Baddeley (2008).

To fit a Poisson or Gibbs point process model:

Model fitting in spatstat is performed mainly by the function ppm. Its result is an object of class
"ppm".

Here are some examples, where X is a point pattern (class "ppp"):

command model
ppm(X) Complete Spatial Randomness
ppm(X ~ 1) Complete Spatial Randomness
ppm(X ~ x) Poisson process with

intensity loglinear in x coordinate
ppm(X ~ 1, Strauss(0.1)) Stationary Strauss process
ppm(X ~ x, Strauss(0.1)) Strauss process with

conditional intensity loglinear in x

It is also possible to fit models that depend on other covariates.

Manipulating the fitted model:

plot.ppm Plot the fitted model
predict.ppm Compute the spatial trend and conditional intensity

of the fitted point process model
coef.ppm Extract the fitted model coefficients
parameters Extract all model parameters
formula.ppm Extract the trend formula
intensity.ppm Compute fitted intensity
Kmodel.ppm K function of fitted model
pcfmodel.ppm pair correlation of fitted model
fitted.ppm Compute fitted conditional intensity at quadrature points
residuals.ppm Compute point process residuals at quadrature points
update.ppm Update the fit
vcov.ppm Variance-covariance matrix of estimates
rmh.ppm Simulate from fitted model
simulate.ppm Simulate from fitted model
print.ppm Print basic information about a fitted model
summary.ppm Summarise a fitted model
effectfun Compute the fitted effect of one covariate
logLik.ppm log-likelihood or log-pseudolikelihood
anova.ppm Analysis of deviance
model.frame.ppm Extract data frame used to fit model
model.images Extract spatial data used to fit model
model.depends Identify variables in the model
as.interact Interpoint interaction component of model
fitin Extract fitted interpoint interaction
is.hybrid Determine whether the model is a hybrid
valid.ppm Check the model is a valid point process
project.ppm Ensure the model is a valid point process

12 spatstat.model-package

For model selection, you can also use the generic functions step, drop1 and AIC on fitted point
process models. For variable selection, see sdr.

See spatstat.options to control plotting of fitted model.

To specify a point process model:
The first order “trend” of the model is determined by an R language formula. The formula specifies
the form of the logarithm of the trend.

X ~ 1 No trend (stationary)
X ~ x Loglinear trend λ(x, y) = exp(α+ βx)

where x, y are Cartesian coordinates
X ~ polynom(x,y,3) Log-cubic polynomial trend
X ~ harmonic(x,y,2) Log-harmonic polynomial trend
X ~ Z Loglinear function of covariate Z

λ(x, y) = exp(α+ βZ(x, y))

The higher order (“interaction”) components are described by an object of class "interact". Such
objects are created by:

Poisson() the Poisson point process
AreaInter() Area-interaction process
BadGey() multiscale Geyer process
Concom() connected component interaction
DiggleGratton() Diggle-Gratton potential
DiggleGatesStibbard() Diggle-Gates-Stibbard potential
Fiksel() Fiksel pairwise interaction process
Geyer() Geyer’s saturation process
Hardcore() Hard core process
HierHard() Hierarchical multiype hard core process
HierStrauss() Hierarchical multiype Strauss process
HierStraussHard() Hierarchical multiype Strauss-hard core process
Hybrid() Hybrid of several interactions
LennardJones() Lennard-Jones potential
MultiHard() multitype hard core process
MultiStrauss() multitype Strauss process
MultiStraussHard() multitype Strauss/hard core process
OrdThresh() Ord process, threshold potential
Ord() Ord model, user-supplied potential
PairPiece() pairwise interaction, piecewise constant
Pairwise() pairwise interaction, user-supplied potential
Penttinen() Penttinen pairwise interaction
SatPiece() Saturated pair model, piecewise constant potential
Saturated() Saturated pair model, user-supplied potential
Softcore() pairwise interaction, soft core potential
Strauss() Strauss process
StraussHard() Strauss/hard core point process
Triplets() Geyer triplets process

Note that it is also possible to combine several such interactions using Hybrid.

spatstat.model-package 13

Simulation and goodness-of-fit for fitted models:

rmh.ppm simulate realisations of a fitted model
simulate.ppm simulate realisations of a fitted model
envelope compute simulation envelopes for a fitted model

Model fitting (determinantal point process models)
Code for fitting determinantal point process models has recently been added to spatstat.
For information, see the help file for dppm.

Model fitting (spatial logistic regression)
Pixel-based spatial logistic regression is an alternative technique for analysing spatial point patterns
that is widely used in Geographical Information Systems. It is approximately equivalent to fitting a
Poisson point process model.

In pixel-based logistic regression, the spatial domain is divided into small pixels, the presence
or absence of a data point in each pixel is recorded, and logistic regression is used to model the
presence/absence indicators as a function of any covariates.

Facilities for performing spatial logistic regression are provided in spatstat for comparison pur-
poses.

Fitting a spatial logistic regression
Spatial logistic regression is performed by the function slrm. Its result is an object of class "slrm".
There are many methods for this class, including methods for print, fitted, predict, simulate,
anova, coef, logLik, terms, update, formula and vcov.

For example, if X is a point pattern (class "ppp"):

command model
slrm(X ~ 1) Complete Spatial Randomness
slrm(X ~ x) Poisson process with

intensity loglinear in x coordinate
slrm(X ~ Z) Poisson process with

intensity loglinear in covariate Z

Manipulating a fitted spatial logistic regression

anova.slrm Analysis of deviance
coef.slrm Extract fitted coefficients
vcov.slrm Variance-covariance matrix of fitted coefficients
fitted.slrm Compute fitted probabilities or intensity
logLik.slrm Evaluate loglikelihood of fitted model
plot.slrm Plot fitted probabilities or intensity
predict.slrm Compute predicted probabilities or intensity with new data
simulate.slrm Simulate model

There are many other undocumented methods for this class, including methods for print, update,
formula and terms. Stepwise model selection is possible using step or stepAIC. For variable
selection, see sdr.

14 spatstat.model-package

Simulation
There are many ways to generate a random point pattern, line segment pattern, pixel image or
tessellation in spatstat.
Random point patterns: Functions for random generation are now contained in the spatstat.random
package.

See also varblock for estimating the variance of a summary statistic by block resampling, and
lohboot for another bootstrap technique.

Fitted point process models:
If you have fitted a point process model to a point pattern dataset, the fitted model can be simulated.

Cluster process models are fitted by the function kppm yielding an object of class "kppm". To
generate one or more simulated realisations of this fitted model, use simulate.kppm.

Gibbs point process models are fitted by the function ppm yielding an object of class "ppm". To gen-
erate a simulated realisation of this fitted model, use rmh.ppm. To generate one or more simulated
realisations of the fitted model, use simulate.ppm.

Other random patterns: Functions for random generation are now contained in the spatstat.random
package.

Simulation-based inference
Simulation-based inference including simulation envelopes and hypothesis tests is now supported
by the package spatstat.explore.

Sensitivity diagnostics:
Classical measures of model sensitivity such as leverage and influence have been adapted to point
process models.

leverage.ppm Leverage for point process model
influence.ppm Influence for point process model
dfbetas.ppm Parameter influence
dffit.ppm Effect change diagnostic

Diagnostics for covariate effect:
Classical diagnostics for covariate effects have been adapted to point process models.

parres Partial residual plot
addvar Added variable plot
rhohat.ppm Kernel estimate of covariate effect
rho2hat Kernel estimate of covariate effect (bivariate)

Residual diagnostics:
Residuals for a fitted point process model, and diagnostic plots based on the residuals, were intro-
duced in Baddeley et al (2005) and Baddeley, Rubak and Møller (2011).

Type demo(diagnose) for a demonstration of the diagnostics features.

diagnose.ppm diagnostic plots for spatial trend
qqplot.ppm diagnostic Q-Q plot for interpoint interaction

spatstat.model-package 15

residualspaper examples from Baddeley et al (2005)
Kcom model compensator of K function
Gcom model compensator of G function
Kres score residual of K function
Gres score residual of G function
psst pseudoscore residual of summary function
psstA pseudoscore residual of empty space function
psstG pseudoscore residual of G function
compareFit compare compensators of several fitted models

Resampling and randomisation procedures

You can build your own tests based on randomisation and resampling using the following capabili-
ties:

quadratresample block resampling
rshift random shifting of (subsets of) points
rthin random thinning

Licence

This library and its documentation are usable under the terms of the "GNU General Public License",
a copy of which is distributed with the package.

Acknowledgements

Kasper Klitgaard Berthelsen, Ottmar Cronie, Tilman Davies, Julian Gilbey, Yongtao Guan, Ute
Hahn, Kassel Hingee, Abdollah Jalilian, Marie-Colette van Lieshout, Greg McSwiggan, Tuomas
Rajala, Suman Rakshit, Dominic Schuhmacher, Rasmus Waagepetersen and Hangsheng Wang
made substantial contributions of code.

For comments, corrections, bug alerts and suggestions, we thank Monsuru Adepeju, Corey Ander-
son, Ang Qi Wei, Ryan Arellano, Jens Åström, Robert Aue, Marcel Austenfeld, Sandro Azaele,
Malissa Baddeley, Guy Bayegnak, Colin Beale, Melanie Bell, Thomas Bendtsen, Ricardo Bern-
hardt, Andrew Bevan, Brad Biggerstaff, Anders Bilgrau, Leanne Bischof, Christophe Biscio, Roger
Bivand, Jose M. Blanco Moreno, Florent Bonneu, Jordan Brown, Ian Buller, Julian Burgos, Si-
mon Byers, Ya-Mei Chang, Jianbao Chen, Igor Chernayavsky, Y.C. Chin, Bjarke Christensen,
Lucía Cobo Sanchez, Jean-Francois Coeurjolly, Kim Colyvas, Hadrien Commenges, Rochelle Con-
stantine, Robin Corria Ainslie, Richard Cotton, Marcelino de la Cruz, Peter Dalgaard, Mario
D’Antuono, Sourav Das, Peter Diggle, Patrick Donnelly, Ian Dryden, Stephen Eglen, Ahmed
El-Gabbas, Belarmain Fandohan, Olivier Flores, David Ford, Peter Forbes, Shane Frank, Janet
Franklin, Funwi-Gabga Neba, Oscar Garcia, Agnes Gault, Jonas Geldmann, Marc Genton, Shaaban
Ghalandarayeshi, Jason Goldstick, Pavel Grabarnik, C. Graf, Ute Hahn, Andrew Hardegen, Mar-
tin Bøgsted Hansen, Martin Hazelton, Juha Heikkinen, Mandy Hering, Markus Herrmann, Max-
imilian Hesselbarth, Paul Hewson, Hamidreza Heydarian, Kurt Hornik, Philipp Hunziker, Jack
Hywood, Ross Ihaka, C̆enk Içös, Aruna Jammalamadaka, Robert John-Chandran, Devin John-
son, Mahdieh Khanmohammadi, Bob Klaver, Lily Kozmian-Ledward, Peter Kovesi, Mike Kuhn,
Jeff Laake, Robert Lamb, Frédéric Lavancier, Tom Lawrence, Tomas Lazauskas, Jonathan Lee,
George Leser, Angela Li, Li Haitao, George Limitsios, Andrew Lister, Nestor Luambua, Ben

16 addvar

Madin, Martin Maechler, Kiran Marchikanti, Jeff Marcus, Robert Mark, Peter McCullagh, Mo-
nia Mahling, Jorge Mateu Mahiques, Ulf Mehlig, Frederico Mestre, Sebastian Wastl Meyer, Mi
Xiangcheng, Lore De Middeleer, Robin Milne, Enrique Miranda, Jesper Møller, Annie Mollié, Ines
Moncada, Mehdi Moradi, Virginia Morera Pujol, Erika Mudrak, Gopalan Nair, Nader Najari, Nico-
letta Nava, Linda Stougaard Nielsen, Felipe Nunes, Jens Randel Nyengaard, Jens Oehlschlägel,
Thierry Onkelinx, Sean O’Riordan, Evgeni Parilov, Jeff Picka, Nicolas Picard, Tim Pollington,
Mike Porter, Sergiy Protsiv, Adrian Raftery, Ben Ramage, Pablo Ramon, Xavier Raynaud, Nicholas
Read, Matt Reiter, Ian Renner, Tom Richardson, Brian Ripley, Ted Rosenbaum, Barry Rowling-
son, Jason Rudokas, Tyler Rudolph, John Rudge, Christopher Ryan, Farzaneh Safavimanesh, Aila
Särkkä, Cody Schank, Katja Schladitz, Sebastian Schutte, Bryan Scott, Olivia Semboli, François
Sémécurbe, Vadim Shcherbakov, Shen Guochun, Shi Peijian, Harold-Jeffrey Ship, Tammy L Silva,
Ida-Maria Sintorn, Yong Song, Malte Spiess, Mark Stevenson, Kaspar Stucki, Jan Sulavik, Michael
Sumner, P. Surovy, Ben Taylor, Thordis Linda Thorarinsdottir, Leigh Torres, Berwin Turlach, Tor-
ben Tvedebrink, Kevin Ummer, Medha Uppala, Andrew van Burgel, Tobias Verbeke, Mikko Vih-
takari, Alexendre Villers, Fabrice Vinatier, Maximilian Vogtland, Sasha Voss, Sven Wagner, Hao
Wang, H. Wendrock, Jan Wild, Carl G. Witthoft, Selene Wong, Maxime Woringer, Luke Yates,
Mike Zamboni and Achim Zeileis.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

addvar Added Variable Plot for Point Process Model

Description

Computes the coordinates for an Added Variable Plot for a fitted point process model.

Usage

addvar(model, covariate, ...,
subregion=NULL,
bw="nrd0", adjust=1,
from=NULL, to=NULL, n=512,
bw.input = c("points", "quad"),
bw.restrict = FALSE,
covname, crosscheck=FALSE)

Arguments

model Fitted point process model (object of class "ppm").

covariate The covariate to be added to the model. Either a pixel image, a function(x,y),
or a character string giving the name of a covariate that was supplied when the
model was fitted.

addvar 17

subregion Optional. A window (object of class "owin") specifying a subset of the spatial
domain of the data. The calculation will be confined to the data in this subregion.

bw Smoothing bandwidth or bandwidth rule (passed to density.default).

adjust Smoothing bandwidth adjustment factor (passed to density.default).

n, from, to Arguments passed to density.default to control the number and range of val-
ues at which the function will be estimated.

... Additional arguments passed to density.default.

bw.input Character string specifying the input data used for automatic bandwidth selec-
tion.

bw.restrict Logical value, specifying whether bandwidth selection is performed using data
from the entire spatial domain or from the subregion.

covname Optional. Character string to use as the name of the covariate.

crosscheck For developers only. Logical value indicating whether to perform cross-checks
on the validity of the calculation.

Details

This command generates the plot coordinates for an Added Variable Plot for a spatial point process
model.

Added Variable Plots (Cox, 1958, sec 4.5; Wang, 1985) are commonly used in linear models and
generalized linear models, to decide whether a model with response y and predictors x would be
improved by including another predictor z.

In a (generalised) linear model with response y and predictors x, the Added Variable Plot for a new
covariate z is a plot of the smoothed Pearson residuals from the original model against the scaled
residuals from a weighted linear regression of z on x. If this plot has nonzero slope, then the new
covariate z is needed. For general advice see Cook and Weisberg(1999); Harrell (2001).

Essentially the same technique can be used for a spatial point process model (Baddeley et al, 2012).

The argument model should be a fitted spatial point process model (object of class "ppm").

The argument covariate identifies the covariate that is to be considered for addition to the model.
It should be either a pixel image (object of class "im") or a function(x,y) giving the values of
the covariate at any spatial location. Alternatively covariate may be a character string, giving the
name of a covariate that was supplied (in the covariates argument to ppm) when the model was
fitted, but was not used in the model.

The result of addvar(model, covariate) is an object belonging to the classes "addvar" and "fv".
Plot this object to generate the added variable plot.

Note that the plot method shows the pointwise significance bands for a test of the null model, i.e.
the null hypothesis that the new covariate has no effect.

The smoothing bandwidth is controlled by the arguments bw, adjust, bw.input and bw.restrict.
If bw is a numeric value, then the bandwidth is taken to be adjust * bw. If bw is a string representing
a bandwidth selection rule (recognised by density.default) then the bandwidth is selected by this
rule.

The data used for automatic bandwidth selection are specified by bw.input and bw.restrict. If
bw.input="points" (the default) then bandwidth selection is based on the covariate values at the

18 addvar

points of the original point pattern dataset to which the model was fitted. If bw.input="quad" then
bandwidth selection is based on the covariate values at every quadrature point used to fit the model.
If bw.restrict=TRUE then the bandwidth selection is performed using only data from inside the
subregion.

Value

An object of class "addvar" containing the coordinates for the added variable plot. There is a plot
method.

Slow computation

In a large dataset, computation can be very slow if the default settings are used, because the smooth-
ing bandwidth is selected automatically. To avoid this, specify a numerical value for the bandwidth
bw. One strategy is to use a coarser subset of the data to select bw automatically. The selected
bandwidth can be read off the print output for addvar.

Internal data

The return value has an attribute "spatial" which contains the internal data: the computed values
of the residuals, and of all relevant covariates, at each quadrature point of the model. It is an object
of class "ppp" with a data frame of marks.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>,
Ya-Mei Chang and Yong Song.

References

Baddeley, A., Chang, Y.-M., Song, Y. and Turner, R. (2013) Residual diagnostics for covariate
effects in spatial point process models. Journal of Computational and Graphical Statistics, 22,
886–905.

Cook, R.D. and Weisberg, S. (1999) Applied regression, including computing and graphics. New
York: Wiley.

Cox, D.R. (1958) Planning of Experiments. New York: Wiley.

Harrell, F. (2001) Regression Modeling Strategies. New York: Springer.

Wang, P. (1985) Adding a variable in generalized linear models. Technometrics 27, 273–276.

See Also

parres, rhohat, rho2hat.

Examples

X <- rpoispp(function(x,y){exp(3+3*x)})
model <- ppm(X, ~y)
adv <- addvar(model, "x")
plot(adv)
adv <- addvar(model, "x", subregion=square(0.5))

anova.mppm 19

anova.mppm ANOVA for Fitted Point Process Models for Replicated Patterns

Description

Performs analysis of deviance for one or more point process models fitted to replicated point pattern
data.

Usage

S3 method for class 'mppm'
anova(object, ...,

test=NULL, adjust=TRUE,
fine=FALSE, warn=TRUE)

Arguments

object Object of class "mppm" representing a point process model that was fitted to
replicated point patterns.

... Optional. Additional objects of class "mppm".

test Type of hypothesis test to perform. A character string, partially matching one of
"Chisq", "LRT", "Rao", "score", "F" or "Cp", or NULL indicating that no test
should be performed.

adjust Logical value indicating whether to correct the pseudolikelihood ratio when
some of the models are not Poisson processes.

fine Logical value passed to vcov.ppm indicating whether to use a quick estimate
(fine=FALSE, the default) or a slower, more accurate estimate (fine=TRUE) of
the variance of the fitted coefficients of each model. Relevant only when some
of the models are not Poisson and adjust=TRUE.

warn Logical value indicating whether to issue warnings if problems arise.

Details

This is a method for anova for comparing several fitted point process models of class "mppm",
usually generated by the model-fitting function mppm).

If the fitted models are all Poisson point processes, then this function performs an Analysis of
Deviance of the fitted models. The output shows the deviance differences (i.e. 2 times log likelihood
ratio), the difference in degrees of freedom, and (if test="Chi") the two-sided p-values for the chi-
squared tests. Their interpretation is very similar to that in anova.glm.

If some of the fitted models are not Poisson point processes, the ‘deviance’ differences in this
table are ’pseudo-deviances’ equal to 2 times the differences in the maximised values of the log
pseudolikelihood (see ppm). It is not valid to compare these values to the chi-squared distribution.
In this case, if adjust=TRUE (the default), the pseudo-deviances will be adjusted using the method
of Pace et al (2011) and Baddeley, Turner and Rubak (2015) so that the chi-squared test is valid. It
is strongly advisable to perform this adjustment.

20 anova.mppm

The argument test determines which hypothesis test, if any, will be performed to compare the
models. The argument test should be a character string, partially matching one of "Chisq", "F"
or "Cp", or NULL. The first option "Chisq" gives the likelihood ratio test based on the asymptotic
chi-squared distribution of the deviance difference. The meaning of the other options is explained
in anova.glm.

Value

An object of class "anova", or NULL.

Random effects models are currently not supported

For models with random effects (i.e. where the call to mppm included the argument random), analysis
of deviance is currently not supported, due to changes in the nlme package. We will try to find a
solution.

Error messages

An error message that reports system is computationally singular indicates that the determinant of
the Fisher information matrix of one of the models was either too large or too small for reliable
numerical calculation. See vcov.ppm for suggestions on how to handle this.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <rolfturner@posteo.net> and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Baddeley, A., Turner, R. and Rubak, E. (2015) Adjusted composite likelihood ratio test for Gibbs
point processes. Journal of Statistical Computation and Simulation 86 (5) 922–941. DOI: 10.1080/00949655.2015.1044530.

Pace, L., Salvan, A. and Sartori, N. (2011) Adjusting composite likelihood ratio statistics. Statistica
Sinica 21, 129–148.

See Also

mppm

Examples

H <- hyperframe(X=waterstriders)
#' test for loglinear trend in x coordinate
mod0 <- mppm(X~1, data=H, Poisson())
modx <- mppm(X~x, data=H, Poisson())
anova(mod0, modx, test="Chi")
not significant
anova(modx, test="Chi")
not significant

anova.ppm 21

#' test for inhibition
mod0S <- mppm(X~1, data=H, Strauss(2))
anova(mod0, mod0S, test="Chi")
significant!

#' test for trend after accounting for inhibition
modxS <- mppm(X~x, data=H, Strauss(2))
anova(mod0S, modxS, test="Chi")
not significant

anova.ppm ANOVA for Fitted Point Process Models

Description

Performs analysis of deviance for one or more fitted point process models.

Usage

S3 method for class 'ppm'
anova(object, ..., test=NULL,

adjust=TRUE, warn=TRUE, fine=FALSE)

Arguments

object A fitted point process model (object of class "ppm").

... Optional. Additional objects of class "ppm".

test Character string, partially matching one of "Chisq", "LRT", "Rao", "score",
"F" or "Cp", or NULL indicating that no test should be performed.

adjust Logical value indicating whether to correct the pseudolikelihood ratio when
some of the models are not Poisson processes.

warn Logical value indicating whether to issue warnings if problems arise.

fine Logical value, passed to vcov.ppm, indicating whether to use a quick estimate
(fine=FALSE, the default) or a slower, more accurate estimate (fine=TRUE) of
variance terms. Relevant only when some of the models are not Poisson and
adjust=TRUE.

Details

This is a method for anova for fitted point process models (objects of class "ppm", usually generated
by the model-fitting function ppm).

If the fitted models are all Poisson point processes, then by default, this function performs an Anal-
ysis of Deviance of the fitted models. The output shows the deviance differences (i.e. 2 times log
likelihood ratio), the difference in degrees of freedom, and (if test="Chi" or test="LRT") the two-
sided p-values for the chi-squared tests. Their interpretation is very similar to that in anova.glm. If
test="Rao" or test="score", the score test (Rao, 1948) is performed instead.

22 anova.ppm

If some of the fitted models are not Poisson point processes, the ‘deviance’ differences in this
table are ’pseudo-deviances’ equal to 2 times the differences in the maximised values of the log
pseudolikelihood (see ppm). It is not valid to compare these values to the chi-squared distribution.
In this case, if adjust=TRUE (the default), the pseudo-deviances will be adjusted using the method
of Pace et al (2011) and Baddeley et al (2015) so that the chi-squared test is valid. It is strongly
advisable to perform this adjustment.

Value

An object of class "anova", or NULL.

Errors and warnings

models not nested: There may be an error message that the models are not “nested”. For an Anal-
ysis of Deviance the models must be nested, i.e. one model must be a special case of the
other. For example the point process model with formula ~x is a special case of the model
with formula ~x+y, so these models are nested. However the two point process models with
formulae ~x and ~y are not nested.
If you get this error message and you believe that the models should be nested, the problem
may be the inability of R to recognise that the two formulae are nested. Try modifying the
formulae to make their relationship more obvious.

different sizes of dataset: There may be an error message from anova.glmlist that “models were
not all fitted to the same size of dataset”. This implies that the models were fitted using differ-
ent quadrature schemes (see quadscheme) and/or with different edge corrections or different
values of the border edge correction distance rbord.
To ensure that models are comparable, check the following:

• the models must all have been fitted to the same point pattern dataset, in the same window.
• all models must have been fitted by the same fitting method as specified by the argument
method in ppm.

• If some of the models depend on covariates, then they should all have been fitted using
the same list of covariates, and using allcovar=TRUE to ensure that the same quadrature
scheme is used.

• all models must have been fitted using the same edge correction as specified by the ar-
guments correction and rbord. If you did not specify the value of rbord, then it may
have taken a different value for different models. The default value of rbord is equal to
zero for a Poisson model, and otherwise equals the reach (interaction distance) of the in-
teraction term (see reach). To ensure that the models are comparable, set rbord to equal
the maximum reach of the interactions that you are fitting.

Error messages

An error message that reports system is computationally singular indicates that the determinant of
the Fisher information matrix of one of the models was either too large or too small for reliable
numerical calculation. See vcov.ppm for suggestions on how to handle this.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

anova.slrm 23

References

Baddeley, A., Turner, R. and Rubak, E. (2015) Adjusted composite likelihood ratio test for Gibbs
point processes. Journal of Statistical Computation and Simulation 86 (5) 922–941. DOI: 10.1080/00949655.2015.1044530.

Pace, L., Salvan, A. and Sartori, N. (2011) Adjusting composite likelihood ratio statistics. Statistica
Sinica 21, 129–148.

Rao, C.R. (1948) Large sample tests of statistical hypotheses concerning several parameters with
applications to problems of estimation. Proceedings of the Cambridge Philosophical Society 44,
50–57.

See Also

ppm, vcov.ppm

Examples

mod0 <- ppm(swedishpines ~1)
modx <- ppm(swedishpines ~x)
Likelihood ratio test
anova(mod0, modx, test="Chi")
Score test
anova(mod0, modx, test="Rao")

Single argument
modxy <- ppm(swedishpines ~x + y)
anova(modxy, test="Chi")

Adjusted composite likelihood ratio test
modP <- ppm(swedishpines ~1, rbord=9)
modS <- ppm(swedishpines ~1, Strauss(9))
anova(modP, modS, test="Chi")

anova.slrm Analysis of Deviance for Spatial Logistic Regression Models

Description

Performs Analysis of Deviance for two or more fitted Spatial Logistic Regression models.

Usage

S3 method for class 'slrm'
anova(object, ..., test = NULL)

Arguments

object a fitted spatial logistic regression model. An object of class "slrm".
... additional objects of the same type (optional).
test a character string, (partially) matching one of "Chisq", "F" or "Cp", indicating

the reference distribution that should be used to compute p-values.

24 AreaInter

Details

This is a method for anova for fitted spatial logistic regression models (objects of class "slrm",
usually obtained from the function slrm).

The output shows the deviance differences (i.e. 2 times log likelihood ratio), the difference in
degrees of freedom, and (if test="Chi") the two-sided p-values for the chi-squared tests. Their
interpretation is very similar to that in anova.glm.

Value

An object of class "anova", inheriting from class "data.frame", representing the analysis of de-
viance table.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

slrm

Examples

X <- rpoispp(42)
fit0 <- slrm(X ~ 1)
fit1 <- slrm(X ~ x+y)
anova(fit0, fit1, test="Chi")

AreaInter The Area Interaction Point Process Model

Description

Creates an instance of the Area Interaction point process model (Widom-Rowlinson penetrable
spheres model) which can then be fitted to point pattern data.

Usage

AreaInter(r)

Arguments

r The radius of the discs in the area interaction process

AreaInter 25

Details

This function defines the interpoint interaction structure of a point process called the Widom-
Rowlinson penetrable sphere model or area-interaction process. It can be used to fit this model
to point pattern data.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the area interaction structure is yielded by the function AreaInter().
See the examples below.

In standard form, the area-interaction process (Widom and Rowlinson, 1970; Baddeley and Van
Lieshout, 1995) with disc radius r, intensity parameter κ and interaction parameter γ is a point
process with probability density

f(x1, . . . , xn) = ακn(x)γ−A(x)

for a point pattern x, where x1, . . . , xn represent the points of the pattern, n(x) is the number of
points in the pattern, and A(x) is the area of the region formed by the union of discs of radius r
centred at the points x1, . . . , xn. Here α is a normalising constant.

The interaction parameter γ can be any positive number. If γ = 1 then the model reduces to a
Poisson process with intensity κ. If γ < 1 then the process is regular, while if γ > 1 the process is
clustered. Thus, an area interaction process can be used to model either clustered or regular point
patterns. Two points interact if the distance between them is less than 2r.

The standard form of the model, shown above, is a little complicated to interpret in practical ap-
plications. For example, each isolated point of the pattern x contributes a factor κγ−πr2 to the
probability density.

In spatstat, the model is parametrised in a different form, which is easier to interpret. In canonical
scale-free form, the probability density is rewritten as

f(x1, . . . , xn) = αβn(x)η−C(x)

where β is the new intensity parameter, η is the new interaction parameter, andC(x) = B(x)−n(x)
is the interaction potential. Here

B(x) =
A(x)

πr2

is the normalised area (so that the discs have unit area). In this formulation, each isolated point
of the pattern contributes a factor β to the probability density (so the first order trend is β). The
quantity C(x) is a true interaction potential, in the sense that C(x) = 0 if the point pattern x does
not contain any points that lie close together (closer than 2r units apart).

When a new point u is added to an existing point pattern x, the rescaled potential −C(x) increases
by a value between 0 and 1. The increase is zero if u is not close to any point of x. The increase is
1 if the disc of radius r centred at u is completely contained in the union of discs of radius r centred
at the data points xi. Thus, the increase in potential is a measure of how close the new point u is
to the existing pattern x. Addition of the point u contributes a factor βηδ to the probability density,
where δ is the increase in potential.

The old parameters κ, γ of the standard form are related to the new parameters β, η of the canonical
scale-free form, by

β = κγ−πr2 = κ/η

26 AreaInter

and

η = γπr
2

provided γ and κ are positive and finite.

In the canonical scale-free form, the parameter η can take any nonnegative value. The value η = 1
again corresponds to a Poisson process, with intensity β. If η < 1 then the process is regular, while
if η > 1 the process is clustered. The value η = 0 corresponds to a hard core process with hard core
radius r (interaction distance 2r).

The nonstationary area interaction process is similar except that the contribution of each individual
point xi is a function β(xi) of location, rather than a constant beta.

Note the only argument of AreaInter() is the disc radius r. When r is fixed, the model becomes
an exponential family. The canonical parameters log(β) and log(η) are estimated by ppm(), not
fixed in AreaInter().

Value

An object of class "interact" describing the interpoint interaction structure of the area-interaction
process with disc radius r.

Warnings

The interaction distance of this process is equal to 2 * r. Two discs of radius r overlap if their
centres are closer than 2 * r units apart.

The estimate of the interaction parameter η is unreliable if the interaction radius r is too small or
too large. In these situations the model is approximately Poisson so that η is unidentifiable. As a
rule of thumb, one can inspect the empty space function of the data, computed by Fest. The value
F (r) of the empty space function at the interaction radius r should be between 0.2 and 0.8.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A.J. and Van Lieshout, M.N.M. (1995). Area-interaction point processes. Annals of the
Institute of Statistical Mathematics 47 (1995) 601–619.

Widom, B. and Rowlinson, J.S. (1970). New model for the study of liquid-vapor phase transitions.
The Journal of Chemical Physics 52 (1970) 1670–1684.

See Also

ppm, pairwise.family, ppm.object

ragsAreaInter and rmh for simulation of area-interaction models.

as.function.leverage.ppm 27

Examples

prints a sensible description of itself
AreaInter(r=0.1)

Note the reach is twice the radius
reach(AreaInter(r=1))

Fit the stationary area interaction process to Swedish Pines data
ppm(swedishpines ~1, AreaInter(r=7))

Fit the stationary area interaction process to `cells'
ppm(cells ~1, AreaInter(r=0.06))
eta=0 indicates hard core process.

Fit a nonstationary area interaction with log-cubic polynomial trend

ppm(swedishpines ~polynom(x/10,y/10,3), AreaInter(r=7))

as.function.leverage.ppm

Convert Leverage Object to Function of Coordinates

Description

Converts an object of class "leverage.ppm" to a function of the x and y coordinates.

Usage

S3 method for class 'leverage.ppm'
as.function(x, ...)

Arguments

x Object of class "leverage.ppm" produced by leverage.ppm.

... Ignored.

Details

An object of class "leverage.ppm" represents the leverage function of a fitted point process model.
This command converts the object to a function(x,y) where the arguments x and y are (vectors of)
spatial coordinates. This function returns the leverage values at the specified locations (calculated
by referring to the nearest location where the leverage has been computed).

28 as.fv.kppm

Value

A function in the R language, also belonging to the class "funxy".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

as.im.leverage.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)
lev <- leverage(fit)
f <- as.function(lev)

f(0.2, 0.3) # evaluate at (x,y) coordinates
y <- f(X) # evaluate at a point pattern

as.fv.kppm Convert Fitted Model To Class fv

Description

Converts fitted model into a function table (an object of class "fv").

Usage

S3 method for class 'kppm'
as.fv(x)

S3 method for class 'dppm'
as.fv(x)

S3 method for class 'minconfit'
as.fv(x)

Arguments

x A fitted model which will be converted into a function table

as.interact 29

Details

The generic command as.fv converts data x, that could be interpreted as the values of a function,
into a function value table (object of the class "fv" as described in fv.object). This object can
then be plotted easily using plot.fv.

Objects of class "kppm" (and related classes) represent a model that has been fitted to a dataset
by computing a summary function of the dataset and matching it to the corresponding summary
function of the model. The methods for as.fv for classes "kppm", "dppm" and "minconfit" extract
this information: the result is a function table containing the observed summary function and the
best fit summary function.

Value

An object of class "fv" (see fv.object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

Examples

as.fv(kppm(redwood))

as.interact Extract Interaction Structure

Description

Extracts the interpoint interaction structure from a point pattern model.

Usage

as.interact(object)
S3 method for class 'fii'
as.interact(object)
S3 method for class 'interact'
as.interact(object)
S3 method for class 'ppm'
as.interact(object)

Arguments

object A fitted point process model (object of class "ppm") or an interpoint interaction
structure (object of class "interact").

30 as.layered.msr

Details

The function as.interact extracts the interpoint interaction structure from a suitable object.

An object of class "interact" describes an interpoint interaction structure, before it has been fitted
to point pattern data. The irregular parameters of the interaction (such as the interaction range) are
fixed, but the regular parameters (such as interaction strength) are undetermined. Objects of this
class are created by the functions Poisson, Strauss and so on. The main use of such objects is in
a call to ppm.

The function as.interact is generic, with methods for the classes "ppm", "fii" and "interact".
The result is an object of class "interact" which can be printed.

Value

An object of class "interact" representing the interpoint interaction. This object can be printed
and plotted.

Note on parameters

This function does not extract the fitted coefficients of the interaction. To extract the fitted interac-
tion including the fitted coefficients, use fitin.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

fitin, ppm.

Examples

model <- ppm(cells ~1, Strauss(0.07))
f <- as.interact(model)
f

as.layered.msr Convert Measure To Layered Object

Description

Converts a measure into a layered object.

Usage

S3 method for class 'msr'
as.layered(X)

as.owin.ppm 31

Arguments

X A measure (object of class "msr").

Details

This function converts the object X into an object of class "layered".

It is a method for the generic as.layered for the class of measures.

If X is a vector-valued measure, then as.layered(X) consists of several layers, each containing a
scalar-valued measure.

Value

An object of class "layered" (see layered).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

as.layered, msr.

Examples

P <- rpoispp(100)
fit <- ppm(P ~ x+y)
rs <- residuals(fit, type="score")
as.layered(rs)

as.owin.ppm Convert Data To Class owin

Description

Converts data specifying an observation window in any of several formats, into an object of class
"owin".

Usage

S3 method for class 'ppm'
as.owin(W, ..., from=c("points", "covariates"), fatal=TRUE)

S3 method for class 'kppm'
as.owin(W, ..., from=c("points", "covariates"), fatal=TRUE)

S3 method for class 'dppm'

32 as.owin.ppm

as.owin(W, ..., from=c("points", "covariates"), fatal=TRUE)

S3 method for class 'slrm'
as.owin(W, ..., from=c("points", "covariates"))

S3 method for class 'msr'
as.owin(W, ..., fatal=TRUE)

Arguments

W Data specifying an observation window, in any of several formats described un-
der Details below.

fatal Logical value determining what to do if the data cannot be converted to an ob-
servation window. See Details.

... Ignored.

from Character string. See Details.

Details

The class "owin" is a way of specifying the observation window for a point pattern. See owin.object
for an overview.

The generic function as.owin converts data in any of several formats into an object of class "owin"
for use by the spatstat package. The function as.owin is generic, with methods for different classes
of objects, and a default method.

The argument W may be

• an object of class "owin"

• a structure with entries xrange, yrange specifying the x and y dimensions of a rectangle

• a structure with entries named xmin, xmax, ymin, ymax (in any order) specifying the x and y
dimensions of a rectangle. This will accept objects of class bbox in the sf package.

• a numeric vector of length 4 (interpreted as (xmin, xmax, ymin, ymax) in that order) speci-
fying the x and y dimensions of a rectangle

• a structure with entries named xl, xu, yl, yu (in any order) specifying the x and y dimensions
of a rectangle as (xmin, xmax) = (xl, xu) and (ymin, ymax) = (yl, yu). This will accept
objects of class spp used in the Venables and Ripley spatial package.

• an object of class "ppp" representing a point pattern. In this case, the object’s window structure
will be extracted.

• an object of class "psp" representing a line segment pattern. In this case, the object’s window
structure will be extracted.

• an object of class "tess" representing a tessellation. In this case, the object’s window structure
will be extracted.

• an object of class "quad" representing a quadrature scheme. In this case, the window of the
data component will be extracted.

as.owin.ppm 33

• an object of class "im" representing a pixel image. In this case, a window of type "mask" will
be returned, with the same pixel raster coordinates as the image. An image pixel value of NA,
signifying that the pixel lies outside the window, is transformed into the logical value FALSE,
which is the corresponding convention for window masks.

• an object of class "ppm", "kppm", "slrm" or "dppm" representing a fitted point process model.
In this case, if from="data" (the default), as.owin extracts the original point pattern data to
which the model was fitted, and returns the observation window of this point pattern. If
from="covariates" then as.owin extracts the covariate images to which the model was
fitted, and returns a binary mask window that specifies the pixel locations.

• an object of class "lpp" representing a point pattern on a linear network. In this case, as.owin
extracts the linear network and returns a window containing this network.

• an object of class "lppm" representing a fitted point process model on a linear network. In this
case, as.owin extracts the linear network and returns a window containing this network.

• A data.frame with exactly three columns. Each row of the data frame corresponds to one
pixel. Each row contains the x and y coordinates of a pixel, and a logical value indicating
whether the pixel lies inside the window.

• A data.frame with exactly two columns. Each row of the data frame contains the x and y
coordinates of a pixel that lies inside the window.

• an object of class "distfun", "nnfun" or "funxy" representing a function of spatial location,
defined on a spatial domain. The spatial domain of the function will be extracted.

• an object of class "rmhmodel" representing a point process model that can be simulated using
rmh. The window (spatial domain) of the model will be extracted. The window may be NULL
in some circumstances (indicating that the simulation window has not yet been determined).
This is not treated as an error, because the argument fatal defaults to FALSE for this method.

• an object of class "layered" representing a list of spatial objects. See layered. In this case,
as.owin will be applied to each of the objects in the list, and the union of these windows will
be returned.

• an object of some other suitable class from another package. For full details, see vignette('shapefiles').

If the argument W is not in one of these formats and cannot be converted to a window, then an error
will be generated (if fatal=TRUE) or a value of NULL will be returned (if fatal=FALSE).

When W is a data frame, the argument step can be used to specify the pixel grid spacing; otherwise,
the spacing will be guessed from the data.

Value

An object of class "owin" (see owin.object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

34 as.ppm

See Also

as.owin, as.owin.rmhmodel, as.owin.lpp.

owin.object, owin.

Additional methods for as.owin may be provided by other packages outside the spatstat family.

Examples

fit <- ppm(cells ~ 1)
as.owin(fit)

as.ppm Extract Fitted Point Process Model

Description

Extracts the fitted point process model from some kind of fitted model.

Usage

as.ppm(object)

S3 method for class 'ppm'
as.ppm(object)

S3 method for class 'profilepl'
as.ppm(object)

S3 method for class 'kppm'
as.ppm(object)

S3 method for class 'dppm'
as.ppm(object)

S3 method for class 'rppm'
as.ppm(object)

Arguments

object An object that includes a fitted Poisson or Gibbs point process model. An object
of class "ppm", "profilepl", "kppm", "dppm" or "rppm", or possibly other
classes.

auc.ppm 35

Details

The function as.ppm extracts the fitted point process model (of class "ppm") from a suitable object.

The function as.ppm is generic, with methods for the classes "ppm", "profilepl", "kppm", "dppm"
and "rppm", and possibly for other classes.

For the class "profilepl" of models fitted by maximum profile pseudolikelihood, the method
as.ppm.profilepl extracts the fitted point process model (with the optimal values of the irregular
parameters).

For the class "kppm" of models fitted by minimum contrast (or Palm or composite likelihood) using
Waagepetersen’s two-step estimation procedure (see kppm), the method as.ppm.kppm extracts the
Poisson point process model that is fitted in the first stage of the procedure.

The behaviour for the class "dppm" is analogous to the "kppm" case above.

For the class "rppm" of models fitted by recursive partitioning (regression trees), the method as.ppm.rppm
extracts the corresponding loglinear model that is fitted in the first stage of the procedure (whose
purpose is merely to identify and evaluate the explanatory variables).

Value

An object of class "ppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppm, profilepl.

Examples

fit a model by profile maximum pseudolikelihood
rvals <- data.frame(r=(1:10)/100)
pfit <- profilepl(rvals, Strauss, cells, ~1)
extract the fitted model
fit <- as.ppm(pfit)

auc.ppm Area Under ROC Curve

Description

Compute the AUC (area under the Receiver Operating Characteristic curve) for a fitted point process
model.

36 auc.ppm

Usage

S3 method for class 'ppm'
auc(X, ...)

S3 method for class 'kppm'
auc(X, ...)

S3 method for class 'slrm'
auc(X, ...)

Arguments

X Point pattern (object of class "ppp" or "lpp") or fitted point process model
(object of class "ppm", "kppm", "slrm" or "lppm").

... Arguments passed to as.mask controlling the pixel resolution for calculations.

Details

This command computes the AUC, the area under the Receiver Operating Characteristic curve. The
ROC itself is computed by roc.

For a fitted point process model X, the AUC measures the ability of the fitted model intensity to
separate the spatial domain into areas of high and low density of points. Suppose λ(u) is the
intensity function of the model. The AUC is the probability that λ(xi) > λ(U). That is, AUC is the
probability that a randomly-selected data point has higher predicted intensity than does a randomly-
selected spatial location. The AUC is not a measure of the goodness-of-fit of the model (Lobo et
al, 2007).

(For spatial logistic regression models (class "slrm") replace “intensity” by “probability of pres-
ence” in the text above.)

Value

Numeric. For auc.ppm, auc.kppm and auc.lppm, the result is a numeric vector of length 2 giving
the AUC value and the theoretically expected AUC value for this model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Lobo, J.M., Jiménez-Valverde, A. and Real, R. (2007) AUC: a misleading measure of the perfor-
mance of predictive distribution models. Global Ecology and Biogeography 17(2) 145–151.

Nam, B.-H. and D’Agostino, R. (2002) Discrimination index, the area under the ROC curve. Pages
267–279 in Huber-Carol, C., Balakrishnan, N., Nikulin, M.S. and Mesbah, M., Goodness-of-fit tests
and model validity, Birkhäuser, Basel.

BadGey 37

See Also

roc

Examples

fit <- ppm(swedishpines ~ x+y)
auc(fit)

BadGey Hybrid Geyer Point Process Model

Description

Creates an instance of the Baddeley-Geyer point process model, defined as a hybrid of several Geyer
interactions. The model can then be fitted to point pattern data.

Usage

BadGey(r, sat)

Arguments

r vector of interaction radii

sat vector of saturation parameters, or a single common value of saturation param-
eter

Details

This is Baddeley’s generalisation of the Geyer saturation point process model, described in Geyer,
to a process with multiple interaction distances.

The BadGey point process with interaction radii r1, . . . , rk, saturation thresholds s1, . . . , sk, inten-
sity parameter β and interaction parameters γ1, . . . , gammak, is the point process in which each
point xi in the pattern X contributes a factor

βγ
v1(xi,X)
1 . . . gamma

vk(xi,X)
k

to the probability density of the point pattern, where

vj(xi, X) = min(sj , tj(xi, X))

where tj(xi, X) denotes the number of points in the pattern X which lie within a distance rj from
the point xi.

BadGey is used to fit this model to data. The function ppm(), which fits point process models to
point pattern data, requires an argument of class "interact" describing the interpoint interaction
structure of the model to be fitted. The appropriate description of the piecewise constant Saturated
pairwise interaction is yielded by the function BadGey(). See the examples below.

38 BadGey

The argument r specifies the vector of interaction distances. The entries of r must be strictly
increasing, positive numbers.

The argument sat specifies the vector of saturation parameters that are applied to the point counts
tj(xi, X). It should be a vector of the same length as r, and its entries should be nonnegative
numbers. Thus sat[1] is applied to the count of points within a distance r[1], and sat[2] to the
count of points within a distance r[2], etc. Alternatively sat may be a single number, and this
saturation value will be applied to every count.

Infinite values of the saturation parameters are also permitted; in this case vj(xi, X) = tj(xi, X)
and there is effectively no ‘saturation’ for the distance range in question. If all the saturation pa-
rameters are set to Inf then the model is effectively a pairwise interaction process, equivalent to
PairPiece (however the interaction parameters γ obtained from BadGey have a complicated rela-
tionship to the interaction parameters γ obtained from PairPiece).

If r is a single number, this model is virtually equivalent to the Geyer process, see Geyer.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Hybrids

A ‘hybrid’ interaction is one which is built by combining several different interactions (Baddeley et
al, 2013). The BadGey interaction can be described as a hybrid of several Geyer interactions.

The Hybrid command can be used to build hybrids of any interactions. If the Hybrid operator is
applied to several Geyer models, the result is equivalent to a BadGey model. This can be useful for
incremental model selection.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>
in collaboration with Hao Wang and Jeff Picka

References

Baddeley, A., Turner, R., Mateu, J. and Bevan, A. (2013) Hybrids of Gibbs point process models and
their implementation. Journal of Statistical Software 55:11, 1–43. DOI: 10.18637/jss.v055.i11

See Also

ppm, pairsat.family, Geyer, PairPiece, SatPiece, Hybrid

Examples

BadGey(c(0.1,0.2), c(1,1))
prints a sensible description of itself
BadGey(c(0.1,0.2), 1)

fit a stationary Baddeley-Geyer model
ppm(cells ~1, BadGey(c(0.07, 0.1, 0.13), 2))

bc.ppm 39

nonstationary process with log-cubic polynomial trend

ppm(cells ~polynom(x,y,3), BadGey(c(0.07, 0.1, 0.13), 2))

bc.ppm Bias Correction for Fitted Model

Description

Applies a first-order bias correction to a fitted model.

Usage

bc(fit, ...)

S3 method for class 'ppm'
bc(fit, ..., nfine = 256)

Arguments

fit A fitted point process model (object of class "ppm") or a model of some other
class.

... Additional arguments are currently ignored.

nfine Grid dimensions for fine grid of locations. An integer, or a pair of integers. See
Details.

Details

This command applies the first order Newton-Raphson bias correction method of Baddeley and
Turner (2014, sec 4.2) to a fitted model. The function bc is generic, with a method for fitted point
process models of class "ppm".

A fine grid of locations, of dimensions nfine * nfine or nfine[2] * nfine[1], is created over
the original window of the data, and the intensity or conditional intensity of the fitted model is
calculated on this grid. The result is used to update the fitted model parameters once by a Newton-
Raphson update.

This is only useful if the quadrature points used to fit the original model fit are coarser than the
grid of points specified by nfine.

Value

A numeric vector, of the same length as coef(fit), giving updated values for the fitted model
coefficients.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

40 berman.test.ppm

References

Baddeley, A. and Turner, R. (2014) Bias correction for parameter estimates of spatial point process
models. Journal of Statistical Computation and Simulation 84, 1621–1643. DOI: 10.1080/00949655.2012.755976

See Also

rex

Examples

fit <- ppm(cells ~ x, Strauss(0.07))
coef(fit)
if(!interactive()) {

bc(fit, nfine=64)
} else {

bc(fit)
}

berman.test.ppm Berman’s Tests for Point Process Model

Description

Tests the goodness-of-fit of a Poisson point process model using methods of Berman (1986).

Usage

S3 method for class 'ppm'
berman.test(model, covariate,

which = c("Z1", "Z2"),
alternative = c("two.sided", "less", "greater"), ...)

Arguments

model A fitted point process model (object of class "ppm" or "lppm").

covariate The spatial covariate on which the test will be based. An image (object of class
"im") or a function.

which Character string specifying the choice of test.

alternative Character string specifying the alternative hypothesis.

... Additional arguments controlling the pixel resolution (arguments dimyx, eps
and rule.eps passed to as.mask) or other undocumented features.

berman.test.ppm 41

Details

These functions perform a goodness-of-fit test of a Poisson point process model fitted to point
pattern data. The observed distribution of the values of a spatial covariate at the data points, and
the predicted distribution of the same values under the model, are compared using either of two test
statistics Z1 and Z2 proposed by Berman (1986). The Z1 test is also known as the Lawson-Waller
test.

The function berman.test is generic, with methods for point patterns ("ppp" or "lpp") and point
process models ("ppm" or "lppm").

• If X is a point pattern dataset (object of class "ppp" or "lpp"), then berman.test(X, ...)
performs a goodness-of-fit test of the uniform Poisson point process (Complete Spatial Ran-
domness, CSR) for this dataset.

• If model is a fitted point process model (object of class "ppm" or "lppm") then berman.test(model,
...) performs a test of goodness-of-fit for this fitted model. In this case, model should be a
Poisson point process.

The test is performed by comparing the observed distribution of the values of a spatial covariate
at the data points, and the predicted distribution of the same covariate under the model. Thus, you
must nominate a spatial covariate for this test.

The argument covariate should be either a function(x,y) or a pixel image (object of class "im"
containing the values of a spatial function. If covariate is an image, it should have numeric values,
and its domain should cover the observation window of the model. If covariate is a function,
it should expect two arguments x and y which are vectors of coordinates, and it should return a
numeric vector of the same length as x and y.

First the original data point pattern is extracted from model. The values of the covariate at these
data points are collected.

Next the values of the covariate at all locations in the observation window are evaluated. The
point process intensity of the fitted model is also evaluated at all locations in the window.

• If which="Z1", the test statistic Z1 is computed as follows. The sum S of the covariate values
at all data points is evaluated. The predicted mean µ and variance σ2 of S are computed from
the values of the covariate at all locations in the window. Then we compute Z1 = (S − µ)/σ.
Closely-related tests were proposed independently by Waller et al (1993) and Lawson (1993)
so this test is often termed the Lawson-Waller test in epidemiological literature.

• If which="Z2", the test statistic Z2 is computed as follows. The values of the covariate at
all locations in the observation window, weighted by the point process intensity, are compiled
into a cumulative distribution function F . The probability integral transformation is then ap-
plied: the values of the covariate at the original data points are transformed by the predicted
cumulative distribution function F into numbers between 0 and 1. If the model is correct,
these numbers are i.i.d. uniform random numbers. The standardised sample mean of these
numbers is the statistic Z2.

In both cases the null distribution of the test statistic is the standard normal distribution, approxi-
mately.

The return value is an object of class "htest" containing the results of the hypothesis test. The
print method for this class gives an informative summary of the test outcome.

42 cauchy.estK

Value

An object of class "htest" (hypothesis test) and also of class "bermantest", containing the results
of the test. The return value can be plotted (by plot.bermantest) or printed to give an informative
summary of the test.

Warning

The meaning of a one-sided test must be carefully scrutinised: see the printed output.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Berman, M. (1986) Testing for spatial association between a point process and another stochastic
process. Applied Statistics 35, 54–62.

Lawson, A.B. (1993) On the analysis of mortality events around a prespecified fixed point. Journal
of the Royal Statistical Society, Series A 156 (3) 363–377.

Waller, L., Turnbull, B., Clark, L.C. and Nasca, P. (1992) Chronic Disease Surveillance and testing
of clustering of disease and exposure: Application to leukaemia incidence and TCE-contaminated
dumpsites in upstate New York. Environmetrics 3, 281–300.

See Also

cdf.test, quadrat.test, ppm

Examples

Berman's data
X <- copper$SouthPoints
L <- copper$SouthLines
D <- distmap(L, eps=1)
test of fitted model
fit <- ppm(X ~ x+y)
berman.test(fit, D)

cauchy.estK Fit the Neyman-Scott cluster process with Cauchy kernel

Description

Fits the Neyman-Scott Cluster point process with Cauchy kernel to a point pattern dataset by the
Method of Minimum Contrast.

cauchy.estK 43

Usage

cauchy.estK(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the model.

lambda Optional. An estimate of the intensity of the point process.

q, p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

Details

This algorithm fits the Neyman-Scott cluster point process model with Cauchy kernel to a point
pattern dataset by the Method of Minimum Contrast, using the K function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The K function of
the point pattern will be computed using Kest, and the method of minimum contrast will be
applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the K function, and this
object should have been obtained by a call to Kest or one of its relatives.

The algorithm fits the Neyman-Scott cluster point process with Cauchy kernel to X, by finding the
parameters of the Matérn Cluster model which give the closest match between the theoretical K
function of the Matérn Cluster process and the observed K function. For a more detailed explana-
tion of the Method of Minimum Contrast, see mincontrast.

The model is described in Jalilian et al (2013). It is a cluster process formed by taking a pattern
of parent points, generated according to a Poisson process with intensity κ, and around each parent
point, generating a random number of offspring points, such that the number of offspring of each
parent is a Poisson random variable with mean µ, and the locations of the offspring points of one
parent follow a common distribution described in Jalilian et al (2013).

If the argument lambda is provided, then this is used as the value of the point process intensity λ.
Otherwise, if X is a point pattern, then λ will be estimated from X. If X is a summary statistic and
lambda is missing, then the intensity λ cannot be estimated, and the parameter µ will be returned
as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The corresponding model can be simulated using rCauchy.

For computational reasons, the optimisation procedure uses the parameter eta2, which is equivalent
to 4 * scale^2 where scale is the scale parameter for the model as used in rCauchy.

44 cauchy.estK

Homogeneous or inhomogeneous Neyman-Scott/Cauchy models can also be fitted using the func-
tion kppm and the fitted models can be simulated using simulate.kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Ghorbani, M. (2013) Cauchy cluster process. Metrika 76, 697–706.

Jalilian, A., Guan, Y. and Waagepetersen, R. (2013) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119-137.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, cauchy.estpcf, lgcp.estK, thomas.estK, vargamma.estK, mincontrast, Kest, Kmodel.

rCauchy to simulate the model.

Examples

u <- cauchy.estK(redwood)
u
plot(u)

cauchy.estpcf 45

cauchy.estpcf Fit the Neyman-Scott cluster process with Cauchy kernel

Description

Fits the Neyman-Scott Cluster point process with Cauchy kernel to a point pattern dataset by the
Method of Minimum Contrast, using the pair correlation function.

Usage

cauchy.estpcf(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...,
pcfargs = list())

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the model.

lambda Optional. An estimate of the intensity of the point process.

q, p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing
in the estimation of the pair correlation function.

Details

This algorithm fits the Neyman-Scott cluster point process model with Cauchy kernel to a point
pattern dataset by the Method of Minimum Contrast, using the pair correlation function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation
function of the point pattern will be computed using pcf, and the method of minimum contrast
will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits the Neyman-Scott cluster point process with Cauchy kernel to X, by finding the
parameters of the Matérn Cluster model which give the closest match between the theoretical pair
correlation function of the Matérn Cluster process and the observed pair correlation function. For a
more detailed explanation of the Method of Minimum Contrast, see mincontrast.

46 cauchy.estpcf

The model is described in Jalilian et al (2013). It is a cluster process formed by taking a pattern
of parent points, generated according to a Poisson process with intensity κ, and around each parent
point, generating a random number of offspring points, such that the number of offspring of each
parent is a Poisson random variable with mean µ, and the locations of the offspring points of one
parent follow a common distribution described in Jalilian et al (2013).

If the argument lambda is provided, then this is used as the value of the point process intensity λ.
Otherwise, if X is a point pattern, then λ will be estimated from X. If X is a summary statistic and
lambda is missing, then the intensity λ cannot be estimated, and the parameter µ will be returned
as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The corresponding model can be simulated using rCauchy.

For computational reasons, the optimisation procedure internally uses the parameter eta2, which is
equivalent to 4 * scale^2 where scale is the scale parameter for the model as used in rCauchy.

Homogeneous or inhomogeneous Neyman-Scott/Cauchy models can also be fitted using the func-
tion kppm and the fitted models can be simulated using simulate.kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Ghorbani, M. (2013) Cauchy cluster process. Metrika 76, 697–706.

Jalilian, A., Guan, Y. and Waagepetersen, R. (2013) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119-137.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, cauchy.estK, lgcp.estpcf, thomas.estpcf, vargamma.estpcf, mincontrast, pcf, pcfmodel.

rCauchy to simulate the model.

cdf.test.mppm 47

Examples

u <- cauchy.estpcf(redwood)
u
plot(u, legendpos="topright")

cdf.test.mppm Spatial Distribution Test for Multiple Point Process Model

Description

Performs a spatial distribution test of a point process model fitted to multiple spatial point patterns.
The test compares the observed and predicted distributions of the values of a spatial covariate, using
either the Kolmogorov-Smirnov, Cramér-von Mises or Anderson-Darling test of goodness-of-fit.

Usage

S3 method for class 'mppm'
cdf.test(model, covariate, test=c("ks", "cvm", "ad"), ...,

nsim=19, verbose=TRUE, interpolate=FALSE, fast=TRUE, jitter=TRUE)

Arguments

model An object of class "mppm" representing a point process model fitted to multiple
spatial point patterns.

covariate The spatial covariate on which the test will be based. A function, a pixel image,
a list of functions, a list of pixel images, a hyperframe, a character string con-
taining the name of one of the covariates in model, or one of the strings "x" or
"y".

test Character string identifying the test to be performed: "ks" for Kolmogorov-
Smirnov test, "cvm" for Cramér-von Mises test or "ad" for Anderson-Darling
test.

... Arguments passed to cdf.test to control the test.

nsim Number of simulated realisations which should be generated, if a Monte Carlo
test is required.

verbose Logical flag indicating whether to print progress reports.

interpolate Logical flag indicating whether to interpolate between pixel values when covariate
is a pixel image. See Details.

fast Logical flag. If TRUE, values of the covariate are only sampled at the original
quadrature points used to fit the model. If FALSE, values of the covariate are
sampled at all pixels, which can be slower by three orders of magnitude.

jitter Logical flag. If TRUE, observed values of the covariate are perturbed by adding
small random values, to avoid tied observations.

48 cdf.test.mppm

Details

This function is a method for the generic function cdf.test for the class mppm.

This function performs a goodness-of-fit test of a point process model that has been fitted to multiple
point patterns. The observed distribution of the values of a spatial covariate at the data points, and
the predicted distribution of the same values under the model, are compared using the Kolmogorov-
Smirnov, Cramér-von Mises or Anderson-Darling test of goodness-of-fit. These are exact tests if the
model is Poisson; otherwise, for a Gibbs model, a Monte Carlo p-value is computed by generating
simulated realisations of the model and applying the selected goodness-of-fit test to each simulation.

The argument model should be a fitted point process model fitted to multiple point patterns (object
of class "mppm").

The argument covariate contains the values of a spatial function. It can be

• a function(x,y)

• a pixel image (object of class "im"

• a list of function(x,y), one for each point pattern

• a list of pixel images, one for each point pattern

• a hyperframe (see hyperframe) of which the first column will be taken as containing the
covariate

• a character string giving the name of one of the covariates in model

• one of the character strings "x" or "y", indicating the spatial coordinates.

If covariate is an image, it should have numeric values, and its domain should cover the obser-
vation window of the model. If covariate is a function, it should expect two arguments x and y
which are vectors of coordinates, and it should return a numeric vector of the same length as x and
y.

First the original data point pattern is extracted from model. The values of the covariate at these
data points are collected.

The predicted distribution of the values of the covariate under the fitted model is computed as
follows. The values of the covariate at all locations in the observation window are evaluated,
weighted according to the point process intensity of the fitted model, and compiled into a cumulative
distribution function F using ewcdf.

The probability integral transformation is then applied: the values of the covariate at the orig-
inal data points are transformed by the predicted cumulative distribution function F into num-
bers between 0 and 1. If the model is correct, these numbers are i.i.d. uniform random num-
bers. A goodness-of-fit test of the uniform distribution is applied to these numbers using ks.test,
cvm.test or ad.test.

The argument interpolate determines how pixel values will be handled when covariate is a
pixel image. The value of the covariate at a data point is obtained by looking up the value of the
nearest pixel if interpolate=FALSE, or by linearly interpolating between the values of the four
nearest pixels if interpolate=TRUE. Linear interpolation is slower, but is sometimes necessary to
avoid tied values of the covariate arising when the pixel grid is coarse.

If model is a Poisson point process, then the Kolmogorov-Smirnov, Cramér-von Mises and Anderson-
Darling tests are theoretically exact. This test was apparently first described (in the context of spatial
data, and for Kolmogorov-Smirnov) by Berman (1986). See also Baddeley et al (2005).

cdf.test.mppm 49

If model is not a Poisson point process, then the Kolmogorov-Smirnov, Cramér-von Mises and
Anderson-Darling tests are biased. Instead they are used as the basis of a Monte Carlo test. First
nsim simulated realisations of the model will be generated. Each simulated realisation consists of
a list of simulated point patterns, one for each of the original data patterns. This can take a very
long time. The model is then re-fitted to each simulation, and the refitted model is subjected to the
goodness-of-fit test described above. A Monte Carlo p-value is then computed by comparing the
p-value of the original test with the p-values obtained from the simulations.

Value

An object of class "cdftest" and "htest" containing the results of the test. See cdf.test for
details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Berman, M. (1986) Testing for spatial association between a point process and another stochastic
process. Applied Statistics 35, 54–62.

See Also

cdf.test, quadrat.test, mppm

Examples

three i.i.d. realisations of nonuniform Poisson process
lambda <- as.im(function(x,y) { 200 * exp(x) }, square(1))
dat <- hyperframe(X=list(rpoispp(lambda), rpoispp(lambda), rpoispp(lambda)))

fit uniform Poisson process
fit0 <- mppm(X~1, dat)
fit correct nonuniform Poisson process
fit1 <- mppm(X~x, dat)

test wrong model
cdf.test(fit0, "x")
test right model
cdf.test(fit1, "x")

Gibbs model
fitGibbs <- update(fit0, interaction=Strauss(0.05))

50 cdf.test.ppm

ns <- if(interactive()) 19 else 2
cdf.test(fitGibbs, "x", nsim=ns)

cdf.test.ppm Spatial Distribution Test for Point Pattern or Point Process Model

Description

Performs a test of goodness-of-fit of a point process model. The observed and predicted distribu-
tions of the values of a spatial covariate are compared using either the Kolmogorov-Smirnov test,
Cramér-von Mises test or Anderson-Darling test. For non-Poisson models, a Monte Carlo test is
used.

Usage

S3 method for class 'ppm'
cdf.test(model, covariate, test=c("ks", "cvm", "ad"), ...,

interpolate=TRUE, jitter=TRUE, nsim=99, verbose=TRUE)

S3 method for class 'slrm'
cdf.test(model, covariate, test=c("ks", "cvm", "ad"), ...,

modelname=NULL, covname=NULL)

Arguments

model A fitted point process model (object of class "ppm" or "lppm") or fitted spatial
logistic regression (object of class "slrm").

covariate The spatial covariate on which the test will be based. A function, a pixel image
(object of class "im"), a list of pixel images, or one of the characters "x" or "y"
indicating the Cartesian coordinates.

test Character string identifying the test to be performed: "ks" for Kolmogorov-
Smirnov test, "cvm" for Cramér-von Mises test or "ad" for Anderson-Darling
test.

... Arguments passed to ks.test (from the stats package) or cvm.test or ad.test
(from the goftest package) to control the test; and arguments passed to as.mask
to control the pixel resolution.

interpolate Logical flag indicating whether to interpolate pixel images. If interpolate=TRUE,
the value of the covariate at each point of X will be approximated by interpolat-
ing the nearby pixel values. If interpolate=FALSE, the nearest pixel value will
be used.

jitter Logical flag. If jitter=TRUE, values of the covariate will be slightly perturbed
at random, to avoid tied values in the test.

cdf.test.ppm 51

modelname, covname
Character strings giving alternative names for model and covariate to be used
in labelling plot axes.

nsim Number of simulated realisations from the model to be used for the Monte Carlo
test, when model is not a Poisson process.

verbose Logical value indicating whether to print progress reports when performing a
Monte Carlo test.

Details

These functions perform a goodness-of-fit test of a Poisson or Gibbs point process model fitted
to point pattern data. The observed distribution of the values of a spatial covariate at the data
points, and the predicted distribution of the same values under the model, are compared using the
Kolmogorov-Smirnov test, the Cramér-von Mises test or the Anderson-Darling test. For Gibbs
models, a Monte Carlo test is performed using these test statistics.

The function cdf.test is generic, with methods for point patterns ("ppp" or "lpp"), point process
models ("ppm" or "lppm") and spatial logistic regression models ("slrm").

• If X is a point pattern dataset (object of class "ppp"), then cdf.test(X, ...) performs a
goodness-of-fit test of the uniform Poisson point process (Complete Spatial Randomness,
CSR) for this dataset. For a multitype point pattern, the uniform intensity is assumed to de-
pend on the type of point (sometimes called Complete Spatial Randomness and Independence,
CSRI).

• If model is a fitted point process model (object of class "ppm" or "lppm") then cdf.test(model,
...) performs a test of goodness-of-fit for this fitted model.

• If model is a fitted spatial logistic regression (object of class "slrm") then cdf.test(model,
...) performs a test of goodness-of-fit for this fitted model.

The test is performed by comparing the observed distribution of the values of a spatial covariate
at the data points, and the predicted distribution of the same covariate under the model, using a
classical goodness-of-fit test. Thus, you must nominate a spatial covariate for this test.

If X is a point pattern that does not have marks, the argument covariate should be either a
function(x,y) or a pixel image (object of class "im" containing the values of a spatial func-
tion, or one of the characters "x" or "y" indicating the Cartesian coordinates. If covariate is an
image, it should have numeric values, and its domain should cover the observation window of the
model. If covariate is a function, it should expect two arguments x and y which are vectors of
coordinates, and it should return a numeric vector of the same length as x and y.

If X is a multitype point pattern, the argument covariate can be either a function(x,y,marks),
or a pixel image, or a list of pixel images corresponding to each possible mark value, or one of the
characters "x" or "y" indicating the Cartesian coordinates.

First the original data point pattern is extracted from model. The values of the covariate at these
data points are collected.

The predicted distribution of the values of the covariate under the fitted model is computed as
follows. The values of the covariate at all locations in the observation window are evaluated,
weighted according to the point process intensity of the fitted model, and compiled into a cumulative
distribution function F using ewcdf.

52 cdf.test.ppm

The probability integral transformation is then applied: the values of the covariate at the original
data points are transformed by the predicted cumulative distribution function F into numbers be-
tween 0 and 1. If the model is correct, these numbers are i.i.d. uniform random numbers. The A
goodness-of-fit test of the uniform distribution is applied to these numbers using stats::ks.test,
goftest::cvm.test or goftest::ad.test.

This test was apparently first described (in the context of spatial data, and using Kolmogorov-
Smirnov) by Berman (1986). See also Baddeley et al (2005).

If model is not a Poisson process, then a Monte Carlo test is performed, by generating nsim point
patterns which are simulated realisations of the model, re-fitting the model to each simulated point
pattern, and calculating the test statistic for each fitted model. The Monte Carlo p value is deter-
mined by comparing the simulated values of the test statistic with the value for the original data.

The return value is an object of class "htest" containing the results of the hypothesis test. The
print method for this class gives an informative summary of the test outcome.

The return value also belongs to the class "cdftest" for which there is a plot method plot.cdftest.
The plot method displays the empirical cumulative distribution function of the covariate at the data
points, and the predicted cumulative distribution function of the covariate under the model, plotted
against the value of the covariate.

The argument jitter controls whether covariate values are randomly perturbed, in order to avoid
ties. If the original data contains any ties in the covariate (i.e. points with equal values of the
covariate), and if jitter=FALSE, then the Kolmogorov-Smirnov test implemented in ks.test will
issue a warning that it cannot calculate the exact p-value. To avoid this, if jitter=TRUE each value
of the covariate will be perturbed by adding a small random value. The perturbations are normally
distributed with standard deviation equal to one hundredth of the range of values of the covariate.
This prevents ties, and the p-value is still correct. There is a very slight loss of power.

Value

An object of class "htest" containing the results of the test. See ks.test for details. The return
value can be printed to give an informative summary of the test.

The value also belongs to the class "cdftest" for which there is a plot method.

Warning

The outcome of the test involves a small amount of random variability, because (by default) the
coordinates are randomly perturbed to avoid tied values. Hence, if cdf.test is executed twice, the
p-values will not be exactly the same. To avoid this behaviour, set jitter=FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Berman, M. (1986) Testing for spatial association between a point process and another stochastic
process. Applied Statistics 35, 54–62.

closepaircounts 53

See Also

plot.cdftest, quadrat.test, berman.test, ks.test, cvm.test, ad.test, ppm

Examples

op <- options(useFancyQuotes=FALSE)

fit inhomogeneous Poisson model and test
model <- ppm(nztrees ~x)
cdf.test(model, "x")

if(interactive()) {
synthetic data: nonuniform Poisson process
X <- rpoispp(function(x,y) { 100 * exp(x) }, win=square(1))

fit uniform Poisson process
fit0 <- ppm(X ~1)
fit correct nonuniform Poisson process
fit1 <- ppm(X ~x)

test wrong model
cdf.test(fit0, "x")
test right model
cdf.test(fit1, "x")

}

multitype point pattern
yimage <- as.im(function(x,y){y}, W=Window(amacrine))
cdf.test(ppm(amacrine ~marks+y), yimage)

options(op)

closepaircounts Count Close Pairs of Points

Description

Low-level functions to count the number of close pairs of points.

Usage

closepaircounts(X, r)

crosspaircounts(X, Y, r)

Arguments

X, Y Point patterns (objects of class "ppp").
r Maximum distance between pairs of points to be counted as close pairs.

54 closepaircounts

Details

These are the efficient low-level functions used by spatstat to count close pairs of points in a point
pattern or between two point patterns.

closepaircounts(X,r) counts the number of neighbours for each point in the pattern X. That is,
for each point X[i], it counts the number of other points X[j] with j != i such that d(X[i],X[j])
<= r where d denotes Euclidean distance. The result is an integer vector v such that v[i] is the
number of neighbours of X[i].

crosspaircounts(X,Y,r) counts, for each point in the pattern X, the number of neighbours in the
pattern Y. That is, for each point X[i], it counts the number of points Y[j] such that d(X[i],X[j])
<= r. The result is an integer vector v such that v[i] is the number of neighbours of X[i] in the
pattern Y.

Value

An integer vector of length equal to the number of points in X.

Warning about accuracy

The results of these functions may not agree exactly with the correct answer (as calculated by a
human) and may not be consistent between different computers and different installations of R. The
discrepancies arise in marginal cases where the interpoint distance is equal to, or very close to, the
threshold rmax.

Floating-point numbers in a computer are not mathematical Real Numbers: they are approximations
using finite-precision binary arithmetic. The approximation is accurate to a tolerance of about
.Machine$double.eps.

If the true interpoint distance d and the threshold rmax are equal, or if their difference is no more
than .Machine$double.eps, the result may be incorrect.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

closepairs to identify all close pairs of points.

Examples

a <- closepaircounts(cells, 0.1)
sum(a)
Y <- split(amacrine)
b <- crosspaircounts(Yon, Yoff, 0.1)

clusterfield.kppm 55

clusterfield.kppm Field of clusters

Description

Calculate the superposition of cluster kernels at the location of a point pattern.

Usage

S3 method for class 'kppm'
clusterfield(model, locations = NULL, ...)

Arguments

model Cluster model. Either a fitted cluster model (object of class "kppm"), a character
string specifying the type of cluster model, or a function defining the cluster
kernel. See Details.

locations A point pattern giving the locations of the kernels. Defaults to the centroid of
the observation window for the "kppm" method and to the center of a unit square
otherwise.

... Additional arguments passed to density.ppp or the cluster kernel. See Details.

Details

The function clusterfield is generic, with a method for "kppm" (described here) and methods for
"character" and "function".

The method clusterfield.kppm extracts the relevant information from the fitted model and calls
clusterfield.function.

The calculations are performed by density.ppp and ... arguments are passed thereto for control
over the pixel resolution etc. (These arguments are then passed on to pixellate.ppp and as.mask.)

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

kppm,

clusterfield.

56 clusterfit

Examples

fit <- kppm(redwood~1, "Thomas")
Z <- clusterfield(fit, eps = 0.01)

clusterfit Fit Cluster or Cox Point Process Model via Minimum Contrast

Description

Fit a homogeneous or inhomogeneous cluster process or Cox point process model to a point pattern
by the Method of Minimum Contrast.

Usage

clusterfit(X, clusters, lambda = NULL, startpar = NULL, ...,
q = 1/4, p = 2, rmin = NULL, rmax = NULL,
ctrl=list(q=q, p=p, rmin=rmin, rmax=rmax),
statistic = NULL, statargs = NULL, algorithm="Nelder-Mead",
verbose=FALSE, pspace=NULL)

Arguments

X Data to which the cluster or Cox model will be fitted. Either a point pattern or a
summary statistic. See Details.

clusters Character string determining the cluster or Cox model. Partially matched. Op-
tions are "Thomas", "MatClust", "Cauchy", "VarGamma" and "LGCP".

lambda Optional. An estimate of the intensity of the point process. Either a single
numeric specifying a constant intensity, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object
of class "ppm" or "kppm") or a function(x,y) which can be evaluated to give
the intensity value at any location.

startpar Vector of initial values of the parameters of the point process mode. If X is a
point pattern sensible defaults are used. Otherwise rather arbitrary values are
used.

q, p Optional. Exponents for the contrast criterion. See mincontrast.

rmin, rmax Optional. The interval of r values for the contrast criterion. See mincontrast.

ctrl Optional. Named list containing values of the parameters q,p,rmin,rmax.

... Additional arguments passed to mincontrast.

statistic Optional. Name of the summary statistic to be used for minimum contrast esti-
mation: either "K" or "pcf".

statargs Optional list of arguments to be used when calculating the statistic. See
Details.

algorithm Character string determining the mathematical optimisation algorithm to be used
by optim. See the argument method of optim.

clusterfit 57

verbose Logical value indicating whether to print detailed progress reports for debugging
purposes.

pspace For internal use by package code only.

Details

This function fits the clustering parameters of a cluster or Cox point process model by the Method
of Minimum Contrast, that is, by matching the theoretical K-function of the model to the empirical
K-function of the data, as explained in mincontrast.

If statistic="pcf" (or X appears to be an estimated pair correlation function) then instead of using
the K-function, the algorithm will use the pair correlation function.

If X is a point pattern of class "ppp" an estimate of the summary statistic specfied by statistic
(defaults to "K") is first computed before minimum contrast estimation is carried out as described
above. In this case the argument statargs can be used for controlling the summary statistic estima-
tion. The precise algorithm for computing the summary statistic depends on whether the intensity
specification (lambda) is:

homogeneous: If lambda is NUll or a single numeric the pattern is considered homogeneous and
either Kest or pcf is invoked. In this case lambda is not used for anything when estimating
the summary statistic.

inhomogeneous: If lambda is a pixel image (object of class "im"), a fitted point process model (ob-
ject of class "ppm" or "kppm") or a function(x,y) the pattern is considered inhomogeneous.
In this case either Kinhom or pcfinhom is invoked with lambda as an argument.

After the clustering parameters of the model have been estimated by minimum contrast lambda (if
non-null) is used to compute the additional model parameter µ.

The algorithm parameters q,p,rmax,rmin are described in the help for mincontrast. They may
be provided either as individually-named arguments, or as entries in the list ctrl. The individually-
named arguments q,p,rmax,rmin override the entries in the list ctrl.

Value

An object of class "minconfit". There are methods for printing and plotting this object. See
mincontrast.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Waagepetersen, R. (2007). An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63 (2007) 252–258.

58 clusterkernel.kppm

See Also

kppm

Examples

fit <- clusterfit(redwood, "Thomas")
fit
if(interactive()){

plot(fit)
}
K <- Kest(redwood)
fit2 <- clusterfit(K, "MatClust")

clusterkernel.kppm Extract Cluster Offspring Kernel

Description

Given a fitted cluster point process model, this command returns the probability density of the
cluster offspring.

Usage

S3 method for class 'kppm'
clusterkernel(model, ...)

Arguments

model Cluster model. Either a fitted cluster or Cox model (object of class "kppm"), or
a character string specifying the type of cluster model.

... Parameter values for the model, when model is a character string.

Details

Given a cluster point process model, this command returns a function(x,y) giving the two-
dimensional probability density of the cluster offspring points assuming a cluster parent located
at the origin.

The function clusterkernel is generic, with methods for class "kppm" (described here) and "character"
(described in clusterkernel.character).

Value

A function in the R language with arguments x,y,....

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

clusterradius.kppm 59

See Also

clusterkernel.character, clusterfield, kppm

Examples

fit <- kppm(redwood ~ x, "MatClust")
f <- clusterkernel(fit)
f(0.05, 0.02)

clusterradius.kppm Compute or Extract Effective Range of Cluster Kernel

Description

Given a cluster point process model, this command returns a value beyond which the the probability
density of the cluster offspring is neglible.

Usage

S3 method for class 'kppm'
clusterradius(model, ..., thresh = NULL, precision = FALSE)

Arguments

model Cluster model. Either a fitted cluster or Cox model (object of class "kppm"), or
a character string specifying the type of cluster model.

... Parameter values for the model, when model is a character string.

thresh Numerical threshold relative to the cluster kernel value at the origin (parent loca-
tion) determining when the cluster kernel will be considered neglible. A sensible
default is provided.

precision Logical. If precision=TRUE the precision of the calculated range is returned as
an attribute to the range. See details.

Details

Given a cluster model this function by default returns the effective range of the model with the given
parameters as used in spatstat. For the Matérn cluster model (see e.g. rMatClust) this is simply the
finite radius of the offsring density given by the paramter scale irrespective of other options given
to this function. The remaining models in spatstat have infinite theoretical range, and an effective
finite value is given as follows: For the Thomas model (see e.g. rThomas the default is 4*scale
where scale is the scale or standard deviation parameter of the model. If thresh is given the value
is instead found as described for the other models below.

For the Cauchy model (see e.g. rCauchy) and the Variance Gamma (Bessel) model (see e.g.
rVarGamma) the value of thresh defaults to 0.001, and then this is used to compute the range
numerically as follows. If k(x, y) = k0(r) with r =

√
(x2 + y2) denotes the isotropic cluster

60 coef.mppm

kernel then f(r) = 2πrk0(r) is the density function of the offspring distance from the parent. The
range is determined as the value of r where f(r) falls below thresh times k0(r).

If precision=TRUE the precision related to the chosen range is returned as an attribute. Here the
precision is defined as the polar integral of the kernel from distance 0 to the calculated range. Ideally
this should be close to the value 1 which would be obtained for the true theretical infinite range.

Value

A positive numeric.

Additionally, the precision related to this range value is returned as an attribute "prec", if precision=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

clusterkernel, kppm, rMatClust, rThomas, rCauchy, rVarGamma, rNeymanScott.

Examples

fit <- kppm(redwood ~ x, "MatClust")
clusterradius(fit)

coef.mppm Coefficients of Point Process Model Fitted to Multiple Point Patterns

Description

Given a point process model fitted to a list of point patterns, extract the coefficients of the fitted
model. A method for coef.

Usage

S3 method for class 'mppm'
coef(object, ...)

Arguments

object The fitted point process model (an object of class "mppm")

... Ignored.

coef.mppm 61

Details

This function is a method for the generic function coef.

The argument object must be a fitted point process model (object of class "mppm") produced by
the fitting algorithm mppm). This represents a point process model that has been fitted to a list of
several point pattern datasets. See mppm for information.

This function extracts the vector of coefficients of the fitted model. This is the estimate of the
parameter vector θ such that the conditional intensity of the model is of the form

λ(u, x) = exp(θS(u, x))

where S(u, x) is a (vector-valued) statistic.

For example, if the model object is the uniform Poisson process, then coef(object) will yield a
single value (named "(Intercept)") which is the logarithm of the fitted intensity of the Poisson
process.

If the fitted model includes random effects (i.e. if the argument random was specified in the call
to mppm), then the fitted coefficients are different for each point pattern in the original data, so
coef(object) is a data frame with one row for each point pattern, and one column for each param-
eter. Use fixef.mppm to extract the vector of fixed effect coefficients, and ranef.mppm to extract
the random effect coefficients at each level.

Use print.mppm to print a more useful description of the fitted model.

Value

Either a vector containing the fitted coefficients, or a data frame containing the fitted coefficients
for each point pattern.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented in spatstat by Adrian Bad-
deley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net> and Ege
Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

fixef.mppm and ranef.mppm for the fixed and random effect coefficients in a model that includes
random effects.

print.mppm, mppm

62 coef.ppm

Examples

H <- hyperframe(X=waterstriders)

fit.Poisson <- mppm(X ~ 1, H)
coef(fit.Poisson)

The single entry "(Intercept)"
is the log of the fitted intensity of the Poisson process

fit.Strauss <- mppm(X~1, H, Strauss(7))
coef(fit.Strauss)

The two entries "(Intercept)" and "Interaction"
are respectively log(beta) and log(gamma)
in the usual notation for Strauss(beta, gamma, r)

Tweak data to exaggerate differences
H$X[[1]] <- rthin(H$X[[1]], 0.3)
Model with random effects
fitran <- mppm(X ~ 1, H, random=~1|id)
coef(fitran)

coef.ppm Coefficients of Fitted Point Process Model

Description

Given a point process model fitted to a point pattern, extract the coefficients of the fitted model. A
method for coef.

Usage

S3 method for class 'ppm'
coef(object, ...)

Arguments

object The fitted point process model (an object of class "ppm")
... Ignored.

Details

This function is a method for the generic function coef.

The argument object must be a fitted point process model (object of class "ppm"). Such objects
are produced by the maximum pseudolikelihood fitting algorithm ppm).

This function extracts the vector of coefficients of the fitted model. This is the estimate of the
parameter vector θ such that the conditional intensity of the model is of the form

λ(u, x) = exp(θS(u, x))

coef.slrm 63

where S(u, x) is a (vector-valued) statistic.

For example, if the model object is the uniform Poisson process, then coef(object) will yield a
single value (named "(Intercept)") which is the logarithm of the fitted intensity of the Poisson
process.

Use print.ppm to print a more useful description of the fitted model.

Value

A vector containing the fitted coefficients.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

print.ppm, ppm.object, ppm

Examples

poi <- ppm(cells, ~1, Poisson())
coef(poi)
This is the log of the fitted intensity of the Poisson process

stra <- ppm(cells, ~1, Strauss(r=0.07))
coef(stra)

The two entries "(Intercept)" and "Interaction"
are respectively log(beta) and log(gamma)
in the usual notation for Strauss(beta, gamma, r)

coef.slrm Coefficients of Fitted Spatial Logistic Regression Model

Description

Extracts the coefficients (parameters) from a fitted Spatial Logistic Regression model.

Usage

S3 method for class 'slrm'
coef(object, ...)

Arguments

object a fitted spatial logistic regression model. An object of class "slrm".

... Ignored.

64 compareFit

Details

This is a method for coef for fitted spatial logistic regression models (objects of class "slrm",
usually obtained from the function slrm).

It extracts the fitted canonical parameters, i.e.\ the coefficients in the linear predictor of the spatial
logistic regression.

Value

Numeric vector of coefficients.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

slrm

Examples

X <- rpoispp(42)
fit <- slrm(X ~ x+y)
coef(fit)

compareFit Residual Diagnostics for Multiple Fitted Models

Description

Compares several fitted point process models using the same residual diagnostic.

Usage

compareFit(object, Fun, r = NULL, breaks = NULL, ...,
trend = ~1, interaction = Poisson(), rbord = NULL,
modelnames = NULL, same = NULL, different = NULL)

Arguments

object Object or objects to be analysed. Either a fitted point process model (object of
class "ppm"), a point pattern (object of class "ppp"), or a list of these objects.

Fun Diagnostic function to be computed for each model. One of the functions Kcom,
Kres, Gcom, Gres, psst, psstA or psstG or a string containing one of these
names.

r Optional. Vector of values of the argument r at which the diagnostic should be
computed. This argument is usually not specified. There is a sensible default.

compareFit 65

breaks Optional alternative to r for advanced use.

... Extra arguments passed to Fun.

trend, interaction, rbord
Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern or list of point patterns. See ppm for details. Each of
these arguments can be a list, specifying different trend, interaction and/or
rbord values to be used to generate different fitted models.

modelnames Character vector. Short descriptive names for the different models.

same, different Character strings or character vectors passed to collapse.fv to determine the
format of the output.

Details

This is a convenient way to collect diagnostic information for several different point process models
fitted to the same point pattern dataset, or for point process models of the same form fitted to several
different datasets, etc.

The first argument, object, is usually a list of fitted point process models (objects of class "ppm"),
obtained from the model-fitting function ppm.

For convenience, object can also be a list of point patterns (objects of class "ppp"). In that case,
point process models will be fitted to each of the point pattern datasets, by calling ppm using the
arguments trend (for the first order trend), interaction (for the interpoint interaction) and rbord
(for the erosion distance in the border correction for the pseudolikelihood). See ppm for details of
these arguments.

Alternatively object can be a single point pattern (object of class "ppp") and one or more of the
arguments trend, interaction or rbord can be a list. In this case, point process models will be
fitted to the same point pattern dataset, using each of the model specifications listed.

The diagnostic function Fun will be applied to each of the point process models. The results will be
collected into a single function value table. The modelnames are used to label the results from each
fitted model.

Value

Function value table (object of class "fv").

Author(s)

Ege Rubak <rubak@math.aau.dk>, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and
Jesper Møller.

See Also

ppm, Kcom, Kres, Gcom, Gres, psst, psstA, psstG, collapse.fv

66 Concom

Examples

nd <- 40

ilist <- list(Poisson(), Geyer(7, 2), Strauss(7))
iname <- c("Poisson", "Geyer", "Strauss")

K <- compareFit(swedishpines, Kcom, interaction=ilist, rbord=9,
correction="translate",
same="trans", different="tcom", modelnames=iname, nd=nd)

K

Concom The Connected Component Process Model

Description

Creates an instance of the Connected Component point process model which can then be fitted to
point pattern data.

Usage

Concom(r)

Arguments

r Threshold distance

Details

This function defines the interpoint interaction structure of a point process called the connected
component process. It can be used to fit this model to point pattern data.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The ap-
propriate description of the connected component interaction is yielded by the function Concom().
See the examples below.

In standard form, the connected component process (Baddeley and Møller, 1989) with disc radius
r, intensity parameter κ and interaction parameter γ is a point process with probability density

f(x1, . . . , xn) = ακn(x)γ−C(x)

for a point pattern x, where x1, . . . , xn represent the points of the pattern, n(x) is the number of
points in the pattern, and C(x) is defined below. Here α is a normalising constant.

To define the term C(x), suppose that we construct a planar graph by drawing an edge between each
pair of points xi, xj which are less than r units apart. Two points belong to the same connected
component of this graph if they are joined by a path in the graph. Then C(x) is the number of
connected components of the graph.

Concom 67

The interaction parameter γ can be any positive number. If γ = 1 then the model reduces to a
Poisson process with intensity κ. If γ < 1 then the process is regular, while if γ > 1 the process is
clustered. Thus, a connected-component interaction process can be used to model either clustered
or regular point patterns.

In spatstat, the model is parametrised in a different form, which is easier to interpret. In canonical
form, the probability density is rewritten as

f(x1, . . . , xn) = αβn(x)γ−U(x)

where β is the new intensity parameter and U(x) = C(x) − n(x) is the interaction potential. In
this formulation, each isolated point of the pattern contributes a factor β to the probability density
(so the first order trend is β). The quantity U(x) is a true interaction potential, in the sense that
U(x) = 0 if the point pattern x does not contain any points that lie close together.

When a new point u is added to an existing point pattern x, the rescaled potential −U(x) increases
by zero or a positive integer. The increase is zero if u is not close to any point of x. The increase is
a positive integer k if there are k different connected components of x that lie close to u. Addition
of the point u contributes a factor βηδ to the probability density, where δ is the increase in potential.

If desired, the original parameter κ can be recovered from the canonical parameter by κ = βγ.

The nonstationary connected component process is similar except that the contribution of each
individual point xi is a function β(xi) of location, rather than a constant beta.

Note the only argument of Concom() is the threshold distance r. When r is fixed, the model be-
comes an exponential family. The canonical parameters log(β) and log(γ) are estimated by ppm(),
not fixed in Concom().

Value

An object of class "interact" describing the interpoint interaction structure of the connected com-
ponent process with disc radius r.

Edge correction

The interaction distance of this process is infinite. There are no well-established procedures for
edge correction for fitting such models, and accordingly the model-fitting function ppm will give an
error message saying that the user must specify an edge correction. A reasonable solution is to use
the border correction at the same distance r, as shown in the Examples.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A.J. and Møller, J. (1989) Nearest-neighbour Markov point processes and random sets.
International Statistical Review 57, 89–121.

See Also

ppm, pairwise.family, ppm.object

68 data.ppm

Examples

prints a sensible description of itself
Concom(r=0.1)

Fit the stationary connected component process to redwood data
ppm(redwood ~1, Concom(r=0.07), rbord=0.07)

Fit the stationary connected component process to `cells' data
ppm(cells ~1, Concom(r=0.06), rbord=0.06)
eta=0 indicates hard core process.

Fit a nonstationary connected component model
with log-cubic polynomial trend

ppm(swedishpines ~polynom(x/10,y/10,3), Concom(r=7), rbord=7)

data.ppm Extract Original Data from a Fitted Point Process Model

Description

Given a fitted point process model, this function extracts the original point pattern dataset to which
the model was fitted.

Usage

data.ppm(object)

Arguments

object fitted point process model (an object of class "ppm").

Details

An object of class "ppm" represents a point process model that has been fitted to data. It is typically
produced by the model-fitting algorithm ppm. The object contains complete information about the
original data point pattern to which the model was fitted. This function extracts the original data
pattern.

See ppm.object for a list of all operations that can be performed on objects of class "ppm".

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

detpointprocfamilyfun 69

See Also

ppm.object, ppp.object

Examples

fit <- ppm(cells, ~1, Strauss(r=0.1))
X <- data.ppm(fit)
'X' is identical to 'cells'

detpointprocfamilyfun Construct a New Determinantal Point Process Model Family Function

Description

Function to ease the implementation of a new determinantal point process model family.

Usage

detpointprocfamilyfun(kernel = NULL,
specden = NULL, basis = "fourierbasis",
convkernel = NULL, Kfun = NULL, valid = NULL, intensity = NULL,
dim = 2, name = "User-defined", isotropic = TRUE, range = NULL,
parbounds = NULL, specdenrange = NULL, startpar = NULL, ...)

Arguments

kernel function specifying the kernel. May be set to NULL. See Details.

specden function specifying the spectral density. May be set to NULL. See Details.

basis character string giving the name of the basis. Defaults to the Fourier basis. See
Details.

convkernel function specifying the k-fold auto-convolution of the kernel. May be set to
NULL. See Details.

Kfun function specifying the K-function. May be set to NULL. See Details.

valid function determining whether a given set of parameter values yields a valid
model. May be set to NULL. See Examples.

intensity character string specifying which parameter is the intensity in the model family.
Should be NULL if the model family has no intensity parameter.

dim character strig specifying which parameter is the dimension of the state space
in this model family (if any). Alternatively a positive integer specifying the
dimension.

name character string giving the name of the model family used for printing.

isotropic logical value indicating whether or not the model is isotropic.

range function determining the interaction range of the model. May be set to NULL.
See Examples.

70 detpointprocfamilyfun

parbounds function determining the bounds for each model parameter when all other pa-
rameters are fixed. May be set to NULL. See Examples.

specdenrange function specifying the the range of the spectral density if it is finite (only the
case for very few models). May be set to NULL.

startpar function determining starting values for parameters in any estimation algorithm.
May be set to NULL. See Examples.

... Additional arguments for inclusion in the returned model object. These are not
checked in any way.

Details

A determinantal point process family is specified either in terms of a kernel (a positive semi-definite
function, i.e. a covariance function) or a spectral density, or preferably both. One of these can be
NULL if it is unknown, but not both. When both are supplied they must have the same arguments. The
first argument gives the values at which the function should be evaluated. In general the function
should accept an n by d matrix or data.frame specifying n(>= 0) points in dimension d. If the
model is isotropic it only needs to accept a non-negative valued numeric of length n. (In fact there
is currently almost no support for non-isotropic models, so it is recommended not to specify such a
model.) The name of this argument could be chosen freely, but x is recommended. The remaining
arguments are the parameters of the model. If one of these is an intensity parameter the name should
be mentioned in the argument intensity. If one of these specifies the dimension of the model it
should be mentioned in the argument dim.

The kernel and spectral density is with respect to a specific set of basis functions, which is typically
the Fourier basis. However this can be changed to any user-supplied basis in the argument basis.
If such an alternative is supplied it must be the name of a function expecting the same arguments as
fourierbasis and returning the results in the same form as fourierbasis.

If supplied, the arguments of convkernel must obey the following: first argument should be like
the first argument of kernel and/or specden (see above). The second argument (preferably called k)
should be the positive integer specifying how many times the auto-convolution is done (i.e. the k
in k-fold auto-convolution). The remaining arguments must agree with the arguments of kernel
and/or specden (see above).

If supplied, the arguments of Kfun should be like the arguments of kernel and specden (see above).

Value

A function in the R language, belonging to the class "detpointprocfamilyfun". The func-
tion has formal arguments ... and returns a determinantal point process family (object of class
"detpointprocfamily").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

Examples

Example of how to define the Gauss family
exGauss <- detpointprocfamilyfun(

detpointprocfamilyfun 71

name="Gaussian",
kernel=function(x, lambda, alpha, d){

lambda*exp(-(x/alpha)^2)
},
specden=function(x, lambda, alpha, d){

lambda * (sqrt(pi)*alpha)^d * exp(-(x*alpha*pi)^2)
},
convkernel=function(x, k, lambda, alpha, d){

logres <- k*log(lambda*pi*alpha^2) - log(pi*k*alpha^2) - x^2/(k*alpha^2)
return(exp(logres))

},
Kfun = function(x, lambda, alpha, d){

pi*x^2 - pi*alpha^2/2*(1-exp(-2*x^2/alpha^2))
},
valid=function(lambda, alpha, d){

lambda>0 && alpha>0 && d>=1 && lambda <= (sqrt(pi)*alpha)^(-d)
},
isotropic=TRUE,
intensity="lambda",
dim="d",
range=function(alpha, bound = .99){

if(missing(alpha))
stop("The parameter alpha is missing.")

if(!(is.numeric(bound)&&bound>0&&bound<1))
stop("Argument bound must be a numeric between 0 and 1.")

return(alpha*sqrt(-log(sqrt(1-bound))))
},
parbounds=function(name, lambda, alpha, d){

switch(name,
lambda = c(0, (sqrt(pi)*alpha)^(-d)),
alpha = c(0, lambda^(-1/d)/sqrt(pi)),
stop("Parameter name misspecified")
)

},
startpar=function(model, X){

rslt <- NULL
if("lambda" %in% model$freepar){

lambda <- intensity(X)
rslt <- c(rslt, "lambda" = lambda)
model <- update(model, lambda=lambda)

}
if("alpha" %in% model$freepar){

alpha <- .8*dppparbounds(model, "alpha")[2]
rslt <- c(rslt, "alpha" = alpha)

}
return(rslt)

}
)

exGauss
m <- exGauss(lambda=100, alpha=.05, d=2)
m

72 dfbetas.ppm

dfbetas.ppm Parameter Influence Measure

Description

Computes the deletion influence measure for each parameter in a fitted point process model.

Usage

S3 method for class 'ppm'
dfbetas(model, ...,

drop = FALSE, iScore=NULL, iHessian=NULL, iArgs=NULL)

Arguments

model Fitted point process model (object of class "ppm").

... Ignored, except for the arguments dimyx and eps which are passed to as.mask
to control the spatial resolution of the image of the density component.

drop Logical. Whether to include (drop=FALSE) or exclude (drop=TRUE) contribu-
tions from quadrature points that were not used to fit the model.

iScore, iHessian
Components of the score vector and Hessian matrix for the irregular parameters,
if required. See Details.

iArgs List of extra arguments for the functions iScore, iHessian if required.

Details

Given a fitted spatial point process model, this function computes the influence measure for each
parameter, as described in Baddeley, Chang and Song (2013) and Baddeley, Rubak and Turner
(2019).

This is a method for the generic function dfbetas.

The influence measure for each parameter θ is a signed measure in two-dimensional space. It
consists of a discrete mass on each data point (i.e. each point in the point pattern to which the
model was originally fitted) and a continuous density at all locations. The mass at a data point
represents the change in the fitted value of the parameter θ that would occur if this data point were
to be deleted. The density at other non-data locations represents the effect (on the fitted value of
θ) of deleting these locations (and their associated covariate values) from the input to the fitting
procedure.

If the point process model trend has irregular parameters that were fitted (using ippm) then the
influence calculation requires the first and second derivatives of the log trend with respect to the
irregular parameters. The argument iScore should be a list, with one entry for each irregular
parameter, of R functions that compute the partial derivatives of the log trend (i.e. log intensity or
log conditional intensity) with respect to each irregular parameter. The argument iHessian should
be a list, with p2 entries where p is the number of irregular parameters, of R functions that compute
the second order partial derivatives of the log trend with respect to each pair of irregular parameters.

dffit.ppm 73

Value

An object of class "msr" representing a signed or vector-valued measure. This object can be printed
and plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. and Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial
point process models. Scandinavian Journal of Statistics 40, 86–104.

Baddeley, A., Rubak, E. and Turner, R. (2019) Leverage and influence diagnostics for Gibbs spatial
point processes. Spatial Statistics 29, 15–48.

See Also

leverage.ppm, influence.ppm, ppmInfluence.

See msr for information on how to use a measure.

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)

plot(dfbetas(fit))
plot(Smooth(dfbetas(fit)))

dffit.ppm Case Deletion Effect Measure of Fitted Model

Description

Computes the case deletion effect measure DFFIT for a fitted model.

Usage

dffit(object, ...)

S3 method for class 'ppm'
dffit(object, ..., collapse = FALSE, dfb = NULL)

74 dffit.ppm

Arguments

object A fitted model, such as a point process model (object of class "ppm").

... Additional arguments passed to dfbetas.ppm.

collapse Logical value specifying whether to collapse the vector-valued measure to a
scalar-valued measure by adding all the components.

dfb Optional. The result of dfbetas(object), if it has already been computed.

Details

The case deletion effect measure DFFIT is a model diagnostic traditionally used for regression mod-
els. In that context, DFFIT[i,j] is the negative change, in the value of the jth term in the linear
predictor, that would occur if the ith data value was deleted. It is closely related to the diagnostic
DFBETA.

For a spatial point process model, dffit computes the analogous spatial case deletion diagnostic,
described in Baddeley, Rubak and Turner (2019).

Value

A measure (object of class "msr").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2019) Leverage and influence diagnostics for Gibbs spatial
point processes. Spatial Statistics 29, 15–48.

See Also

dfbetas.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)

plot(dffit(fit))
plot(dffit(fit, collapse=TRUE))

diagnose.ppm 75

diagnose.ppm Diagnostic Plots for Fitted Point Process Model

Description

Given a point process model fitted to a point pattern, produce diagnostic plots based on residuals.

Usage

diagnose.ppm(object, ..., type="raw", which="all", sigma=NULL,
rbord=reach(object), cumulative=TRUE,
plot.it=TRUE, rv = NULL,
compute.sd=is.poisson(object), compute.cts=TRUE,
envelope=FALSE, nsim=39, nrank=1,
typename, check=TRUE, repair=TRUE,
oldstyle=FALSE, splineargs=list(spar=0.5))

S3 method for class 'diagppm'
plot(x, ..., which,

plot.neg=c("image", "discrete", "contour", "imagecontour"),
plot.smooth=c("imagecontour", "image", "contour", "persp"),
plot.sd, spacing=0.1, outer=3,
srange=NULL, monochrome=FALSE, main=NULL)

Arguments

object The fitted point process model (an object of class "ppm") for which diagnostics
should be produced. This object is usually obtained from ppm.

type String indicating the type of residuals or weights to be used. Current options are
"eem" for the Stoyan-Grabarnik exponential energy weights, "raw" for the raw
residuals, "inverse" for the inverse-lambda residuals, and "pearson" for the
Pearson residuals. A partial match is adequate.

which Character string or vector indicating the choice(s) of plots to be generated. Op-
tions are "all", "marks", "smooth", "x", "y" and "sum". Multiple choices
may be given but must be matched exactly. See Details.

sigma Bandwidth for kernel smoother in "smooth" option.

rbord Width of border to avoid edge effects. The diagnostic calculations will be con-
fined to those points of the data pattern which are at least rbord units away from
the edge of the window. (An infinite value of rbord will be ignored.)

cumulative Logical flag indicating whether the lurking variable plots for the x and y coordi-
nates will be the plots of cumulative sums of marks (cumulative=TRUE) or the
plots of marginal integrals of the smoothed residual field (cumulative=FALSE).

plot.it Logical value indicating whether plots should be shown. If plot.it=FALSE, the
computed diagnostic quantities are returned without plotting them.

plot.neg String indicating how the density part of the residual measure should be plotted.

76 diagnose.ppm

plot.smooth String indicating how the smoothed residual field should be plotted.

compute.sd, plot.sd
Logical values indicating whether error bounds should be computed and added
to the "x" and "y" plots. The default is TRUE for Poisson models and FALSE for
non-Poisson models. See Details.

envelope, nsim, nrank
Arguments passed to lurking in order to plot simulation envelopes for the lurk-
ing variable plots.

rv Usually absent. Advanced use only. If this argument is present, the values of the
residuals will not be calculated from the fitted model object but will instead be
taken directly from rv.

spacing The spacing between plot panels (when a four-panel plot is generated) expressed
as a fraction of the width of the window of the point pattern.

outer The distance from the outermost line of text to the nearest plot panel, expressed
as a multiple of the spacing between plot panels.

srange Vector of length 2 that will be taken as giving the range of values of the smoothed
residual field, when generating an image plot of this field. This is useful if you
want to generate diagnostic plots for two different fitted models using the same
colour map.

monochrome Flag indicating whether images should be displayed in greyscale (suitable for
publication) or in colour (suitable for the screen). The default is to display in
colour.

check Logical value indicating whether to check the internal format of object. If
there is any possibility that this object has been restored from a dump file, or
has otherwise lost track of the environment where it was originally computed,
set check=TRUE.

repair Logical value indicating whether to repair the internal format of object, if it is
found to be damaged.

oldstyle Logical flag indicating whether error bounds should be plotted using the ap-
proximation given in the original paper (oldstyle=TRUE), or using the correct
asymptotic formula (oldstyle=FALSE).

splineargs Argument passed to lurking to control the smoothing in the lurking variable
plot.

x The value returned from a previous call to diagnose.ppm. An object of class
"diagppm".

typename String to be used as the name of the residuals.

main Main title for the plot.

... Extra arguments, controlling either the resolution of the smoothed image (passed
from diagnose.ppm to density.ppp) or the appearance of the plots (passed
from diagnose.ppm to plot.diagppm and from plot.diagppm to plot.default).

compute.cts Advanced use only.

diagnose.ppm 77

Details

The function diagnose.ppm generates several diagnostic plots for a fitted point process model. The
plots display the residuals from the fitted model (Baddeley et al, 2005) or alternatively the ‘exponen-
tial energy marks’ (Stoyan and Grabarnik, 1991). These plots can be used to assess goodness-of-fit,
to identify outliers in the data, and to reveal departures from the fitted model. See also the compan-
ion function qqplot.ppm.

The argument object must be a fitted point process model (object of class "ppm") typically pro-
duced by the maximum pseudolikelihood fitting algorithm ppm).

The argument type selects the type of residual or weight that will be computed. Current options
are:

"eem": exponential energy marks (Stoyan and Grabarnik, 1991) computed by eem. These are pos-
itive weights attached to the data points (i.e. the points of the point pattern dataset to which
the model was fitted). If the fitted model is correct, then the sum of these weights for all data
points in a spatial region B has expected value equal to the area of B. See eem for further
explanation.

"raw", "inverse" or "pearson": point process residuals (Baddeley et al, 2005) computed by the
function residuals.ppm. These are residuals attached both to the data points and to some
other points in the window of observation (namely, to the dummy points of the quadrature
scheme used to fit the model). If the fitted model is correct, then the sum of the residuals in a
spatial region B has mean zero. The options are

• "raw": the raw residuals;
• "inverse": the ‘inverse-lambda’ residuals, a counterpart of the exponential energy weights;
• "pearson": the Pearson residuals.

See residuals.ppm for further explanation.

The argument which selects the type of plot that is produced. Options are:

"marks": plot the residual measure. For the exponential energy weights (type="eem") this dis-
plays circles centred at the points of the data pattern, with radii proportional to the exponen-
tial energy weights. For the residuals (type="raw", type="inverse" or type="pearson")
this again displays circles centred at the points of the data pattern with radii proportional to
the (positive) residuals, while the plotting of the negative residuals depends on the argument
plot.neg. If plot.neg="image" then the negative part of the residual measure, which is a
density, is plotted as a colour image. If plot.neg="discrete" then the discretised negative
residuals (obtained by approximately integrating the negative density using the quadrature
scheme of the fitted model) are plotted as squares centred at the dummy points with side
lengths proportional to the (negative) residuals. [To control the size of the circles and squares,
use the argument maxsize.]

"smooth": plot a kernel-smoothed version of the residual measure. Each data or dummy point is
taken to have a ‘mass’ equal to its residual or exponential energy weight. (Note that residuals
can be negative). This point mass is then replaced by a bivariate isotropic Gaussian density
with standard deviation sigma. The value of the smoothed residual field at any point in the
window is the sum of these weighted densities. If the fitted model is correct, this smoothed
field should be flat, and its height should be close to 0 (for the residuals) or 1 (for the exponen-
tial energy weights). The field is plotted either as an image, contour plot or perspective view

78 diagnose.ppm

of a surface, according to the argument plot.smooth. The range of values of the smoothed
field is printed if the option which="sum" is also selected.

"x": produce a ‘lurking variable’ plot for the x coordinate. This is a plot of h(x) against x (solid
lines) and of E(h(x)) against x (dashed lines), where h(x) is defined below, and E(h(x))
denotes the expectation of h(x) assuming the fitted model is true.

• if cumulative=TRUE then h(x) is the cumulative sum of the weights or residuals for all
points which have X coordinate less than or equal to x. For the residuals E(h(x)) = 0,
and for the exponential energy weights E(h(x)) = area of the subset of the window to
the left of the line X = x.

• if cumulative=FALSE then h(x) is the marginal integral of the smoothed residual field
(see the case which="smooth" described above) on the x axis. This is approximately the
derivative of the plot for cumulative=TRUE. The value of h(x) is computed by summing
the values of the smoothed residual field over all pixels with the given x coordinate. For
the residuals E(h(x)) = 0, and for the exponential energy weights E(h(x)) = length of
the intersection between the observation window and the line X = x.

If plot.sd = TRUE, then superimposed on the lurking variable plot are the pointwise two-
standard-deviation error limits for h(x) calculated for the inhomogeneous Poisson process.
The default is plot.sd = TRUE for Poisson models and plot.sd = FALSE for non-Poisson
models.

"y": produce a similar lurking variable plot for the y coordinate.

"sum": print the sum of the weights or residuals for all points in the window (clipped by a margin
rbord if required) and the area of the same window. If the fitted model is correct the sum
of the exponential energy weights should equal the area of the window, while the sum of the
residuals should equal zero. Also print the range of values of the smoothed field displayed in
the "smooth" case.

"all": All four of the diagnostic plots listed above are plotted together in a two-by-two display.
Top left panel is "marks" plot. Bottom right panel is "smooth" plot. Bottom left panel is "x"
plot. Top right panel is "y" plot, rotated 90 degrees.

The argument rbord ensures there are no edge effects in the computation of the residuals. The
diagnostic calculations will be confined to those points of the data pattern which are at least rbord
units away from the edge of the window. The value of rbord should be greater than or equal to the
range of interaction permitted in the model.

By default, the two-standard-deviation limits are calculated from the exact formula for the asymp-
totic variance of the residuals under the asymptotic normal approximation, equation (37) of Bad-
deley et al (2006). However, for compatibility with the original paper of Baddeley et al (2005),
if oldstyle=TRUE, the two-standard-deviation limits are calculated using the innovation variance,
an over-estimate of the true variance of the residuals. (However, see the section about Replicated
Data).

The argument rv would normally be used only by experts. It enables the user to substitute arbitrary
values for the residuals or marks, overriding the usual calculations. If rv is present, then instead
of calculating the residuals from the fitted model, the algorithm takes the residuals from the object
rv, and plots them in the manner appropriate to the type of residual or mark selected by type. If
type ="eem" then rv should be similar to the return value of eem, namely, a numeric vector of
length equal to the number of points in the original data point pattern. Otherwise, rv should be
similar to the return value of residuals.ppm, that is, it should be an object of class "msr" (see
msr) representing a signed measure.

diagnose.ppm 79

The return value of diagnose.ppm is an object of class "diagppm". The plot method for this class
is documented here. There is also a print method. See the Examples.

In plot.diagppm, if a four-panel diagnostic plot is produced (the default), then the extra arguments
xlab, ylab, rlab determine the text labels for the x and y coordinates and the residuals, respec-
tively. The undocumented arguments col.neg and col.smooth control the colour maps used in the
top left and bottom right panels respectively.

See also the companion functions qqplot.ppm, which produces a Q-Q plot of the residuals, and
lurking, which produces lurking variable plots for any spatial covariate.

Value

An object of class "diagppm" which contains the coordinates needed to reproduce the selected
plots. This object can be plotted using plot.diagppm and printed using print.diagppm.

Replicated Data

Note that if object is a model that was obtained by first fitting a model to replicated point pattern
data using mppm and then using subfits to extract a model for one of the individual point patterns,
then the variance calculations are only implemented for the innovation variance (oldstyle=TRUE)
and this is the default in such cases.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

Stoyan, D. and Grabarnik, P. (1991) Second-order characteristics for stochastic structures connected
with Gibbs point processes. Mathematische Nachrichten, 151:95–100.

See Also

residuals.ppm, eem, ppm.object, qqplot.ppm, lurking, ppm

Examples

fit <- ppm(cells ~x, Strauss(r=0.15))
diagnose.ppm(fit)

diagnose.ppm(fit, type="pearson")

diagnose.ppm(fit, which="marks")

diagnose.ppm(fit, type="raw", plot.neg="discrete")

80 DiggleGatesStibbard

diagnose.ppm(fit, type="pearson", which="smooth")

save the diagnostics and plot them later
u <- diagnose.ppm(fit, rbord=0.15, plot.it=FALSE)
if(interactive()) {
plot(u)
plot(u, which="marks")
}

DiggleGatesStibbard Diggle-Gates-Stibbard Point Process Model

Description

Creates an instance of the Diggle-Gates-Stibbard point process model which can then be fitted to
point pattern data.

Usage

DiggleGatesStibbard(rho)

Arguments

rho Interaction range

Details

Diggle, Gates and Stibbard (1987) proposed a pairwise interaction point process in which each pair
of points separated by a distance d contributes a factor e(d) to the probability density, where

e(d) = sin2
(
πd

2ρ

)
for d < ρ, and e(d) is equal to 1 for d ≥ ρ.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the Diggle-Gates-Stibbard pairwise interaction is yielded by the function
DiggleGatesStibbard(). See the examples below.

Note that this model does not have any regular parameters (as explained in the section on Interaction
Parameters in the help file for ppm). The parameter ρ is not estimated by ppm.

Value

An object of class "interact" describing the interpoint interaction structure of the Diggle-Gates-
Stibbard process with interaction range rho.

DiggleGratton 81

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction
point processes. Biometrika 74, 763 – 770. Scandinavian Journal of Statistics 21, 359–373.

See Also

ppm, pairwise.family, DiggleGratton, rDGS, ppm.object

Examples

DiggleGatesStibbard(0.02)
prints a sensible description of itself

ppm(cells ~1, DiggleGatesStibbard(0.05))
fit the stationary D-G-S process to `cells'

ppm(cells ~ polynom(x,y,3), DiggleGatesStibbard(0.05))
fit a nonstationary D-G-S process
with log-cubic polynomial trend

DiggleGratton Diggle-Gratton model

Description

Creates an instance of the Diggle-Gratton pairwise interaction point process model, which can then
be fitted to point pattern data.

Usage

DiggleGratton(delta=NA, rho)

Arguments

delta lower threshold δ

rho upper threshold ρ

82 DiggleGratton

Details

Diggle and Gratton (1984, pages 208-210) introduced the pairwise interaction point process with
pair potential h(t) of the form

h(t) =

(
t− δ

ρ− δ

)κ

if δ ≤ t ≤ ρ

with h(t) = 0 for t < δ and h(t) = 1 for t > ρ. Here δ, ρ and κ are parameters.

Note that we use the symbol κ where Diggle and Gratton (1984) and Diggle, Gates and Stibbard
(1987) use β, since in spatstat we reserve the symbol β for an intensity parameter.

The parameters must all be nonnegative, and must satisfy δ ≤ ρ.

The potential is inhibitory, i.e.\ this model is only appropriate for regular point patterns. The strength
of inhibition increases with κ. For κ = 0 the model is a hard core process with hard core radius δ.
For κ = ∞ the model is a hard core process with hard core radius ρ.

The irregular parameters δ, ρ must be given in the call to DiggleGratton, while the regular param-
eter κ will be estimated.

If the lower threshold delta is missing or NA, it will be estimated from the data when ppm is called.
The estimated value of delta is the minimum nearest neighbour distance multiplied by n/(n+ 1),
where n is the number of data points.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

References

Diggle, P.J., Gates, D.J. and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction
point processes. Biometrika 74, 763 – 770.

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

See Also

ppm, ppm.object, Pairwise

Examples

ppm(cells ~1, DiggleGratton(0.05, 0.1))

dim.detpointprocfamily 83

dim.detpointprocfamily

Dimension of Determinantal Point Process Model

Description

Extracts the dimension of a determinantal point process model.

Usage

S3 method for class 'detpointprocfamily'
dim(x)

Arguments

x object of class "detpointprocfamily".

Value

A numeric (or NULL if the dimension of the model is unspecified).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

domain.ppm Extract the Domain of any Spatial Object

Description

Given a spatial object such as a point pattern, in any number of dimensions, this function extracts
the spatial domain in which the object is defined.

Usage

S3 method for class 'ppm'
domain(X, ..., from=c("points", "covariates"))

S3 method for class 'kppm'
domain(X, ..., from=c("points", "covariates"))

S3 method for class 'dppm'
domain(X, ..., from=c("points", "covariates"))

84 domain.ppm

S3 method for class 'slrm'
domain(X, ..., from=c("points", "covariates"))

S3 method for class 'msr'
domain(X, ...)

Arguments

X A spatial object such as a point pattern (in any number of dimensions), line
segment pattern or pixel image.

... Extra arguments. They are ignored by all the methods listed here.
from Character string. See Details.

Details

The function domain is generic.

For a spatial object X in any number of dimensions, domain(X) extracts the spatial domain in which
X is defined.

For a two-dimensional object X, typically domain(X) is the same as Window(X).

Exceptions occur for methods related to linear networks.

The argument from applies when X is a fitted point process model (object of class "ppm", "kppm"
or "dppm"). If from="data" (the default), domain extracts the window of the original point pattern
data to which the model was fitted. If from="covariates" then domain returns the window in
which the spatial covariates of the model were provided.

Value

A spatial object representing the domain of X. Typically a window (object of class "owin"), a three-
dimensional box ("box3"), a multidimensional box ("boxx") or a linear network ("linnet").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

domain, domain.quadratcount, domain.quadrattest, domain.rmhmodel, domain.lpp. Window,
Frame.

Examples

domain(ppm(redwood ~ 1))

dppapproxkernel 85

dppapproxkernel Approximate Determinantal Point Process Kernel

Description

Returns an approximation to the kernel of a determinantal point process, as a function of one argu-
ment x.

Usage

dppapproxkernel(model, trunc = 0.99, W = NULL)

Arguments

model Object of class "detpointprocfamily".

trunc Numeric specifying how the model truncation is performed. See Details section
of simulate.detpointprocfamily.

W Optional window – undocumented at the moment.

Value

A function

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

dppapproxpcf Approximate Pair Correlation Function of Determinantal Point Pro-
cess Model

Description

Returns an approximation to the theoretical pair correlation function of a determinantal point pro-
cess model, as a function of one argument x.

Usage

dppapproxpcf(model, trunc = 0.99, W = NULL)

86 dppBessel

Arguments

model Object of class "detpointprocfamily".

trunc Numeric value specifying how the model truncation is performed. See Details
section of simulate.detpointprocfamily.

W Optional window – undocumented at the moment.

Details

This function is usually NOT needed for anything. It only exists for investigative purposes.

Value

A function in the R language, with one numeric argument x, that returns the value of the approxi-
mate pair correlation at distances x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

Examples

f <- dppapproxpcf(dppMatern(lambda = 100, alpha=.028, nu=1, d=2))
plot(f, xlim = c(0,0.1))

dppBessel Bessel Type Determinantal Point Process Model

Description

Function generating an instance of the Bessel-type determinantal point process model.

Usage

dppBessel(...)

Arguments

... arguments of the form tag=value specifying the model parameters. See Details.

Details

The possible parameters are:

• the intensity lambda as a positive numeric

• the scale parameter alpha as a positive numeric

• the shape parameter sigma as a non-negative numeric

• the dimension d as a positive integer

dppCauchy 87

Value

An object of class "detpointprocfamily".

Author(s)

Frederic Lavancier and Christophe Biscio. Modified by Ege Rubak <rubak@math.aau.dk> , Adrian
Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

dppCauchy, dppGauss, dppMatern, dppPowerExp

Examples

m <- dppBessel(lambda=100, alpha=.05, sigma=0, d=2)

dppCauchy Generalized Cauchy Determinantal Point Process Model

Description

Function generating an instance of the (generalized) Cauchy determinantal point process model.

Usage

dppCauchy(...)

Arguments

... arguments of the form tag=value specifying the parameters. See Details.

Details

The (generalized) Cauchy DPP is defined in (Lavancier, Møller and Rubak, 2015) The possible
parameters are:

• the intensity lambda as a positive numeric

• the scale parameter alpha as a positive numeric

• the shape parameter nu as a positive numeric (artificially required to be less than 20 in the
code for numerical stability)

• the dimension d as a positive integer

Value

An object of class "detpointprocfamily".

88 dppeigen

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

References

Lavancier, F. Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference Journal of the Royal Statistical Society, Series B 77, 853–977.

See Also

dppBessel, dppGauss, dppMatern, dppPowerExp

Examples

m <- dppCauchy(lambda=100, alpha=.05, nu=1, d=2)

dppeigen Internal function calculating eig and index

Description

This function is mainly for internal package use and is usually not called by the user.

Usage

dppeigen(model, trunc, Wscale, stationary = FALSE)

Arguments

model object of class "detpointprocfamily"

trunc numeric giving the truncation

Wscale numeric giving the scale of the window relative to a unit box

stationary logical indicating whether the stationarity of the model should be used (only
works in dimension 2).

Value

A list

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

dppGauss 89

dppGauss Gaussian Determinantal Point Process Model

Description

Function generating an instance of the Gaussian determinantal point process model.

Usage

dppGauss(...)

Arguments

... arguments of the form tag=value specifying the parameters. See Details.

Details

The Gaussian DPP is defined in (Lavancier, Møller and Rubak, 2015) The possible parameters are:

• the intensity lambda as a positive numeric

• the scale parameter alpha as a positive numeric

• the dimension d as a positive integer

Value

An object of class "detpointprocfamily".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

References

Lavancier, F. Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference Journal of the Royal Statistical Society, Series B 77, 853–977.

See Also

dppBessel, dppCauchy, dppMatern, dppPowerExp

Examples

m <- dppGauss(lambda=100, alpha=.05, d=2)

90 dppm

dppkernel Extract Kernel from Determinantal Point Process Model Object

Description

Returns the kernel of a determinantal point process model as a function of one argument x.

Usage

dppkernel(model, ...)

Arguments

model Model of class "detpointprocfamily".

... Arguments passed to dppapproxkernel if the exact kernel is unknown

Value

A function

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

Examples

kernelMatern <- dppkernel(dppMatern(lambda = 100, alpha=.01, nu=1, d=2))
plot(kernelMatern, xlim = c(0,0.1))

dppm Fit Determinantal Point Process Model

Description

Fit a determinantal point process model to a point pattern.

dppm 91

Usage

dppm(formula, family, data=NULL,
...,
startpar = NULL,
method = c("mincon", "clik2", "palm", "adapcl"),
weightfun = NULL,
control = list(),
algorithm,
statistic = "K",
statargs = list(),
rmax = NULL,
epsilon = 0.01,
covfunargs = NULL,
use.gam = FALSE,
nd = NULL, eps = NULL)

Arguments

formula A formula in the R language specifying the data (on the left side) and the form
of the model to be fitted (on the right side). For a stationary model it suffices to
provide a point pattern without a formula. See Details.

family Information specifying the family of point processes to be used in the model.
Typically one of the family functions dppGauss, dppMatern, dppCauchy, dppBessel
or dppPowerExp. Alternatively a character string giving the name of a family
function, or the result of calling one of the family functions. See Details.

data The values of spatial covariates (other than the Cartesian coordinates) required
by the model. A named list of pixel images, functions, windows, tessellations
or numeric constants.

... Additional arguments. See Details.

startpar Named vector of starting parameter values for the optimization.

method The fitting method. Either "mincon" for minimum contrast, "clik2" for sec-
ond order composite likelihood, "adapcl" for adaptive second order composite
likelihood, or "palm" for Palm likelihood. Partially matched.

weightfun Optional weighting function w in the composite likelihoods or Palm likelihood.
A function in the R language. See Details.

control List of control parameters passed to the optimization function optim.

algorithm Character string determining the mathematical algorithm to be used to solve
the fitting problem. If method="mincon", "clik2" or "palm" this argument
is passed to the generic optimization function optim (renamed as the argument
method) with default "Nelder-Mead". If method="adapcl") the argument is
passed to the equation solver nleqslv, with default "Bryden".

statistic Name of the summary statistic to be used for minimum contrast estimation:
either "K" or "pcf".

statargs Optional list of arguments to be used when calculating the statistic. See
Details.

92 dppm

rmax Maximum value of interpoint distance to use in the composite likelihood.
epsilon Tuning parameter for the adaptive composite likelihood.
covfunargs, use.gam, nd, eps

Arguments passed to ppm when fitting the intensity.

Details

This function fits a determinantal point process model to a point pattern dataset as described in
Lavancier et al. (2015).

The model to be fitted is specified by the arguments formula and family.

The argument formula should normally be a formula in the R language. The left hand side of
the formula specifies the point pattern dataset to which the model should be fitted. This should be
a single argument which may be a point pattern (object of class "ppp") or a quadrature scheme
(object of class "quad"). The right hand side of the formula is called the trend and specifies the
form of the logarithm of the intensity of the process. Alternatively the argument formula may be a
point pattern or quadrature scheme, and the trend formula is taken to be ~1.

The argument family specifies the family of point processes to be used in the model. It is typically
one of the family functions dppGauss, dppMatern, dppCauchy, dppBessel or dppPowerExp. Alter-
natively it may be a character string giving the name of a family function, or the result of calling one
of the family functions. A family function belongs to class "detpointprocfamilyfun". The result
of calling a family function is a point process family, which belongs to class "detpointprocfamily".

The algorithm first estimates the intensity function of the point process using ppm. If the trend
formula is ~1 (the default if a point pattern or quadrature scheme is given rather than a "formula")
then the model is homogeneous. The algorithm begins by estimating the intensity as the number of
points divided by the area of the window. Otherwise, the model is inhomogeneous. The algorithm
begins by fitting a Poisson process with log intensity of the form specified by the formula trend.
(See ppm for further explanation).

The interaction parameters of the model are then fitted either by minimum contrast estimation, or
by a composite likelihood method (maximum composite likelihood, maximum Palm likelihood, or
by solving the adaptive composite likelihood estimating equation).

Minimum contrast: If method = "mincon" (the default) interaction parameters of the model will
be fitted by minimum contrast estimation, that is, by matching the theoretical K-function of
the model to the empirical K-function of the data, as explained in mincontrast.
For a homogeneous model (trend = ~1) the empirical K-function of the data is computed
using Kest, and the interaction parameters of the model are estimated by the method of mini-
mum contrast.
For an inhomogeneous model, the inhomogeneous K function is estimated by Kinhom using
the fitted intensity. Then the interaction parameters of the model are estimated by the method
of minimum contrast using the inhomogeneous K function. This two-step estimation proce-
dure is heavily inspired by Waagepetersen (2007).
If statistic="pcf" then instead of using the K-function, the algorithm will use the pair
correlation function pcf for homogeneous models and the inhomogeneous pair correlation
function pcfinhom for inhomogeneous models. In this case, the smoothing parameters of the
pair correlation can be controlled using the argument statargs, as shown in the Examples.
Additional arguments ... will be passed to clusterfit to control the minimum contrast
fitting algorithm.

dppm 93

Composite likelihood: If method = "clik2" the interaction parameters of the model will be fit-
ted by maximising the second-order composite likelihood (Guan, 2006). The log composite
likelihood is

∑
i,j

w(dij) log ρ(dij ; θ)−

∑
i,j

w(dij)

 log

∫
D

∫
D

w(∥u− v∥)ρ(∥u− v∥; θ) du dv

where the sums are taken over all pairs of data points xi, xj separated by a distance dij =
∥xi − xj∥ less than rmax, and the double integral is taken over all pairs of locations u, v in
the spatial window of the data. Here ρ(d; θ) is the pair correlation function of the model with
interaction parameters θ.
The function w in the composite likelihood is a weighting function and may be chosen arbi-
trarily. It is specified by the argument weightfun. If this is missing or NULL then the default
is a threshold weight function, w(d) = 1(d ≤ R), where R is rmax/2.

Palm likelihood: If method = "palm" the interaction parameters of the model will be fitted by
maximising the Palm loglikelihood (Tanaka et al, 2008)∑

i,j

w(xi, xj) log λP (xj | xi; θ)−
∫
D

w(xi, u)λP (u | xi; θ)du

with the same notation as above. Here λP (u|v; θ is the Palm intensity of the model at location
u given there is a point at v.

Adaptive Composite likelihood: If method = "cladap" the clustering parameters of the model
will be fitted by solving the adaptive second order composite likelihood estimating equation
(Lavancier et al, 2021). The estimating function is∑
u,v

w(ϵ
|g(0; θ)− 1|

g(∥u− v∥; θ)− 1
)
∇θg(∥u− v∥; θ)
g(∥u− v∥; θ)

−
∫
D

∫
D

w(ϵ
M(u, v; θ)

∇ θ
g(∥u−v∥; θ)ρ(u)ρ(v) du dv

where the sum is taken over all distinct pairs of points. Here g(d; θ) is the pair correlation
function with parameters θ. The partial derivative with respect to θ is g′(d; θ), and ρ(u)
denotes the fitted intensity function of the model.
The tuning parameter ϵ is independent of the data. It can be specified by the argument epsilon
and has default value 0.01.
The function w in the estimating function is a weighting function of bounded support [−1, 1].
It is specified by the argument weightfun. If this is missing or NULL then the default is
w(d) = 1(∥d∥ ≤ 1) exp(1/(r2 − 1)). The estimating equation is solved using the nonlinear
equation solver nleqslv from the package nleqslv. The package nleqslv must be installed in
order to use this option.

It is also possible to fix any parameters desired before the optimisation by specifying them as
name=value in the call to the family function. See Examples.

Value

An object of class "dppm" representing the fitted model. There are methods for printing, plotting,
predicting and simulating objects of this class.

94 dppm

Optimization algorithm

The following details allow greater control over the fitting procedure.

For the first three fitting methods (method="mincon", "clik2" and "palm"), the optimisation is
performed by the generic optimisation algorithm optim. The behaviour of this algorithm can be
modified using the arguments control and algorithm. Useful control arguments include trace,
maxit and abstol (documented in the help for optim).

For method="adapcl", the estimating equation is solved using the nonlinear equation solver nleqslv
from the package nleqslv. Arguments available for controlling the solver are documented in the help
for nleqslv; they include control, globStrat, startparm for the initial estimates and algorithm
for the method. The package nleqslv must be installed in order to use this option.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>. Adaptive composite likelihood method contributed by
Chiara Fend and modified by Adrian Baddeley.

References

Guan, Y. (2006) A composite likelihood approach in fitting spatial point process models. Journal
of the American Statistical Association 101, 1502–1512.

Lavancier, F., Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference. Journal of the Royal Statistical Society, Series B 77, 853–977.

Lavancier, F., Poinas, A., and Waagepetersen, R. (2021) Adaptive estimating function inference for
nonstationary determinantal point processes. Scandinavian Journal of Statistics, 48 (1), 87–107.

Tanaka, U., Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for Neyman-
Scott point processes. Biometrical Journal 50, 43–57.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

methods for dppm objects: plot.dppm, fitted.dppm, predict.dppm, simulate.dppm, methods.dppm,
as.ppm.dppm, Kmodel.dppm, pcfmodel.dppm.

Minimum contrast fitting algorithm: higher level interface clusterfit; low-level algorithm mincontrast.

Deterimantal point process models: dppGauss, dppMatern, dppCauchy, dppBessel, dppPowerExp,

Summary statistics: Kest, Kinhom, pcf, pcfinhom.

See also ppm

Examples

jpines <- residualspaper$Fig1

dppm(jpines ~ 1, dppGauss)

dppMatern 95

dppm(jpines ~ 1, dppGauss, method="c")
dppm(jpines ~ 1, dppGauss, method="p")
dppm(jpines ~ 1, dppGauss, method="a")

if(interactive()) {
Fixing the intensity at lambda=2 rather than the Poisson MLE 2.04:
dppm(jpines ~ 1, dppGauss(lambda=2))

The following is quite slow (using K-function)
dppm(jpines ~ x, dppMatern)

}

much faster using pair correlation function
dppm(jpines ~ x, dppMatern, statistic="pcf", statargs=list(stoyan=0.2))

Fixing the Matern shape parameter at nu=2 rather than estimating it:
dppm(jpines ~ x, dppMatern(nu=2))

dppMatern Whittle-Matern Determinantal Point Process Model

Description

Function generating an instance of the Whittle-Matérn determinantal point process model

Usage

dppMatern(...)

Arguments

... arguments of the form tag=value specifying the parameters. See Details.

Details

The Whittle-Matérn DPP is defined in (Lavancier, Møller and Rubak, 2015) The possible parame-
ters are:

• the intensity lambda as a positive numeric

• the scale parameter alpha as a positive numeric

• the shape parameter nu as a positive numeric (artificially required to be less than 20 in the
code for numerical stability)

• the dimension d as a positive integer

Value

An object of class "detpointprocfamily".

96 dppparbounds

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

References

Lavancier, F. Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference Journal of the Royal Statistical Society, Series B 77, 853–977.

See Also

dppBessel, dppCauchy, dppGauss, dppPowerExp

Examples

m <- dppMatern(lambda=100, alpha=.02, nu=1, d=2)

dppparbounds Parameter Bound for a Determinantal Point Process Model

Description

Returns the lower and upper bound for a specific parameter of a determinantal point process model
when all other parameters are fixed.

Usage

dppparbounds(model, name, ...)

Arguments

model Model of class "detpointprocfamily".

name name of the parameter for which the bound should be computed.

... Additional arguments passed to the parbounds function of the given model

Value

A data.frame containing lower and upper bounds.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

dppPowerExp 97

Examples

model <- dppMatern(lambda=100, alpha=.01, nu=1, d=2)
dppparbounds(model, "lambda")

dppPowerExp Power Exponential Spectral Determinantal Point Process Model

Description

Function generating an instance of the Power Exponential Spectral determinantal point process
model.

Usage

dppPowerExp(...)

Arguments

... arguments of the form tag=value specifying the parameters. See Details.

Details

The Power Exponential Spectral DPP is defined in (Lavancier, Møller and Rubak, 2015) The possi-
ble parameters are:

• the intensity lambda as a positive numeric

• the scale parameter alpha as a positive numeric

• the shape parameter nu as a positive numeric (artificially required to be less than 20 in the
code for numerical stability)

• the dimension d as a positive integer

Value

An object of class "detpointprocfamily".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

References

Lavancier, F. Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference Journal of the Royal Statistical Society, Series B 77, 853–977.

98 dppspecden

See Also

dppBessel, dppCauchy, dppGauss, dppMatern

Examples

m <- dppPowerExp(lambda=100, alpha=.01, nu=1, d=2)

dppspecden Extract Spectral Density from Determinantal Point Process Model Ob-
ject

Description

Returns the spectral density of a determinantal point process model as a function of one argument
x.

Usage

dppspecden(model)

Arguments

model Model of class "detpointprocfamily".

Value

A function

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

dppspecdenrange

Examples

model <- dppMatern(lambda = 100, alpha=.01, nu=1, d=2)
dppspecden(model)

dppspecdenrange 99

dppspecdenrange Range of Spectral Density of a Determinantal Point Process Model

Description

Computes the range of the spectral density of a determinantal point process model.

Usage

dppspecdenrange(model)

Arguments

model Model of class "detpointprocfamily".

Value

Numeric value (possibly Inf).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

dppspecden

Examples

m <- dppBessel(lambda=100, alpha=0.05, sigma=1, d=2)
dppspecdenrange(m)

dummify Convert Data to Numeric Values by Constructing Dummy Variables

Description

Converts data of any kind to numeric values. A factor is expanded to a set of dummy variables.

Usage

dummify(x)

100 dummy.ppm

Arguments

x Vector, factor, matrix or data frame to be converted.

Details

This function converts data (such as a factor) to numeric values in order that the user may calculate,
for example, the mean, variance, covariance and correlation of the data.

If x is a numeric vector or integer vector, it is returned unchanged.

If x is a logical vector, it is converted to a 0-1 matrix with 2 columns. The first column contains a 1
if the logical value is FALSE, and the second column contains a 1 if the logical value is TRUE.

If x is a complex vector, it is converted to a matrix with 2 columns, containing the real and imaginary
parts.

If x is a factor, the result is a matrix of 0-1 dummy variables. The matrix has one column for each
possible level of the factor. The (i,j) entry is equal to 1 when the ith factor value equals the jth
level, and is equal to 0 otherwise.

If x is a matrix or data frame, the appropriate conversion is applied to each column of x.

Note that, unlike model.matrix, this command converts a factor into a full set of dummy variables
(one column for each level of the factor).

Value

A numeric matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Examples

chara <- sample(letters[1:3], 8, replace=TRUE)
logi <- (runif(8) < 0.3)
comp <- round(4*runif(8) + 3*runif(8) * 1i, 1)
nume <- 8:1 + 0.1
df <- data.frame(nume, chara, logi, comp)
df
dummify(df)

dummy.ppm Extract Dummy Points Used to Fit a Point Process Model

Description

Given a fitted point process model, this function extracts the ‘dummy points’ of the quadrature
scheme used to fit the model.

dummy.ppm 101

Usage

dummy.ppm(object, drop=FALSE)

Arguments

object fitted point process model (an object of class "ppm").

drop Logical value determining whether to delete dummy points that were not used
to fit the model.

Details

An object of class "ppm" represents a point process model that has been fitted to data. It is typically
produced by the model-fitting algorithm ppm.

The maximum pseudolikelihood algorithm in ppm approximates the pseudolikelihood integral by
a sum over a finite set of quadrature points, which is constructed by augmenting the original data
point pattern by a set of “dummy” points. The fitted model object returned by ppm contains complete
information about this quadrature scheme. See ppm or ppm.object for further information.

This function dummy.ppm extracts the dummy points of the quadrature scheme. A typical use of this
function would be to count the number of dummy points, to gauge the accuracy of the approximation
to the exact pseudolikelihood.

It may happen that some dummy points are not actually used in fitting the model (typically because
the value of a covariate is NA at these points). The argument drop specifies whether these unused
dummy points shall be deleted (drop=TRUE) or retained (drop=FALSE) in the return value.

See ppm.object for a list of all operations that can be performed on objects of class "ppm".

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

ppm.object, ppp.object, ppm

Examples

fit <- ppm(cells, ~1, Strauss(r=0.1))
X <- dummy.ppm(fit)
npoints(X)
this is the number of dummy points in the quadrature scheme

102 eem

eem Exponential Energy Marks

Description

Given a point process model fitted to a point pattern, compute the Stoyan-Grabarnik diagnostic
“exponential energy marks” for the data points.

Usage

eem(fit, ...)

S3 method for class 'ppm'
eem(fit, check=TRUE, ...)

S3 method for class 'slrm'
eem(fit, check=TRUE, ...)

Arguments

fit The fitted point process model. An object of class "ppm".

check Logical value indicating whether to check the internal format of fit. If there
is any possibility that this object has been restored from a dump file, or has
otherwise lost track of the environment where it was originally computed, set
check=TRUE.

... Ignored.

Details

Stoyan and Grabarnik (1991) proposed a diagnostic tool for point process models fitted to spatial
point pattern data. Each point xi of the data pattern X is given a ‘mark’ or ‘weight’

mi =
1

λ̂(xi, X)

where λ̂(xi, X) is the conditional intensity of the fitted model. If the fitted model is correct, then
the sum of these marks for all points in a region B has expected value equal to the area of B.

The argument fit must be a fitted point process model (object of class "ppm" or "slrm"). Such
objects are produced by the fitting algorithms ppm) and slrm. This fitted model object contains
complete information about the original data pattern and the model that was fitted to it.

The value returned by eem is the vector of weightsm[i] associated with the points x[i] of the original
data pattern. The original data pattern (in corresponding order) can be extracted from fit using
response.

The function diagnose.ppm produces a set of sensible diagnostic plots based on these weights.

effectfun 103

Value

A vector containing the values of the exponential energy mark for each point in the pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Stoyan, D. and Grabarnik, P. (1991) Second-order characteristics for stochastic structures connected
with Gibbs point processes. Mathematische Nachrichten, 151:95–100.

See Also

diagnose.ppm, ppm.object, data.ppm, residuals.ppm, ppm

Examples

fit <- ppm(cells ~x, Strauss(r=0.15))
ee <- eem(fit)
sum(ee)/area(Window(cells)) # should be about 1 if model is correct
Y <- setmarks(cells, ee)
plot(Y, main="Cells data\n Exponential energy marks")

effectfun Compute Fitted Effect of a Spatial Covariate in a Point Process Model

Description

Compute the trend or intensity of a fitted point process model as a function of one of its covariates.

Usage

effectfun(model, covname, ..., se.fit=FALSE, nvalues=256)

Arguments

model A fitted point process model (object of class "ppm", "kppm", "lppm", "dppm",
"rppm" or "profilepl").

covname The name of the covariate. A character string. (Needed only if the model has
more than one covariate.)

... The fixed values of other covariates (in the form name=value) if required.

se.fit Logical. If TRUE, asymptotic standard errors of the estimates will be computed,
together with a 95% confidence interval.

nvalues Integer. The number of values of the covariate (if it is numeric) for which the
effect function should be evaluated. We recommend at least 256.

104 effectfun

Details

The object model should be an object of class "ppm", "kppm", "lppm", "dppm", "rppm" or "profilepl"
representing a point process model fitted to point pattern data.

The model’s trend formula should involve a spatial covariate named covname. This could be "x"
or "y" representing one of the Cartesian coordinates. More commonly the covariate is another,
external variable that was supplied when fitting the model.

The command effectfun computes the fitted trend of the point process model as a function of the
covariate named covname. The return value can be plotted immediately, giving a plot of the fitted
trend against the value of the covariate.

If the model also involves covariates other than covname, then these covariates will be held fixed.
Values for these other covariates must be provided as arguments to effectfun in the form name=value.

If se.fit=TRUE, the algorithm also calculates the asymptotic standard error of the fitted trend, and
a (pointwise) asymptotic 95% confidence interval for the true trend.

This command is just a wrapper for the prediction method predict.ppm. For more complicated
computations about the fitted intensity, use predict.ppm.

Value

A data frame containing a column of values of the covariate and a column of values of the fitted
trend. If se.fit=TRUE, there are 3 additional columns containing the standard error and the upper
and lower limits of a confidence interval.

If the covariate named covname is numeric (rather than a factor or logical variable), the return value
is also of class "fv" so that it can be plotted immediately.

Trend and intensity

For a Poisson point process model, the trend is the same as the intensity of the point process. For
a more general Gibbs model, the trend is the first order potential in the model (the first order term
in the Gibbs representation). In Poisson or Gibbs models fitted by ppm, the trend is the only part of
the model that depends on the covariates.

Determinantal point process models with fixed intensity

The function dppm which fits a determinantal point process model allows the user to specify the
intensity lambda. In such cases the effect function is undefined, and effectfun stops with an error
message.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

ppm, predict.ppm, fv.object

emend 105

Examples

X <- copper$SouthPoints
D <- distfun(copper$SouthLines)
fit <- ppm(X ~ polynom(D, 5))
effectfun(fit)
plot(effectfun(fit, se.fit=TRUE))

fitx <- ppm(X ~ x + polynom(D, 5))
plot(effectfun(fitx, "D", x=20))

emend Force Model to be Valid

Description

Check whether a model is valid, and if not, find the nearest model which is valid.

Usage

emend(object, ...)

Arguments

object A statistical model, belonging to some class.

... Arguments passed to methods.

Details

The function emend is generic, and has methods for several classes of statistical models in the
spatstat package (mostly point process models). Its purpose is to check whether a given model is
valid (for example, that none of the model parameters are NA) and, if not, to find the nearest model
which is valid.

See the methods for more information.

Value

Another model of the same kind.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

emend.ppm, valid.

106 emend.ppm

emend.ppm Force Point Process Model to be Valid

Description

Ensures that a fitted point process model satisfies the integrability conditions for existence of the
point process.

Usage

project.ppm(object, ..., fatal=FALSE, trace=FALSE)

S3 method for class 'ppm'
emend(object, ..., fatal=FALSE, trace=FALSE)

Arguments

object Fitted point process model (object of class "ppm").

... Ignored.

fatal Logical value indicating whether to generate an error if the model cannot be
projected to a valid model.

trace Logical value indicating whether to print a trace of the decision process.

Details

The functions emend.ppm and project.ppm are identical: emend.ppm is a method for the generic
emend, while project.ppm is an older name for the same function.

The purpose of the function is to ensure that a fitted model is valid.

The model-fitting function ppm fits Gibbs point process models to point pattern data. By default, the
fitted model returned by ppm may not actually exist as a point process.

First, some of the fitted coefficients of the model may be NA or infinite values. This usually occurs
when the data are insufficient to estimate all the parameters. The model is said to be unidentifiable
or confounded.

Second, unlike a regression model, which is well-defined for any finite values of the fitted regression
coefficients, a Gibbs point process model is only well-defined if the fitted interaction parameters
satisfy some constraints. A famous example is the Strauss process (see Strauss) which exists only
when the interaction parameter γ is less than or equal to 1. For values γ > 1, the probability density
is not integrable and the process does not exist (and cannot be simulated).

By default, ppm does not enforce the constraint that a fitted Strauss process (for example) must
satisfy γ ≤ 1. This is because a fitted parameter value of γ > 1 could be useful information for data
analysis, as it indicates that the Strauss model is not appropriate, and suggests a clustered model
should be fitted.

The function emend.ppm or project.ppm modifies the model object so that the model is valid.
It identifies the terms in the model object that are associated with illegal parameter values (i.e.

emend.slrm 107

parameter values which are either NA, infinite, or outside their permitted range). It considers all
possible sub-models of object obtained by deleting one or more of these terms. It identifies which
of these submodels are valid, and chooses the valid submodel with the largest pseudolikelihood.
The result of emend.ppm or project.ppm is the true maximum pseudolikelihood fit to the data.

For large datasets or complex models, the algorithm used in emend.ppm or project.ppm may be
time-consuming, because it takes time to compute all the sub-models. A faster, approximate algo-
rithm can be applied by setting spatstat.options(project.fast=TRUE). This produces a valid
submodel, which may not be the maximum pseudolikelihood submodel.

Use the function valid.ppm to check whether a fitted model object specifies a well-defined point
process.

Use the expression all(is.finite(coef(object))) to determine whether all parameters are
identifiable.

Value

Another point process model (object of class "ppm").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

ppm, valid.ppm, emend, spatstat.options

Examples

fit <- ppm(redwood ~1, Strauss(0.1))
coef(fit)
fit2 <- emend(fit)
coef(fit2)

emend.slrm Force Spatial Logistic Regression Model to be Valid

Description

Ensures that a fitted spatial logistic regression specifies a well-defined model.

Usage

S3 method for class 'slrm'
emend(object, ..., fatal=FALSE, trace=FALSE)

108 emend.slrm

Arguments

object Fitted point process model (object of class "slrm").
... Ignored.
fatal Logical value indicating whether to generate an error if the model cannot be

projected to a valid model.
trace Logical value indicating whether to print a trace of the decision process.

Details

emend.slrm is a method for the generic emend,

The purpose of the function is to ensure that a fitted model is valid.

The model-fitting function slrm fits spatial logistic regression models to point pattern data.

In some circumstances, the fitted model returned by slrm may not specify a well-defined model,
because some of the fitted coefficients of the model may be NA or infinite values. This usually occurs
when the data are insufficient to estimate all the parameters. The model is said to be unidentifiable
or confounded.

The function emend.slrm modifies the model object so that the model is valid. It identifies the
terms in the model object that are associated with illegal parameter values (i.e. parameter values
which are either NA, infinite, or outside their permitted range). It considers all possible sub-models
of object obtained by deleting one or more of these terms. It identifies which of these submod-
els are valid, and chooses the valid submodel with the largest pseudolikelihood. The result of
emend.slrm or project.slrm is the true maximum pseudolikelihood fit to the data.

For large datasets or complex models, the algorithm used in emend.slrm may be time-consuming,
because it takes time to compute all the sub-models. A faster, approximate algorithm can be applied
by setting spatstat.options(project.fast=TRUE). This produces a valid submodel, which may
not be the maximum likelihood submodel.

Use the function valid.slrm to check whether a fitted model object specifies a well-defined model.

Value

Another point process model (object of class "slrm").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

slrm, valid.slrm, emend, spatstat.options

Examples

fit <- slrm(redwood ~ x + I(x))
coef(fit)
fit2 <- emend(fit)
coef(fit2)

envelope.ppm 109

envelope.ppm Simulation Envelopes of Summary Function

Description

Computes simulation envelopes of a summary function.

Usage

S3 method for class 'ppm'
envelope(Y, fun=Kest, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs,
simulate=NULL, fix.n=FALSE, fix.marks=FALSE,
verbose=TRUE, clipdata=TRUE,
start=NULL, control=update(default.rmhcontrol(Y), nrep=nrep), nrep=1e5,
transform=NULL, global=FALSE, ginterval=NULL, use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

S3 method for class 'kppm'
envelope(Y, fun=Kest, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs,
simulate=NULL,
verbose=TRUE, clipdata=TRUE,
transform=NULL, global=FALSE, ginterval=NULL, use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

S3 method for class 'slrm'
envelope(Y, fun=Kest, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs,
simulate=NULL,
verbose=TRUE, clipdata=TRUE,
transform=NULL, global=FALSE, ginterval=NULL, use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,

110 envelope.ppm

maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

Arguments

Y Object containing point pattern data. A point pattern (object of class "ppp") or
a fitted point process model (object of class "ppm", "kppm" or "slrm").

fun Function that computes the desired summary statistic for a point pattern.

nsim Number of simulated point patterns to be generated when computing the en-
velopes.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

... Extra arguments passed to fun.

funargs A list, containing extra arguments to be passed to fun.

funYargs Optional. A list, containing extra arguments to be passed to fun when applied
to the original data Y only.

simulate Optional. Specifies how to generate the simulated point patterns. If simulate
is an expression in the R language, then this expression will be evaluated nsim
times, to obtain nsim point patterns which are taken as the simulated patterns
from which the envelopes are computed. If simulate is a function, then this
function will be repeatedly applied to the data pattern Y to obtain nsim simulated
patterns. If simulate is a list of point patterns, then the entries in this list will
be treated as the simulated patterns from which the envelopes are computed.
Alternatively simulate may be an object produced by the envelope command:
see Details.

fix.n Logical. If TRUE, simulated patterns will have the same number of points as the
original data pattern. This option is currently not available for envelope.kppm.

fix.marks Logical. If TRUE, simulated patterns will have the same number of points and the
same marks as the original data pattern. In a multitype point pattern this means
that the simulated patterns will have the same number of points of each type as
the original data. This option is currently not available for envelope.kppm.

verbose Logical flag indicating whether to print progress reports during the simulations.

clipdata Logical flag indicating whether the data point pattern should be clipped to the
same window as the simulated patterns, before the summary function for the data
is computed. This should usually be TRUE to ensure that the data and simulations
are properly comparable.

start, control Optional. These specify the arguments start and control of rmh, giving com-
plete control over the simulation algorithm. Applicable only when Y is a fitted
model of class "ppm".

nrep Number of iterations in the Metropolis-Hastings simulation algorithm. Applica-
ble only when Y is a fitted model of class "ppm".

transform Optional. A transformation to be applied to the function values, before the en-
velopes are computed. An expression object (see Details).

global Logical flag indicating whether envelopes should be pointwise (global=FALSE)
or simultaneous (global=TRUE).

envelope.ppm 111

ginterval Optional. A vector of length 2 specifying the interval of r values for the simul-
taneous critical envelopes. Only relevant if global=TRUE.

use.theory Logical value indicating whether to use the theoretical value, computed by fun,
as the reference value for simultaneous envelopes. Applicable only when global=TRUE.
Default is use.theory=TRUE if Y is a point pattern, or a point process model
equivalent to Complete Spatial Randomness, and use.theory=FALSE other-
wise.

alternative Character string determining whether the envelope corresponds to a two-sided
test (side="two.sided", the default) or a one-sided test with a lower critical
boundary (side="less") or a one-sided test with an upper critical boundary
(side="greater").

scale Optional. Scaling function for global envelopes. A function in the R language
which determines the relative scale of deviations, as a function of distance r,
when computing the global envelopes. Applicable only when global=TRUE.
Summary function values for distance r will be divided by scale(r) before
the maximum deviation is computed. The resulting global envelopes will have
width proportional to scale(r).

clamp Logical value indicating how to compute envelopes when alternative="less"
or alternative="greater". Deviations of the observed summary function
from the theoretical summary function are initially evaluated as signed real
numbers, with large positive values indicating consistency with the alternative
hypothesis. If clamp=FALSE (the default), these values are not changed. If
clamp=TRUE, any negative values are replaced by zero.

savefuns Logical flag indicating whether to save all the simulated function values.

savepatterns Logical flag indicating whether to save all the simulated point patterns.

nsim2 Number of extra simulated point patterns to be generated if it is necessary to
use simulation to estimate the theoretical mean of the summary function. Only
relevant when global=TRUE and the simulations are not based on CSR.

VARIANCE Logical. If TRUE, critical envelopes will be calculated as sample mean plus or
minus nSD times sample standard deviation.

nSD Number of estimated standard deviations used to determine the critical envelopes,
if VARIANCE=TRUE.

Yname Character string that should be used as the name of the data point pattern Y when
printing or plotting the results.

maxnerr Maximum number of rejected patterns. If fun yields a fatal error when applied
to a simulated point pattern (for example, because the pattern is empty and fun
requires at least one point), the pattern will be rejected and a new random point
pattern will be generated. If this happens more than maxnerr times, the algo-
rithm will give up.

rejectNA Logical value specifying whether to reject a simulated pattern if the resulting
values of fun are all equal to NA, NaN or infinite. If FALSE (the default), then
simulated patterns are only rejected when fun gives a fatal error.

silent Logical value specifying whether to print a report each time a simulated pattern
is rejected.

112 envelope.ppm

do.pwrong Logical. If TRUE, the algorithm will also estimate the true significance level of
the “wrong” test (the test that declares the summary function for the data to be
significant if it lies outside the pointwise critical boundary at any point). This
estimate is printed when the result is printed.

envir.simul Environment in which to evaluate the expression simulate, if not the current
environment.

Details

The envelope command performs simulations and computes envelopes of a summary statistic
based on the simulations. The result is an object that can be plotted to display the envelopes.
The envelopes can be used to assess the goodness-of-fit of a point process model to point pattern
data.

For the most basic use, if you have a point pattern X and you want to test Complete Spatial Random-
ness (CSR), type plot(envelope(X, Kest,nsim=39)) to see the K function for X plotted together
with the envelopes of the K function for 39 simulations of CSR.

The envelope function is generic, with methods for the classes "ppp", "ppm", "kppm" and "slrm"
described here. There are also methods for the classes "pp3", "lpp" and "lppm" which are de-
scribed separately under envelope.pp3 and envelope.lpp. Envelopes can also be computed from
other envelopes, using envelope.envelope.

To create simulation envelopes, the command envelope(Y, ...) first generates nsim random point
patterns in one of the following ways.

• If Y is a point pattern (an object of class "ppp") and simulate=NULL, then we generate nsim
simulations of Complete Spatial Randomness (i.e. nsim simulated point patterns each being
a realisation of the uniform Poisson point process) with the same intensity as the pattern
Y. (If Y is a multitype point pattern, then the simulated patterns are also given independent
random marks; the probability distribution of the random marks is determined by the relative
frequencies of marks in Y.)

• If Y is a fitted point process model (an object of class "ppm" or "kppm" or "slrm") and
simulate=NULL, then this routine generates nsim simulated realisations of that model.

• If simulate is supplied, then it determines how the simulated point patterns are generated. It
may be either

– an expression in the R language, typically containing a call to a random generator. This
expression will be evaluated nsim times to yield nsim point patterns. For example if
simulate=expression(runifpoint(100)) then each simulated pattern consists of ex-
actly 100 independent uniform random points.

– a function in the R language, typically containing a call to a random generator. This
function will be applied repeatedly to the original data pattern Y to yield nsim point pat-
terns. For example if simulate=rlabel then each simulated pattern was generated by
evaluating rlabel(Y) and consists of a randomly-relabelled version of Y.

– a list of point patterns. The entries in this list will be taken as the simulated patterns.
– an object of class "envelope". This should have been produced by calling envelope

with the argument savepatterns=TRUE. The simulated point patterns that were saved in
this object will be extracted and used as the simulated patterns for the new envelope com-
putation. This makes it possible to plot envelopes for two different summary functions
based on exactly the same set of simulated point patterns.

envelope.ppm 113

The summary statistic fun is applied to each of these simulated patterns. Typically fun is one of
the functions Kest, Gest, Fest, Jest, pcf, Kcross, Kdot, Gcross, Gdot, Jcross, Jdot, Kmulti,
Gmulti, Jmulti or Kinhom. It may also be a character string containing the name of one of these
functions.

The statistic fun can also be a user-supplied function; if so, then it must have arguments X and r
like those in the functions listed above, and it must return an object of class "fv".

Upper and lower critical envelopes are computed in one of the following ways:

pointwise: by default, envelopes are calculated pointwise (i.e. for each value of the distance ar-
gument r), by sorting the nsim simulated values, and taking the m-th lowest and m-th highest
values, where m = nrank. For example if nrank=1, the upper and lower envelopes are the
pointwise maximum and minimum of the simulated values.
The pointwise envelopes are not “confidence bands” for the true value of the function! Rather,
they specify the critical points for a Monte Carlo test (Ripley, 1981). The test is constructed
by choosing a fixed value of r, and rejecting the null hypothesis if the observed function value
lies outside the envelope at this value of r. This test has exact significance level alpha = 2 *
nrank/(1 + nsim).

simultaneous: if global=TRUE, then the envelopes are determined as follows. First we calculate
the theoretical mean value of the summary statistic (if we are testing CSR, the theoretical value
is supplied by fun; otherwise we perform a separate set of nsim2 simulations, compute the av-
erage of all these simulated values, and take this average as an estimate of the theoretical mean
value). Then, for each simulation, we compare the simulated curve to the theoretical curve,
and compute the maximum absolute difference between them (over the interval of r values
specified by ginterval). This gives a deviation value di for each of the nsim simulations.
Finally we take the m-th largest of the deviation values, where m=nrank, and call this dcrit.
Then the simultaneous envelopes are of the form lo = expected - dcrit and hi = expected
+ dcrit where expected is either the theoretical mean value theo (if we are testing CSR)
or the estimated theoretical value mmean (if we are testing another model). The simultaneous
critical envelopes have constant width 2 * dcrit.
The simultaneous critical envelopes allow us to perform a different Monte Carlo test (Ripley,
1981). The test rejects the null hypothesis if the graph of the observed function lies outside the
envelope at any value of r. This test has exact significance level alpha = nrank/(1 + nsim).
This test can also be performed using mad.test.

based on sample moments: if VARIANCE=TRUE, the algorithm calculates the (pointwise) sample
mean and sample variance of the simulated functions. Then the envelopes are computed as
mean plus or minus nSD standard deviations. These envelopes do not have an exact signif-
icance interpretation. They are a naive approximation to the critical points of the Neyman-
Pearson test assuming the summary statistic is approximately Normally distributed.

The return value is an object of class "fv" containing the summary function for the data point
pattern, the upper and lower simulation envelopes, and the theoretical expected value (exact or esti-
mated) of the summary function for the model being tested. It can be plotted using plot.envelope.

If VARIANCE=TRUE then the return value also includes the sample mean, sample variance and other
quantities.

Arguments can be passed to the function fun through This means that you simply specify
these arguments in the call to envelope, and they will be passed to fun. In particular, the argument

114 envelope.ppm

correction determines the edge correction to be used to calculate the summary statistic. See the
section on Edge Corrections, and the Examples.

Arguments can also be passed to the function fun through the list funargs. This mechanism is typ-
ically used if an argument of fun has the same name as an argument of envelope. The list funargs
should contain entries of the form name=value, where each name is the name of an argument of
fun.

There is also an option, rarely used, in which different function arguments are used when computing
the summary function for the data Y and for the simulated patterns. If funYargs is given, it will
be used when the summary function for the data Y is computed, while funargs will be used when
computing the summary function for the simulated patterns. This option is only needed in rare
cases: usually the basic principle requires that the data and simulated patterns must be treated
equally, so that funargs and funYargs should be identical.

If Y is a fitted cluster point process model (object of class "kppm"), and simulate=NULL, then the
model is simulated directly using simulate.kppm.

If Y is a fitted Gibbs point process model (object of class "ppm"), and simulate=NULL, then the
model is simulated by running the Metropolis-Hastings algorithm rmh. Complete control over this
algorithm is provided by the arguments start and control which are passed to rmh.

For simultaneous critical envelopes (global=TRUE) the following options are also useful:

ginterval determines the interval of r values over which the deviation between curves is cal-
culated. It should be a numeric vector of length 2. There is a sensible default (namely, the
recommended plotting interval for fun(X), or the range of r values if r is explicitly specified).

transform specifies a transformation of the summary function fun that will be carried out before
the deviations are computed. Such transforms are useful if global=TRUE or VARIANCE=TRUE.
The transform must be an expression object using the symbol . to represent the function
value (and possibly other symbols recognised by with.fv). For example, the conventional
way to normalise the K function (Ripley, 1981) is to transform it to the L function L(r) =√
K(r)/π and this is implemented by setting transform=expression(sqrt(./pi)).

It is also possible to extract the summary functions for each of the individual simulated point pat-
terns, by setting savefuns=TRUE. Then the return value also has an attribute "simfuns" containing
all the summary functions for the individual simulated patterns. It is an "fv" object containing
functions named sim1, sim2, ... representing the nsim summary functions.

It is also possible to save the simulated point patterns themselves, by setting savepatterns=TRUE.
Then the return value also has an attribute "simpatterns" which is a list of length nsim containing
all the simulated point patterns.

See plot.envelope and plot.fv for information about how to plot the envelopes.

Different envelopes can be recomputed from the same data using envelope.envelope. Envelopes
can be combined using pool.envelope.

Value

An object of class "envelope" and "fv", see fv.object, which can be printed and plotted directly.

Essentially a data frame containing columns

r the vector of values of the argument r at which the summary function fun has
been estimated

envelope.ppm 115

obs values of the summary function for the data point pattern

lo lower envelope of simulations

hi upper envelope of simulations

and either

theo theoretical value of the summary function under CSR (Complete Spatial Ran-
domness, a uniform Poisson point process) if the simulations were generated
according to CSR

mmean estimated theoretical value of the summary function, computed by averaging
simulated values, if the simulations were not generated according to CSR.

Additionally, if savepatterns=TRUE, the return value has an attribute "simpatterns" which is a
list containing the nsim simulated patterns. If savefuns=TRUE, the return value has an attribute
"simfuns" which is an object of class "fv" containing the summary functions computed for each
of the nsim simulated patterns.

Errors and warnings

An error may be generated if one of the simulations produces a point pattern that is empty, or is
otherwise unacceptable to the function fun.

The upper envelope may be NA (plotted as plus or minus infinity) if some of the function values
computed for the simulated point patterns are NA. Whether this occurs will depend on the function
fun, but it usually happens when the simulated point pattern does not contain enough points to
compute a meaningful value.

Confidence intervals

Simulation envelopes do not compute confidence intervals; they generate significance bands. If you
really need a confidence interval for the true summary function of the point process, use lohboot.
See also varblock.

Edge corrections

It is common to apply a correction for edge effects when calculating a summary function such as
the K function. Typically the user has a choice between several possible edge corrections. In a
call to envelope, the user can specify the edge correction to be applied in fun, using the argument
correction. See the Examples below.

Summary functions in spatstat Summary functions that are available in spatstat, such as Kest,
Gest and pcf, have a standard argument called correction which specifies the name of one
or more edge corrections.
The list of available edge corrections is different for each summary function, and may also
depend on the kind of window in which the point pattern is recorded. In the case of Kest (the
default and most frequently used value of fun) the best edge correction is Ripley’s isotropic
correction if the window is rectangular or polygonal, and the translation correction if the
window is a binary mask. See the help files for the individual functions for more information.
All the summary functions in spatstat recognise the option correction="best" which gives
the “best” (most accurate) available edge correction for that function.

116 envelope.ppm

In a call to envelope, if fun is one of the summary functions provided in spatstat, then the
default is correction="best". This means that by default, the envelope will be computed
using the “best” available edge correction.
The user can override this default by specifying the argument correction. For example the
computation can be accelerated by choosing another edge correction which is less accurate
than the “best” one, but faster to compute.

User-written summary functions If fun is a function written by the user, then envelope has to
guess what to do.
If fun has an argument called correction, or has ... arguments, then envelope assumes
that the function can handle a correction argument. To compute the envelope, fun will be
called with a correction argument. The default is correction="best", unless overridden
in the call to envelope.
Otherwise, if fun does not have an argument called correction and does not have ... ar-
guments, then envelope assumes that the function cannot handle a correction argument. To
compute the envelope, fun is called without a correction argument.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Diggle, P.J., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477–489.

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Arnold, 2003.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

dclf.test, mad.test for envelope-based tests.

fv.object, plot.envelope, plot.fv, envelope.envelope, pool.envelope for handling en-
velopes. There are also methods for print and summary.

Kest, Gest, Fest, Jest, pcf, ppp, ppm, default.expand

Examples

X <- simdat
online <- interactive()
Nsim <- if(online) 19 else 3

Envelope of K function for simulations from Gibbs model

exactMPLEstrauss 117

if(online) {
fit <- ppm(cells ~1, Strauss(0.05))
plot(envelope(fit))
plot(envelope(fit, global=TRUE))

} else {
fit <- ppm(cells ~1, Strauss(0.05), nd=20)
E <- envelope(fit, nsim=Nsim, correction="border", nrep=100)
E <- envelope(fit, nsim=Nsim, correction="border", global=TRUE, nrep=100)
}

Envelope of K function for simulations from cluster model
fit <- kppm(redwood ~1, "Thomas")
if(online) {

plot(envelope(fit, Gest))
plot(envelope(fit, Gest, global=TRUE))

} else {
E <- envelope(fit, Gest, correction="rs", nsim=Nsim, global=TRUE, nrep=100)
}

Envelope of INHOMOGENEOUS K-function with fitted trend

The following is valid.
Setting lambda=fit means that the fitted model is re-fitted to
each simulated pattern to obtain the intensity estimates for Kinhom.
(lambda=NULL would also be valid)

fit <- kppm(redwood ~1, clusters="MatClust")
if(online) {

plot(envelope(fit, Kinhom, lambda=fit, nsim=19))
} else {

envelope(fit, Kinhom, lambda=fit, nsim=Nsim)
}

exactMPLEstrauss Exact Maximum Pseudolikelihood Estimate for Stationary Strauss
Process

Description

Computes, to very high accuracy, the Maximum Pseudolikelihood Estimates of the parameters of a
stationary Strauss point process.

Usage

exactMPLEstrauss(X, R, ngrid = 2048, plotit = FALSE, project=TRUE)

118 exactMPLEstrauss

Arguments

X Data to which the Strauss process will be fitted. A point pattern dataset (object
of class "ppp").

R Interaction radius of the Strauss process. A non-negative number.

ngrid Grid size for calculation of integrals. An integer, giving the number of grid
points in the x and y directions.

plotit Logical. If TRUE, the log pseudolikelihood is plotted on the current device.

project Logical. If TRUE (the default), the parameter γ is constrained to lie in the interval
[0, 1]. If FALSE, this constraint is not applied.

Details

This function is intended mainly for technical investigation of algorithm performance. Its practical
use is quite limited.

It fits the stationary Strauss point process model to the point pattern dataset X by maximum pseu-
dolikelihood (with the border edge correction) using an algorithm with very high accuracy. This
algorithm is more accurate than the default behaviour of the model-fitting function ppm because the
discretisation is much finer.

Ripley (1988) and Baddeley and Turner (2000) derived the log pseudolikelihood for the stationary
Strauss process, and eliminated the parameter β, obtaining an exact formula for the partial log
pseudolikelihood as a function of the interaction parameter γ only. The algorithm evaluates this
expression to a high degree of accuracy, using numerical integration on a ngrid * ngrid lattice,
uses optim to maximise the log pseudolikelihood with respect to γ, and finally recovers β.

The result is a vector of length 2, containing the fitted coefficients log β and log γ. These values
correspond to the entries that would be obtained with coef(ppm(X, ~1, Strauss(R))). The fitted
coefficients are typically accurate to within 10−6 as shown in Baddeley and Turner (2013).

Note however that (by default) exactMPLEstrauss constrains the parameter γ to lie in the inter-
val [0, 1] in which the point process is well defined (Kelly and Ripley, 1976) whereas ppm does
not constrain the value of γ (by default). This behaviour is controlled by the argument project
to ppm and exactMPLEstrauss. The default for ppm is project=FALSE, while the default for
exactMPLEstrauss is project=TRUE.

Value

Vector of length 2.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Extract.influence.ppm 119

Baddeley, A. and Turner, R. (2013) Bias correction for parameter estimates of spatial point process
models. Journal of Statistical Computation and Simulation 2012. DOI: 10.1080/00949655.2012.755976

Kelly, F.P. and Ripley, B.D. (1976) On Strauss’s model for clustering. Biometrika 63, 357–360.

Ripley, B.D. (1988) Statistical inference for spatial processes. Cambridge University Press.

See Also

ppm

Examples

if(interactive()) {
rc <- 0.09
exactMPLEstrauss(cells, rc, plotit=TRUE)
coef(ppm(cells ~1, Strauss(rc)))
coef(ppm(cells ~1, Strauss(rc), nd=128))
rr <- 0.04
exactMPLEstrauss(redwood, rr)
exactMPLEstrauss(redwood, rr, project=FALSE)
coef(ppm(redwood ~1, Strauss(rr)))

} else {
rc <- 0.09
exactMPLEstrauss(cells, rc, ngrid=64, plotit=TRUE)
exactMPLEstrauss(cells, rc, ngrid=64, project=FALSE)

}

Extract.influence.ppm Extract Subset of Influence Object

Description

Extract a subset of an influence object, or extract the influence values at specified locations.

Usage

S3 method for class 'influence.ppm'
x[i, ...]

Arguments

x A influence object (of class "influence.ppm") computed by influence.ppm.

i Subset index (passed to [.ppp). Either a spatial window (object of class "owin")
or an integer index.

... Ignored.

120 Extract.leverage.ppm

Details

An object of class "influence.ppm" contains the values of the likelihood influence for a point
process model, computed by influence.ppm. This is effectively a marked point pattern obtained
by marking each of the original data points with its likelihood influence.

This function extracts a designated subset of the influence values, either as another influence object,
or as a vector of numeric values.

The function [.influence.ppm is a method for [for the class "influence.ppm". The argument i
should be an index applicable to a point pattern. It may be either a spatial window (object of class
"owin") or a sequence index. The result will be another influence object (of class influence.ppm).

To extract the influence values as a numeric vector, use marks(as.ppp(x)).

Value

Another object of class "influence.ppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

influence.ppm.

Examples

fit <- ppm(cells, ~x)
infl <- influence(fit)
b <- owin(c(0.1, 0.3), c(0.2, 0.4))
infl[b]
infl[1:5]
marks(as.ppp(infl))[1:3]

Extract.leverage.ppm Extract Subset of Leverage Object

Description

Extract a subset of a leverage map, or extract the leverage values at specified locations.

Usage

S3 method for class 'leverage.ppm'
x[i, ..., update=TRUE]

Extract.leverage.ppm 121

Arguments

x A leverage object (of class "leverage.ppm") computed by leverage.ppm.

i Subset index (passed to [.im). Either a spatial window (object of class "owin")
or a spatial point pattern (object of class "ppp").

... Further arguments passed to [.im, especially the argument drop.

update Logical value indicating whether to update the internally-stored value of the
mean leverage, by averaging over the specified subset.

Details

An object of class "leverage.ppm" contains the values of the leverage function for a point process
model, computed by leverage.ppm.

This function extracts a designated subset of the leverage values, either as another leverage object,
or as a vector of numeric values.

The function [.leverage.ppm is a method for [for the class "leverage.ppm". The argument i
should be either

• a spatial window (object of class "owin") determining a region where the leverage map is
required. The result will typically be another leverage map (object of class leverage.ppm).

• a spatial point pattern (object of class "ppp") specifying locations at which the leverage values
are required. The result will be a numeric vector.

The subset operator for images, [.im, is applied to the leverage map. If this yields a pixel image,
then the result of [.leverage.ppm is another leverage object. Otherwise, a vector containing the
numeric values of leverage is returned.

Value

Another object of class "leverage.ppm", or a vector of numeric values of leverage.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

leverage.ppm.

Examples

fit <- ppm(cells ~x)
lev <- leverage(fit)
b <- owin(c(0.1, 0.3), c(0.2, 0.4))
lev[b]
lev[cells]

122 Extract.msr

Extract.msr Extract Subset of Signed or Vector Measure

Description

Extract a subset of a signed measure or vector-valued measure.

Usage

S3 method for class 'msr'
x[i, j, ...]

Arguments

x A signed or vector measure. An object of class "msr" (see msr).
i Object defining the subregion or subset to be extracted. Either a spatial window

(an object of class "owin"), or a pixel image with logical values, or any type of
index that applies to a matrix.

j Subset index selecting the vector coordinates to be extracted, if x is a vector-
valued measure.

... Ignored.

Details

This operator extracts a subset of the data which determines the signed measure or vector-valued
measure x. The result is another measure.

Value

An object of class "msr".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

msr

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)
rp <- residuals(fit, type="pearson")
rs <- residuals(fit, type="score")

rp[square(0.5)]
rs[, 2:3]

Fiksel 123

Fiksel The Fiksel Interaction

Description

Creates an instance of Fiksel’s double exponential pairwise interaction point process model, which
can then be fitted to point pattern data.

Usage

Fiksel(r, hc=NA, kappa)

Arguments

r The interaction radius of the Fiksel model

hc The hard core distance

kappa The rate parameter

Details

Fiksel (1984) introduced a pairwise interaction point process with the following interaction function
c. For two points u and v separated by a distance d = ||u− v||, the interaction c(u, v) is equal to 0
if d < h, equal to 1 if d > r, and equal to

exp(a exp(−κd))

if h ≤ d ≤ r, where h, r, κ, a are parameters.

A graph of this interaction function is shown in the Examples. The interpretation of the parameters
is as follows.

• h is the hard core distance: distinct points are not permitted to come closer than a distance h
apart.

• r is the interaction range: points further than this distance do not interact.

• κ is the rate or slope parameter, controlling the decay of the interaction as distance increases.

• a is the interaction strength parameter, controlling the strength and type of interaction. If a
is zero, the process is Poisson. If a is positive, the process is clustered. If a is negative, the
process is inhibited (regular).

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the Fiksel pairwise interaction is yielded by the function Fiksel(). See
the examples below.

The parameters h, r and κ must be fixed and given in the call to Fiksel, while the canonical
parameter a is estimated by ppm().

To estimate h, r andκ it is possible to use profilepl. The maximum likelihood estimator ofh is
the minimum interpoint distance.

124 fitin.ppm

If the hard core distance argument hc is missing or NA, it will be estimated from the data when
ppm is called. The estimated value of hc is the minimum nearest neighbour distance multiplied by
n/(n+ 1), where n is the number of data points.

See also Stoyan, Kendall and Mecke (1987) page 161.

Value

An object of class "interact" describing the interpoint interaction structure of the Fiksel process
with interaction radius r, hard core distance hc and rate parameter kappa.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Fiksel, T. (1984) Estimation of parameterized pair potentials of marked and non-marked Gibbsian
point processes. Electronische Informationsverabeitung und Kybernetika 20, 270–278.

Stoyan, D, Kendall, W.S. and Mecke, J. (1987) Stochastic geometry and its applications. Wiley.

See Also

ppm, pairwise.family, ppm.object, StraussHard

Examples

Fiksel(r=1,hc=0.02, kappa=2)
prints a sensible description of itself

X <- unmark(spruces)

fit <- ppm(X ~ 1, Fiksel(r=3.5, kappa=1))
plot(fitin(fit))

fitin.ppm Extract the Interaction from a Fitted Point Process Model

Description

Given a point process model that has been fitted to point pattern data, this function extracts the
interpoint interaction part of the model as a separate object.

fitin.ppm 125

Usage

fitin(object)

S3 method for class 'ppm'
fitin(object)

S3 method for class 'profilepl'
fitin(object)

Arguments

object A fitted point process model (object of class "ppm" or "profilepl").

Details

An object of class "ppm" describes a fitted point process model. It contains information about the
original data to which the model was fitted, the spatial trend that was fitted, the interpoint interaction
that was fitted, and other data. See ppm.object) for details of this class.

The function fitin extracts from this model the information about the fitted interpoint interaction
only. The information is organised as an object of class "fii" (fitted interpoint interaction). This
object can be printed or plotted.

Users may find this a convenient way to plot the fitted interpoint interaction term, as shown in the
Examples.

For a pairwise interaction, the plot of the fitted interaction shows the pair interaction function (the
contribution to the probability density from a pair of points as a function of the distance between
them). For a higher-order interaction, the plot shows the strongest interaction (the value most dif-
ferent from 1) that could ever arise at the given distance.

The fitted interaction coefficients can also be extracted from this object using coef.

Value

An object of class "fii" representing the fitted interpoint interaction. This object can be printed
and plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Methods for handling fitted interactions: methods.fii, reach.fii, as.interact.fii.

Background: ppm, ppm.object.

126 fitted.mppm

Examples

unmarked
model <- ppm(swedishpines ~1, PairPiece(seq(3,19,by=4)))
f <- fitin(model)
f
plot(f)

extract fitted interaction coefficients
coef(f)

multitype
fit the stationary multitype Strauss process to `amacrine'
r <- 0.02 * matrix(c(1,2,2,1), nrow=2,ncol=2)
model <- ppm(amacrine ~1, MultiStrauss(r))
f <- fitin(model)
f
plot(f)

fitted.mppm Fitted Conditional Intensity for Multiple Point Process Model

Description

Given a point process model fitted to multiple point patterns, compute the fitted conditional intensity
of the model at the points of each data pattern, or at the points of the quadrature schemes used to fit
the model.

Usage

S3 method for class 'mppm'
fitted(object, ..., type = "lambda", dataonly = FALSE)

Arguments

object The fitted model. An object of class "mppm" obtained from mppm.

... Ignored.

type Type of fitted values: either "trend" for the spatial trend, or "lambda" or "cif"
for the conditional intensity.

dataonly If TRUE, fitted values are computed only for the points of the data point patterns.
If FALSE, fitted values are computed for the points of the quadrature schemes
used to fit the model.

Details

This function evaluates the conditional intensity λ̂(u, x) or spatial trend ˆb(u) of the fitted point
process model for certain locations u, for each of the original point patterns x to which the model
was fitted.

fitted.ppm 127

The locations u at which the fitted conditional intensity/trend is evaluated, are the points of the
quadrature schemes used to fit the model in mppm. They include the data points (the points of the
original point pattern datasets) and other “dummy” points in the window of observation.

Use predict.mppm to compute the fitted conditional intensity at other locations or with other values
of the explanatory variables.

Value

A list of vectors (one for each row of the original hyperframe, i.e. one vector for each of the original
point patterns) containing the values of the fitted conditional intensity or (if type="trend") the
fitted spatial trend.

Entries in these vector correspond to the quadrature points (data or dummy points) used to fit the
model. The quadrature points can be extracted from object by quad.mppm(object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

mppm, predict.mppm

Examples

model <- mppm(Bugs ~ x, data=hyperframe(Bugs=waterstriders),
interaction=Strauss(7))

cifs <- fitted(model)

fitted.ppm Fitted Conditional Intensity for Point Process Model

Description

Given a point process model fitted to a point pattern, compute the fitted conditional intensity or
fitted trend of the model at the points of the pattern, or at the points of the quadrature scheme used
to fit the model.

128 fitted.ppm

Usage

S3 method for class 'ppm'
fitted(object, ..., type="lambda",

dataonly=FALSE, new.coef=NULL, leaveoneout=FALSE,
drop=FALSE, check=TRUE, repair=TRUE,
ignore.hardcore=FALSE, dropcoef=FALSE)

Arguments

object The fitted point process model (an object of class "ppm")

... Ignored.

type String (partially matched) indicating whether the fitted value is the conditional
intensity ("lambda" or "cif") or the first order trend ("trend") or the logarithm
of conditional intensity ("link").

dataonly Logical. If TRUE, then values will only be computed at the points of the data
point pattern. If FALSE, then values will be computed at all the points of the
quadrature scheme used to fit the model, including the points of the data point
pattern.

new.coef Numeric vector of parameter values to replace the fitted model parameters coef(object).

leaveoneout Logical. If TRUE the fitted value at each data point will be computed using a
leave-one-out method. See Details.

drop Logical value determining whether to delete quadrature points that were not
used to fit the model.

check Logical value indicating whether to check the internal format of object. If
there is any possibility that this object has been restored from a dump file, or
has otherwise lost track of the environment where it was originally computed,
set check=TRUE.

repair Logical value indicating whether to repair the internal format of object, if it is
found to be damaged.

ignore.hardcore

Advanced use only. Logical value specifying whether to compute only the finite
part of the interaction potential (effectively removing any hard core interaction
terms).

dropcoef Internal use only.

Details

The argument object must be a fitted point process model (object of class "ppm"). Such objects
are produced by the model-fitting algorithm ppm).

This function evaluates the conditional intensity λ̂(u, x) or spatial trend b̂(u) of the fitted point
process model for certain locations u, where x is the original point pattern dataset to which the
model was fitted.

The locations u at which the fitted conditional intensity/trend is evaluated, are the points of the
quadrature scheme used to fit the model in ppm. They include the data points (the points of the
original point pattern dataset x) and other “dummy” points in the window of observation.

fitted.ppm 129

If leaveoneout=TRUE, fitted values will be computed for the data points only, using a ‘leave-one-
out’ rule: the fitted value at X[i] is effectively computed by deleting this point from the data and
re-fitting the model to the reduced pattern X[-i], then predicting the value at X[i]. (Instead of
literally performing this calculation, we apply a Taylor approximation using the influence function
computed in dfbetas.ppm.

The argument drop is explained in quad.ppm.

Use predict.ppm to compute the fitted conditional intensity at other locations or with other values
of the explanatory variables.

Value

A vector containing the values of the fitted conditional intensity, fitted spatial trend, or logarithm of
the fitted conditional intensity.

Entries in this vector correspond to the quadrature points (data or dummy points) used to fit the
model. The quadrature points can be extracted from object by union.quad(quad.ppm(object)).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005). Residual analysis for spatial point
processes (with discussion). Journal of the Royal Statistical Society, Series B 67, 617–666.

See Also

ppm.object, ppm, predict.ppm

Examples

str <- ppm(cells ~x, Strauss(r=0.1))
lambda <- fitted(str)

extract quadrature points in corresponding order
quadpoints <- union.quad(quad.ppm(str))

plot conditional intensity values
as circles centred on the quadrature points
quadmarked <- setmarks(quadpoints, lambda)
plot(quadmarked)

if(!interactive()) str <- ppm(cells ~ x)

lambdaX <- fitted(str, leaveoneout=TRUE)

130 fitted.slrm

fitted.slrm Fitted Probabilities for Spatial Logistic Regression

Description

Given a fitted Spatial Logistic Regression model, this function computes the fitted probabilities for
each pixel, or the fitted probabilities at each original data point.

Usage

S3 method for class 'slrm'
fitted(object, ..., type="probabilities",

dataonly=FALSE, leaveoneout=FALSE)

Arguments

object a fitted spatial logistic regression model. An object of class "slrm".

... Ignored.

type Character string (partially) matching one of "probabilities", "intensity"
or "link" determining the quantity that should be predicted.

dataonly Logical. If TRUE, then values will only be computed at the points of the data
point pattern. If FALSE, then values will be computed at the pixels used to fit the
model.

leaveoneout Logical value specifying whether to perform a leave-one-out calculation when
dataonly=TRUE. If leaveoneout=TRUE, the fitted value at each data point X[i]
is calculated by re-fitting the model to the data with X[i] removed.

Details

This is a method for the generic function fitted for spatial logistic regression models (objects of
class "slrm", usually obtained from the function slrm).

By default, the algorithm computes the fitted probabilities of the presence of a random point in each
pixel, and returns them as an image.

If dataonly=TRUE, the algorithm computes the fitted presence probabilities only at the locations of
the original data points.

Value

A pixel image (object of class "im") containing the fitted probability for each pixel, or a numeric
vector containing the fitted probability at each data point.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

fixef.mppm 131

See Also

slrm, fitted

Examples

X <- rpoispp(42)
fit <- slrm(X ~ x+y)
plot(fitted(fit))
fitted(fit, dataonly=TRUE)

fixef.mppm Extract Fixed Effects from Point Process Model

Description

Given a point process model fitted to a list of point patterns, extract the fixed effects of the model.
A method for fixef.

Usage

S3 method for class 'mppm'
fixef(object, ...)

Arguments

object A fitted point process model (an object of class "mppm").

... Ignored.

Details

This is a method for the generic function fixef.

The argument object must be a fitted point process model (object of class "mppm") produced by
the fitting algorithm mppm). This represents a point process model that has been fitted to a list of
several point pattern datasets. See mppm for information.

This function extracts the coefficients of the fixed effects of the model.

Value

A numeric vector of coefficients.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented in spatstat by Adrian Bad-
deley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net> and Ege
Rubak <rubak@math.aau.dk>.

132 formula.ppm

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

coef.mppm

Examples

H <- hyperframe(Y = waterstriders)
Tweak data to exaggerate differences
H$Y[[1]] <- rthin(H$Y[[1]], 0.3)
m1 <- mppm(Y ~ id, data=H, Strauss(7))
fixef(m1)
m2 <- mppm(Y ~ 1, random=~1|id, data=H, Strauss(7))
fixef(m2)

formula.ppm Model Formulae for Gibbs Point Process Models

Description

Extract the trend formula, or the terms in the trend formula, in a fitted Gibbs point process model.

Usage

S3 method for class 'ppm'
formula(x, ...)
S3 method for class 'ppm'
terms(x, ...)

Arguments

x An object of class "ppm", representing a fitted point process model.

... Arguments passed to other methods.

Details

These functions are methods for the generic commands formula and terms for the class "ppm".

An object of class "ppm" represents a fitted Poisson or Gibbs point process model. It is obtained
from the model-fitting function ppm.

The method formula.ppm extracts the trend formula from the fitted model x (the formula originally
specified as the argument trend to ppm). The method terms.ppm extracts the individual terms in
the trend formula.

Gcom 133

Value

See the help files for the corresponding generic functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

ppm, as.owin, coef.ppm, extractAIC.ppm, fitted.ppm, logLik.ppm, model.frame.ppm, model.matrix.ppm,
plot.ppm, predict.ppm, residuals.ppm, simulate.ppm, summary.ppm, update.ppm, vcov.ppm.

Examples

fit <- ppm(cells, ~x)
formula(fit)
terms(fit)

Gcom Model Compensator of Nearest Neighbour Function

Description

Given a point process model fitted to a point pattern dataset, this function computes the compen-
sator of the nearest neighbour distance distribution function G based on the fitted model (as well
as the usual nonparametric estimates of G based on the data alone). Comparison between the non-
parametric and model-compensated G functions serves as a diagnostic for the model.

Usage

Gcom(object, r = NULL, breaks = NULL, ...,
correction = c("border", "Hanisch"),
conditional = !is.poisson(object),
restrict=FALSE,
model=NULL,
trend = ~1, interaction = Poisson(),
rbord = reach(interaction),
ppmcorrection="border",
truecoef = NULL, hi.res = NULL)

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
or a point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").

r Optional. Vector of values of the argument r at which the function G(r) should
be computed. This argument is usually not specified. There is a sensible default.

134 Gcom

breaks This argument is for internal use only.

correction Edge correction(s) to be employed in calculating the compensator. Options are
"border", "Hanisch" and "best". Alternatively correction="all" selects
all options.

conditional Optional. Logical value indicating whether to compute the estimates for the
conditional case. See Details.

restrict Logical value indicating whether to compute the restriction estimator (restrict=TRUE)
or the reweighting estimator (restrict=FALSE, the default). Applies only if
conditional=TRUE. See Details.

model Optional. A fitted point process model (object of class "ppm") to be re-fitted to
the data using update.ppm, if object is a point pattern. Overrides the argu-
ments trend,interaction,rbord,ppmcorrection.

trend, interaction, rbord
Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern. See ppm for details.

... Extra arguments passed to ppm.

ppmcorrection The correction argument to ppm.

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true
coefficient vector of the point process model, in calculating the diagnostic. In-
compatible with hi.res.

hi.res Optional. List of parameters passed to quadscheme. If this argument is present,
the model will be re-fitted at high resolution as specified by these parameters.
The coefficients of the resulting fitted model will be taken as the true coeffi-
cients. Then the diagnostic will be computed for the default quadrature scheme,
but using the high resolution coefficients.

Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a
point pattern dataset. It computes different estimates of the nearest neighbour distance distribution
functionG of the dataset, which should be approximately equal if the model is a good fit to the data.

The first argument, object, is usually a fitted point process model (object of class "ppm"), obtained
from the model-fitting function ppm.

For convenience, object can also be a point pattern (object of class "ppp"). In that case, a point
process model will be fitted to it, by calling ppm using the arguments trend (for the first order
trend), interaction (for the interpoint interaction) and rbord (for the erosion distance in the bor-
der correction for the pseudolikelihood). See ppm for details of these arguments.

The algorithm first extracts the original point pattern dataset (to which the model was fitted) and
computes the standard nonparametric estimates of the G function. It then also computes the model-
compensated G function. The different functions are returned as columns in a data frame (of class
"fv"). The interpretation of the columns is as follows (ignoring edge corrections):

bord: the nonparametric border-correction estimate of G(r),

Ĝ(r) =

∑
i I{di ≤ r}I{bi > r}∑

i I{bi > r}

Gcom 135

where di is the distance from the i-th data point to its nearest neighbour, and bi is the distance
from the i-th data point to the boundary of the window W .

bcom: the model compensator of the border-correction estimate

C Ĝ(r) =

∫
λ(u, x)I{b(u) > r}I{d(u, x) ≤ r}

1 +
∑

i I{bi > r}

where λ(u, x) denotes the conditional intensity of the model at the location u, and d(u, x)
denotes the distance from u to the nearest point in x, while b(u) denotes the distance from u
to the boundary of the windowW .

han: the nonparametric Hanisch estimate of G(r)

Ĝ(r) =
D(r)

D(∞)

where

D(r) =
∑
i

I{xi ∈W⊖di
}I{di ≤ r}

area(W⊖di
)

in which W⊖r denotes the erosion of the window W by a distance r.

hcom: the corresponding model-compensated function

CG(r) =

∫
W

λ(u, x)I(u ∈W⊖d(u))I(d(u) ≤ r)

D̂(∞)area(W⊖d(u)) + 1

where d(u) = d(u, x) is the (‘empty space’) distance from location u to the nearest point of
x.

If the fitted model is a Poisson point process, then the formulae above are exactly what is computed.
If the fitted model is not Poisson, the formulae above are modified slightly to handle edge effects.

The modification is determined by the arguments conditional and restrict. The value of
conditional defaults to FALSE for Poisson models and TRUE for non-Poisson models. If conditional=FALSE
then the formulae above are not modified. If conditional=TRUE, then the algorithm calculates the
restriction estimator if restrict=TRUE, and calculates the reweighting estimator if restrict=FALSE.
See Appendix E of Baddeley, Rubak and Møller (2011). See also spatstat.options('eroded.intensity').
Thus, by default, the reweighting estimator is computed for non-Poisson models.

The border-corrected and Hanisch-corrected estimates of G(r) are approximately unbiased esti-
mates of the G-function, assuming the point process is stationary. The model-compensated func-
tions are unbiased estimates of the mean value of the corresponding nonparametric estimate, as-
suming the model is true. Thus, if the model is a good fit, the mean value of the difference between
the nonparametric and model-compensated estimates is approximately zero.

To compute the difference between the nonparametric and model-compensated functions, use Gres.

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a
plot method for this class. See fv.object.

136 Geyer

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Related functions: Gest, Gres.

Alternative functions: Kcom, psstA, psstG, psst.

Model fitting: ppm.

Examples

fit0 <- ppm(cells ~1) # uniform Poisson
G0 <- Gcom(fit0)
G0
plot(G0)

uniform Poisson is clearly not correct

Hanisch estimates only
plot(Gcom(fit0), cbind(han, hcom) ~ r)

fit1 <- ppm(cells, ~1, Strauss(0.08))
plot(Gcom(fit1), cbind(han, hcom) ~ r)

Try adjusting interaction distance

fit2 <- update(fit1, Strauss(0.10))
plot(Gcom(fit2), cbind(han, hcom) ~ r)

G3 <- Gcom(cells, interaction=Strauss(0.12))
plot(G3, cbind(han, hcom) ~ r)

Geyer Geyer’s Saturation Point Process Model

Description

Creates an instance of Geyer’s saturation point process model which can then be fitted to point
pattern data.

Usage

Geyer(r,sat)

Geyer 137

Arguments

r Interaction radius. A positive real number.

sat Saturation threshold. A non-negative real number.

Details

Geyer (1999) introduced the “saturation process”, a modification of the Strauss process (see Strauss)
in which the total contribution to the potential from each point (from its pairwise interaction with
all other points) is trimmed to a maximum value s. The interaction structure of this model is imple-
mented in the function Geyer().

The saturation point process with interaction radius r, saturation threshold s, and parameters β and
γ, is the point process in which each point xi in the pattern X contributes a factor

βγmin(s,t(xi,X))

to the probability density of the point pattern, where t(xi, X) denotes the number of ‘close neigh-
bours’ of xi in the patternX . A close neighbour of xi is a point xj with j ̸= i such that the distance
between xi and xj is less than or equal to r.

If the saturation threshold s is set to infinity, this model reduces to the Strauss process (see Strauss)
with interaction parameter γ2. If s = 0, the model reduces to the Poisson point process. If s is a
finite positive number, then the interaction parameter γ may take any positive value (unlike the case
of the Strauss process), with values γ < 1 describing an ‘ordered’ or ‘inhibitive’ pattern, and values
γ > 1 describing a ‘clustered’ or ‘attractive’ pattern.

The nonstationary saturation process is similar except that the value β is replaced by a function
β(xi) of location.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the saturation process interaction is yielded by Geyer(r, sat) where
the arguments r and sat specify the Strauss interaction radius r and the saturation threshold s,
respectively. See the examples below.

Note the only arguments are the interaction radius r and the saturation threshold sat. When r and
sat are fixed, the model becomes an exponential family. The canonical parameters log(β) and
log(γ) are estimated by ppm(), not fixed in Geyer().

Value

An object of class "interact" describing the interpoint interaction structure of Geyer’s saturation
point process with interaction radius r and saturation threshold sat.

Zero saturation

The value sat=0 is permitted by Geyer, but this is not very useful. For technical reasons, when ppm
fits a Geyer model with sat=0, the default behaviour is to return an “invalid” fitted model in which
the estimate of γ is NA. In order to get a Poisson process model returned when sat=0, you would
need to set emend=TRUE in the call to ppm.

138 Gres

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

ppm, pairwise.family, ppm.object, Strauss.

To make an interaction object like Geyer but having multiple interaction radii, see BadGey or
Hybrid.

Examples

ppm(cells, ~1, Geyer(r=0.07, sat=2))
fit the stationary saturation process to `cells'

Gres Residual G Function

Description

Given a point process model fitted to a point pattern dataset, this function computes the residual G
function, which serves as a diagnostic for goodness-of-fit of the model.

Usage

Gres(object, ...)

Arguments

object Object to be analysed. Either a fitted point process model (object of class
"ppm"), a point pattern (object of class "ppp"), a quadrature scheme (object
of class "quad"), or the value returned by a previous call to Gcom.

... Arguments passed to Gcom.

Gres 139

Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a
point pattern dataset. It computes a residual version of the G function of the dataset, which should
be approximately zero if the model is a good fit to the data.

In normal use, object is a fitted point process model or a point pattern. Then Gres first calls Gcom
to compute both the nonparametric estimate of the G function and its model compensator. Then
Gres computes the difference between them, which is the residual G-function.

Alternatively, object may be a function value table (object of class "fv") that was returned by a
previous call to Gcom. Then Gres computes the residual from this object.

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a
plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Related functions: Gcom, Gest.

Alternative functions: Kres, psstA, psstG, psst.

Model-fitting: ppm.

Examples

fit0 <- ppm(cells, ~1) # uniform Poisson
G0 <- Gres(fit0)
plot(G0)

Hanisch correction estimate
plot(G0, hres ~ r)

uniform Poisson is clearly not correct

fit1 <- ppm(cells, ~1, Strauss(0.08))
plot(Gres(fit1), hres ~ r)

fit looks approximately OK; try adjusting interaction distance

plot(Gres(cells, interaction=Strauss(0.12)))

How to make envelopes
if(interactive()) {

E <- envelope(fit1, Gres, model=fit1, nsim=39)

140 Hardcore

plot(E)
}

For computational efficiency
Gc <- Gcom(fit1)
G1 <- Gres(Gc)

Hardcore The Hard Core Point Process Model

Description

Creates an instance of the hard core point process model which can then be fitted to point pattern
data.

Usage

Hardcore(hc=NA)

Arguments

hc The hard core distance

Details

A hard core process with hard core distance h and abundance parameter β is a pairwise interaction
point process in which distinct points are not allowed to come closer than a distance h apart.

The probability density is zero if any pair of points is closer than h units apart, and otherwise equals

f(x1, . . . , xn) = αβn(x)

where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern,
and α is the normalising constant.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the hard core process pairwise interaction is yielded by the function
Hardcore(). See the examples below.

If the hard core distance argument hc is missing or NA, it will be estimated from the data when
ppm is called. The estimated value of hc is the minimum nearest neighbour distance multiplied by
n/(n+ 1), where n is the number of data points.

Value

An object of class "interact" describing the interpoint interaction structure of the hard core pro-
cess with hard core distance hc.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

hardcoredist 141

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

See Also

Strauss, StraussHard, MultiHard, ppm, pairwise.family, ppm.object

Examples

Hardcore(0.02)
prints a sensible description of itself

ppm(cells ~1, Hardcore(0.05))
fit the stationary hard core process to `cells'

estimate hard core radius from data
ppm(cells ~1, Hardcore())

equivalent:
ppm(cells ~1, Hardcore)

fit a nonstationary hard core process
with log-cubic polynomial trend
ppm(cells ~ polynom(x,y,3), Hardcore(0.05))

hardcoredist Extract the Hard Core Distance of a Point Process Model

Description

Extract or compute the hard core distance of a point process model.

Usage

hardcoredist(x, ...)

S3 method for class 'fii'
hardcoredist(x, ..., epsilon = 0)

S3 method for class 'ppm'
hardcoredist(x, ..., epsilon = 0)

142 harmonic

Arguments

x An object representing a point process model (class "ppm") or the interaction
structure of a point process (class "fii") or similar.

... Additional arguments passed to methods.
epsilon Tolerance for defining the hard core.

Details

A point process model has a hard core distance h if it is impossible for two random points to lie
closer than the distance h apart.

The function hardcoredist is generic, with methods for objects of class "ppm" (point process
models) and "fii" (fitted point process interactions). It extracts or computes the hard core distance.

If epsilon is specified, then the code calculates the largest distance at which the interaction factor
is smaller than epsilon, implying that points are unlikely to occur closer than this distance.

The result is zero if the model does not have a hard core distance.

Value

A single numeric value, or for multitype point processes, a numeric matrix giving the hard core
distances for each pair of types of points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

Examples

m <- ppm(cells~1, Hardcore())
hardcoredist(m)

harmonic Basis for Harmonic Functions

Description

Evaluates a basis for the harmonic polynomials in x and y of degree less than or equal to n.

Usage

harmonic(x, y, n)

Arguments

x Vector of x coordinates
y Vector of y coordinates
n Maximum degree of polynomial

harmonic 143

Details

This function computes a basis for the harmonic polynomials in two variables x and y up to a
given degree n and evaluates them at given x, y locations. It can be used in model formulas (for
example in the model-fitting functions lm,glm,gam and ppm) to specify a linear predictor which is
a harmonic function.

A function f(x, y) is harmonic if
∂2

∂x2
f +

∂2

∂y2
f = 0.

The harmonic polynomials of degree less than or equal to n have a basis consisting of 2n functions.

This function was implemented on a suggestion of P. McCullagh for fitting nonstationary spatial
trend to point process models.

Value

A data frame with 2 * n columns giving the values of the basis functions at the coordinates. Each
column is labelled by an algebraic expression for the corresponding basis function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppm, polynom

Examples

inhomogeneous point pattern
X <- unmark(longleaf)

fit Poisson point process with log-cubic intensity
fit.3 <- ppm(X ~ polynom(x,y,3), Poisson())

fit Poisson process with log-cubic-harmonic intensity
fit.h <- ppm(X ~ harmonic(x,y,3), Poisson())

Likelihood ratio test
lrts <- 2 * (logLik(fit.3) - logLik(fit.h))
df <- with(coords(X),

ncol(polynom(x,y,3)) - ncol(harmonic(x,y,3)))
pval <- 1 - pchisq(lrts, df=df)

144 harmonise.msr

harmonise.msr Make Measures Compatible

Description

Convert several measures to a common quadrature scheme

Usage

S3 method for class 'msr'
harmonise(...)

Arguments

... Any number of measures (objects of class "msr").

Details

This function makes any number of measures compatible, by converting them all to a common
quadrature scheme.

The command harmonise is generic. This is the method for objects of class "msr".

Value

A list, of length equal to the number of arguments ..., whose entries are measures.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

harmonise, msr

Examples

fit1 <- ppm(cells ~ x)
fit2 <- ppm(rpoispp(ex=cells) ~ x)
m1 <- residuals(fit1)
m2 <- residuals(fit2)
harmonise(m1, m2)
s1 <- residuals(fit1, type="score")
s2 <- residuals(fit2, type="score")
harmonise(s1, s2)

HierHard 145

HierHard The Hierarchical Hard Core Point Process Model

Description

Creates an instance of the hierarchical hard core point process model which can then be fitted to
point pattern data.

Usage

HierHard(hradii=NULL, types=NULL, archy=NULL)

Arguments

hradii Optional matrix of hard core distances
types Optional; vector of all possible types (i.e. the possible levels of the marks vari-

able in the data)
archy Optional: the hierarchical order. See Details.

Details

This is a hierarchical point process model for a multitype point pattern (Högmander and Särkkä,
1999; Grabarnik and Särkkä, 2009). It is appropriate for analysing multitype point pattern data in
which the types are ordered so that the points of type j depend on the points of type 1, 2, . . . , j− 1.

The hierarchical version of the (stationary) hard core process withm types, with hard core distances
hij and parameters βj , is a point process in which each point of type j contributes a factor βj to
the probability density of the point pattern. If any pair of points of types i and j lies closer than hij
units apart, the configuration of points is impossible (probability density zero).

The nonstationary hierarchical hard core process is similar except that the contribution of each
individual point xi is a function β(xi) of location and type, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the hierarchical hard core process pairwise interaction is yielded by the
function HierHard(). See the examples below.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the HierHard interaction is applied, when the user calls ppm.
However, the user should be confident that the ordering of types in the dataset corresponds to the
ordering of rows and columns in the matrix radii.

The argument archy can be used to specify a hierarchical ordering of the types. It can be either
a vector of integers or a character vector matching the possible types. The default is the sequence
1, 2, . . . ,m meaning that type j depends on types 1, 2, . . . , j − 1.

The matrix iradii must be square, with entries which are either positive numbers, or zero or
NA. A value of zero or NA indicates that no hard core interaction term should be included for this
combination of types.

Note that only the hard core distances are specified in HierHard. The canonical parameters log(βj)
are estimated by ppm(), not fixed in HierHard().

146 hierpair.family

Value

An object of class "interact" describing the interpoint interaction structure of the hierarchical
hard core process with hard core distances hradii[i, j].

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>.

References

Grabarnik, P. and Särkkä, A. (2009) Modelling the spatial structure of forest stands by multivariate
point processes with hierarchical interactions. Ecological Modelling 220, 1232–1240.

Högmander, H. and Särkkä, A. (1999) Multitype spatial point patterns with hierarchical interactions.
Biometrics 55, 1051–1058.

See Also

MultiHard for the corresponding symmetrical interaction.

HierStrauss, HierStraussHard.

Examples

h <- matrix(c(4, NA, 10, 15), 2, 2)
HierHard(h)
prints a sensible description of itself
ppm(ants ~1, HierHard(h))
fit the stationary hierarchical hard core process to ants data

hierpair.family Hierarchical Pairwise Interaction Process Family

Description

An object describing the family of all hierarchical pairwise interaction Gibbs point processes.

Details

Advanced Use Only!
This structure would not normally be touched by the user. It describes the hierarchical pairwise
interaction family of point process models.

Value

Object of class "isf", see isf.object.

HierStrauss 147

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Other families: pairwise.family, pairsat.family, ord.family, inforder.family.

Hierarchical Strauss interaction: HierStrauss.

HierStrauss The Hierarchical Strauss Point Process Model

Description

Creates an instance of the hierarchical Strauss point process model which can then be fitted to point
pattern data.

Usage

HierStrauss(radii, types=NULL, archy=NULL)

Arguments

radii Matrix of interaction radii

types Optional; vector of all possible types (i.e. the possible levels of the marks vari-
able in the data)

archy Optional: the hierarchical order. See Details.

Details

This is a hierarchical point process model for a multitype point pattern (Högmander and Särkkä,
1999; Grabarnik and Särkkä, 2009). It is appropriate for analysing multitype point pattern data in
which the types are ordered so that the points of type j depend on the points of type 1, 2, . . . , j− 1.

The hierarchical version of the (stationary) Strauss process with m types, with interaction radii rij
and parameters βj and γij is a point process in which each point of type j contributes a factor βj to
the probability density of the point pattern, and a pair of points of types i and j closer than rij units
apart contributes a factor γij to the density provided i ≤ j.

The nonstationary hierarchical Strauss process is similar except that the contribution of each indi-
vidual point xi is a function β(xi) of location and type, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the hierarchical Strauss process pairwise interaction is yielded by the
function HierStrauss(). See the examples below.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the HierStrauss interaction is applied, when the user calls ppm.

148 HierStrauss

However, the user should be confident that the ordering of types in the dataset corresponds to the
ordering of rows and columns in the matrix radii.

The argument archy can be used to specify a hierarchical ordering of the types. It can be either
a vector of integers or a character vector matching the possible types. The default is the sequence
1, 2, . . . ,m meaning that type j depends on types 1, 2, . . . , j − 1.

The matrix radii must be symmetric, with entries which are either positive numbers or NA. A value
of NA indicates that no interaction term should be included for this combination of types.

Note that only the interaction radii are specified in HierStrauss. The canonical parameters log(βj)
and log(γij) are estimated by ppm(), not fixed in HierStrauss().

Value

An object of class "interact" describing the interpoint interaction structure of the hierarchical
Strauss process with interaction radii radii[i, j].

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>.

References

Grabarnik, P. and Särkkä, A. (2009) Modelling the spatial structure of forest stands by multivariate
point processes with hierarchical interactions. Ecological Modelling 220, 1232–1240.

Högmander, H. and Särkkä, A. (1999) Multitype spatial point patterns with hierarchical interactions.
Biometrics 55, 1051–1058.

See Also

MultiStrauss for the corresponding symmetrical interaction.

HierHard, HierStraussHard.

Examples

r <- matrix(10 * c(3,4,4,3), nrow=2,ncol=2)
HierStrauss(r)
prints a sensible description of itself
ppm(ants ~1, HierStrauss(r, , c("Messor", "Cataglyphis")))
fit the stationary hierarchical Strauss process to ants data

HierStraussHard 149

HierStraussHard The Hierarchical Strauss Hard Core Point Process Model

Description

Creates an instance of the hierarchical Strauss-hard core point process model which can then be
fitted to point pattern data.

Usage

HierStraussHard(iradii, hradii=NULL, types=NULL, archy=NULL)

Arguments

iradii Matrix of interaction radii

hradii Optional matrix of hard core distances

types Optional; vector of all possible types (i.e. the possible levels of the marks vari-
able in the data)

archy Optional: the hierarchical order. See Details.

Details

This is a hierarchical point process model for a multitype point pattern (Högmander and Särkkä,
1999; Grabarnik and Särkkä, 2009). It is appropriate for analysing multitype point pattern data in
which the types are ordered so that the points of type j depend on the points of type 1, 2, . . . , j− 1.

The hierarchical version of the (stationary) Strauss hard core process with m types, with interaction
radii rij , hard core distances hij and parameters βj and γij is a point process in which each point
of type j contributes a factor βj to the probability density of the point pattern, and a pair of points
of types i and j closer than rij units apart contributes a factor γij to the density provided i ≤ j.
If any pair of points of types i and j lies closer than hij units apart, the configuration of points is
impossible (probability density zero).

The nonstationary hierarchical Strauss hard core process is similar except that the contribution of
each individual point xi is a function β(xi) of location and type, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the hierarchical Strauss hard core process pairwise interaction is yielded
by the function HierStraussHard(). See the examples below.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the HierStraussHard interaction is applied, when the user calls
ppm. However, the user should be confident that the ordering of types in the dataset corresponds to
the ordering of rows and columns in the matrix radii.

The argument archy can be used to specify a hierarchical ordering of the types. It can be either
a vector of integers or a character vector matching the possible types. The default is the sequence
1, 2, . . . ,m meaning that type j depends on types 1, 2, . . . , j − 1.

150 Hybrid

The matrices iradii and hradii must be square, with entries which are either positive numbers
or zero or NA. A value of zero or NA indicates that no interaction term should be included for this
combination of types.

Note that only the interaction radii and hard core distances are specified in HierStraussHard. The
canonical parameters log(βj) and log(γij) are estimated by ppm(), not fixed in HierStraussHard().

Value

An object of class "interact" describing the interpoint interaction structure of the hierarchical
Strauss-hard core process with interaction radii iradii[i, j] and hard core distances hradii[i, j].

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>.

References

Grabarnik, P. and Särkkä, A. (2009) Modelling the spatial structure of forest stands by multivariate
point processes with hierarchical interactions. Ecological Modelling 220, 1232–1240.

Högmander, H. and Särkkä, A. (1999) Multitype spatial point patterns with hierarchical interactions.
Biometrics 55, 1051–1058.

See Also

MultiStraussHard for the corresponding symmetrical interaction.

HierHard, HierStrauss.

Examples

r <- matrix(c(30, NA, 40, 30), nrow=2,ncol=2)
h <- matrix(c(4, NA, 10, 15), 2, 2)
HierStraussHard(r, h)
prints a sensible description of itself
ppm(ants ~1, HierStraussHard(r, h))
fit the stationary hierarchical Strauss-hard core process to ants data

Hybrid Hybrid Interaction Point Process Model

Description

Creates an instance of a hybrid point process model which can then be fitted to point pattern data.

Usage

Hybrid(...)

Hybrid 151

Arguments

... Two or more interactions (objects of class "interact") or objects which can be
converted to interactions. See Details.

Details

A hybrid (Baddeley, Turner, Mateu and Bevan, 2013) is a point process model created by combining
two or more point process models, or an interpoint interaction created by combining two or more
interpoint interactions.

The hybrid of two point processes, with probability densities f(x) and g(x) respectively, is the
point process with probability density

h(x) = c f(x) g(x)

where c is a normalising constant.

Equivalently, the hybrid of two point processes with conditional intensities λ(u, x) and κ(u, x) is
the point process with conditional intensity

ϕ(u, x) = λ(u, x)κ(u, x).

The hybrid of m > 3 point processes is defined in a similar way.

The function ppm, which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of a hybrid interaction is yielded by the function Hybrid().

The arguments ... will be interpreted as interpoint interactions (objects of class "interact") and
the result will be the hybrid of these interactions. Each argument must either be an interpoint
interaction (object of class "interact"), or a point process model (object of class "ppm") from
which the interpoint interaction will be extracted.

The arguments ... may also be given in the form name=value. This is purely cosmetic: it can be
used to attach simple mnemonic names to the component interactions, and makes the printed output
from print.ppm neater.

Value

An object of class "interact" describing an interpoint interaction structure.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A., Turner, R., Mateu, J. and Bevan, A. (2013) Hybrids of Gibbs point process models and
their implementation. Journal of Statistical Software 55:11, 1–43. DOI: 10.18637/jss.v055.i11

See Also

ppm

152 hybrid.family

Examples

Hybrid(Strauss(0.1), Geyer(0.2, 3))

Hybrid(Ha=Hardcore(0.05), St=Strauss(0.1), Ge=Geyer(0.2, 3))

fit <- ppm(redwood, ~1, Hybrid(A=Strauss(0.02), B=Geyer(0.1, 2)))
fit

ctr <- rmhcontrol(nrep=5e4, expand=1)
plot(simulate(fit, control=ctr))

hybrid components can be models (including hybrid models)
Hybrid(fit, S=Softcore(0.5))

plot.fii only works if every component is a pairwise interaction
fit2 <- ppm(swedishpines, ~1, Hybrid(DG=DiggleGratton(2,10), S=Strauss(5)))
plot(fitin(fit2))
plot(fitin(fit2), separate=TRUE, mar.panel=rep(4,4))

hybrid.family Hybrid Interaction Family

Description

An object describing the family of all hybrid interactions.

Details

Advanced Use Only!
This structure would not normally be touched by the user. It describes the family of all hybrid point
process models.

If you need to create a specific hybrid interaction model for use in modelling, use the function
Hybrid.

Value

Object of class "isf", see isf.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

Use Hybrid to make hybrid interactions.

Other families: pairwise.family, pairsat.family, ord.family, inforder.family.

ic.kppm 153

ic.kppm Model selection criteria for the intensity function of a point process

Description

Information criteria for selecting the intensity function model of a Poisson, cluster or Cox point
process.

Usage

ic(object)

S3 method for class 'ppm'
ic(object)

S3 method for class 'kppm'
ic(object)

Arguments

object Fitted point process model (object of class "ppm" or "kppm").

Details

This function returns information criteria for selecting the intensity function model of a Poisson,
Cox or cluster point process fitted by first order composite likelihood (i.e. using the Poisson likeli-
hood function).

Degrees of freedom df for the information criteria are given by the trace of S−1Σ where S is the
sensitivity matrix and Σ is the variance matrix for the log composite likelihood score function. In
case of a Poisson process, df is the number of parameters in the model for the intensity function.

The composite Bayesian information criterion (cbic) is −2ℓ + log(n)df where ℓ is the maximal
log first-order composite likelihood (Poisson loglikelihood for the intensity function) and n is the
observed number of points. It reduces to the BIC criterion in case of a Poisson process.

The composite information criterion (cic) is −2ℓ+2df and reduces to the AIC in case of a Poisson
process.

NOTE: the information criteria are for selecting the intensity function model (a set of covariates)
within a given model class. They cannot be used to choose among different types of cluster or Cox
point process models (e.g. can not be used to choose between Thomas and LGCP models).

Value

A list with entries loglike, cbic, cic and df. Here loglike is the fitted log first-order composite
likelihood, cbic is composite Bayesian information criterion, cic is is the composite likelihood
criterion and df is the adjusted degrees of freedom for the fitted intensity function model.

154 improve.kppm

Author(s)

Achmad Choiruddin, Jean-Francois Coeurjolly and Rasmus Waagepetersen.

References

Choiruddin, A., Coeurjolly, J.F. and Waagepetersen, R. (2020) Information criteria for inhomoge-
neous spatial point processes. Australian and New Zealand Journal of Statistics. To appear.

See Also

kppm

Examples

if(interactive()) {

model with one covariate
fit1 <- kppm(bei~elev,data=bei.extra)
ic1 <- ic(fit1)

model with two covariates
fit2 <- kppm(bei~elev+grad,data=bei.extra)
ic2 <- ic(fit2)

smallest cbic for fit1 but smallest cic for fit2
}

improve.kppm Improve Intensity Estimate of Fitted Cluster Point Process Model

Description

Update the fitted intensity of a fitted cluster point process model.

Usage

improve.kppm(object, type=c("quasi", "wclik1", "clik1"), rmax = NULL,
eps.rmax = 0.01, dimyx = 50, maxIter = 100, tolerance = 1e-06,
fast = TRUE, vcov = FALSE, fast.vcov = FALSE, verbose = FALSE,

save.internals = FALSE)

Arguments

object Fitted cluster point process model (object of class "kppm").

type A character string indicating the method of estimation. Current options are
"clik1", "wclik1" and "quasi" for, respectively, first order composite (Pois-
son) likelihood, weighted first order composite likelihood and quasi-likelihood.

rmax Optional. The dependence range. Not usually specified by the user.

improve.kppm 155

eps.rmax Numeric. A small positive number which is used to determine rmax from the
tail behaviour of the pair correlation function. Namely rmax is the smallest value
of r at which (g(r) − 1)/(g(0) − 1) falls below eps.rmax. Ignored if rmax is
provided.

dimyx Pixel array dimensions. See Details.

maxIter Integer. Maximum number of iterations of iterative weighted least squares (Fisher
scoring).

tolerance Numeric. Tolerance value specifying when to stop iterative weighted least squares
(Fisher scoring).

fast Logical value indicating whether tapering should be used to make the computa-
tions faster (requires the package Matrix).

vcov Logical value indicating whether to calculate the asymptotic variance covari-
ance/matrix.

fast.vcov Logical value indicating whether tapering should be used for the variance/covariance
matrix to make the computations faster (requires the package Matrix). Caution:
This is expected to underestimate the true asymptotic variances/covariances.

verbose A logical indicating whether the details of computations should be printed.

save.internals A logical indicating whether internal quantities should be saved in the returned
object (mostly for development purposes).

Details

This function reestimates the intensity parameters in a fitted "kppm" object. If type="clik1"
estimates are based on the first order composite (Poisson) likelihood, which ignores dependence
between the points. Note that type="clik1" is mainly included for testing purposes and is not rec-
ommended for the typical user; instead the more efficient kppm with improve.type="none" should
be used.

When type="quasi" or type="wclik1" the dependence structure between the points is incorpo-
rated in the estimation procedure by using the estimated pair correlation function in the estimating
equation.

In all cases the estimating equation is based on dividing the observation window into small subre-
gions and count the number of points in each subregion. To do this the observation window is first
converted into a digital mask by as.mask where the resolution is controlled by the argument dimyx.
The computational time grows with the cube of the number of subregions, so fine grids may take
very long to compute (or even run out of memory).

Value

A fitted cluster point process model of class "kppm".

Author(s)

Abdollah Jalilian <jalilian@razi.ac.ir> and Rasmus Plenge Waagepetersen <rw@math.auc.dk>.
Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak
<rubak@math.aau.dk>.

156 influence.ppm

References

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes, Biometrics, 63, 252-258.

Guan, Y. and Shen, Y. (2010) A weighted estimating equation approach to inference for inhomoge-
neous spatial point processes, Biometrika, 97, 867-880.

Guan, Y., Jalilian, A. and Waagepetersen, R. (2015) Quasi-likelihood for spatial point processes.
Journal of the Royal Statistical Society, Series B 77, 677–697.

See Also

ppm, kppm, improve.kppm

Examples

fit a Thomas process using minimum contrast estimation method
to model interaction between points of the pattern
fit0 <- kppm(bei ~ elev + grad, data = bei.extra)

fit the log-linear intensity model with quasi-likelihood method
fit1 <- improve.kppm(fit0, type="quasi")

compare
coef(fit0)
coef(fit1)

influence.ppm Influence Measure for Spatial Point Process Model

Description

Computes the influence measure for a fitted spatial point process model.

Usage

S3 method for class 'ppm'
influence(model, ...,

drop = FALSE, iScore=NULL, iHessian=NULL, iArgs=NULL)

Arguments

model Fitted point process model (object of class "ppm").
... Ignored.
drop Logical. Whether to include (drop=FALSE) or exclude (drop=TRUE) contribu-

tions from quadrature points that were not used to fit the model.
iScore, iHessian

Components of the score vector and Hessian matrix for the irregular parameters,
if required. See Details.

iArgs List of extra arguments for the functions iScore, iHessian if required.

influence.ppm 157

Details

Given a fitted spatial point process model model, this function computes the influence measure
described in Baddeley, Chang and Song (2013) and Baddeley, Rubak and Turner (2019).

The function influence is generic, and influence.ppm is the method for objects of class "ppm"
representing point process models.

The influence of a point process model is a value attached to each data point (i.e. each point of the
point pattern to which the model was fitted). The influence value s(xi) at a data point xi represents
the change in the maximised log (pseudo)likelihood that occurs when the point xi is deleted. A
relatively large value of s(xi) indicates a data point with a large influence on the fitted model.

If the point process model trend has irregular parameters that were fitted (using ippm) then the
influence calculation requires the first and second derivatives of the log trend with respect to the
irregular parameters. The argument iScore should be a list, with one entry for each irregular
parameter, of R functions that compute the partial derivatives of the log trend (i.e. log intensity or
log conditional intensity) with respect to each irregular parameter. The argument iHessian should
be a list, with p2 entries where p is the number of irregular parameters, of R functions that compute
the second order partial derivatives of the log trend with respect to each pair of irregular parameters.

The result of influence.ppm is an object of class "influence.ppm". It can be printed and plotted.
It can be converted to a marked point pattern by as.ppp (see as.ppp.influence.ppm). There are
also methods for [, as.owin, domain, shift, integral and Smooth.

Value

An object of class "influence.ppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. and Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial
point process models. Scandinavian Journal of Statistics 40, 86–104.

Baddeley, A., Rubak, E. and Turner, R. (2019) Leverage and influence diagnostics for Gibbs spatial
point processes. Spatial Statistics 29, 15–48.

See Also

leverage.ppm, dfbetas.ppm, ppmInfluence, plot.influence.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)
plot(influence(fit))

158 integral.msr

inforder.family Infinite Order Interaction Family

Description

An object describing the family of all Gibbs point processes with infinite interaction order.

Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the interaction structure of
Gibbs point processes which have infinite order of interaction, such as the area-interaction process
AreaInter.

Value

Object of class "isf", see isf.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

See Also

AreaInter to create the area interaction process structure.

Other families: pairwise.family, pairsat.family, ord.family.

integral.msr Integral of a Measure

Description

Computes the integral (total value) of a measure over its domain.

Usage

S3 method for class 'msr'
integral(f, domain=NULL, weight=NULL, ...)

integral.msr 159

Arguments

f A signed measure or vector-valued measure (object of class "msr").

domain Optional window specifying the domain of integration. Alternatively a tessella-
tion.

weight Optional. A pixel image (object of class "im") or a function(x,y) giving a
numerical weight to be applied to the integration.

... Ignored.

Details

The integral (total value) of the measure over its domain is calculated.

If domain is a window (class "owin") then the integration will be restricted to this window. If
domain is a tessellation (class "tess") then the integral of f in each tile of domain will be computed.

For a multitype measure m, use split.msr to separate the contributions for each type of point, as
shown in the Examples.

If weight is given, it should be a pixel image or a function of coordinates x and y returning numer-
ical values. Then each increment of the measure will be multiplied by the corresponding value of
weight. Effectively, weight becomes the integrand, and the result is the integral of weight with
respect to the measure f.

Value

A numeric value, vector, or matrix.

integral(f) returns a numeric value (for a signed measure) or a vector of values (for a vector-
valued measure).

If domain is a tessellation then integral(f, domain) returns a numeric vector with one entry for
each tile (if f is a signed measure) or a numeric matrix with one row for each tile (if f is a vector-
valued measure).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

msr, integral

Examples

fit <- ppm(cells ~ x)
rr <- residuals(fit)
integral(rr)

vector-valued measure
rs <- residuals(fit, type="score")
integral(rs)

160 intensity.dppm

multitype
fitA <- ppm(amacrine ~ x)
rrA <- residuals(fitA)
sapply(split(rrA), integral)

multitype and vector-valued
rsA <- residuals(fitA, type="score")
sapply(split(rsA), integral)

integral over a subregion
integral(rr, domain=square(0.5))
integrals over the tiles of a tessellation
integral(rr, domain=quadrats(cells, 2))

weighted integral
integral(rr, weight=function(x,y){y})

intensity.dppm Intensity of Determinantal Point Process Model

Description

Extracts the intensity of a determinantal point process model.

Usage

S3 method for class 'detpointprocfamily'
intensity(X, ...)

S3 method for class 'dppm'
intensity(X, ...)

Arguments

X A determinantal point process model (object of class "detpointprocfamily"
or "dppm").

... Ignored.

Value

A numeric value (if the model is stationary), a pixel image (if the model is non-stationary) or NA if
the intensity is unknown for the model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

intensity.ppm 161

intensity.ppm Intensity of Fitted Point Process Model

Description

Computes the intensity of a fitted point process model.

Usage

S3 method for class 'ppm'
intensity(X, ..., approx=c("Poisson", "DPP"))

Arguments

X A fitted point process model (object of class "ppm").

... Arguments passed to predict.ppm in some cases. See Details.

approx Character string (partially matched) specifying the type of approximation to the
intensity for a non-Poisson model.

Details

This is a method for the generic function intensity for fitted point process models (class "ppm").

The intensity of a point process model is the expected number of random points per unit area.

If X is a Poisson point process model, the intensity of the process is computed exactly. The result is
a numerical value if X is a stationary Poisson point process, and a pixel image if X is non-stationary.
(In the latter case, the resolution of the pixel image is controlled by the arguments ... which are
passed to predict.ppm.)

If X is a Gibbs point process model that is not a Poisson model, the intensity is computed approxi-
mately:

• if approx="Poisson" (the default), the intensity is computed using the Poisson-saddlepoint
approximation (Baddeley and Nair, 2012a, 2012b, 2017; Anderssen et al, 2014). This ap-
proximation is currently available for pairwise-interaction models (Baddeley and Nair, 2012a,
2012b) and for the area-interaction model and Geyer saturation model (Baddeley and Nair,
2017).
If the model is non-stationary. the pseudostationary solution (Baddeley and Nair, 2012b;
Anderssen et al, 2014) is used. The result is a pixel image, whose resolution is controlled by
the arguments ... which are passed to predict.ppm.

• if approx="DPP", the intensity is calculated using the approximation of (Coeurjolly and La-
vancier, 2018) based on a determinantal point process. This approximation is more accurate
than the Poisson saddlepoint approximation, for inhibitory interactions. However the DPP
approximation is only available for stationary pairwise interaction models.

Value

A numeric value (if the model is stationary) or a pixel image.

162 intensity.slrm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Gopalan Nair, and Frédéric Lavancier.

References

Anderssen, R.S., Baddeley, A., DeHoog, F.R. and Nair, G.M. (2014) Solution of an integral equation
arising in spatial point process theory. Journal of Integral Equations and Applications 26 (4) 437–
453.

Baddeley, A. and Nair, G. (2012a) Fast approximation of the intensity of Gibbs point processes.
Electronic Journal of Statistics 6 1155–1169.

Baddeley, A. and Nair, G. (2012b) Approximating the moments of a spatial point process. Stat 1,
1, 18–30. DOI: 10.1002/sta4.5

Baddeley, A. and Nair, G. (2017) Poisson-saddlepoint approximation for Gibbs point processes
with infinite-order interaction: in memory of Peter Hall. Journal of Applied Probability 54, 4,
1008–1026.

Coeurjolly, J.-F. and Lavancier, F. (2018) Approximation intensity for pairwise interaction Gibbs
point processes using determinantal point processes. Electronic Journal of Statistics 12 3181–3203.

See Also

intensity, intensity.ppp

Examples

fitP <- ppm(swedishpines ~ 1)
intensity(fitP)
fitS <- ppm(swedishpines ~ 1, Strauss(9))
intensity(fitS)
intensity(fitS, approx="D")
fitSx <- ppm(swedishpines ~ x, Strauss(9))
lamSx <- intensity(fitSx)
fitG <- ppm(swedishpines ~ 1, Geyer(9, 1))
lamG <- intensity(fitG)
fitA <- ppm(swedishpines ~ 1, AreaInter(7))
lamA <- intensity(fitA)

intensity.slrm Intensity of Fitted Spatial Logistic Regression Model

Description

Computes the intensity of a fitted spatial logistic regression model, treated as a point process model.

Usage

S3 method for class 'slrm'
intensity(X, ...)

intensity.slrm 163

Arguments

X A fitted spatial logistic regression model (object of class "slrm").

... Arguments passed to predict.slrm in some cases. See Details.

Details

This is a method for the generic function intensity for spatial logistic regression models (class
"slrm").

The fitted spatial logistic regression model X is interpreted as a point process model. The intensity
of a point process model is defined as the expected number of random points per unit area. The
fitted probabilities of presence according to X are converted to intensity values.

The result is a numerical value if X is stationary, and a pixel image if X is non-stationary. In the
latter case, the resolution of the pixel image is controlled by the arguments ... which are passed to
predict.slrm.

Value

A numeric value (if the model is stationary) or a pixel image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Berman, M., Fisher, N.I., Hardegen, A., Milne, R.K., Schuhmacher, D., Shah, R.
and Turner, R. (2010) Spatial logistic regression and change-of-support for spatial Poisson point
processes. Electronic Journal of Statistics 4, 1151–1201. DOI: 10.1214/10-EJS581

See Also

intensity, intensity.ppm

Examples

fitS <- slrm(swedishpines ~ 1)
intensity(fitS)
fitX <- slrm(swedishpines ~ x)
intensity(fitX)

164 interactionorder

interactionorder Determine the Order of Interpoint Interaction in a Model

Description

Given a point process model, report the order of interpoint interaction.

Usage

interactionorder(object)

S3 method for class 'ppm'
interactionorder(object)

S3 method for class 'interact'
interactionorder(object)

S3 method for class 'isf'
interactionorder(object)

S3 method for class 'fii'
interactionorder(object)

Arguments

object A point process model (class "ppm") or similar information.

Details

This function determines the order of interpoint interaction in a Gibbs point process model (or a
related object).

The interaction order is defined as the largest number k such that the probability density of the
model contains terms involving k points at a time. For example, in a pairwise interaction process
such as the Strauss process, the probability density contains interaction terms between each pair of
points, but does not contain any terms that involve three points at a time, so the interaction order is
2.

Poisson point processes have interaction order 1. Pairwise-interaction processes have interaction
order 2. Point processes with the triplet interaction Triplets have interaction order 3. The Geyer
saturation model Geyer and the area-interaction model AreaInter have infinite order of interaction.

Value

A positive integer, or Inf.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

ippm 165

Examples

interactionorder(ppm(cells ~ 1))
interactionorder(Strauss(0.1))
interactionorder(Triplets(0.1))
interactionorder(Geyer(0.1, 2))
interactionorder(Hybrid(Strauss(0.1), Triplets(0.2)))

ippm Fit Point Process Model Involving Irregular Trend Parameters

Description

Experimental extension to ppm which finds optimal values of the irregular trend parameters in a
point process model.

Usage

ippm(Q, ...,
iScore=NULL,
start=list(),
covfunargs=start,
nlm.args=list(stepmax=1/2),
silent=FALSE,
warn.unused=TRUE)

Arguments

Q, ... Arguments passed to ppm to fit the point process model.

iScore Optional. A named list of R functions that compute the partial derivatives of the
logarithm of the trend, with respect to each irregular parameter. See Details.

start Named list containing initial values of the irregular parameters over which to
optimise.

covfunargs Argument passed to ppm. A named list containing values for all irregular param-
eters required by the covariates in the model. Must include all the parameters
named in start.

nlm.args Optional list of arguments passed to nlm to control the optimization algorithm.

silent Logical. Whether to print warnings if the optimization algorithm fails to con-
verge.

warn.unused Logical. Whether to print a warning if some of the parameters in start are not
used in the model.

166 ippm

Details

This function is an experimental extension to the point process model fitting command ppm. The
extension allows the trend of the model to include irregular parameters, which will be maximised
by a Newton-type iterative method, using nlm.

For the sake of explanation, consider a Poisson point process with intensity function λ(u) at location
u. Assume that

λ(u) = exp(α+ βZ(u)) f(u, γ)

where α, β, γ are parameters to be estimated, Z(u) is a spatial covariate function, and f is some
known function. Then the parameters α, β are called regular because they appear in a loglinear
form; the parameter γ is called irregular.

To fit this model using ippm, we specify the intensity using the trend formula in the same way as
usual for ppm. The trend formula is a representation of the log intensity. In the above example the
log intensity is

log λ(u) = α+ βZ(u) + log f(u, γ)

So the model above would be encoded with the trend formula ~Z + offset(log(f)). Note that the
irregular part of the model is an offset term, which means that it is included in the log trend as it is,
without being multiplied by another regular parameter.

The optimisation runs faster if we specify the derivative of log f(u, γ) with respect to γ. We call this
the irregular score. To specify this, the user must write an R function that computes the irregular
score for any value of γ at any location (x,y).

Thus, to code such a problem,

1. The argument trend should define the log intensity, with the irregular part as an offset;

2. The argument start should be a list containing initial values of each of the irregular parame-
ters;

3. The argument iScore, if provided, must be a list (with one entry for each entry of start)
of functions with arguments x,y,..., that evaluate the partial derivatives of log f(u, γ) with
respect to each irregular parameter.

The coded example below illustrates the model with two irregular parameters γ, δ and irregular term

f((x, y), (γ, δ)) = 1 + exp(γ − δx3)

Arguments ... passed to ppm may also include interaction. In this case the model is not a
Poisson point process but a more general Gibbs point process; the trend formula trend determines
the first-order trend of the model (the first order component of the conditional intensity), not the
intensity.

Value

A fitted point process model (object of class "ppm") which also belongs to the special class "ippm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

is.dppm 167

See Also

ppm, profilepl

Examples

nd <- 32

gamma0 <- 3
delta0 <- 5
POW <- 3
Terms in intensity
Z <- function(x,y) { -2*y }
f <- function(x,y,gamma,delta) { 1 + exp(gamma - delta * x^POW) }
True intensity
lamb <- function(x,y,gamma,delta) { 200 * exp(Z(x,y)) * f(x,y,gamma,delta) }
Simulate realisation
lmax <- max(lamb(0,0,gamma0,delta0), lamb(1,1,gamma0,delta0))
set.seed(42)
X <- rpoispp(lamb, lmax=lmax, win=owin(), gamma=gamma0, delta=delta0)
Partial derivatives of log f
DlogfDgamma <- function(x,y, gamma, delta) {

topbit <- exp(gamma - delta * x^POW)
topbit/(1 + topbit)

}
DlogfDdelta <- function(x,y, gamma, delta) {

topbit <- exp(gamma - delta * x^POW)
- (x^POW) * topbit/(1 + topbit)

}
irregular score
Dlogf <- list(gamma=DlogfDgamma, delta=DlogfDdelta)
fit model
ippm(X ~Z + offset(log(f)),

covariates=list(Z=Z, f=f),
iScore=Dlogf,
start=list(gamma=1, delta=1),
nlm.args=list(stepmax=1),
nd=nd)

is.dppm Recognise Fitted Determinantal Point Process Models

Description

Check that an object inherits the class dppm

Usage

is.dppm(x)

168 is.hybrid

Arguments

x Any object.

Value

A single logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

is.hybrid Test Whether Object is a Hybrid

Description

Tests where a point process model or point process interaction is a hybrid of several interactions.

Usage

is.hybrid(x)

S3 method for class 'ppm'
is.hybrid(x)

S3 method for class 'interact'
is.hybrid(x)

Arguments

x A point process model (object of class "ppm") or a point process interaction
structure (object of class "interact").

Details

A hybrid (Baddeley, Turner, Mateu and Bevan, 2012) is a point process model created by combining
two or more point process models, or an interpoint interaction created by combining two or more
interpoint interactions.

The function is.hybrid is generic, with methods for point process models (objects of class "ppm")
and point process interactions (objects of class "interact"). These functions return TRUE if the
object x is a hybrid, and FALSE if it is not a hybrid.

Hybrids of two or more interpoint interactions are created by the function Hybrid. Such a hybrid
interaction can then be fitted to point pattern data using ppm.

is.marked.ppm 169

Value

TRUE if the object is a hybrid, and FALSE otherwise.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A., Turner, R., Mateu, J. and Bevan, A. (2013) Hybrids of Gibbs point process models and
their implementation. Journal of Statistical Software 55:11, 1–43. DOI: 10.18637/jss.v055.i11

See Also

Hybrid

Examples

S <- Strauss(0.1)
is.hybrid(S)
H <- Hybrid(Strauss(0.1), Geyer(0.2, 3))
is.hybrid(H)

fit <- ppm(redwood, ~1, H)
is.hybrid(fit)

is.marked.ppm Test Whether A Point Process Model is Marked

Description

Tests whether a fitted point process model involves “marks” attached to the points.

Usage

S3 method for class 'ppm'
is.marked(X, ...)

Arguments

X Fitted point process model (object of class "ppm") usually obtained from ppm.

... Ignored.

170 is.marked.ppm

Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf
dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset
gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark
attached to the location of the cell.

The argument X is a fitted point process model (an object of class "ppm") typically obtained by
fitting a model to point pattern data using ppm.

This function returns TRUE if the original data (to which the model X was fitted) were a marked
point pattern.

Note that this is not the same as testing whether the model involves terms that depend on the marks
(i.e. whether the fitted model ignores the marks in the data). See the Examples for a trick to do this.

If this function returns TRUE, the implications are (for example) that any simulation of this model
will require simulation of random marks as well as random point locations.

Value

Logical value, equal to TRUE if X is a model that was fitted to a marked point pattern dataset.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

is.marked, is.marked.ppp

Examples

X <- lansing
Multitype point pattern --- trees marked by species

fit1 <- ppm(X, ~ marks, Poisson())
is.marked(fit1)

fit2 <- ppm(X, ~ 1, Poisson())
is.marked(fit2)

test whether the model formula involves marks
"marks" %in% spatstat.utils::variablesinformula(formula(fit2))

Unmarked point pattern
fit3 <- ppm(cells, ~ 1, Poisson())
is.marked(fit3)
FALSE

is.multitype.ppm 171

is.multitype.ppm Test Whether A Point Process Model is Multitype

Description

Tests whether a fitted point process model involves “marks” attached to the points that classify the
points into several types.

Usage

S3 method for class 'ppm'
is.multitype(X, ...)

Arguments

X Fitted point process model (object of class "ppm") usually obtained from ppm.

... Ignored.

Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf
dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset
gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark
attached to the location of the cell.

The argument X is a fitted point process model (an object of class "ppm") typically obtained by
fitting a model to point pattern data using ppm.

This function returns TRUE if the original data (to which the model X was fitted) were a multitype
point pattern.

Note that this is not the same as testing whether the model involves terms that depend on the marks
(i.e. whether the fitted model ignores the marks in the data). Currently we have not implemented a
test for this.

If this function returns TRUE, the implications are (for example) that any simulation of this model
will require simulation of random marks as well as random point locations.

Value

Logical value, equal to TRUE if X is a model that was fitted to a multitype point pattern dataset.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

172 is.poissonclusterprocess

See Also

is.multitype, is.multitype.ppp

Examples

X <- lansing
Multitype point pattern --- trees marked by species

fit1 <- ppm(X, ~ marks, Poisson())
is.multitype(fit1)
TRUE

fit2 <- ppm(X, ~ 1, Poisson())
is.multitype(fit2)
TRUE

Unmarked point pattern
fit3 <- ppm(cells, ~ 1, Poisson())
is.multitype(fit3)
FALSE

is.poissonclusterprocess

Recognise Poisson Cluster Process Models

Description

Given a point process model (either a model that has been fitted to data, or a model specified by its
parameters), determine whether the model is a Poisson cluster process.

Usage

is.poissonclusterprocess(model)
S3 method for class 'kppm'
is.poissonclusterprocess(model)
S3 method for class 'zclustermodel'
is.poissonclusterprocess(model)
Default S3 method:
is.poissonclusterprocess(model)

Arguments

model Any kind of object representing a spatial point process model, either a model
fitted to data, or a specification of a point process model.

is.ppm 173

Details

The argument model represents a fitted spatial point process model (such as an object of class
"ppm", "kppm" or similar) or a specification of a point process model (such as an object of class
"zclustermodel").

This function returns TRUE if the model is a Poisson cluster process, and FALSE otherwise.

The function is.poissonclusterprocess is generic, with methods for classes kppm and zclustermodel,
and a default method.

Value

A logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

kppm, zclustermodel.

Examples

fut <- kppm(redwood ~ 1, "Thomas")
is.poissonclusterprocess(fut)
fot <- slrm(cells ~ x, dimyx=16)
is.poissonclusterprocess(fot)

is.ppm Test Whether An Object Is A Fitted Point Process Model

Description

Checks whether its argument is a fitted point process model (object of class "ppm", "kppm", "lppm"
or "slrm").

Usage

is.ppm(x)
is.kppm(x)
is.lppm(x)
is.slrm(x)

Arguments

x Any object.

174 is.stationary.ppm

Details

These functions test whether the object x is a fitted point process model object of the specified class.

The result of is.ppm(x) is TRUE if x has "ppm" amongst its classes, and otherwise FALSE. Similarly
for the other functions.

Value

A single logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

is.stationary.ppm Recognise Stationary and Poisson Point Process Models

Description

Given a point process model (either a model that has been fitted to data, or a model specified by its
parameters), determine whether the model is a stationary point process, and whether it is a Poisson
point process.

Usage

S3 method for class 'ppm'
is.stationary(x)
S3 method for class 'kppm'
is.stationary(x)
S3 method for class 'slrm'
is.stationary(x)
S3 method for class 'dppm'
is.stationary(x)
S3 method for class 'detpointprocfamily'
is.stationary(x)

S3 method for class 'ppm'
is.poisson(x)
S3 method for class 'kppm'
is.poisson(x)
S3 method for class 'slrm'
is.poisson(x)
S3 method for class 'interact'
is.poisson(x)

is.stationary.ppm 175

Arguments

x A fitted spatial point process model (object of class "ppm", "kppm", "lppm",
"dppm" or "slrm") or a specification of a Gibbs point process model (object of
class "rmhmodel") or a similar object.

Details

The argument x represents a fitted spatial point process model or a similar object.

is.stationary(x) returns TRUE if x represents a stationary point process, and FALSE if not.

is.poisson(x) returns TRUE if x represents a Poisson point process, and FALSE if not.

The functions is.stationary and is.poisson are generic, with methods for the classes "ppm"
(Gibbs point process models), "kppm" (cluster or Cox point process models), "slrm" (spatial lo-
gistic regression models) and "rmhmodel" (model specifications for the Metropolis-Hastings algo-
rithm). Additionally is.stationary has a method for classes "detpointprocfamily" and "dppm"
(both determinantal point processes) and is.poisson has a method for class "interact" (interac-
tion structures for Gibbs models).

is.poisson.kppm will return FALSE, unless the model x is degenerate: either x has zero intensity
so that its realisations are empty with probability 1, or it is a log-Gaussian Cox process where the
log intensity has zero variance.

is.poisson.slrm will always return TRUE, by convention.

Value

A logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

is.marked to determine whether a model is a marked point process.

summary.ppm for detailed information about a fitted model.

Model-fitting functions ppm, dppm, kppm, slrm.

Examples

fit <- ppm(cells ~ x)
is.stationary(fit)
is.poisson(fit)

fut <- kppm(redwood ~ 1, "MatClust")
is.stationary(fut)
is.poisson(fut)

fot <- slrm(cells ~ x)
is.stationary(fot)

176 isf.object

is.poisson(fot)

isf.object Interaction Structure Family Objects

Description

Objects of class "isf" are used internally by the spatstat package to represent the structure of the
interpoint interactions in a family of point process models.

Details

Advanced Use Only!

An object of class "isf" (Interaction Structure Family) is used internally by the spatstat package
to represent the common mathematical and algorithmic structure of the interpoint interactions in a
family of point process models.

The existing objects of class "isf" are:

pairwise.family pairwise interaction
triplet.family triplet interaction
pairsat.family saturated pairwise interaction
hierpair.family hierarchical pairwise interaction
inforder.family infinite order interaction
hybrid.family hybrids of several interactions
ord.family Ord interactions

The information contained in these objects enables the spatstat package to select the appropriate
algorithm for fitting, predicting and simulating each point process model.

For example, in order to fit a model that involves pairwise interactions, the model-fitting function
ppm would use information contained in pairwise.family to select the appropriate algorithms.

An object of class "isf" is essentially a list of functions for various tasks. The internal format is
undocumented and may be changed without notice.

Value

An object of class "isf", essentially a list of functions for various tasks.

The internal format is undocumented and may be changed without notice.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

Kcom 177

Kcom Model Compensator of K Function

Description

Given a point process model fitted to a point pattern dataset, this function computes the compensator
of theK function based on the fitted model (as well as the usual nonparametric estimates ofK based
on the data alone). Comparison between the nonparametric and model-compensated K functions
serves as a diagnostic for the model.

Usage

Kcom(object, r = NULL, breaks = NULL, ...,
correction = c("border", "isotropic", "translate"),
conditional = !is.poisson(object),
restrict = FALSE,
model = NULL,
trend = ~1, interaction = Poisson(), rbord = reach(interaction),
compute.var = TRUE,
truecoef = NULL, hi.res = NULL)

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
or a point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").

r Optional. Vector of values of the argument r at which the function K(r) should
be computed. This argument is usually not specified. There is a sensible default.

breaks This argument is for advanced use only.

... Ignored.

correction Optional vector of character strings specifying the edge correction(s) to be used.
See Kest for options.

conditional Optional. Logical value indicating whether to compute the estimates for the
conditional case. See Details.

restrict Logical value indicating whether to compute the restriction estimator (restrict=TRUE)
or the reweighting estimator (restrict=FALSE, the default). Applies only if
conditional=TRUE. See Details.

model Optional. A fitted point process model (object of class "ppm") to be re-fitted to
the data using update.ppm, if object is a point pattern. Overrides the argu-
ments trend,interaction,rbord.

trend, interaction, rbord
Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern. See ppm for details.

178 Kcom

compute.var Logical value indicating whether to compute the Poincare variance bound for
the residual K function (calculation is only implemented for the isotropic cor-
rection).

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true
coefficient vector of the point process model, in calculating the diagnostic. In-
compatible with hi.res.

hi.res Optional. List of parameters passed to quadscheme. If this argument is present,
the model will be re-fitted at high resolution as specified by these parameters.
The coefficients of the resulting fitted model will be taken as the true coeffi-
cients. Then the diagnostic will be computed for the default quadrature scheme,
but using the high resolution coefficients.

Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a
point pattern dataset. It computes an estimate of the K function of the dataset, together with a
model compensator of the K function, which should be approximately equal if the model is a good
fit to the data.

The first argument, object, is usually a fitted point process model (object of class "ppm"), obtained
from the model-fitting function ppm.

For convenience, object can also be a point pattern (object of class "ppp"). In that case, a point
process model will be fitted to it, by calling ppm using the arguments trend (for the first order
trend), interaction (for the interpoint interaction) and rbord (for the erosion distance in the bor-
der correction for the pseudolikelihood). See ppm for details of these arguments.

The algorithm first extracts the original point pattern dataset (to which the model was fitted) and
computes the standard nonparametric estimates of the K function. It then also computes the model
compensator of the K function. The different function estimates are returned as columns in a data
frame (of class "fv").

The argument correction determines the edge correction(s) to be applied. See Kest for explana-
tion of the principle of edge corrections. The following table gives the options for the correction
argument, and the corresponding column names in the result:

correction description of correction nonparametric compensator
"isotropic" Ripley isotropic correction iso icom
"translate" Ohser-Stoyan translation correction trans tcom
"border" border correction border bcom

The nonparametric estimates can all be expressed in the form

K̂(r) =
∑
i

∑
j<i

e(xi, xj , r, x)I{d(xi, xj) ≤ r}

where xi is the i-th data point, d(xi, xj) is the distance between xi and xj , and e(xi, xj , r, x) is
a term that serves to correct edge effects and to re-normalise the sum. The corresponding model
compensator is

C K̃(r) =

∫
W

λ(u, x)
∑
j

e(u, xj , r, x ∪ u)I{d(u, xj) ≤ r}

Kcom 179

where the integral is over all locations u in the observation window, λ(u, x) denotes the conditional
intensity of the model at the location u, and x ∪ u denotes the data point pattern x augmented by
adding the extra point u.

If the fitted model is a Poisson point process, then the formulae above are exactly what is computed.
If the fitted model is not Poisson, the formulae above are modified slightly to handle edge effects.

The modification is determined by the arguments conditional and restrict. The value of
conditional defaults to FALSE for Poisson models and TRUE for non-Poisson models. If conditional=FALSE
then the formulae above are not modified. If conditional=TRUE, then the algorithm calculates the
restriction estimator if restrict=TRUE, and calculates the reweighting estimator if restrict=FALSE.
See Appendix D of Baddeley, Rubak and Møller (2011). Thus, by default, the reweighting estimator
is computed for non-Poisson models.

The nonparametric estimates of K(r) are approximately unbiased estimates of the K-function,
assuming the point process is stationary. The model compensators are unbiased estimates of the
mean values of the corresponding nonparametric estimates, assuming the model is true. Thus, if
the model is a good fit, the mean value of the difference between the nonparametric estimates and
model compensators is approximately zero.

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a
plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Related functions: Kres, Kest.

Alternative functions: Gcom, psstG, psstA, psst.

Point process models: ppm.

Examples

fit0 <- ppm(cells, ~1) # uniform Poisson

if(interactive()) {
plot(Kcom(fit0))

compare the isotropic-correction estimates
plot(Kcom(fit0), cbind(iso, icom) ~ r)

uniform Poisson is clearly not correct
}

180 Kmodel

fit1 <- ppm(cells, ~1, Strauss(0.08))

K1 <- Kcom(fit1)
K1
if(interactive()) {

plot(K1)
plot(K1, cbind(iso, icom) ~ r)
plot(K1, cbind(trans, tcom) ~ r)

how to plot the difference between nonparametric estimates and compensators
plot(K1, iso - icom ~ r)

fit looks approximately OK; try adjusting interaction distance
}
fit2 <- ppm(cells, ~1, Strauss(0.12))

K2 <- Kcom(fit2)
if(interactive()) {

plot(K2)
plot(K2, cbind(iso, icom) ~ r)
plot(K2, iso - icom ~ r)

}

Kmodel K Function or Pair Correlation Function of a Point Process Model

Description

Returns the theoretical K function or the pair correlation function of a point process model.

Usage

Kmodel(model, ...)

pcfmodel(model, ...)

Arguments

model A fitted point process model of some kind.

... Ignored.

Details

For certain types of point process models, it is possible to write down a mathematical expression
for the K function or the pair correlation function of the model.

The functions Kmodel and pcfmodel give the theoretical K-function and the theoretical pair corre-
lation function for a point process model that has been fitted to data.

The functions Kmodel and pcfmodel are generic, with methods for the classes "kppm" (cluster
processes and Cox processes) and "ppm" (Gibbs processes).

Kmodel.dppm 181

The return value is a function in the R language, which takes one argument r. Evaluation of this
function, on a numeric vector r, yields values of the desired K function or pair correlation function
at these distance values.

Value

A function in the R language, which takes one argument r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Kest or pcf to estimate the K function or pair correlation function nonparametrically from data.

Kmodel.kppm for the method for cluster processes and Cox processes.

Kmodel.ppm for the method for Gibbs processes.

Kmodel.dppm K-function or Pair Correlation Function of a Determinantal Point Pro-
cess Model

Description

Returns the theoretical K-function or theoretical pair correlation function of a determinantal point
process model as a function of one argument r.

Usage

S3 method for class 'dppm'
Kmodel(model, ...)

S3 method for class 'dppm'
pcfmodel(model, ...)

S3 method for class 'detpointprocfamily'
Kmodel(model, ...)

S3 method for class 'detpointprocfamily'
pcfmodel(model, ...)

Arguments

model Model of class "detpointprocfamily" or "dppm".

... Ignored (not quite true – there is some undocumented internal use)

182 Kmodel.kppm

Value

A function in the R language, with one numeric argument r, that can be used to evaluate the theo-
retical K-function or pair correlation function of the model at distances r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

Examples

model <- dppMatern(lambda=100, alpha=.01, nu=1, d=2)
KMatern <- Kmodel(model)
pcfMatern <- pcfmodel(model)
plot(KMatern, xlim = c(0,0.05))
plot(pcfMatern, xlim = c(0,0.05))

Kmodel.kppm K Function or Pair Correlation Function of Cluster Model or Cox
model

Description

Returns the theoretical K function or the pair correlation function of a cluster point process model
or Cox point process model.

Usage

S3 method for class 'kppm'
Kmodel(model, ...)

S3 method for class 'kppm'
pcfmodel(model, ...)

Arguments

model A fitted cluster point process model (object of class "kppm") typically obtained
from the model-fitting algorithm kppm.

... Ignored.

Details

For certain types of point process models, it is possible to write down a mathematical expression
for the K function or the pair correlation function of the model. In particular this is possible for a
fitted cluster point process model (object of class "kppm" obtained from kppm).

The functions Kmodel and pcfmodel are generic. The functions documented here are the methods
for the class "kppm".

Kmodel.ppm 183

The return value is a function in the R language, which takes one argument r. Evaluation of this
function, on a numeric vector r, yields values of the desired K function or pair correlation function
at these distance values.

Value

A function in the R language, which takes one argument r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

Kest or pcf to estimate the K function or pair correlation function nonparametrically from data.

kppm to fit cluster models.

Kmodel for the generic functions.

Kmodel.ppm for the method for Gibbs processes.

Examples

fit <- kppm(redwood, ~x, "MatClust")
K <- Kmodel(fit)
K(c(0.1, 0.2))
curve(K(x), from=0, to=0.25)

Kmodel.ppm K Function or Pair Correlation Function of Gibbs Point Process model

Description

Returns the theoretical K function or the pair correlation function of a fitted Gibbs point process
model.

Usage

S3 method for class 'ppm'
Kmodel(model, ...)

S3 method for class 'ppm'
pcfmodel(model, ...)

Arguments

model A fitted Poisson or Gibbs point process model (object of class "ppm") typically
obtained from the model-fitting algorithm ppm.

... Ignored.

184 Kmodel.ppm

Details

This function computes an approximation to the K function or the pair correlation function of a
Gibbs point process.

The functions Kmodel and pcfmodel are generic. The functions documented here are the methods
for the class "ppm".

The approximation is only available for stationary pairwise-interaction models. It uses the second
order Poisson-saddlepoint approximation (Baddeley and Nair, 2012b) which is a combination of
the Poisson-Boltzmann-Emden and Percus-Yevick approximations.

The return value is a function in the R language, which takes one argument r. Evaluation of this
function, on a numeric vector r, yields values of the desired K function or pair correlation function
at these distance values.

Value

A function in the R language, which takes one argument r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Gopalan Nair.

References

Baddeley, A. and Nair, G. (2012a) Fast approximation of the intensity of Gibbs point processes.
Electronic Journal of Statistics 6 1155–1169.

Baddeley, A. and Nair, G. (2012b) Approximating the moments of a spatial point process. Stat 1,
1, 18–30. DOI: 10.1002/sta4.5

See Also

Kest or pcf to estimate the K function or pair correlation function nonparametrically from data.

ppm to fit Gibbs models.

Kmodel for the generic functions.

Kmodel.kppm for the method for cluster/Cox processes.

Examples

fit <- ppm(swedishpines, ~1, Strauss(8))
p <- pcfmodel(fit)
K <- Kmodel(fit)
p(6)
K(8)
curve(K(x), from=0, to=15)

kppm 185

kppm Fit Cluster or Cox Point Process Model

Description

Fit a homogeneous or inhomogeneous cluster process or Cox point process model to a point pattern.

Usage

kppm(X, ...)

S3 method for class 'formula'
kppm(X,

clusters = c("Thomas","MatClust","Cauchy","VarGamma","LGCP"),
...,
data=NULL)

S3 method for class 'ppp'
kppm(X,

trend = ~1,
clusters = c("Thomas","MatClust","Cauchy","VarGamma","LGCP"),
data = NULL,
...,
covariates=data,
subset,
method = c("mincon", "clik2", "palm", "adapcl"),
penalised = FALSE,
improve.type = c("none", "clik1", "wclik1", "quasi"),
improve.args = list(),
weightfun=NULL,
control=list(),
stabilize=TRUE,
algorithm,
trajectory=FALSE,
statistic="K",
statargs=list(),
rmax = NULL,
epsilon=0.01,
covfunargs=NULL,
use.gam=FALSE,
nd=NULL, eps=NULL,
ppm.improve.type=c("none", "ho", "enet"),
ppm.improve.args=list())

S3 method for class 'quad'
kppm(X,

trend = ~1,

186 kppm

clusters = c("Thomas","MatClust","Cauchy","VarGamma","LGCP"),
data = NULL,
...,
covariates=data,
subset,
method = c("mincon", "clik2", "palm", "adapcl"),
penalised = FALSE,
improve.type = c("none", "clik1", "wclik1", "quasi"),
improve.args = list(),
weightfun=NULL,
control=list(),
stabilize=TRUE,
algorithm,
trajectory=FALSE,
statistic="K",
statargs=list(),
rmax = NULL,
epsilon=0.01,
covfunargs=NULL,
use.gam=FALSE,
nd=NULL, eps=NULL,
ppm.improve.type=c("none", "ho", "enet"),
ppm.improve.args=list())

Arguments

X A point pattern dataset (object of class "ppp" or "quad") to which the model
should be fitted, or a formula in the R language defining the model. See Details.

trend An R formula, with no left hand side, specifying the form of the log intensity.

clusters Character string determining the cluster model. Partially matched. Options are
"Thomas", "MatClust", "Cauchy", "VarGamma" and "LGCP".

data, covariates
The values of spatial covariates (other than the Cartesian coordinates) required
by the model. A named list of pixel images, functions, windows, tessellations
or numeric constants.

... Additional arguments. See Details.

subset Optional. A subset of the spatial domain, to which the model-fitting should be
restricted. A window (object of class "owin") or a logical-valued pixel image
(object of class "im"), or an expression (possibly involving the names of entries
in data) which can be evaluated to yield a window or pixel image.

method The fitting method. Either "mincon" for minimum contrast, "clik2" for sec-
ond order composite likelihood, "adapcl" for adaptive second order composite
likelihood, or "palm" for Palm likelihood. Partially matched.

penalised Logical value specifying whether the objective function (the composite likeli-
hood or contrast) should be modified by adding a penalty against extreme values
of cluster scale.

kppm 187

improve.type Method for updating the initial estimate of the trend. Initially the trend is es-
timated as if the process is an inhomogeneous Poisson process. The default,
improve.type = "none", is to use this initial estimate. Otherwise, the trend
estimate is updated by improve.kppm, using information about the pair correla-
tion function. Options are "clik1" (first order composite likelihood, essentially
equivalent to "none"), "wclik1" (weighted first order composite likelihood)
and "quasi" (quasi likelihood).

improve.args Additional arguments passed to improve.kppm when improve.type != "none".
See Details.

weightfun Optional weighting function w in the composite likelihoods or Palm likelihood.
A function in the R language, or one of the strings "threshold" or "taper".
See Details.

control List of control parameters passed to the optimization function optim.

stabilize Logical value specifying whether to numerically stabilize the optimization algo-
rithm, by specifying suitable default values of control$fnscale and control$parscale.

algorithm Character string determining the mathematical algorithm to be used to solve
the fitting problem. If method="mincon", "clik2" or "palm" this argument
is passed to the generic optimization function optim (renamed as the argument
method to optim) with default "Nelder-Mead". If method="adapcl" the argu-
ment is passed to the equation solver nleqslv (renamed as the argument method
to nleqslv) with default "Bryden".

trajectory Logical value specifying whether to save the history of all function evaluations
performed by the optimization algorithm.

statistic Name of the summary statistic to be used for minimum contrast estimation:
either "K" or "pcf".

statargs Optional list of arguments to be used when calculating the statistic. See
Details.

rmax Maximum value of interpoint distance to use in the composite likelihood.

epsilon Tuning parameter for the adaptive composite likelihood method.
covfunargs, use.gam, nd, eps

Arguments passed to ppm when fitting the intensity.
ppm.improve.type, ppm.improve.args

Arguments controlling the initial fit of the trend. Passed to ppm as the arguments
improve.type and improve.args respectively.

Details

This function fits a clustered point process model to the point pattern dataset X.

The model may be either a Neyman-Scott cluster process or another Cox process. The type of model
is determined by the argument clusters. Currently the options are clusters="Thomas" for the
Thomas process, clusters="MatClust" for the Matérn cluster process, clusters="Cauchy" for
the Neyman-Scott cluster process with Cauchy kernel, clusters="VarGamma" for the Neyman-
Scott cluster process with Variance Gamma kernel (requires an additional argument nu to be passed
through the dots; see rVarGamma for details), and clusters="LGCP" for the log-Gaussian Cox

188 kppm

process (may require additional arguments passed through ...; see rLGCP for details on argument
names). The first four models are Neyman-Scott cluster processes.

The algorithm first estimates the intensity function of the point process using ppm. The argument
X may be a point pattern (object of class "ppp") or a quadrature scheme (object of class "quad").
The intensity is specified by the trend argument. If the trend formula is ~1 (the default) then the
model is homogeneous. The algorithm begins by estimating the intensity as the number of points
divided by the area of the window. Otherwise, the model is inhomogeneous. The algorithm begins
by fitting a Poisson process with log intensity of the form specified by the formula trend. (See ppm
for further explanation).

The argument X may also be a formula in the R language. The right hand side of the formula gives
the trend as described above. The left hand side of the formula gives the point pattern dataset to
which the model should be fitted.

If improve.type="none" this is the final estimate of the intensity. Otherwise, the intensity estimate
is updated, as explained in improve.kppm. Additional arguments to improve.kppm are passed as a
named list in improve.args.

The cluster parameters of the model are then fitted either by minimum contrast estimation, or by
a composite likelihood method (maximum composite likelihood, maximum Palm likelihood, or by
solving the adaptive composite likelihood estimating equation).

Minimum contrast: If method = "mincon" (the default) clustering parameters of the model will
be fitted by minimum contrast estimation, that is, by matching the theoretical K-function of
the model to the empirical K-function of the data, as explained in mincontrast.
For a homogeneous model (trend = ~1) the empirical K-function of the data is computed
using Kest, and the parameters of the cluster model are estimated by the method of minimum
contrast.
For an inhomogeneous model, the inhomogeneous K function is estimated by Kinhom using
the fitted intensity. Then the parameters of the cluster model are estimated by the method of
minimum contrast using the inhomogeneous K function. This two-step estimation procedure
is due to Waagepetersen (2007).
If statistic="pcf" then instead of using the K-function, the algorithm will use the pair
correlation function pcf for homogeneous models and the inhomogeneous pair correlation
function pcfinhom for inhomogeneous models. In this case, the smoothing parameters of the
pair correlation can be controlled using the argument statargs, as shown in the Examples.
Additional arguments ... will be passed to clusterfit to control the minimum contrast
fitting algorithm.
The optimisation is performed by the generic optimisation algorithm optim.

Second order composite likelihood: If method = "clik2" the clustering parameters of the model
will be fitted by maximising the second-order composite likelihood (Guan, 2006). The log
composite likelihood is

∑
i,j

w(dij) log ρ(dij ; θ)−

∑
i,j

w(dij)

 log

∫
D

∫
D

w(∥u− v∥)ρ(∥u− v∥; θ) du dv

where the sums are taken over all pairs of data points xi, xj separated by a distance dij =
∥xi − xj∥ less than rmax, and the double integral is taken over all pairs of locations u, v in

kppm 189

the spatial window of the data. Here ρ(d; θ) is the pair correlation function of the model with
cluster parameters θ.
The function w in the composite likelihood is a weighting function and may be chosen arbi-
trarily. It is specified by the argument weightfun. If this is missing or NULL then the default
is a threshold weight function, w(d) = 1(d ≤ R), where R is rmax/2. If it is specified, the ar-
gument weightfun should be a function in the R language with one argument. Alternatively
weightfun may be one of the strings "threshold" or "taper" representing the functions
w(d) = 1(d ≤ R) and w(d) = min(1, R/d) respectively.
The optimisation is performed by the generic optimisation algorithm optim.

Palm likelihood: If method = "palm" the clustering parameters of the model will be fitted by max-
imising the Palm loglikelihood (Tanaka et al, 2008)∑

i,j

w(xi, xj) log λP (xj | xi; θ)−
∫
D

w(xi, u)λP (u | xi; θ)du

with the same notation as above. Here λP (u|v; θ) is the Palm intensity of the model at location
u given there is a point at v.
The optimisation is performed by the generic optimisation algorithm optim.

Adaptive Composite likelihood: If method = "cladap" the clustering parameters of the model
will be fitted by solving the adaptive second order composite likelihood estimating equation
(Lavancier et al, 2021). The estimating function is

∑
u,v

w(ϵ
|g(0; θ)− 1|

g(∥u− v∥; θ)− 1
)
∇θg(∥u− v∥; θ)
g(∥u− v∥; θ)

−
∫
D

∫
D

w(ϵ
|g(u, v; θ)− 1|
g(∥u− v∥; θ)− 1

)∇θg(∥u−v∥; θ)ρ(u)ρ(v) du dv

where the sum is taken over all distinct pairs of points. Here g(d; θ) is the pair correlation
function with parameters θ. The partial derivative with respect to θ is g′(d; θ), and ρ(u)
denotes the fitted intensity function of the model.
The tuning parameter ϵ is independent of the data. It can be specified by the argument epsilon
and has default value 0.01.
The function w in the estimating function is a weighting function of bounded support [−1, 1].
It is specified by the argument weightfun. If this is missing or NULL then the default is
w(d) = 1(∥d∥ ≤ 1) exp(1/(r2 − 1)) The estimating equation is solved using the nonlinear
equation solver nleqslv from the package nleqslv. The package nleqslv must be installed in
order to use this option.

If penalised=TRUE, the fitting procedure is modified by adding a penalty against extreme values of
the cluster scale, as proposed by Baddeley et al (2022).

If trajectory=TRUE, the resulting object contains the history of all points in the cluster parameter
space which were evaluated by the optimization algorithm. The trajectory can be extracted by
traj(fit) or traj(obsurf(fit)) where fit is the fitted model object.

Value

An object of class "kppm" representing the fitted model. There are methods for printing, plotting,
predicting, simulating and updating objects of this class.

190 kppm

Cluster parameters for Neyman-Scott models

For Neyman-Scott models, the fitting procedure searches for the best-fitting values of the parameters
that control the intensity of parents and the physical scale of the clusters. (Any parameters that
control the shape of the clusters must be specified separately and are assumed to be fixed.)

The fitted object fit contains the fitted cluster parameters as the element fit$par in the format
described below. Initial estimates for these cluster parameters can be specified using the argument
startpar in the same format.

The cluster parameters will be stored in a named numeric vector par of length 2. The first value is
always kappa, the intensity of parents (cluster centres). The format is as follows:

• for clusters="Thomas", a vector c(kappa, sigma2) where sigma2 is the square of the clus-
ter standard deviation;

• for clusters="MatClust", a vector c(kappa, R) where R is the radius of the cluster;

• for clusters="Cauchy", a vector c(kappa, eta2) where eta2 = code{4 * scale^2} where
scale is the scale parameter for the model as used in rCauchy;

• for clusters="VarGamma", a vector c(kappa, eta) where eta is equivalent to the scale pa-
rameter omega used in rVarGamma.

For clusters="VarGamma" it will be necessary to specify the shape parameter nu as described in
the help for rVarGamma. This is specified separately as an argument nu in the call to kppm.

Optimization algorithm

The following details allow greater control over the fitting procedure.

For the first three fitting methods (method="mincon", "clik2" and "palm"), the optimisation is
performed by the generic optimisation algorithm optim. The behaviour of this algorithm can be
controlled by the following arguments to kppm:

• startpar determines the initial estimates of the cluster parameters.

• algorithm determines the particular optimization method. This argument is passed to optim
as the argument method. Options are listed in the help for optim. The default is the Nelder-
Mead simplex method.

• control is a named list of control parameters, documented in the help for optim. Useful
control arguments include trace, maxit and abstol.

• lower and upper specify bounds for the cluster parameters, when algorithm="L-BFGS-B"
or algorithm="Brent", as described in the help for optim.

For method="adapcl", the estimating equation is solved using the nonlinear equation solver nleqslv
from the package nleqslv. The package nleqslv must be installed in order to use this option. The
behaviour of this algorithm can be controlled by the following arguments to kppm:

• startpar determines the initial estimates of the cluster parameters.

• algorithm determines the method for solving the equation. This argument is passed to
nleqslv as the argument method. Options are listed in the help for nleqslv.

• globStrat determines the global strategy to be applied. This argument is is passed to nleqslv
as the argument global. Options are listed in the help for nleqslv.

• control is a named list of control parameters, documented in the help for nleqslv.

kppm 191

Log-Gaussian Cox Models

To fit a log-Gaussian Cox model, specify clusters="LGCP" and use additional arguments to specify
the covariance structure. These additional arguments can be given individually in the call to kppm,
or they can be collected together in a list called covmodel.

For example a Matérn model with parameter ν = 0.5 could be specified either by kppm(X, clusters="LGCP",
model="matern", nu=0.5) or by kppm(X, clusters="LGCP", covmodel=list(model="matern",
nu=0.5)).

The argument model specifies the type of covariance model: the default is model="exp" for an ex-
ponential covariance. Additional arguments specify the shape parameters of the covariance model.
For example if model="matern" then the additional argument nu is required.

The available models are as follows:

model="exponential": the exponential covariance function

C(r) = σ2 exp(−r/h)

where σ2 is the (fitted) variance parameter, and h is the (fitted) scale parameter. No shape
parameters are required.

model="gauss": the Gaussian covariance function

C(r) = σ2 exp(−(r/h)2)

where σ2 is the (fitted) variance parameter, and h is the (fitted) scale parameter. No shape
parameters are required.

model="stable": the stable covariance function

C(r) = σ2 exp(−(r/h)α)

where σ2 is the (fitted) variance parameter, h is the (fitted) scale parameter, and α is the shape
parameter alpha. The parameter alpha must be given, either as a stand-alone argument, or as
an entry in the list covmodel.

model="gencauchy": the generalised Cauchy covariance function

C(r) = σ2(1 + (x/h)α)−β/α

where σ2 is the (fitted) variance parameter, h is the (fitted) scale parameter, and α and β are
the shape parameters alpha and beta. The parameters alpha and beta must be given, either
as stand-alone arguments, or as entries in the list covmodel.

model="matern": the Whittle-Matérn covariance function

C(r) = σ2 1

2ν−1Γ(ν)
(
√
2ν r/h)νKν(

√
2ν r/h)

where σ2 is the (fitted) variance parameter, h is the (fitted) scale parameter, and ν is the shape
parameter nu. The parameter nu must be given, either as a stand-alone argument, or as an
entry in the list covmodel.

Note that it is not possible to use anisotropic covariance models because the kppm technique assumes
the pair correlation function is isotropic.

192 kppm

Error and warning messages

See ppm.ppp for a list of common error messages and warnings originating from the first stage of
model-fitting.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>, with contributions from Abdollah Jalilian <jalilian@razi.ac.ir>
and Rasmus Plenge Waagepetersen <rw@math.auc.dk>. Adaptive composite likelihood method
contributed by Chiara Fend and modified by Adrian Baddeley. Penalised optimization devel-
oped by Adrian Baddeley, Tilman Davies <Tilman.Davies@otago.ac.nz> and Martin Hazelton
<Martin.Hazelton@otago.ac.nz>.

References

Baddeley, A., Davies, T.M., Hazelton, M.L., Rakshit, S. and Turner, R. (2022) Fundamental prob-
lems in fitting spatial cluster process models. Spatial Statistics 52, 100709. DOI: 10.1016/j.spasta.2022.100709

Guan, Y. (2006) A composite likelihood approach in fitting spatial point process models. Journal
of the American Statistical Association 101, 1502–1512.

Guan, Y., Jalilian, A. and Waagepetersen, R. (2015) Quasi-likelihood for spatial point processes.
Journal of the Royal Statistical Society, Series B 77, 677-697.

Jalilian, A., Guan, Y. and Waagepetersen, R. (2012) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119–137.

Lavancier, F., Poinas, A., and Waagepetersen, R. (2021) Adaptive estimating function inference for
nonstationary determinantal point processes. Scandinavian Journal of Statistics, 48 (1), 87–107.

Tanaka, U. and Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for
Neyman-Scott point processes. Biometrical Journal 50, 43–57.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

Methods for kppm objects: plot.kppm, fitted.kppm, predict.kppm, simulate.kppm, update.kppm,
vcov.kppm, methods.kppm, as.ppm.kppm, as.fv.kppm, Kmodel.kppm, pcfmodel.kppm.

See also improve.kppm for improving the fit of a kppm object.

Minimum contrast fitting algorithm: higher level interface clusterfit; low-level algorithm mincontrast.

Alternative fitting algorithms: thomas.estK, matclust.estK, lgcp.estK, cauchy.estK, vargamma.estK,
thomas.estpcf, matclust.estpcf, lgcp.estpcf, cauchy.estpcf, vargamma.estpcf.

Summary statistics: Kest, Kinhom, pcf, pcfinhom.

For fitting Poisson or Gibbs point process models, see ppm.

Kres 193

Examples

online <- interactive()
if(!online) op <- spatstat.options(npixel=32, ndummy.min=16)

method for point patterns
kppm(redwood, ~1, "Thomas")
method for formulas
kppm(redwood ~ 1, "Thomas")

different models for clustering
if(online) kppm(redwood ~ x, "MatClust")
kppm(redwood ~ x, "MatClust", statistic="pcf", statargs=list(stoyan=0.2))
kppm(redwood ~ x, cluster="Cauchy", statistic="K")
kppm(redwood, cluster="VarGamma", nu = 0.5, statistic="pcf")

log-Gaussian Cox process (LGCP) models
kppm(redwood ~ 1, "LGCP", statistic="pcf")
kppm(redwood ~ x, "LGCP", statistic="pcf",

model="matern", nu=0.3,
control=list(maxit=10))

Different fitting techniques
fitc <- kppm(redwood ~ 1, "Thomas", method="c")
fitp <- kppm(redwood ~ 1, "Thomas", method="p")
penalised fit
fitmp <- kppm(redwood ~ 1, "Thomas", penalised=TRUE)
quasi-likelihood improvement
fitq <- kppm(redwood ~ x, "Thomas", improve.type = "quasi")

if(!online) spatstat.options(op)

Kres Residual K Function

Description

Given a point process model fitted to a point pattern dataset, this function computes the residual K
function, which serves as a diagnostic for goodness-of-fit of the model.

Usage

Kres(object, ...)

Arguments

object Object to be analysed. Either a fitted point process model (object of class
"ppm"), a point pattern (object of class "ppp"), a quadrature scheme (object
of class "quad"), or the value returned by a previous call to Kcom.

... Arguments passed to Kcom.

194 Kres

Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a
point pattern dataset. It computes a residual version of the K function of the dataset, which should
be approximately zero if the model is a good fit to the data.

In normal use, object is a fitted point process model or a point pattern. Then Kres first calls Kcom
to compute both the nonparametric estimate of the K function and its model compensator. Then
Kres computes the difference between them, which is the residual K-function.

Alternatively, object may be a function value table (object of class "fv") that was returned by a
previous call to Kcom. Then Kres computes the residual from this object.

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a
plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Related functions: Kcom, Kest.

Alternative functions: Gres, psstG, psstA, psst.

Point process models: ppm.

Examples

fit0 <- ppm(cells ~1) # uniform Poisson

K0 <- Kres(fit0)
K0
plot(K0)

isotropic-correction estimate
plot(K0, ires ~ r)

uniform Poisson is clearly not correct

fit1 <- ppm(cells ~1, Strauss(0.08))

K1 <- Kres(fit1)

if(interactive()) {
plot(K1, ires ~ r)

fit looks approximately OK; try adjusting interaction distance

LambertW 195

plot(Kres(cells, interaction=Strauss(0.12)))
}

How to make envelopes

E <- envelope(fit1, Kres, model=fit1, nsim=19)
plot(E)

For computational efficiency
Kc <- Kcom(fit1)
K1 <- Kres(Kc)

LambertW Lambert’s W Function

Description

Computes Lambert’s W-function.

Usage

LambertW(x)

Arguments

x Vector of nonnegative numbers.

Details

Lambert’s W-function is the inverse function of f(y) = yey . That is, W is the function such that

W (x)eW (x) = x

This command LambertW computes W (x) for each entry in the argument x. If the library gsl has
been installed, then the function lambert_W0 in that library is invoked. Otherwise, values of the
W-function are computed by root-finding, using the function uniroot.

Computation using gsl is about 100 times faster.

If any entries of x are infinite or NA, the corresponding results are NA.

Value

Numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

196 LennardJones

References

Corless, R, Gonnet, G, Hare, D, Jeffrey, D and Knuth, D (1996), On the Lambert W function.
Computational Mathematics, 5, 325–359.

Roy, R and Olver, F (2010), Lambert W function. In Olver, F, Lozier, D and Boisvert, R (eds.),
NIST Handbook of Mathematical Functions, Cambridge University Press.

Examples

LambertW(exp(1))

LennardJones The Lennard-Jones Potential

Description

Creates the Lennard-Jones pairwise interaction structure which can then be fitted to point pattern
data.

Usage

LennardJones(sigma0=NA)

Arguments

sigma0 Optional. Initial estimate of the parameter σ. A positive number.

Details

In a pairwise interaction point process with the Lennard-Jones pair potential (Lennard-Jones, 1924)
each pair of points in the point pattern, a distance d apart, contributes a factor

v(d) = exp

{
−4ϵ

[(σ
d

)12

−
(σ
d

)6
]}

to the probability density, where σ and ϵ are positive parameters to be estimated.

See Examples for a plot of this expression.

This potential causes very strong inhibition between points at short range, and attraction between
points at medium range. The parameter σ is called the characteristic diameter and controls the scale
of interaction. The parameter ϵ is called the well depth and determines the strength of attraction. The
potential switches from inhibition to attraction at d = σ. The maximum value of the pair potential
is exp(ϵ) occuring at distance d = 21/6σ. Interaction is usually considered to be negligible for
distances d > 2.5σmax{1, ϵ1/6}.

This potential is used to model interactions between uncharged molecules in statistical physics.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The appro-
priate description of the Lennard-Jones pairwise interaction is yielded by the function LennardJones().
See the examples below.

LennardJones 197

Value

An object of class "interact" describing the Lennard-Jones interpoint interaction structure.

Rescaling

To avoid numerical instability, the interpoint distances d are rescaled when fitting the model.

Distances are rescaled by dividing by sigma0. In the formula for v(d) above, the interpoint distance
d will be replaced by d/sigma0.

The rescaling happens automatically by default. If the argument sigma0 is missing or NA (the
default), then sigma0 is taken to be the minimum nearest-neighbour distance in the data point
pattern (in the call to ppm).

If the argument sigma0 is given, it should be a positive number, and it should be a rough estimate
of the parameter σ.

The “canonical regular parameters” estimated by ppm are θ1 = 4ϵ(σ/σ0)
12 and θ2 = 4ϵ(σ/σ0)

6.

Warnings and Errors

Fitting the Lennard-Jones model is extremely unstable, because of the strong dependence between
the functions d−12 and d−6. The fitting algorithm often fails to converge. Try increasing the number
of iterations of the GLM fitting algorithm, by setting gcontrol=list(maxit=1e3) in the call to
ppm.

Errors are likely to occur if this model is fitted to a point pattern dataset which does not exhibit both
short-range inhibition and medium-range attraction between points. The values of the parameters σ
and ϵ may be NA (because the fitted canonical parameters have opposite sign, which usually occurs
when the pattern is completely random).

An absence of warnings does not mean that the fitted model is sensible. A negative value of ϵ may
be obtained (usually when the pattern is strongly clustered); this does not correspond to a valid
point process model, but the software does not issue a warning.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Lennard-Jones, J.E. (1924) On the determination of molecular fields. Proc Royal Soc London A
106, 463–477.

See Also

ppm, pairwise.family, ppm.object

198 leverage.ppm

Examples

badfit <- ppm(cells ~1, LennardJones(), rbord=0.1)
badfit

fit <- ppm(unmark(longleaf) ~1, LennardJones(), rbord=1)
fit
plot(fitin(fit))
Note the Longleaf Pines coordinates are rounded to the nearest decimetre
(multiple of 0.1 metres) so the apparent inhibition may be an artefact

leverage.ppm Leverage Measure for Spatial Point Process Model

Description

Computes the leverage measure for a fitted spatial point process model.

Usage

leverage(model, ...)

S3 method for class 'ppm'
leverage(model, ...,

drop = FALSE, iScore=NULL, iHessian=NULL, iArgs=NULL)

Arguments

model Fitted point process model (object of class "ppm").

... Ignored, except for the arguments dimyx and eps which are passed to as.mask
to control the spatial resolution of the result.

drop Logical. Whether to include (drop=FALSE) or exclude (drop=TRUE) contribu-
tions from quadrature points that were not used to fit the model.

iScore, iHessian
Components of the score vector and Hessian matrix for the irregular parameters,
if required. See Details.

iArgs List of extra arguments for the functions iScore, iHessian if required.

Details

The function leverage is generic, and leverage.ppm is the method for objects of class "ppm".

Given a fitted spatial point process model model, the function leverage.ppm computes the leverage
of the model, described in Baddeley, Chang and Song (2013) and Baddeley, Rubak and Turner
(2019).

The leverage of a spatial point process model is a function of spatial location, and is typically
displayed as a colour pixel image. The leverage value h(u) at a spatial location u represents the
change in the fitted trend of the fitted point process model that would have occurred if a data point

leverage.ppm 199

were to have occurred at the location u. A relatively large value of h() indicates a part of the space
where the data have a potentially strong effect on the fitted model (specifically, a strong effect on
the intensity or conditional intensity of the fitted model) due to the values of the covariates.

If the point process model trend has irregular parameters that were fitted (using ippm) then the
leverage calculation requires the first and second derivatives of the log trend with respect to the
irregular parameters. The argument iScore should be a list, with one entry for each irregular
parameter, of R functions that compute the partial derivatives of the log trend (i.e. log intensity or
log conditional intensity) with respect to each irregular parameter. The argument iHessian should
be a list, with p2 entries where p is the number of irregular parameters, of R functions that compute
the second order partial derivatives of the log trend with respect to each pair of irregular parameters.

The result of leverage.ppm is an object of class "leverage.ppm". It can be printed or plotted. It
can be converted to a pixel image by as.im (see as.im.leverage.ppm). There are also methods
for contour, persp, [, as.function, as.owin, domain, Smooth, integral, and mean.

Value

An object of class "leverage.ppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial point
process models. Scandinavian Journal of Statistics 40, 86–104.

Baddeley, A., Rubak, E. and Turner, R. (2019) Leverage and influence diagnostics for Gibbs spatial
point processes. Spatial Statistics 29, 15–48.

See Also

influence.ppm, dfbetas.ppm, ppmInfluence, plot.leverage.ppm as.function.leverage.ppm

Examples

if(offline <- !interactive()) op <- spatstat.options(npixel=32, ndummy.min=16)

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)
le <- leverage(fit)
if(!offline) plot(le)
mean(le)

if(offline) spatstat.options(op)

200 leverage.slrm

leverage.slrm Leverage and Influence Diagnostics for Spatial Logistic Regression

Description

For a fitted spatial logistic regression model, these functions compute diagnostics of leverage and
influence.

Usage

S3 method for class 'slrm'
leverage(model, ...)
S3 method for class 'slrm'
influence(model, ...)
S3 method for class 'slrm'
dfbetas(model, ...)
S3 method for class 'slrm'
dffit(object, ...)

Arguments

model, object A fitted spatial logistic regression model (object of class "slrm").

... Arguments passed to methods.

Details

These functions are methods for the generics leverage, influence, dfbetas and dffit for the
class "slrm".

These functions adapt the standard diagnostics for logistic regression (see influence.measures)
to a fitted spatial logistic regression model (object of class "slrm"). This adaptation was described
by Baddeley, Chang and Song (2013).

leverage.slrm computes the leverage value (diagonal of the hat matrix) for the covariate data in
each pixel. The result is a pixel image.

influence.slrm computes the likelihood influence for the data (covariates and presence/absence
of points) in each pixel. The result is a pixel image.

dfbetas.slrm computes the parameter influence for the data (covariates and presence/absence of
points) in each pixel. The result is a list of pixel images, one image for each of the model coefficients
in coef(model). The list can be plotted immediately.

dffit.slrm computes the total influence for the data (covariates and presence/absence of points)
in each pixel. The result is a pixel image.

Value

A pixel image, or a list of pixel images.

lgcp.estK 201

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial point
process models. Scandinavian Journal of Statistics 40, 86–104.

See Also

influence.measures.

leverage.ppm, influence.ppm, dfbetas.ppm, dffit.ppm

Examples

H <- unmark(humberside)
fit <- slrm(H ~ x+y, dimyx=32)
plot(leverage(fit))
plot(influence(fit))
plot(dfbetas(fit))
plot(dffit(fit))

lgcp.estK Fit a Log-Gaussian Cox Point Process by Minimum Contrast

Description

Fits a log-Gaussian Cox point process model to a point pattern dataset by the Method of Minimum
Contrast.

Usage

lgcp.estK(X, startpar=c(var=1,scale=1),
covmodel=list(model="exponential"),
lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the log-Gaussian Cox process
model.

covmodel Specification of the covariance model for the log-Gaussian field. See Details.

lambda Optional. An estimate of the intensity of the point process.

q, p Optional. Exponents for the contrast criterion.

202 lgcp.estK

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

Details

This algorithm fits a log-Gaussian Cox point process (LGCP) model to a point pattern dataset by
the Method of Minimum Contrast, using the K function of the point pattern.

The shape of the covariance of the LGCP must be specified: the default is the exponential covariance
function, but other covariance models can be selected.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The K function of
the point pattern will be computed using Kest, and the method of minimum contrast will be
applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the K function, and this
object should have been obtained by a call to Kest or one of its relatives.

The algorithm fits a log-Gaussian Cox point process (LGCP) model to X, by finding the parameters
of the LGCP model which give the closest match between the theoretical K function of the LGCP
model and the observed K function. For a more detailed explanation of the Method of Minimum
Contrast, see mincontrast.

The model fitted is a stationary, isotropic log-Gaussian Cox process (Møller and Waagepetersen,
2003, pp. 72-76). To define this process we start with a stationary Gaussian random field Z in the
two-dimensional plane, with constant mean µ and covariance function C(r). Given Z, we generate
a Poisson point process Y with intensity function λ(u) = exp(Z(u)) at location u. Then Y is a
log-Gaussian Cox process.

The K-function of the LGCP is

K(r) =

∫ r

0

2πs exp(C(s)) ds.

The intensity of the LGCP is

λ = exp(µ+
C(0)

2
).

The covariance function C(r) is parametrised in the form

C(r) = σ2c(r/α)

where σ2 and α are parameters controlling the strength and the scale of autocorrelation, respectively,
and c(r) is a known covariance function determining the shape of the covariance. The strength
and scale parameters σ2 and α will be estimated by the algorithm as the values var and scale
respectively. The template covariance function c(r) must be specified as explained below.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters σ2 and α. Then the remaining parameter µ is inferred from the estimated intensity λ.

The template covariance function c(r) is specified using the argument covmodel. This should be of
the form list(model="modelname", ...) where modelname is a string identifying the template

lgcp.estK 203

model as explained below, and ... are optional arguments of the form tag=value giving the values
of parameters controlling the shape of the template model. The default is the exponential covariance
c(r) = e−r so that the scaled covariance is

C(r) = σ2e−r/α.

For a list of available models see kppm.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Note

This function is considerably slower than lgcp.estpcf because of the computation time required
for the integral in the K-function.

Computation can be accelerated, at the cost of less accurate results, by setting spatstat.options(fastK.lgcp=TRUE).

Author(s)

Rasmus Plenge Waagepetersen <rw@math.auc.dk>. Adapted for spatstat by Adrian Baddeley
<Adrian.Baddeley@curtin.edu.au>. Further modifications by Rasmus Waagepetersen and Shen
Guochun, and by Ege Rubak <rubak@math.aau.dk>.

References

Møller, J, Syversveen, A. and Waagepetersen, R. (1998) Log Gaussian Cox Processes. Scandina-
vian Journal of Statistics 25, 451–482.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

204 lgcp.estpcf

See Also

kppm and lgcp.estpcf for alternative methods of fitting LGCP.

matclust.estK, thomas.estK for other models.

mincontrast for the generic minimum contrast fitting algorithm, including important parameters
that affect the accuracy of the fit.

Kest for the K function.

Examples

if(interactive()) {
u <- lgcp.estK(redwood)
print(u)
plot(u)

} else {
faster - better starting point
u <- lgcp.estK(redwood, c(var=1.05, scale=0.1))

}

if(FALSE) {
takes several minutes!
lgcp.estK(redwood, covmodel=list(model="matern", nu=0.3))

}

lgcp.estpcf Fit a Log-Gaussian Cox Point Process by Minimum Contrast

Description

Fits a log-Gaussian Cox point process model to a point pattern dataset by the Method of Minimum
Contrast using the pair correlation function.

Usage

lgcp.estpcf(X,
startpar=c(var=1,scale=1),
covmodel=list(model="exponential"),
lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ..., pcfargs=list())

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the log-Gaussian Cox process
model.

lgcp.estpcf 205

covmodel Specification of the covariance model for the log-Gaussian field. See Details.

lambda Optional. An estimate of the intensity of the point process.

q, p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing
in the estimation of the pair correlation function.

Details

This algorithm fits a log-Gaussian Cox point process (LGCP) model to a point pattern dataset by
the Method of Minimum Contrast, using the estimated pair correlation function of the point pattern.

The shape of the covariance of the LGCP must be specified: the default is the exponential covariance
function, but other covariance models can be selected.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation
function of the point pattern will be computed using pcf, and the method of minimum contrast
will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits a log-Gaussian Cox point process (LGCP) model to X, by finding the parameters
of the LGCP model which give the closest match between the theoretical pair correlation function
of the LGCP model and the observed pair correlation function. For a more detailed explanation of
the Method of Minimum Contrast, see mincontrast.

The model fitted is a stationary, isotropic log-Gaussian Cox process (Møller and Waagepetersen,
2003, pp. 72-76). To define this process we start with a stationary Gaussian random field Z in the
two-dimensional plane, with constant mean µ and covariance function C(r). Given Z, we generate
a Poisson point process Y with intensity function λ(u) = exp(Z(u)) at location u. Then Y is a
log-Gaussian Cox process.

The theoretical pair correlation function of the LGCP is

g(r) = exp(C(s))

The intensity of the LGCP is

λ = exp(µ+
C(0)

2
).

The covariance function C(r) takes the form

C(r) = σ2c(r/α)

where σ2 and α are parameters controlling the strength and the scale of autocorrelation, respectively,
and c(r) is a known covariance function determining the shape of the covariance. The strength and

206 lgcp.estpcf

scale parameters σ2 and α will be estimated by the algorithm. The template covariance function
c(r) must be specified as explained below.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters σ2 and α. Then the remaining parameter µ is inferred from the estimated intensity λ.

The template covariance function c(r) is specified using the argument covmodel. This should be of
the form list(model="modelname", ...) where modelname is a string identifying the template
model as explained below, and ... are optional arguments of the form tag=value giving the values
of parameters controlling the shape of the template model. The default is the exponential covariance
c(r) = e−r so that the scaled covariance is

C(r) = σ2e−r/α.

For a list of available models see kppm.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> with modifications by Shen Guochun and
Rasmus Plenge Waagepetersen <rw@math.auc.dk> and Ege Rubak <rubak@math.aau.dk>.

References

Møller, J., Syversveen, A. and Waagepetersen, R. (1998) Log Gaussian Cox Processes. Scandina-
vian Journal of Statistics 25, 451–482.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

logLik.dppm 207

See Also

kppm and lgcp.estK for alternative methods of fitting LGCP.

matclust.estpcf, thomas.estpcf for other models.

mincontrast for the generic minimum contrast fitting algorithm, including important parameters
that affect the accuracy of the fit.

pcf for the pair correlation function.

Examples

u <- lgcp.estpcf(redwood, c(var=1, scale=0.1))
u
plot(u)
lgcp.estpcf(redwood, covmodel=list(model="matern", nu=0.3))

logLik.dppm Log Likelihood and AIC for Fitted Determinantal Point Process Model

Description

Extracts the log Palm likelihood, deviance, and AIC of a fitted determinantal point process model.

Usage

S3 method for class 'dppm'
logLik(object, ...)
S3 method for class 'dppm'
AIC(object, ..., k=2)
S3 method for class 'dppm'
extractAIC(fit, scale=0, k=2, ...)
S3 method for class 'dppm'
nobs(object, ...)

Arguments

object, fit Fitted point process model. An object of class "dppm".

... Ignored.

scale Ignored.

k Numeric value specifying the weight of the equivalent degrees of freedom in the
AIC. See Details.

208 logLik.dppm

Details

These functions are methods for the generic commands logLik, extractAIC and nobs for the class
"dppm".

An object of class "dppm" represents a fitted Cox or cluster point process model. It is obtained from
the model-fitting function dppm.

These methods apply only when the model was fitted by maximising the Palm likelihood (Tanaka
et al, 2008) by calling dppm with the argument method="palm".

The method logLik.dppm computes the maximised value of the log Palm likelihood for the fitted
model object.

The methods AIC.dppm and extractAIC.dppm compute the Akaike Information Criterion AIC for
the fitted model based on the Palm likelihood (Tanaka et al, 2008)

AIC = −2 log(PL) + k × edf

where PL is the maximised Palm likelihood of the fitted model, and edf is the effective degrees of
freedom of the model.

The method nobs.dppm returns the number of points in the original data point pattern to which the
model was fitted.

The R function step uses these methods, but it does not work for determinantal models yet due to
a missing implementation of update.dppm.

Value

logLik returns a numerical value, belonging to the class "logLik", with an attribute "df" giving
the degrees of freedom.

AIC returns a numerical value.

extractAIC returns a numeric vector of length 2 containing the degrees of freedom and the AIC
value.

nobs returns an integer value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

References

Tanaka, U. and Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for
Neyman-Scott point processes. Biometrical Journal 50, 43–57.

See Also

dppm, logLik.ppm

logLik.kppm 209

Examples

fit <- dppm(swedishpines ~ x, dppGauss(), method="palm")
nobs(fit)
logLik(fit)
extractAIC(fit)
AIC(fit)

logLik.kppm Log Likelihood and AIC for Fitted Cox or Cluster Point Process Model

Description

Extracts the log composite likelihood, deviance, and AIC of a fitted Cox or cluster point process
model.

Usage

S3 method for class 'kppm'
logLik(object, ...)
S3 method for class 'kppm'
AIC(object, ..., k=2)
S3 method for class 'kppm'
extractAIC(fit, scale=0, k=2, ...)
S3 method for class 'kppm'
nobs(object, ...)

Arguments

object, fit Fitted point process model. An object of class "kppm".

... Ignored.

scale Ignored.

k Numeric value specifying the weight of the equivalent degrees of freedom in the
AIC. See Details.

Details

These functions are methods for the generic commands logLik, extractAIC and nobs for the class
"kppm".

An object of class "kppm" represents a fitted Cox or cluster point process model. It is obtained from
the model-fitting function kppm.

These methods apply only when the model was fitted by maximising a composite likelihood: either
the Palm likelihood (Tanaka et al, 2008) or the second order composite likelihood (Guan, 2006), by
calling kppm with the argument method="palm" or method="clik2" respectively.

The method logLik.kppm computes the maximised value of the log composite likelihood for the
fitted model object.

210 logLik.kppm

The methods AIC.kppm and extractAIC.kppm compute the Akaike Information Criterion AIC for
the fitted model based on the composite likelihood

AIC = −2 log(CL) + k × edf

whereCL is the maximised composite likelihood of the fitted model, and edf is the effective degrees
of freedom of the model.

The method nobs.kppm returns the number of points in the original data point pattern to which the
model was fitted.

The R function step uses these methods.

Value

logLik returns a numerical value, belonging to the class "logLik", with an attribute "df" giving
the degrees of freedom.

AIC returns a numerical value.

extractAIC returns a numeric vector of length 2 containing the degrees of freedom and the AIC
value.

nobs returns an integer value.

Model comparison

The values of log-likelihood and AIC returned by these functions are based on the composite like-
lihood of the cluster process or Cox process model. They are available only when the model was
fitted using method="palm" or method="clik2".

For model comparison and model selection, it is valid to compare the logLik values, or to compare
the AIC values, but only when all the models are of class "kppm" and were fitted using the same
method.

For method="palm" some theoretical justification was provided by Tanaka et al (2008).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Guan, Y. (2006) A composite likelihood approach in fitting spatial point process models. Journal
of the American Statistical Association 101, 1502–1512.

Tanaka, U. and Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for
Neyman-Scott point processes. Biometrical Journal 50, 43–57.

See Also

kppm, logLik.ppm

logLik.mppm 211

Examples

fit <- kppm(redwood ~ x, "Thomas", method="palm")
nobs(fit)
logLik(fit)
extractAIC(fit)
AIC(fit)
step(fit)

logLik.mppm Log Likelihood and AIC for Multiple Point Process Model

Description

For a point process model that has been fitted to multiple point patterns, these functions extract the
log likelihood and AIC, or analogous quantities based on the pseudolikelihood.

Usage

S3 method for class 'mppm'
logLik(object, ..., warn=TRUE)

S3 method for class 'mppm'
AIC(object, ..., k=2, takeuchi=TRUE)

S3 method for class 'mppm'
extractAIC(fit, scale = 0, k = 2, ..., takeuchi = TRUE)

S3 method for class 'mppm'
nobs(object, ...)

S3 method for class 'mppm'
getCall(x, ...)

S3 method for class 'mppm'
terms(x, ...)

Arguments

object, fit, x Fitted point process model (fitted to multiple point patterns). An object of class
"mppm".

... Ignored.
warn If TRUE, a warning is given when the pseudolikelihood is returned instead of the

likelihood.
scale Ignored.
k Numeric value specifying the weight of the equivalent degrees of freedom in the

AIC. See Details.
takeuchi Logical value specifying whether to use the Takeuchi penalty (takeuchi=TRUE)

or the number of fitted parameters (takeuchi=FALSE) in calculating AIC.

212 logLik.mppm

Details

These functions are methods for the generic commands logLik, AIC, extractAIC, terms and
getCall for the class "mppm".

An object of class "mppm" represents a fitted Poisson or Gibbs point process model fitted to several
point patterns. It is obtained from the model-fitting function mppm.

The method logLik.mppm extracts the maximised value of the log likelihood for the fitted model (as
approximated by quadrature using the Berman-Turner approximation). If object is not a Poisson
process, the maximised log pseudolikelihood is returned, with a warning.

The Akaike Information Criterion AIC for a fitted model is defined as

AIC = −2 log(L) + k × penalty

whereL is the maximised likelihood of the fitted model, and penalty is a penalty for model complex-
ity, usually equal to the effective degrees of freedom of the model. The method extractAIC.mppm
returns the analogous quantity AIC∗ in which L is replaced by L∗, the quadrature approximation
to the likelihood (if fit is a Poisson model) or the pseudolikelihood (if fit is a Gibbs model).

The penalty term is calculated as follows. If takeuchi=FALSE then penalty is the number of fitted
parameters. If takeuchi=TRUE then penalty = trace(JH−1) where J and H are the estimated
variance and hessian, respectively, of the composite score. These two choices are equivalent for a
Poisson process.

The method nobs.mppm returns the total number of points in the original data point patterns to
which the model was fitted.

The method getCall.mppm extracts the original call to mppm which caused the model to be fitted.

The method terms.mppm extracts the covariate terms in the model formula as a terms object. Note
that these terms do not include the interaction component of the model.

The R function step uses these methods.

Value

See the help files for the corresponding generic functions.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <rolfturner@posteo.net> and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

mppm

logLik.ppm 213

Examples

fit <- mppm(Bugs ~ x, hyperframe(Bugs=waterstriders))
logLik(fit)
AIC(fit)
nobs(fit)
getCall(fit)

logLik.ppm Log Likelihood and AIC for Point Process Model

Description

Extracts the log likelihood, deviance, and AIC of a fitted Poisson point process model, or analo-
gous quantities based on the pseudolikelihood or logistic likelihood for a fitted Gibbs point process
model.

Usage

S3 method for class 'ppm'
logLik(object, ..., new.coef=NULL, warn=TRUE, absolute=FALSE)

S3 method for class 'ppm'
deviance(object, ...)

S3 method for class 'ppm'
AIC(object, ..., k=2, takeuchi=TRUE)

S3 method for class 'ppm'
extractAIC(fit, scale=0, k=2, ..., takeuchi=TRUE)

S3 method for class 'ppm'
nobs(object, ...)

Arguments

object, fit Fitted point process model. An object of class "ppm".
... Ignored.
warn If TRUE, a warning is given when the pseudolikelihood or logistic likelihood is

returned instead of the likelihood.
absolute Logical value indicating whether to include constant terms in the loglikelihood.
scale Ignored.
k Numeric value specifying the weight of the equivalent degrees of freedom in the

AIC. See Details.
new.coef New values for the canonical parameters of the model. A numeric vector of the

same length as coef(object).
takeuchi Logical value specifying whether to use the Takeuchi penalty (takeuchi=TRUE)

or the number of fitted parameters (takeuchi=FALSE) in calculating AIC.

214 logLik.ppm

Details

These functions are methods for the generic commands logLik, deviance, extractAIC and nobs
for the class "ppm".

An object of class "ppm" represents a fitted Poisson or Gibbs point process model. It is obtained
from the model-fitting function ppm.

The method logLik.ppm computes the maximised value of the log likelihood for the fitted model
object (as approximated by quadrature using the Berman-Turner approximation) is extracted. If
object is not a Poisson process, the maximised log pseudolikelihood is returned, with a warning
(if warn=TRUE).

The Akaike Information Criterion AIC for a fitted model is defined as

AIC = −2 log(L) + k × penalty

whereL is the maximised likelihood of the fitted model, and penalty is a penalty for model complex-
ity, usually equal to the effective degrees of freedom of the model. The method extractAIC.ppm
returns the analogous quantity AIC∗ in which L is replaced by L∗, the quadrature approximation
to the likelihood (if fit is a Poisson model) or the pseudolikelihood or logistic likelihood (if fit is
a Gibbs model).

The penalty term is calculated as follows. If takeuchi=FALSE then penalty is the number of fitted
parameters. If takeuchi=TRUE then penalty = trace(JH−1) where J and H are the estimated
variance and hessian, respectively, of the composite score. These two choices are equivalent for a
Poisson process.

The method nobs.ppm returns the number of points in the original data point pattern to which the
model was fitted.

The R function step uses these methods.

Value

logLik returns a numerical value, belonging to the class "logLik", with an attribute "df" giving
the degrees of freedom.

AIC returns a numerical value.

extractAIC returns a numeric vector of length 2 containing the degrees of freedom and the AIC
value.

nobs returns an integer value.

Model comparison

The values of logLik and AIC returned by these functions are based on the pseudolikelihood of the
Gibbs point process model. If the model is a Poisson process, then the pseudolikelihood is the same
as the likelihood, but for other Gibbs models, the pseudolikelihood is different from the likelihood
(and the likelihood of a Gibbs model is hard to compute).

For model comparison and model selection, it is valid to compare the logLik values, or to compare
the AIC values, but only when all the models are of class "ppm".

logLik.slrm 215

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Varin, C. and Vidoni, P. (2005) A note on composite likelihood inference and model selection.
Biometrika 92, 519–528.

See Also

ppm, as.owin, anova.ppm, coef.ppm, fitted.ppm, formula.ppm, model.frame.ppm, model.matrix.ppm,
plot.ppm, predict.ppm, residuals.ppm, simulate.ppm, summary.ppm, terms.ppm, update.ppm,
vcov.ppm.

Examples

fit <- ppm(cells, ~x)
nobs(fit)
logLik(fit)
deviance(fit)
extractAIC(fit)
AIC(fit)
step(fit)

logLik.slrm Loglikelihood of Spatial Logistic Regression

Description

Computes the (maximised) loglikelihood of a fitted Spatial Logistic Regression model.

Usage

S3 method for class 'slrm'
logLik(object, ..., adjust = TRUE)

Arguments

object a fitted spatial logistic regression model. An object of class "slrm".

... Ignored.

adjust Logical value indicating whether to adjust the loglikelihood of the model to
make it comparable with a point process likelihood. See Details.

216 lurking

Details

This is a method for logLik for fitted spatial logistic regression models (objects of class "slrm",
usually obtained from the function slrm). It computes the log-likelihood of a fitted spatial logistic
regression model.

If adjust=FALSE, the loglikelihood is computed using the standard formula for the loglikelihood of
a logistic regression model for a finite set of (pixel) observations.

If adjust=TRUE then the loglikelihood is adjusted so that it is approximately comparable with the
likelihood of a point process in continuous space, by subtracting the value n log(a) where n is the
number of points in the original point pattern dataset, and a is the area of one pixel.

Value

A numerical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

slrm

Examples

X <- rpoispp(42)
fit <- slrm(X ~ x+y)
logLik(fit)
logLik(fit, adjust=FALSE)

lurking Lurking Variable Plot

Description

Plot spatial point process residuals against a covariate

Usage

lurking(object, ...)

S3 method for class 'ppm'
lurking(object, covariate,

type="eem",
cumulative=TRUE,
...,
plot.it = TRUE,
plot.sd = is.poisson(object),

lurking 217

clipwindow=default.clipwindow(object),
rv = NULL,
envelope=FALSE, nsim=39, nrank=1,
typename,
covname,
oldstyle=FALSE,
check=TRUE,
verbose=TRUE,
nx=128,
splineargs=list(spar=0.5),
internal=NULL)

S3 method for class 'ppp'
lurking(object, covariate,

type="eem",
cumulative=TRUE,
...,
plot.it = TRUE,
plot.sd = is.poisson(object),
clipwindow=default.clipwindow(object),
rv = NULL,
envelope=FALSE, nsim=39, nrank=1,
typename,
covname,
oldstyle=FALSE,
check=TRUE,
verbose=TRUE,
nx=128,
splineargs=list(spar=0.5),
internal=NULL)

Arguments

object The fitted point process model (an object of class "ppm") for which diagnostics
should be produced. This object is usually obtained from ppm. Alternatively,
object may be a point pattern (object of class "ppp").

covariate The covariate against which residuals should be plotted. Either a numeric vector,
a pixel image, or an expression. See Details below.

type String indicating the type of residuals or weights to be computed. Choices in-
clude "eem", "raw", "inverse" and "pearson". See diagnose.ppm for all
possible choices.

cumulative Logical flag indicating whether to plot a cumulative sum of marks (cumulative=TRUE)
or the derivative of this sum, a marginal density of the smoothed residual field
(cumulative=FALSE).

... Arguments passed to plot.default and lines to control the plot behaviour.
plot.it Logical value indicating whether plots should be shown. If plot.it=FALSE,

only the computed coordinates for the plots are returned. See Value.

218 lurking

plot.sd Logical value indicating whether error bounds should be added to plot. The
default is TRUE for Poisson models and FALSE for non-Poisson models. See
Details.

clipwindow If not NULL this argument indicates that residuals shall only be computed in-
side a subregion of the window containing the original point pattern data. Then
clipwindow should be a window object of class "owin".

rv Usually absent. If this argument is present, the point process residuals will not
be calculated from the fitted model object, but will instead be taken directly
from rv.

envelope Logical value indicating whether to compute simulation envelopes for the plot.
Alternatively envelope may be a list of point patterns to use for computing the
simulation envelopes, or an object of class "envelope" containing simulated
point patterns.

nsim Number of simulated point patterns to be generated to produce the simulation
envelope, if envelope=TRUE.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

typename Usually absent. If this argument is present, it should be a string, and will be used
(in the axis labels of plots) to describe the type of residuals.

covname A string name for the covariate, to be used in axis labels of plots.

oldstyle Logical flag indicating whether error bounds should be plotted using the ap-
proximation given in the original paper (oldstyle=TRUE), or using the correct
asymptotic formula (oldstyle=FALSE).

check Logical flag indicating whether the integrity of the data structure in object
should be checked.

verbose Logical value indicating whether to print progress reports during Monte Carlo
simulation.

nx Integer. Number of covariate values to be used in the plot.

splineargs A list of arguments passed to smooth.spline for the estimation of the deriva-
tives in the case cumulative=FALSE.

internal Internal use only.

Details

This function generates a ‘lurking variable’ plot for a fitted point process model. Residuals from the
model represented by object are plotted against the covariate specified by covariate. This plot
can be used to reveal departures from the fitted model, in particular, to reveal that the point pattern
depends on the covariate.

The function lurking is generic, with methods for ppm and ppp documented here, and possibly
other methods.

The argument object would usually be a fitted point process model (object of class "ppm") pro-
duced by the model-fitting algorithm ppm). If object is a point pattern (object of class "ppp") then
the model is taken to be the uniform Poisson process (Complete Spatial Randomness) fitted to this
point pattern.

lurking 219

First the residuals from the fitted model (Baddeley et al, 2004) are computed at each quadrature
point, or alternatively the ‘exponential energy marks’ (Stoyan and Grabarnik, 1991) are computed
at each data point. The argument type selects the type of residual or weight. See diagnose.ppm
for options and explanation.

A lurking variable plot for point processes (Baddeley et al, 2004) displays either the cumulative sum
of residuals/weights (if cumulative = TRUE) or a kernel-weighted average of the residuals/weights
(if cumulative = FALSE) plotted against the covariate. The empirical plot (solid lines) is shown
together with its expected value assuming the model is true (dashed lines) and optionally also the
pointwise two-standard-deviation limits (grey shading).

To be more precise, let Z(u) denote the value of the covariate at a spatial location u.

• If cumulative=TRUE then we plot H(z) against z, where H(z) is the sum of the residuals
over all quadrature points where the covariate takes a value less than or equal to z, or the sum
of the exponential energy weights over all data points where the covariate takes a value less
than or equal to z.

• If cumulative=FALSE then we plot h(z) against z, where h(z) is the derivative of H(z),
computed approximately by spline smoothing.

For the point process residualsE(H(z)) = 0, while for the exponential energy weightsE(H(z)) =
area of the subset of the window satisfying Z(u) <= z.

If the empirical and theoretical curves deviate substantially from one another, the interpretation is
that the fitted model does not correctly account for dependence on the covariate. The correct form
(of the spatial trend part of the model) may be suggested by the shape of the plot.

If plot.sd = TRUE, then superimposed on the lurking variable plot are the pointwise two-standard-
deviation error limits for H(x) calculated for the inhomogeneous Poisson process. The default is
plot.sd = TRUE for Poisson models and plot.sd = FALSE for non-Poisson models.

By default, the two-standard-deviation limits are calculated from the exact formula for the asymp-
totic variance of the residuals under the asymptotic normal approximation, equation (37) of Bad-
deley et al (2006). However, for compatibility with the original paper of Baddeley et al (2005), if
oldstyle=TRUE, the two-standard-deviation limits are calculated using the innovation variance, an
over-estimate of the true variance of the residuals.

The argument covariate is either a numeric vector, a pixel image, or an R language expression. If
it is a numeric vector, it is assumed to contain the values of the covariate for each of the quadrature
points in the fitted model. The quadrature points can be extracted by quad.ppm(object).

If covariate is a pixel image, it is assumed to contain the values of the covariate at each location
in the window. The values of this image at the quadrature points will be extracted.

Alternatively, if covariate is an expression, it will be evaluated in the same environment as
the model formula used in fitting the model object. It must yield a vector of the same length as
the number of quadrature points. The expression may contain the terms x and y representing the
cartesian coordinates, and may also contain other variables that were available when the model was
fitted. Certain variable names are reserved words; see ppm.

Note that lurking variable plots for the x and y coordinates are also generated by diagnose.ppm,
amongst other types of diagnostic plots. This function is more general in that it enables the user to
plot the residuals against any chosen covariate that may have been present.

For advanced use, even the values of the residuals/weights can be altered. If the argument rv
is present, the residuals will not be calculated from the fitted model object but will instead be

220 lurking.mppm

taken directly from the object rv. If type = "eem" then rv should be similar to the return value of
eem, namely, a numeric vector with length equal to the number of data points in the original point
pattern. Otherwise, rv should be similar to the return value of residuals.ppm, that is, rv should
be an object of class "msr" (see msr) representing a signed measure.

Value

The (invisible) return value is an object belonging to the class "lurk", for which there are methods
for plot and print.

This object is a list containing two dataframes empirical and theoretical. The first dataframe
empirical contains columns covariate and value giving the coordinates of the lurking variable
plot. The second dataframe theoretical contains columns covariate, mean and sd giving the
coordinates of the plot of the theoretical mean and standard deviation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2006) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

Stoyan, D. and Grabarnik, P. (1991) Second-order characteristics for stochastic structures connected
with Gibbs point processes. Mathematische Nachrichten, 151:95–100.

See Also

residuals.ppm, diagnose.ppm, residuals.ppm, qqplot.ppm, eem, ppm

Examples

(a <- lurking(nztrees, expression(x), type="raw"))
fit <- ppm(nztrees ~x, Poisson(), nd=128)
(b <- lurking(fit, expression(x), type="raw"))
lurking(fit, expression(x), type="raw", cumulative=FALSE)

lurking.mppm Lurking Variable Plot for Multiple Point Patterns

Description

Generate a lurking variable plot of spatial point process residuals against a covariate, for a model
fitted to several point patterns.

lurking.mppm 221

Usage

S3 method for class 'mppm'
lurking(object, covariate, type="eem",

...,
separate = FALSE,
plot.it = TRUE,
covname, oldstyle = FALSE, nx = 512, main="")

Arguments

object The fitted model. An object of class "mppm" representing a point process model
fitted to several point patterns.

covariate The covariate to be used on the horizontal axis. Either an expression which
can be evaluated in the original data, or a list of pixel images, one image for
each point pattern in the original data.

type String indicating the type of residuals or weights to be computed. Choices in-
clude "eem", "raw", "inverse" and "pearson". See diagnose.ppm for all
possible choices.

... Additional arguments passed to lurking.ppm, including arguments controlling
the plot.

separate Logical value indicating whether to compute a separate lurking variable plot
for each of the original point patterns. If FALSE (the default), a single lurking-
variable plot is produced by combining residuals from all patterns.

plot.it Logical value indicating whether plots should be shown. If plot.it=FALSE,
only the computed coordinates for the plots are returned. See Value.

covname A string name for the covariate, to be used in axis labels of plots.
oldstyle Logical flag indicating whether error bounds should be plotted using the ap-

proximation given in the original paper (oldstyle=TRUE), or using the correct
asymptotic formula (oldstyle=FALSE).

nx Integer. Number of covariate values to be used in the plot.
main Character string giving a main title for the plot.

Details

This function generates a ‘lurking variable’ plot for a point process model fitted to several point
patterns. Residuals from the model represented by object are plotted against the covariate specified
by covariate. This plot can be used to reveal departures from the fitted model.

The function lurking is generic. This is the method for the class mppm. The argument object must
be a fitted point process model object of class "mppm") produced by the model-fitting algorithm
mppm.

Value

If separate=FALSE (the default), the return value is an object belonging to the class "lurk", for
which there are methods for plot and print. See lurking for details of the format.

If separate=TRUE, the result is a list of such objects, and also belongs to the class anylist so that
it can be printed and plotted.

222 matclust.estK

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, with thanks to Nicholas Read.

See Also

lurking.ppm

Examples

fit <- mppm(Points ~ Image + Group, demohyper)
lurking(fit, expression(Image), type="P")
lurking(fit, expression(Image), type="P", separate=TRUE)

matclust.estK Fit the Matern Cluster Point Process by Minimum Contrast

Description

Fits the Matérn Cluster point process to a point pattern dataset by the Method of Minimum Contrast.

Usage

matclust.estK(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

Arguments

X Data to which the Matérn Cluster model will be fitted. Either a point pattern or
a summary statistic. See Details.

startpar Vector of starting values for the parameters of the Matérn Cluster process.

lambda Optional. An estimate of the intensity of the point process.

q, p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

Details

This algorithm fits the Matérn Cluster point process model to a point pattern dataset by the Method
of Minimum Contrast, using the K function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The K function of
the point pattern will be computed using Kest, and the method of minimum contrast will be
applied to this.

matclust.estK 223

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the K function, and this
object should have been obtained by a call to Kest or one of its relatives.

The algorithm fits the Matérn Cluster point process to X, by finding the parameters of the Matérn
Cluster model which give the closest match between the theoretical K function of the Matérn Clus-
ter process and the observed K function. For a more detailed explanation of the Method of Mini-
mum Contrast, see mincontrast.
The Matérn Cluster point process is described in Møller and Waagepetersen (2003, p. 62). It is
a cluster process formed by taking a pattern of parent points, generated according to a Poisson
process with intensity κ, and around each parent point, generating a random number of offspring
points, such that the number of offspring of each parent is a Poisson random variable with mean µ,
and the locations of the offspring points of one parent are independent and uniformly distributed
inside a circle of radius R centred on the parent point, where R is equal to the parameter scale.
The named vector of stating values can use either R or scale as the name of the second component,
but the latter is recommended for consistency with other cluster models.
The theoretical K-function of the Matérn Cluster process is

K(r) = πr2 +
1

κ
h(

r

2R
)

where the radius R is the parameter scale and

h(z) = 2 +
1

π
[(8z2 − 4)arccos(z)− 2arcsin(z) + 4z

√
(1− z2)3 − 6z

√
1− z2]

for z <= 1, and h(z) = 1 for z > 1. The theoretical intensity of the Matérn Cluster process is
λ = κµ.
In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters κ and R. Then the remaining parameter µ is inferred from the estimated intensity λ.
If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.
The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.
The Matérn Cluster process can be simulated, using rMatClust.
Homogeneous or inhomogeneous Matérn Cluster models can also be fitted using the function kppm.
The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.
fit Function value table (object of class "fv") containing the observed values of the

summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

224 matclust.estpcf

Author(s)

Rasmus Plenge Waagepetersen <rw@math.auc.dk>. Adapted for spatstat by Adrian Baddeley
<Adrian.Baddeley@curtin.edu.au>.

References

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, lgcp.estK, thomas.estK, mincontrast, Kest, rMatClust to simulate the fitted model.

Examples

u <- matclust.estK(redwood, c(kappa=10, scale=0.1))
u
plot(u)

matclust.estpcf Fit the Matérn Cluster Point Process by Minimum Contrast Using Pair
Correlation

Description

Fits the Matérn Cluster point process to a point pattern dataset by the Method of Minimum Contrast
using the pair correlation function.

Usage

matclust.estpcf(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...,
pcfargs=list())

Arguments

X Data to which the Matérn Cluster model will be fitted. Either a point pattern or
a summary statistic. See Details.

startpar Vector of starting values for the parameters of the Matérn Cluster process.
lambda Optional. An estimate of the intensity of the point process.
q, p Optional. Exponents for the contrast criterion.
rmin, rmax Optional. The interval of r values for the contrast criterion.
... Optional arguments passed to optim to control the optimisation algorithm. See

Details.
pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing

in the estimation of the pair correlation function.

matclust.estpcf 225

Details

This algorithm fits the Matérn Cluster point process model to a point pattern dataset by the Method
of Minimum Contrast, using the pair correlation function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation
function of the point pattern will be computed using pcf, and the method of minimum contrast
will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits the Matérn Cluster point process to X, by finding the parameters of the Matérn
Cluster model which give the closest match between the theoretical pair correlation function of the
Matérn Cluster process and the observed pair correlation function. For a more detailed explanation
of the Method of Minimum Contrast, see mincontrast.

The Matérn Cluster point process is described in Møller and Waagepetersen (2003, p. 62). It is
a cluster process formed by taking a pattern of parent points, generated according to a Poisson
process with intensity κ, and around each parent point, generating a random number of offspring
points, such that the number of offspring of each parent is a Poisson random variable with mean µ,
and the locations of the offspring points of one parent are independent and uniformly distributed
inside a circle of radius R centred on the parent point, where R is equal to the parameter scale.
The named vector of stating values can use either R or scale as the name of the second component,
but the latter is recommended for consistency with other cluster models.

The theoretical pair correlation function of the Matérn Cluster process is

g(r) = 1 +
1

4πRκr
h(

r

2R
)

where the radius R is the parameter scale and

h(z) =
16

π
[zarccos(z)− z2

√
1− z2]

for z <= 1, and h(z) = 0 for z > 1. The theoretical intensity of the Matérn Cluster process is
λ = κµ.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters κ and R. Then the remaining parameter µ is inferred from the estimated intensity λ.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The Matérn Cluster process can be simulated, using rMatClust.

Homogeneous or inhomogeneous Matérn Cluster models can also be fitted using the function kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

226 measureContinuous

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, matclust.estK, thomas.estpcf, thomas.estK, lgcp.estK, mincontrast, pcf, rMatClust
to simulate the fitted model.

Examples

u <- matclust.estpcf(redwood, c(kappa=10, R=0.1))
u
plot(u, legendpos="topright")

measureContinuous Discrete and Continuous Components of a Measure

Description

Given a measure A (object of class "msr") these functions find the discrete and continuous parts of
A.

Usage

measureDiscrete(x)
measureContinuous(x)

Arguments

x A measure (object of class "msr").

measureVariation 227

Details

The functions measureDiscrete and measureContinuous return the discrete and continuous com-
ponents, respectively, of a measure.

If x is a measure, then measureDiscrete(x) is a measure consisting only of the discrete (atomic)
component of x, and measureContinuous(x) is a measure consisting only of the continuous (dif-
fuse) component of x.

Value

Another measure (object of class "msr") on the same spatial domain.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Halmos, P.R. (1950) Measure Theory. Van Nostrand.

See Also

msr, with.msr, split.msr, measurePositive

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")

rp
measureDiscrete(rp)
measureContinuous(rp)

measureVariation Positive and Negative Parts, and Variation, of a Measure

Description

Given a measure A (object of class "msr") these functions find the positive part, negative part and
variation of A.

Usage

measurePositive(x)
measureNegative(x)
measureVariation(x)
totalVariation(x)

228 measureVariation

Arguments

x A measure (object of class "msr").

Details

The functions measurePositive and measureNegative return the positive and negative parts of
the measure, and measureVariation returns the variation (sum of positive and negative parts). The
function totalVariation returns the total variation norm.

If µ is a signed measure, it can be represented as

µ = µ+ − µ−

where µ+ and µ− are nonnegative measures called the positive and negative parts of µ. In a nutshell,
the positive part of µ consists of all positive contributions or increments, and the negative part
consists of all negative contributions multiplied by -1.

The variation |µ| is defined by
µ = µ+ + µ−

and is also a nonnegative measure.

The total variation norm is the integral of the variation.

Value

The result of measurePositive, measureNegative and measureVariation is another measure
(object of class "msr") on the same spatial domain. The result of totalVariation is a non-negative
number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Halmos, P.R. (1950) Measure Theory. Van Nostrand.

See Also

msr, with.msr, split.msr, measureDiscrete

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")

measurePositive(rp)
measureNegative(rp)
measureVariation(rp)

total variation norm
totalVariation(rp)

measureWeighted 229

measureWeighted Weighted Version of a Measure

Description

Given a measure m (object of class "msr") and a spatially-varying weight function, construct the
weighted version of m.

Usage

measureWeighted(m, w)

Arguments

m A measure (object of class "msr").

w A pixel image (object of class "im") or a function(x,y) giving the numeric
weight at each spatial location.

Details

For any region of space B, the weighted measure wm has the value

wm(B) =

∫
B

w(x)dm(x)

In any small region of space, the increment of the weighted measure wm is equal to the increment of
the original measure m multiplied by the weight w at that location.

Value

Another measure (object of class "msr") on the same spatial domain.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Halmos, P.R. (1950) Measure Theory. Van Nostrand.

See Also

msr, with.msr, split.msr, measurePositive

Examples

fit <- ppm(cells ~ x)
res <- residuals(fit)
measureWeighted(res, function(x,y){x})

230 methods.dppm

methods.dppm Methods for Determinantal Point Process Models

Description

These are methods for the class "dppm".

Usage

S3 method for class 'dppm'
coef(object, ...)
S3 method for class 'dppm'
formula(x, ...)
S3 method for class 'dppm'
print(x, ...)
S3 method for class 'dppm'
terms(x, ...)
S3 method for class 'dppm'
labels(object, ...)

Arguments

x, object An object of class "dppm", representing a fitted determinantal point process
model.

... Arguments passed to other methods.

Details

These functions are methods for the generic commands coef, formula, print, terms and labels
for the class "dppm".

An object of class "dppm" represents a fitted determinantal point process model. It is obtained from
dppm.

The method coef.dppm returns the vector of regression coefficients of the fitted model. It does not
return the interaction parameters.

Value

See the help files for the corresponding generic functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

dppm, plot.dppm, predict.dppm, simulate.dppm, as.ppm.dppm.

methods.fii 231

Examples

fit <- dppm(swedishpines ~ x + y, dppGauss, method="c")
coef(fit)
formula(fit)
tf <- terms(fit)
labels(fit)

methods.fii Methods for Fitted Interactions

Description

These are methods specifically for the class "fii" of fitted interpoint interactions.

Usage

S3 method for class 'fii'
print(x, ...)

S3 method for class 'fii'
coef(object, ...)

S3 replacement method for class 'fii'
coef(object, ...) <- value

S3 method for class 'fii'
plot(x, ...)

S3 method for class 'fii'
summary(object,...)

S3 method for class 'summary.fii'
print(x, ...)

S3 method for class 'summary.fii'
coef(object, ...)

Arguments

x, object An object of class "fii" representing a fitted interpoint interaction.

... Arguments passed to other methods.

value Numeric vector containing new values for the fitted interaction coefficients.

232 methods.fii

Details

These are methods for the class "fii". An object of class "fii" represents a fitted interpoint
interaction. It is usually obtained by using the command fitin to extract the fitted interaction part
of a fitted point process model. See fitin for further explanation of this class.

The commands listed here are methods for the generic functions print, summary, plot, coef and
coef<- for objects of the class "fii".

Following the usual convention, summary.fii returns an object of class summary.fii, for which
there is a print method. The effect is that, when the user types summary(x), the summary is printed,
but when the user types y <- summary(x), the summary information is saved.

The method coef.fii extracts the canonical coefficients of the fitted interaction, and returns them
as a numeric vector. The method coef.summary.fii transforms these values into quantities that
are more easily interpretable, in a format that depends on the particular model.

There are also methods for the generic commands reach and as.interact, described elsewhere.

Value

The print and plot methods return NULL.

The summary method returns an object of class summary.fii.

coef.fii returns a numeric vector. coef.summary.fii returns data whose structure depends on
the model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

fitin, reach.fii, as.interact.fii

Examples

mod <- ppm(cells ~1, Strauss(0.1))
f <- fitin(mod)
f
summary(f)
plot(f)
coef(f)
coef(summary(f))

methods.influence.ppm 233

methods.influence.ppm Methods for Influence Objects

Description

Methods for the class "influence.ppm".

Usage

S3 method for class 'influence.ppm'
as.ppp(X, ...)

S3 method for class 'influence.ppm'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'influence.ppm'
domain(X, ...)

S3 method for class 'influence.ppm'
Smooth(X, ...)

S3 method for class 'influence.ppm'
Window(X, ...)

S3 method for class 'influence.ppm'
integral(f, domain, ...)

Arguments

X, W, f An object of class "influence.ppm".

domain Optional. Domain of integration: a window (class "owin") or a tessellation
(class "tess").

... Additional arguments. See Details.

fatal Logical value indicating what to do if the data cannot be converted to a window.
If fatal=TRUE (the default) an error occurs. If fatal=FALSE a value of NULL is
returned.

Details

These functions are methods for the class "influence.ppm". An object of this class represents the
influence measure of a fitted point process model (see influence.ppm).

For as.ppp, domain, integral and Window, additional arguments (...) are ignored. For as.owin
and Smooth, additional arguments are passed to the method for class "ppp".

234 methods.kppm

Value

A window (object of class "owin") for as.owin, domain and Window. A point pattern (object of
class "ppp") for as.ppp. A numeric value or numeric vector for integral. A pixel image, or list
of pixel images, for Smooth.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

influence.ppm, plot.influence.ppm, [.influence.ppm

Examples

fit <- ppm(cells ~ x)
a <- influence(fit)
Window(a)

methods.kppm Methods for Cluster Point Process Models

Description

These are methods for the class "kppm".

Usage

S3 method for class 'kppm'
coef(object, ...)
S3 method for class 'kppm'
formula(x, ...)
S3 method for class 'kppm'
print(x, ...)
S3 method for class 'kppm'
terms(x, ...)
S3 method for class 'kppm'
labels(object, ...)

Arguments

x, object An object of class "kppm", representing a fitted cluster point process model.

... Arguments passed to other methods.

methods.leverage.ppm 235

Details

These functions are methods for the generic commands coef, formula, print, terms and labels
for the class "kppm".

An object of class "kppm" represents a fitted cluster point process model. It is obtained from kppm.

The method coef.kppm returns the vector of regression coefficients of the fitted model. It does not
return the clustering parameters.

Value

See the help files for the corresponding generic functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

kppm, plot.kppm, predict.kppm, simulate.kppm, update.kppm, vcov.kppm, as.ppm.kppm.

Examples

fit <- kppm(redwood ~ x, "MatClust")
coef(fit)
formula(fit)
tf <- terms(fit)
labels(fit)

methods.leverage.ppm Methods for Leverage Objects

Description

Methods for the class "leverage.ppm".

Usage

S3 method for class 'leverage.ppm'
as.im(X, ..., what=c("smooth", "nearest"))

S3 method for class 'leverage.ppm'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'leverage.ppm'
domain(X, ...)

S3 method for class 'leverage.ppm'
integral(f, domain, ...)

236 methods.leverage.ppm

S3 method for class 'leverage.ppm'
mean(x, ...)

S3 method for class 'leverage.ppm'
Smooth(X, ...)

S3 method for class 'leverage.ppm'
Window(X, ...)

Arguments

X, x, W, f An object of class "leverage.ppm".
domain Optional. Domain of integration: a window (class "owin") or a tessellation

(class "tess").
... Additional arguments. See Details.
fatal Logical value indicating what to do if the data cannot be converted to a window.

If fatal=TRUE (the default) an error occurs. If fatal=FALSE a value of NULL is
returned.

what Character string (partially matched) specifying which image data should be ex-
tracted. See plot.leverage.ppm for explanation.

Details

These functions are methods for the class "leverage.ppm". An object of this class represents the
leverage measure of a fitted point process model (see leverage.ppm).

For as.im, domain and Window, additional arguments (...) are ignored. For as.owin, integral,
mean and Smooth, additional arguments are passed to the method for class "im".

Value

A window (object of class "owin") for as.owin, domain and Window. A numeric value or numeric
vector for integral. A pixel image, or list of pixel images, for as.im and Smooth.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

leverage.ppm, plot.leverage.ppm, [.leverage.ppm, as.function.leverage.ppm.

Examples

fit <- ppm(cells ~ x)
a <- leverage(fit)
integral(a)

methods.objsurf 237

methods.objsurf Methods for Objective Function Surfaces

Description

Methods for printing and plotting an objective function surface.

Usage

S3 method for class 'objsurf'
print(x, ...)
S3 method for class 'objsurf'
plot(x, ...)
S3 method for class 'objsurf'
image(x, ...)
S3 method for class 'objsurf'
contour(x, ...)
S3 method for class 'objsurf'
persp(x, ...)
S3 method for class 'objsurf'
summary(object, ...)
S3 method for class 'summary.objsurf'
print(x, ...)

Arguments

x, object Object of class "objsurf" representing an objective function surface.

... Additional arguments passed to plot methods.

Details

These are methods for the generic functions print, plot, image, contour, persp and summary for
the class "objsurf".

Value

For print.objsurf, print.summary.objsurf, plot.objsurf and image.objsurf the value is
NULL.

For contour.objsurf and persp.objsurf the value is described in the help for contour.default
and persp.default respectively.

For summary.objsurf the result is a list, of class summary.objsurf, containing summary infor-
mation. This list is printed in sensible format by print.summary.objsurf.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

238 methods.slrm

See Also

objsurf

Examples

fit <- kppm(redwood ~ 1, "Thomas")
os <- objsurf(fit)
os
summary(os)
plot(os)
contour(os, add=TRUE)
persp(os)

methods.slrm Methods for Spatial Logistic Regression Models

Description

These are methods for the class "slrm".

Usage

S3 method for class 'slrm'
formula(x, ...)
S3 method for class 'slrm'
print(x, ...)
S3 method for class 'slrm'
summary(object, ...)
S3 method for class 'slrm'
terms(x, ...)
S3 method for class 'slrm'
labels(object, ...)
S3 method for class 'slrm'
deviance(object, ...)
S3 method for class 'slrm'
update(object, fmla, ..., evaluate = TRUE, env = parent.frame())

Arguments

x, object An object of class "slrm", representing a fitted spatial logistic regression model.

... Arguments passed to other methods.

fmla Optional. A formula, to replace the formula of the model.

evaluate Logical value. If TRUE, evaluate the updated call to slrm, so that the model is
refitted; if FALSE, simply return the updated call.

env Optional environment in which the model should be updated.

methods.traj 239

Details

These functions are methods for the generic commands formula, update, print, summary, terms,
labels and deviance for the class "slrm".

An object of class "slrm" represents a fitted spatial logistic regression model. It is obtained from
slrm.

Value

See the help files for the corresponding generic functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

slrm, plot.slrm, predict.slrm, simulate.slrm, vcov.slrm, coef.slrm.

Examples

fit <- slrm(redwood ~ x)
coef(fit)
formula(fit)
tf <- terms(fit)
labels(fit)
deviance(fit)

methods.traj Methods for Trajectories of Function Evaluations

Description

Methods for objects of class "traj".

Usage

S3 method for class 'traj'
print(x, ...)
S3 method for class 'traj'
plot(x, ..., show.ends=TRUE, add=FALSE, xlab=NULL, ylab=NULL)
S3 method for class 'traj'
lines(x, ..., directed=FALSE)

240 methods.traj

Arguments

x Object of class "traj".

... Additional arguments passed to other methods.

directed Logical value specifying whether to draw arrows instead of undirected lines.

show.ends Logical value specifying whether to indicate the start and finish of the trajectory.
The start is a blue circle; the finish is a red cross.

add Logical value specifying whether to draw the trajectory on the existing plot
(add=TRUE) or to start a new plot (add=FALSE, the default).

xlab, ylab Optional labels for the horizontal and vertical axes.

Details

An object of class "traj" represents the history of evaluations of the objective function performed
when a cluster process model was fitted. It is a data frame containing the input parameter values for
the objective function, and the corresponding value of the objective function, that were considered
by the optimisation algorithm.

These functions are methods for the generic print, plot and lines.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

traj

Examples

fit <- kppm(redwood, pspace=list(save=TRUE))
h <- traj(fit)
h
plot(h)
lines(h)

methods.zclustermodel 241

methods.zclustermodel Methods for Cluster Models

Description

Methods for the experimental class of cluster models.

Usage

S3 method for class 'zclustermodel'
pcfmodel(model, ...)

S3 method for class 'zclustermodel'
Kmodel(model, ...)

S3 method for class 'zclustermodel'
intensity(X, ...)

S3 method for class 'zclustermodel'
predict(object, ...,

locations, type = "intensity", ngrid = NULL)

S3 method for class 'zclustermodel'
print(x, ...)

S3 method for class 'zclustermodel'
clusterradius(model,...,thresh=NULL, precision=FALSE)

S3 method for class 'zclustermodel'
reach(x, ..., epsilon)

S3 method for class 'zclustermodel'
simulate(object, nsim=1, ..., win=unit.square())

Arguments

model, object, x, X
Object of class "zclustermodel".

... Arguments passed to other methods.

locations Locations where prediction should be performed. A window or a point pattern.

type Currently must equal "intensity".

ngrid Pixel grid dimensions for prediction, if locations is a rectangle or polygon.

thresh, epsilon Tolerance thresholds

precision Logical value stipulating whether the precision should also be returned.

242 methods.zgibbsmodel

win Window (object of class "owin") in which the simulated pattern should be gen-
erated.

nsim Number of simulated patterns to be generated.

Details

Experimental.

Value

Same as for other methods.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

zclustermodel

Examples

m <- zclustermodel("Thomas", kappa=10, mu=5, scale=0.1)
m2 <- zclustermodel("VarGamma", kappa=10, mu=10, scale=0.1, nu=0.7)
m
m2
g <- pcfmodel(m)
g(0.2)
g2 <- pcfmodel(m2)
g2(1)
Z <- predict(m, locations=square(2))
Z2 <- predict(m2, locations=square(1))
varcount(m, square(1))
varcount(m2, square(1))
X <- simulate(m)

methods.zgibbsmodel Methods for Gibbs Models

Description

Methods for the experimental class of Gibbs models

methods.zgibbsmodel 243

Usage

S3 method for class 'zgibbsmodel'
as.interact(object)
S3 method for class 'zgibbsmodel'
as.isf(object)
S3 method for class 'zgibbsmodel'
interactionorder(object)
S3 method for class 'zgibbsmodel'
is.poisson(x)
S3 method for class 'zgibbsmodel'
is.stationary(x)
S3 method for class 'zgibbsmodel'
print(x, ...)
S3 method for class 'zgibbsmodel'
intensity(X, ..., approx=c("Poisson", "DPP"))

Arguments

object, x, X Object of class "zgibbsmodel".

... Additional arguments.

approx Character string (partially matched) specifying the type of approximation.

Details

Experimental.

Value

Same as for other methods.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

zgibbsmodel

Examples

m <- zgibbsmodel(10, Strauss(0.1), -0.5)
m
is.poisson(m)
is.stationary(m)
interactionorder(m)
as.interact(m)
as.isf(m)
intensity(m)
intensity(m, approx="D")

244 mincontrast

mincontrast Method of Minimum Contrast

Description

A general low-level algorithm for fitting theoretical point process models to point pattern data by
the Method of Minimum Contrast.

Usage

mincontrast(observed, theoretical, startpar, ...,
ctrl=list(q = 1/4, p = 2, rmin=NULL, rmax=NULL),
fvlab=list(label=NULL, desc="minimum contrast fit"),
explain=list(dataname=NULL, modelname=NULL, fname=NULL),
action.bad.values=c("warn", "stop", "silent"),
control=list(), stabilize=TRUE,
pspace=NULL)

Arguments

observed Summary statistic, computed for the data. An object of class "fv".

theoretical An R language function that calculates the theoretical expected value of the
summary statistic, given the model parameters. See Details.

startpar Vector of initial values of the parameters of the point process model (passed to
theoretical).

... Additional arguments passed to the function theoretical and to the optimisa-
tion algorithm optim.

ctrl Optional. List of arguments controlling the optimisation. See Details.

fvlab Optional. List containing some labels for the return value. See Details.

explain Optional. List containing strings that give a human-readable description of the
model, the data and the summary statistic.

action.bad.values

String (partially matched) specifying what to do if values of the summary statis-
tic are NA, NaN or infinite. See Details.

control Optional. Argument passed to optim. A list of parameters which control the
behaviour of the optimization algorithm.

stabilize Logical value specifying whether to numerically stabilize the optimization algo-
rithm, by specifying suitable default values of control$fnscale and control$parscale.

pspace For internal use by the package only.

mincontrast 245

Details

This function is a general algorithm for fitting point process models by the Method of Minimum
Contrast. If you want to fit the Thomas process, see thomas.estK. If you want to fit a log-Gaussian
Cox process, see lgcp.estK. If you want to fit the Matérn cluster process, see matclust.estK.

The Method of Minimum Contrast (Pfanzagl, 1969; Diggle and Gratton, 1984) is a general tech-
nique for fitting a point process model to point pattern data. First a summary function (typically the
K function) is computed from the data point pattern. Second, the theoretical expected value of this
summary statistic under the point process model is derived (if possible, as an algebraic expression
involving the parameters of the model) or estimated from simulations of the model. Then the model
is fitted by finding the optimal parameter values for the model to give the closest match between the
theoretical and empirical curves.

The argument observed should be an object of class "fv" (see fv.object) containing the values
of a summary statistic computed from the data point pattern. Usually this is the function K(r)
computed by Kest or one of its relatives.

The argument theoretical should be a user-supplied function that computes the theoretical ex-
pected value of the summary statistic. It must have an argument named par that will be the vector
of parameter values for the model (the length and format of this vector are determined by the start-
ing values in startpar). The function theoretical should also expect a second argument (the
first argument other than par) containing values of the distance r for which the theoretical value of
the summary statistic K(r) should be computed. The value returned by theoretical should be a
vector of the same length as the given vector of r values.

The argument ctrl determines the contrast criterion (the objective function that will be minimised).
The algorithm minimises the criterion

D(θ) =

∫ rmax

rmin

|F̂ (r)q − Fθ(r)
q|p dr

where θ is the vector of parameters of the model, F̂ (r) is the observed value of the summary statistic
computed from the data, Fθ(r) is the theoretical expected value of the summary statistic, and p, q
are two exponents. The default is q = 1/4, p=2 so that the contrast criterion is the integrated squared
difference between the fourth roots of the two functions (Waagepetersen, 2007).

The argument action.bad.values specifies what to do if some of the values of the summary
statistic are NA, NaN or infinite. If action.bad.values="stop", or if all of the values are bad,
then a fatal error occurs. Otherwise, the domain of the summary function is shortened to avoid
the bad values. The shortened domain is the longest interval on which the function values are fi-
nite (provided this interval is at least half the length of the original domain). A warning is issued if
action.bad.values="warn" (the default) and no warning is issued if action.bad.values="silent".

The other arguments just make things print nicely. The argument fvlab contains labels for the com-
ponent fit of the return value. The argument explain contains human-readable strings describing
the data, the model and the summary statistic.

The "..." argument of mincontrast can be used to pass extra arguments to the function theoretical
and/or to the optimisation function optim. In this case, the function theoretical should also have
a "..." argument and should ignore it (so that it ignores arguments intended for optim).

246 model.depends

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following components:

par Vector of fitted parameter values.
fit Function value table (object of class "fv") containing the observed values of the

summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

opt The object returned from the optimizer optim.
crtl List of parameters determining the contrast objective.
info List of explanatory strings.

Author(s)

Rasmus Plenge Waagepetersen <rw@math.auc.dk>. Adapted for spatstat by Adrian Baddeley
<Adrian.Baddeley@curtin.edu.au>.

References

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Pfanzagl, J. (1969). On the measurability and consistency of minimum contrast estimates. Metrika
14, 249–276.

Waagepetersen, R. (2007). An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, lgcp.estK, matclust.estK, thomas.estK,

model.depends Identify Covariates Involved in each Model Term

Description

Given a fitted model (of any kind), identify which of the covariates is involved in each term of the
model.

Usage

model.depends(object)
model.is.additive(object)
model.covariates(object, fitted=TRUE, offset=TRUE)
has.offset.term(object)
has.offset(object)

model.depends 247

Arguments

object A fitted model of any kind.

fitted, offset Logical values determining which type of covariates to include.

Details

The object can be a fitted model of any kind, including models of the classes lm, glm and ppm.

To be precise, object must belong to a class for which there are methods for formula, terms and
model.matrix.

The command model.depends determines the relationship between the original covariates (the data
supplied when object was fitted) and the canonical covariates (the columns of the design matrix).
It returns a logical matrix, with one row for each canonical covariate, and one column for each of
the original covariates, with the i,j entry equal to TRUE if the ith canonical covariate depends on
the jth original covariate.

If the model formula of object includes offset terms (see offset), then the return value of model.depends
also has an attribute "offset". This is a logical value or matrix with one row for each offset term
and one column for each of the original covariates, with the i,j entry equal to TRUE if the ith offset
term depends on the jth original covariate.

The command model.covariates returns a character vector containing the names of all (original)
covariates that were actually used to fit the model. By default, this includes all covariates that appear
in the model formula, including offset terms as well as canonical covariate terms. To omit the offset
terms, set offset=FALSE. To omit the canonical covariate terms, set fitted=FALSE.

The command model.is.additive determines whether the model is additive, in the sense that
there is no canonical covariate that depends on two or more original covariates. It returns a logical
value.

The command has.offset.term is a faster way to determine whether the model formula includes
an offset term.

The functions model.depends and has.offset.term only detect offset terms which are present
in the model formula. They do not detect numerical offsets in the model object, that were inserted
using the offset argument in lm, glm etc. To detect the presence of offsets of both kinds, use
has.offset.

Value

A logical value or matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

ppm, model.matrix

248 model.frame.ppm

Examples

x <- 1:10
y <- 3*x + 2
z <- rep(c(-1,1), 5)
fit <- lm(y ~ poly(x,2) + sin(z))
model.depends(fit)
model.covariates(fit)
model.is.additive(fit)

fitoff1 <- lm(y ~ x + offset(z))
fitoff2 <- lm(y ~ x, offset=z)
has.offset.term(fitoff1)
has.offset(fitoff1)
has.offset.term(fitoff2)
has.offset(fitoff2)

model.frame.ppm Extract the Variables in a Point Process Model

Description

Given a fitted point process model, this function returns a data frame containing all the variables
needed to fit the model using the Berman-Turner device.

Usage

S3 method for class 'ppm'
model.frame(formula, ...)

S3 method for class 'kppm'
model.frame(formula, ...)

S3 method for class 'dppm'
model.frame(formula, ...)

S3 method for class 'slrm'
model.frame(formula, ...)

Arguments

formula A fitted point process model. An object of class "ppm", "kppm", "slrm", or
"dppm".

... Additional arguments passed to model.frame.glm.

model.images 249

Details

The function model.frame is generic. These functions are method for model.frame for fitted point
process models (objects of class "ppm", "kppm", "slrm", or "dppm"). The first argument should be
a fitted point process model; it has to be named formula for consistency with the generic function.

The result is a data frame containing all the variables used in fitting the model. The data frame has
one row for each quadrature point used in fitting the model. The quadrature scheme can be extracted
using quad.ppm.

Value

A data.frame containing all the variables used in the fitted model, plus additional variables speci-
fied in It has an additional attribute "terms" containing information about the model formula.
For details see model.frame.glm.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

See Also

ppm, kppm, dppm, slrm, model.frame, model.matrix.ppm

Examples

fit <- ppm(cells ~ x)
mf <- model.frame(fit)
kfit <- kppm(redwood ~ x, "Thomas")
kmf <- model.frame(kfit)
sfit <- slrm(cells ~ x)
smf <- model.frame(sfit)

model.images Compute Images of Constructed Covariates

Description

For a point process model fitted to spatial point pattern data, this function computes pixel images of
the covariates in the design matrix.

250 model.images

Usage

model.images(object, ...)

S3 method for class 'ppm'
model.images(object, W = as.owin(object), ...)

S3 method for class 'kppm'
model.images(object, W = as.owin(object), ...)

S3 method for class 'dppm'
model.images(object, W = as.owin(object), ...)

S3 method for class 'slrm'
model.images(object, ...)

Arguments

object The fitted point process model. An object of class "ppm" or "kppm" or "slrm"
or "dppm".

W A window (object of class "owin") in which the images should be computed.
Defaults to the window in which the model was fitted.

... Other arguments (such as na.action) passed to model.matrix.lm.

Details

This command is similar to model.matrix.ppm except that it computes pixel images of the covari-
ates, instead of computing the covariate values at certain points only.

The object must be a fitted spatial point process model object of class "ppm" (produced by the
model-fitting function ppm) or class "kppm" (produced by the fitting function kppm) or class "dppm"
(produced by the fitting function dppm) or class "slrm" (produced by slrm).

The spatial covariates required by the model-fitting procedure are computed at every pixel location
in the window W. For slrm objects, the covariates are computed on the pixels that were used to fit
the model.

Note that the spatial covariates computed here are not necessarily the original covariates that were
supplied when fitting the model. Rather, they are the canonical covariates, the covariates that appear
in the loglinear representation of the (conditional) intensity and in the columns of the design ma-
trix. For example, they might include dummy or indicator variables for different levels of a factor,
depending on the contrasts that are in force.

The pixel resolution is determined by W if W is a mask (that is W$type = "mask"). Otherwise, the
pixel resolution is determined by spatstat.options.

The format of the result depends on whether the original point pattern data were marked or un-
marked.

• If the original dataset was unmarked, the result is a named list of pixel images (objects of
class "im") containing the values of the spatial covariates. The names of the list elements

model.matrix.mppm 251

are the names of the covariates determined by model.matrix.lm. The result is also of class
"solist" so that it can be plotted immediately.

• If the original dataset was a multitype point pattern, the result is a hyperframe with one
column for each possible type of points. Each column is a named list of pixel images (objects
of class "im") containing the values of the spatial covariates. The row names of the hyperframe
are the names of the covariates determined by model.matrix.lm.

Value

A list (of class "solist") or array (of class "hyperframe") containing pixel images (objects of
class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

model.matrix.ppm, model.matrix, ppm, ppm.object, dppm, kppm, slrm, im, im.object, plot.solist,
spatstat.options

Examples

fit <- ppm(cells ~ x)
model.images(fit)
B <- owin(c(0.2, 0.4), c(0.3, 0.8))
model.images(fit, B)
fit2 <- ppm(cells ~ cut(x,3))
model.images(fit2)
fit3 <- slrm(japanesepines ~ x)
model.images(fit3)
fit4 <- ppm(amacrine ~ marks + x)
model.images(fit4)

model.matrix.mppm Extract Design Matrix of Point Process Model for Several Point Pat-
terns

Description

Given a point process model fitted to a list of point patterns, this function extracts the design matrix.

Usage

S3 method for class 'mppm'
model.matrix(object, ..., keepNA=TRUE, separate=FALSE)

252 model.matrix.mppm

Arguments

object A point process model fitted to several point patterns. An object of class "mppm".

... Other arguments (such as na.action) passed to model.matrix.lm.

keepNA Logical. Determines whether rows containing NA values will be deleted or re-
tained.

separate Logical value indicating whether to split the model matrix into sub-matrices
corresponding to each of the original point patterns.

Details

This command is a method for the generic function model.matrix. It extracts the design matrix of
a point process model fitted to several point patterns.

The argument object must be a fitted point process model (object of class "mppm") produced by
the fitting algorithm mppm). This represents a point process model that has been fitted to a list of
several point pattern datasets. See mppm for information.

The result is a matrix with one column for every constructed covariate in the model, and one row
for every quadrature point.

If separate=TRUE this matrix will be split into sub-matrices corresponding to the original point
patterns, and the result will be a list containing these matrices.

Value

A matrix (or list of matrices). Columns of the matrix are canonical covariates in the model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

model.matrix, mppm.

Examples

fit <- mppm(Points ~ Image + x, demohyper)
head(model.matrix(fit))
matrix with three columns: '(Intercept)', 'x' and 'Image'

model.matrix.ppm 253

model.matrix.ppm Extract Design Matrix from Point Process Model

Description

Given a point process model that has been fitted to spatial point pattern data, this function extracts
the design matrix of the model.

Usage

S3 method for class 'ppm'
model.matrix(object,

data=model.frame(object, na.action=NULL),
...,
Q=NULL, keepNA=TRUE)

S3 method for class 'kppm'
model.matrix(object,

data=model.frame(object, na.action=NULL),
...,
Q=NULL, keepNA=TRUE)

S3 method for class 'dppm'
model.matrix(object,

data=model.frame(object, na.action=NULL),
...,
Q=NULL, keepNA=TRUE)

S3 method for class 'ippm'
model.matrix(object,

data=model.frame(object, na.action=NULL),
...,
Q=NULL, keepNA=TRUE,

irregular=FALSE)

Arguments

object The fitted point process model. An object of class "ppm" or "kppm" or "dppm"
or "ippm".

data A model frame, containing the data required for the Berman-Turner device.
Q A point pattern (class "ppp") or quadrature scheme (class "quad") specifying

new locations where the covariates should be computed.
keepNA Logical. Determines whether rows containing NA values will be deleted or

retained.
... Other arguments (such as na.action) passed to model.matrix.lm.
irregular Logical value indicating whether to include the irregular score components.

254 model.matrix.ppm

Details

These commands are methods for the generic function model.matrix. They extract the design
matrix of a spatial point process model (class "ppm" or "kppm" or "dppm").

More precisely, this command extracts the design matrix of the generalised linear model associated
with a spatial point process model.

The object must be a fitted point process model (object of class "ppm" or "kppm" or "dppm") fitted
to spatial point pattern data. Such objects are produced by the model-fitting functions ppm, kppm,
and dppm.

The methods model.matrix.ppm, model.matrix.kppm, and model.matrix.dppm extract the model
matrix for the GLM.

The result is a matrix, with one row for every quadrature point in the fitting procedure, and one
column for every constructed covariate in the design matrix.

If there are NA values in the covariates, the argument keepNA determines whether to retain or delete
the corresponding rows of the model matrix. The default keepNA=TRUE is to retain them. Note that
this differs from the default behaviour of many other methods for model.matrix, which typically
delete rows containing NA.

The quadrature points themselves can be extracted using quad.ppm.

Value

A matrix. Columns of the matrix are canonical covariates in the model. Rows of the matrix corre-
spond to quadrature points in the fitting procedure (provided keepNA=TRUE).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

model.matrix, model.images, ppm, kppm, dppm, ippm, ppm.object, quad.ppm, residuals.ppm

Examples

fit <- ppm(cells ~ x)
head(model.matrix(fit))
model.matrix(fit, Q=runifpoint(5))
kfit <- kppm(redwood ~ x, "Thomas")
m <- model.matrix(kfit)

model.matrix.slrm 255

model.matrix.slrm Extract Design Matrix from Spatial Logistic Regression Model

Description

This function extracts the design matrix of a spatial logistic regression model.

Usage

S3 method for class 'slrm'
model.matrix(object, ..., keepNA=TRUE)

Arguments

object A fitted spatial logistic regression model. An object of class "slrm".

... Other arguments (such as na.action) passed to model.matrix.lm.

keepNA Logical. Determines whether rows containing NA values will be deleted or re-
tained.

Details

This command is a method for the generic function model.matrix. It extracts the design matrix of
a spatial logistic regression.

The object must be a fitted spatial logistic regression (object of class "slrm"). Such objects are
produced by the model-fitting function slrm.

Usually the result is a matrix with one column for every constructed covariate in the model, and one
row for every pixel in the grid used to fit the model.

If object was fitted using split pixels (by calling slrm using the argument splitby) then the matrix
has one row for every pixel or half-pixel.

Value

A matrix. Columns of the matrix are canonical covariates in the model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

model.matrix, model.images, slrm.

256 mppm

Examples

fit <- slrm(japanesepines ~x)
head(model.matrix(fit))
matrix with two columns: '(Intercept)' and 'x'

mppm Fit Point Process Model to Several Point Patterns

Description

Fits a Gibbs point process model to several point patterns simultaneously.

Usage

mppm(formula, data, interaction=Poisson(), ...,
iformula=NULL,
random=NULL,
weights=NULL,
use.gam = FALSE,
reltol.pql=1e-3,
gcontrol=list())

Arguments

formula A formula describing the systematic part of the model. Variables in the formula
are names of columns in data.

data A hyperframe (object of class "hyperframe", see hyperframe) containing the
point pattern responses and the explanatory variables.

interaction Interpoint interaction(s) appearing in the model. Either an object of class "interact"
describing the point process interaction structure, or a hyperframe (with the
same number of rows as data) whose entries are objects of class "interact".

... Arguments passed to ppm controlling the fitting procedure.

iformula Optional. A formula (with no left hand side) describing the interaction to be
applied to each case. Each variable name in the formula should either be the
name of a column in the hyperframe interaction, or the name of a column in
the hyperframe data that is a vector or factor.

random Optional. A formula (with no left hand side) describing a random effect. Vari-
able names in the formula may be any of the column names of data and interaction.
The formula must be recognisable to lme.

weights Optional. Numeric vector of case weights for each row of data.

use.gam Logical flag indicating whether to fit the model using gam or glm.

reltol.pql Relative tolerance for successive steps in the penalised quasi-likelihood algo-
rithm, used when the model includes random effects. The algorithm terminates
when the root mean square of the relative change in coefficients is less than
reltol.pql.

mppm 257

gcontrol List of arguments to control the fitting algorithm. Arguments are passed to
glm.control or gam.control or lmeControl depending on the kind of model
being fitted. If the model has random effects, the arguments are passed to
lmeControl. Otherwise, if use.gam=TRUE the arguments are passed to gam.control,
and if use.gam=FALSE (the default) they are passed to glm.control.

Details

This function fits a common point process model to a dataset containing several different point
patterns.

It extends the capabilities of the function ppm to deal with data such as

• replicated observations of spatial point patterns

• two groups of spatial point patterns

• a designed experiment in which the response from each unit is a point pattern.

The syntax of this function is similar to that of standard R model-fitting functions like lm and glm.
The first argument formula is an R formula describing the systematic part of the model. The second
argument data contains the responses and the explanatory variables. Other arguments determine
the stochastic structure of the model.

Schematically, the data are regarded as the results of a designed experiment involving n experi-
mental units. Each unit has a ‘response’, and optionally some ‘explanatory variables’ (covariates)
describing the experimental conditions for that unit. In this context, the response from each unit is
a point pattern. The value of a particular covariate for each unit can be either a single value (nu-
merical, logical or factor), or a spatial covariate. A ‘spatial’ covariate is a quantity that depends on
spatial location, for example, the soil acidity or altitude at each location. For the purposes of mppm,
a spatial covariate must be stored as a pixel image (object of class "im") which gives the values of
the covariate at a fine grid of locations.

The argument data is a hyperframe (a generalisation of a data frame, see hyperframe). This is like
a data frame except that the entries can be objects of any class. The hyperframe has one row for
each experimental unit, and one column for each variable (response or explanatory variable).

The formula should be an R formula. The left hand side of formula determines the ‘response’
variable. This should be a single name, which should correspond to a column in data.

The right hand side of formula determines the spatial trend of the model. It specifies the linear
predictor, and effectively represents the logarithm of the spatial trend. Variables in the formula
must be the names of columns of data, or one of the reserved names

x,y Cartesian coordinates of location

marks Mark attached to point

id which is a factor representing the serial number (1 to n) of the point pattern, i.e. the row number
in the data hyperframe.

The column of responses in data must consist of point patterns (objects of class "ppp"). The
individual point pattern responses can be defined in different spatial windows. If some of the point
patterns are marked, then they must all be marked, and must have the same type of marks.

The scope of models that can be fitted to each pattern is the same as the scope of ppm, that is,
Gibbs point processes with interaction terms that belong to a specified list, including for example

258 mppm

the Poisson process, Strauss process, Geyer’s saturation model, and piecewise constant pairwise
interaction models. Additionally, it is possible to include random effects as explained in the section
on Random Effects below.

The stochastic part of the model is determined by the arguments interaction and (optionally)
iformula.

• In the simplest case, interaction is an object of class "interact", determining the inter-
point interaction structure of the point process model, for all experimental units.

• Alternatively, interaction may be a hyperframe, whose entries are objects of class "interact".
It should have the same number of rows as data.

– If interaction consists of only one column, then the entry in row i is taken to be the
interpoint interaction for the ith experimental unit (corresponding to the ith row of data).

– If interaction has more than one column, then the argument iformula is also required.
Each row of interaction determines several interpoint interaction structures that might
be applied to the corresponding row of data. The choice of interaction is determined
by iformula; this should be an R formula, without a left hand side. For example if
interaction has two columns called A and B then iformula = ~B indicates that the in-
terpoint interactions are taken from the second column.

Variables in iformula typically refer to column names of interaction. They can also be names of
columns in data, but only for columns of numeric, logical or factor values. For example iformula
= ~B * group (where group is a column of data that contains a factor) causes the model with inter-
point interaction B to be fitted with different interaction parameters for each level of group.

Value

An object of class "mppm" representing the fitted model.

There are methods for print, summary, coef, AIC, anova, fitted, fixef, logLik, plot, predict,
ranef, residuals, summary, terms and vcov for this class.

The default methods for update and formula also work on this class.

Random Effects

It is also possible to include random effects in the trend term. The argument random is a formula,
with no left-hand side, that specifies the structure of the random effects. The formula should be
recognisable to lme (see the description of the argument random for lme).

The names in the formula random may be any of the covariates supplied by data. Additionally the
formula may involve the name id, which is a factor representing the serial number (1 to n) of the
point pattern in the list X.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented in spatstat by Adrian Bad-
deley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net> and Ege
Rubak <rubak@math.aau.dk>.

msr 259

References

Baddeley, A. and Turner, R. Practical maximum pseudolikelihood for spatial point patterns. Aus-
tralian and New Zealand Journal of Statistics 42 (2000) 283–322.

Baddeley, A., Bischof, L., Sintorn, I.-M., Haggarty, S., Bell, M. and Turner, R. Analysis of a
designed experiment where the response is a spatial point pattern. In preparation.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Bell, M. and Grunwald, G. (2004) Mixed models for the analysis of replicated spatial point patterns.
Biostatistics 5, 633–648.

See Also

ppm, print.mppm, summary.mppm, coef.mppm,

Examples

Waterstriders data
H <- hyperframe(Y = waterstriders)
mppm(Y ~ 1, data=H)
mppm(Y ~ 1, data=H, Strauss(7))
mppm(Y ~ id, data=H)
mppm(Y ~ x, data=H)

Synthetic data from known model
n <- 10
H <- hyperframe(V=1:n,

U=runif(n, min=-1, max=1),
M=factor(letters[1 + (1:n) %% 3]))

H$Z <- setcov(square(1))
H$U <- with(H, as.im(U, as.rectangle(Z)))
H$Y <- with(H, rpoispp(eval.im(exp(2+3*Z))))

fit <- mppm(Y ~Z + U + V, data=H)

msr Signed or Vector-Valued Measure

Description

Defines an object representing a signed measure or vector-valued measure on a spatial domain.

Usage

msr(qscheme, discrete, density, check=TRUE)

260 msr

Arguments

qscheme A quadrature scheme (object of class "quad" usually extracted from a fitted
point process model).

discrete Vector or matrix containing the values (masses) of the discrete component of the
measure, for each of the data points in qscheme.

density Vector or matrix containing values of the density of the diffuse component of
the measure, for each of the quadrature points in qscheme.

check Logical. Whether to check validity of the arguments.

Details

This function creates an object that represents a signed or vector valued measure on the two-
dimensional plane. It is not normally called directly by the user.

A signed measure is a classical mathematical object (Diestel and Uhl, 1977) which can be visualised
as a collection of electric charges, positive and/or negative, spread over the plane. Electric charges
may be concentrated at specific points (atoms), or spread diffusely over a region.

An object of class "msr" represents a signed (i.e. real-valued) or vector-valued measure in the
spatstat package.

Spatial residuals for point process models (Baddeley et al, 2005, 2008) take the form of a real-valued
or vector-valued measure. The function residuals.ppm returns an object of class "msr" represent-
ing the residual measure. Various other diagnostic tools such as dfbetas.ppm and dffit.ppm also
return an object of class "msr".

The function msr would not normally be called directly by the user. It is the low-level creator
function that makes an object of class "msr" from raw data.

The first argument qscheme is a quadrature scheme (object of class "quad"). It is typically cre-
ated by quadscheme or extracted from a fitted point process model using quad.ppm. A quadrature
scheme contains both data points and dummy points. The data points of qscheme are used as the
locations of the atoms of the measure. All quadrature points (i.e. both data points and dummy
points) of qscheme are used as sampling points for the density of the continuous component of the
measure.

The argument discrete gives the values of the atomic component of the measure for each data
point in qscheme. It should be either a numeric vector with one entry for each data point, or a
numeric matrix with one row for each data point.

The argument density gives the values of the density of the diffuse component of the measure, at
each quadrature point in qscheme. It should be either a numeric vector with one entry for each
quadrature point, or a numeric matrix with one row for each quadrature point.

If both discrete and density are vectors (or one-column matrices) then the result is a signed (real-
valued) measure. Otherwise, the result is a vector-valued measure, with the dimension of the vector
space being determined by the number of columns in the matrices discrete and/or density. (If
one of these is a k-column matrix and the other is a 1-column matrix, then the latter is replicated to
k columns).

The class "msr" has methods for print, plot and [. There is also a function Smooth.msr for
smoothing a measure.

msr 261

Value

An object of class "msr".

Guide to using measures

Objects of class "msr", representing measures, are returned by the functions residuals.ppm,
dfbetas.ppm, dffit.ppm and possibly by other functions.

There are methods for printing and plotting a measure, along with many other operations, which
can be listed by typing methods(class="msr").

The print and summary methods report basic information about a measure, such as the total value
of the measure, and the spatial domain on which it is defined.

The plot method displays the measure. It is documented separately in plot.msr.

A measure can be smoothed using Smooth.msr, yielding a pixel image which is sometimes easier
to interpret than the plot of the measure itself.

The subset operator [can be used to restrict the measure to a subregion of space, or to extract one
of the scalar components of a vector-valued measure. It is documented separately in [.msr.

The total value of a measure, or the value on a subregion, can be obtained using integral.msr. The
value of a measure m on a subregion B can be obtained by integral(m, domain=B) or integral(m[B]).
The values of a measure m on each tile of a tessellation A can be obtained by integral(m, domain=A).

Some mathematical operations on measures are supported, such as multiplying a measure by a
single number, or adding two measures.

Measures can be separated into components in different ways using as.layered.msr, unstack.msr
and split.msr.

Internal components of the data structure of an "msr" object can be extracted using with.msr.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

Diestel, J. and Uhl, J.J. Jr (1977) Vector measures. Providence, RI, USA: American Mathematical
Society.

Halmos, P.R. (1950) Measure Theory. Van Nostrand.

See Also

plot.msr, Smooth.msr, [.msr, with.msr, split.msr, Ops.msr, measureVariation, measureWeighted,
measureContinuous.

262 MultiHard

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)

rp <- residuals(fit, type="pearson")
rp

rs <- residuals(fit, type="score")
rs
colnames(rs)

An equivalent way to construct the Pearson residual measure by hand
Q <- quad.ppm(fit)
lambda <- fitted(fit)
slam <- sqrt(lambda)
Z <- is.data(Q)
m <- msr(Q, discrete=1/slam[Z], density = -slam)
m

MultiHard The Multitype Hard Core Point Process Model

Description

Creates an instance of the multitype hard core point process model which can then be fitted to point
pattern data.

Usage

MultiHard(hradii, types=NULL)

Arguments

hradii Matrix of hard core radii
types Optional; vector of all possible types (i.e. the possible levels of the marks vari-

able in the data)

Details

This is a multitype version of the hard core process. A pair of points of types i and j must not lie
closer than hij units apart.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the MultiStrauss interaction is applied, when the user calls ppm.
However, the user should be confident that the ordering of types in the dataset corresponds to the
ordering of rows and columns in the matrix hradii.

The matrix hradii must be symmetric, with entries which are either positive numbers or NA. A
value of NA indicates that no distance constraint should be applied for this combination of types.

Note that only the hardcore radii are specified in MultiHard. The canonical parameters log(βj) are
estimated by ppm(), not fixed in MultiHard().

MultiStrauss 263

Value

An object of class "interact" describing the interpoint interaction structure of the multitype hard
core process with hard core radii hradii[i, j].

Warnings

In order that ppm can fit the multitype hard core model correctly to a point pattern X, this pattern
must be marked, with markformat equal to vector and the mark vector marks(X) must be a factor.
If the argument types is specified it is interpreted as a set of factor levels and this set must equal
levels(marks(X)).

Changed Syntax

Before spatstat version 1.37-0, the syntax of this function was different: MultiHard(types=NULL,
hradii). The new code attempts to handle the old syntax as well.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppm, pairwise.family, ppm.object, MultiStrauss, MultiStraussHard, Strauss.

See ragsMultiHard and rmh for simulation.

Examples

h <- matrix(c(1,2,2,1), nrow=2,ncol=2)

prints a sensible description of itself
MultiHard(h)

Fit the stationary multitype hardcore process to `amacrine'
with hard core operating only between cells of the same type.
h <- 0.02 * matrix(c(1, NA, NA, 1), nrow=2,ncol=2)
ppm(amacrine ~1, MultiHard(h))

MultiStrauss The Multitype Strauss Point Process Model

Description

Creates an instance of the multitype Strauss point process model which can then be fitted to point
pattern data.

Usage

MultiStrauss(radii, types=NULL)

264 MultiStrauss

Arguments

radii Matrix of interaction radii

types Optional; vector of all possible types (i.e. the possible levels of the marks vari-
able in the data)

Details

The (stationary) multitype Strauss process with m types, with interaction radii rij and parameters
βj and γij is the pairwise interaction point process in which each point of type j contributes a factor
βj to the probability density of the point pattern, and a pair of points of types i and j closer than rij
units apart contributes a factor γij to the density.

The nonstationary multitype Strauss process is similar except that the contribution of each individual
point xi is a function β(xi) of location and type, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The ap-
propriate description of the multitype Strauss process pairwise interaction is yielded by the function
MultiStrauss(). See the examples below.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the MultiStrauss interaction is applied, when the user calls ppm.
However, the user should be confident that the ordering of types in the dataset corresponds to the
ordering of rows and columns in the matrix radii.

The matrix radii must be symmetric, with entries which are either positive numbers or NA. A value
of NA indicates that no interaction term should be included for this combination of types.

Note that only the interaction radii are specified in MultiStrauss. The canonical parameters
log(βj) and log(γij) are estimated by ppm(), not fixed in MultiStrauss().

Value

An object of class "interact" describing the interpoint interaction structure of the multitype
Strauss process with interaction radii radii[i, j].

Warnings

In order that ppm can fit the multitype Strauss model correctly to a point pattern X, this pattern must
be marked, with markformat equal to vector and the mark vector marks(X) must be a factor. If
the argument types is specified it is interpreted as a set of factor levels and this set must equal
levels(marks(X)).

Changed Syntax

Before spatstat version 1.37-0, the syntax of this function was different: MultiStrauss(types=NULL,
radii). The new code attempts to handle the old syntax as well.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

MultiStraussHard 265

See Also

ppm, pairwise.family, ppm.object, Strauss, MultiHard

Examples

r <- matrix(c(1,2,2,1), nrow=2,ncol=2)
MultiStrauss(r)
prints a sensible description of itself
r <- 0.03 * matrix(c(1,2,2,1), nrow=2,ncol=2)
X <- amacrine

ppm(X ~1, MultiStrauss(r))
fit the stationary multitype Strauss process to `amacrine'

ppm(X ~polynom(x,y,3), MultiStrauss(r, c("off","on")))
fit a nonstationary multitype Strauss process with log-cubic trend

MultiStraussHard The Multitype/Hard Core Strauss Point Process Model

Description

Creates an instance of the multitype/hard core Strauss point process model which can then be fitted
to point pattern data.

Usage

MultiStraussHard(iradii, hradii, types=NULL)

Arguments

iradii Matrix of interaction radii

hradii Matrix of hard core radii

types Optional; vector of all possible types (i.e. the possible levels of the marks vari-
able in the data)

Details

This is a hybrid of the multitype Strauss process (see MultiStrauss) and the hard core process
(case γ = 0 of the Strauss process). A pair of points of types i and j must not lie closer than hij
units apart; if the pair lies more than hij and less than rij units apart, it contributes a factor γij to
the probability density.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the MultiStraussHard interaction is applied, when the user calls

266 MultiStraussHard

ppm. However, the user should be confident that the ordering of types in the dataset corresponds to
the ordering of rows and columns in the matrices iradii and hradii.

The matrices iradii and hradii must be symmetric, with entries which are either positive numbers
or NA. A value of NA indicates that no interaction term should be included for this combination of
types.

Note that only the interaction radii and hardcore radii are specified in MultiStraussHard. The
canonical parameters log(βj) and log(γij) are estimated by ppm(), not fixed in MultiStraussHard().

Value

An object of class "interact" describing the interpoint interaction structure of the multitype/hard
core Strauss process with interaction radii iradii[i, j] and hard core radii hradii[i, j].

Warnings

In order that ppm can fit the multitype/hard core Strauss model correctly to a point pattern X, this
pattern must be marked, with markformat equal to vector and the mark vector marks(X) must be
a factor. If the argument types is specified it is interpreted as a set of factor levels and this set must
equal levels(marks(X)).

Changed Syntax

Before spatstat version 1.37-0, the syntax of this function was different: MultiStraussHard(types=NULL,
iradii, hradii). The new code attempts to handle the old syntax as well.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

ppm, pairwise.family, ppm.object, MultiStrauss, MultiHard, Strauss

Examples

r <- matrix(3, nrow=2,ncol=2)
h <- matrix(c(1,2,2,1), nrow=2,ncol=2)
MultiStraussHard(r,h)
prints a sensible description of itself
r <- 0.04 * matrix(c(1,2,2,1), nrow=2,ncol=2)
h <- 0.02 * matrix(c(1,NA,NA,1), nrow=2,ncol=2)
X <- amacrine

fit <- ppm(X ~1, MultiStraussHard(r,h))
fit stationary multitype hardcore Strauss process to `amacrine'

npfun 267

npfun Dummy Function Returns Number of Points

Description

Returns a summary function which is constant with value equal to the number of points in the point
pattern.

Usage

npfun(X, ..., r)

Arguments

X Point pattern.

... Ignored.

r Vector of values of the distance argument r.

Details

This function is normally not called by the user. Instead it is passed as an argument to the function
psst.

Value

Object of class "fv" representing a constant function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

See Also

psst

Examples

fit0 <- ppm(cells, ~1, nd=10)
v <- psst(fit0, npfun)

268 objsurf

objsurf Objective Function Surface

Description

For a model that was fitted by optimisation, compute the values of the objective function in a
neighbourhood of the optimal value.

Usage

objsurf(x, ...)

S3 method for class 'dppm'
objsurf(x, ..., ngrid = 32, xlim=NULL, ylim=NULL,

enclose=FALSE,
ratio = 1.5, verbose = TRUE)

S3 method for class 'kppm'
objsurf(x, ..., ngrid = 32, xlim=NULL, ylim=NULL,

enclose=FALSE,
ratio = 1.5, verbose = TRUE)

S3 method for class 'minconfit'
objsurf(x, ..., ngrid = 32, xlim=NULL, ylim=NULL,

ratio = 1.5, verbose = TRUE)

Arguments

x Some kind of model that was fitted by finding the optimal value of an objective
function. An object of class "dppm", "kppm" or "minconfit".

... Extra arguments are usually ignored.

ngrid Number of grid points to evaluate along each axis. Either a single integer, or a
pair of integers. For example ngrid=32 would mean a 32 * 32 grid.

xlim, ylim Optional. Numeric vectors of length 2, specifying the limits for the two param-
eters to be considered.

enclose Logical value specifying whether the default values of xlim and ylim should
enclose the history of all function evaluations. See Details.

ratio Number greater than 1 determining the default ranges of parameter values. See
Details.

verbose Logical value indicating whether to print progress reports.

Details

The object x should be some kind of model that was fitted by maximising or minimising the value
of an objective function. The objective function will be evaluated on a grid of values of the model
parameters.

objsurf 269

Currently the following types of objects are accepted:

• an object of class "dppm" representing a determinantal point process. See dppm.

• an object of class "kppm" representing a cluster point process or Cox point process. See kppm.

• an object of class "minconfit" representing a minimum-contrast fit between a summary func-
tion and its theoretical counterpart. See mincontrast.

The result is an object of class "objsurf" which can be printed and plotted: see methods.objsurf.

The range of parameter values to be considered is determined by xlim and ylim. The default values
of xlim and ylim are chosen as follows.

• if enclose=FALSE (the default), the default values of xlim and ylim are the ranges from
opt/ratio to opt * ratio where opt is the optimal parameter value on the surface.

• If enclose=TRUE, and if x contains a trajectory (history of function evaluations), then xlim
and ylim will be the ranges of parameter values examined in the trajectory.

Value

An object of class "objsurf" which can be printed and plotted. Essentially a list containing entries
x, y, z giving the parameter values and objective function values.

There are methods for plot, print, summary, image, contour and persp.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

See Also

methods.objsurf, kppm, mincontrast

Examples

fit <- kppm(redwood ~ 1, "Thomas")
os <- objsurf(fit)

if(interactive()) {
plot(os)
contour(os, add=TRUE)
persp(os)

}

270 Ops.msr

Ops.msr Arithmetic Operations on Measures

Description

These group generic methods for the class "msr" allow the arithmetic operators +, -, * and / to be
applied directly to measures.

Usage

S3 methods for group generics have prototypes:
Ops(e1, e2)

Arguments

e1, e2 objects of class "msr".

Details

Arithmetic operators on a measure A are only defined in some cases. The arithmetic operator is
effectively applied to the value of A(W) for every spatial domain W. If the result is a measure, then
this operation is valid.

If A is a measure (object of class "msr") then the operations -A and +A are defined.

If A and B are measures with the same dimension (i.e. both are scalar-valued, or both are k-
dimensional vector-valued) then A + B and A - B are defined.

If A is a measure and z is a numeric value, then A * z and A / z are defined, and z * A is defined.

Value

Another measure (object of class "msr").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

with.msr

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")
rp

Ord 271

-rp
2 * rp
rp /2

rp - rp

rr <- residuals(fit, type="raw")
rp - rr

Ord Generic Ord Interaction model

Description

Creates an instance of an Ord-type interaction point process model which can then be fitted to point
pattern data.

Usage

Ord(pot, name)

Arguments

pot An S language function giving the user-supplied interaction potential.

name Character string.

Details

Ord’s point process model (Ord, 1977) is a Gibbs point process of infinite order. Each point xi in
the point pattern x contributes a factor g(ai) where ai = a(xi, x) is the area of the tile associated
with xi in the Dirichlet tessellation of x.

Ord (1977) proposed fitting this model to forestry data when g(a) has a simple “threshold” form.
That model is implemented in our function OrdThresh. The present function Ord implements the
case of a completely general Ord potential g(a) specified as an S language function pot.

This is experimental.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

272 ord.family

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ord, J.K. (1977) Contribution to the discussion of Ripley (1977).

Ord, J.K. (1978) How many trees in a forest? Mathematical Scientist 3, 23–33.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

See Also

ppm, ppm.object, OrdThresh

ord.family Ord Interaction Process Family

Description

An object describing the family of all Ord interaction point processes

Details

Advanced Use Only!
This structure would not normally be touched by the user. It describes the family of point process
models introduced by Ord (1977).

If you need to create a specific Ord-type model for use in analysis, use the function OrdThresh or
Ord.

Value

Object of class "isf", see isf.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ord, J.K. (1977) Contribution to the discussion of Ripley (1977).

Ord, J.K. (1978) How many trees in a forest? Mathematical Scientist 3, 23–33.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

OrdThresh 273

See Also

pairwise.family, pairsat.family, Ord, OrdThresh

OrdThresh Ord’s Interaction model

Description

Creates an instance of Ord’s point process model which can then be fitted to point pattern data.

Usage

OrdThresh(r)

Arguments

r Positive number giving the threshold value for Ord’s model.

Details

Ord’s point process model (Ord, 1977) is a Gibbs point process of infinite order. Each point xi in the
point pattern x contributes a factor g(ai) where ai = a(xi, x) is the area of the tile associated with
xi in the Dirichlet tessellation of x. The function g is simply g(a) = 1 if a ≥ r and g(a) = γ < 1
if a < r, where r is called the threshold value.

This function creates an instance of Ord’s model with a given value of r. It can then be fitted to
point process data using ppm.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ord, J.K. (1977) Contribution to the discussion of Ripley (1977).

Ord, J.K. (1978) How many trees in a forest? Mathematical Scientist 3, 23–33.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

See Also

ppm, ppm.object

274 PairPiece

PairPiece The Piecewise Constant Pairwise Interaction Point Process Model

Description

Creates an instance of a pairwise interaction point process model with piecewise constant potential
function. The model can then be fitted to point pattern data.

Usage

PairPiece(r)

Arguments

r vector of jump points for the potential function

Details

A pairwise interaction point process in a bounded region is a stochastic point process with proba-
bility density of the form

f(x1, . . . , xn) = α
∏
i

b(xi)
∏
i<j

h(xi, xj)

where x1, . . . , xn represent the points of the pattern. The first product on the right hand side is over
all points of the pattern; the second product is over all unordered pairs of points of the pattern.

Thus each point xi of the pattern contributes a factor b(xi) to the probability density, and each pair
of points xi, xj contributes a factor h(xi, xj) to the density.

The pairwise interaction term h(u, v) is called piecewise constant if it depends only on the distance
between u and v, say h(u, v) = H(||u − v||), and H is a piecewise constant function (a function
which is constant except for jumps at a finite number of places). The use of piecewise constant
interaction terms was first suggested by Takacs (1986).

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the piecewise constant pairwise interaction is yielded by the function
PairPiece(). See the examples below.

The entries of r must be strictly increasing, positive numbers. They are interpreted as the points of
discontinuity of H . It is assumed that H(s) = 1 for all s > rmax where rmax is the maximum
value in r. Thus the model has as many regular parameters (see ppm) as there are entries in r. The
i-th regular parameter θi is the logarithm of the value of the interaction function H on the interval
[ri−1, ri).

If r is a single number, this model is similar to the Strauss process, see Strauss. The difference
is that in PairPiece the interaction function is continuous on the right, while in Strauss it is
continuous on the left.

The analogue of this model for multitype point processes has not yet been implemented.

pairsat.family 275

Value

An object of class "interact" describing the interpoint interaction structure of a point process.
The process is a pairwise interaction process, whose interaction potential is piecewise constant,
with jumps at the distances given in the vector r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Takacs, R. (1986) Estimator for the pair potential of a Gibbsian point process. Statistics 17, 429–
433.

See Also

ppm, pairwise.family, ppm.object, Strauss rmh.ppm

Examples

PairPiece(c(0.1,0.2))
prints a sensible description of itself

ppm(cells ~1, PairPiece(r = c(0.05, 0.1, 0.2)))
fit a stationary piecewise constant pairwise interaction process

ppm(cells ~polynom(x,y,3), PairPiece(c(0.05, 0.1)))
nonstationary process with log-cubic polynomial trend

pairsat.family Saturated Pairwise Interaction Point Process Family

Description

An object describing the Saturated Pairwise Interaction family of point process models

Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the “saturated pairwise
interaction” family of point process models.

If you need to create a specific interaction model for use in spatial pattern analysis, use the func-
tion Saturated() or the two existing implementations of models in this family, Geyer() and
SatPiece().

276 Pairwise

Geyer (1999) introduced the “saturation process”, a modification of the Strauss process in which
the total contribution to the potential from each point (from its pairwise interaction with all other
points) is trimmed to a maximum value c. This model is implemented in the function Geyer().

The present class pairsat.family is the extension of this saturation idea to all pairwise inter-
actions. Note that the resulting models are no longer pairwise interaction processes - they have
interactions of infinite order.

pairsat.family is an object of class "isf" containing a function pairwise$eval for evaluat-
ing the sufficient statistics of any saturated pairwise interaction point process model in which the
original pair potentials take an exponential family form.

Value

Object of class "isf", see isf.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

Geyer to create the Geyer saturation process.

SatPiece to create a saturated process with piecewise constant pair potential.

Saturated to create a more general saturation model.

Other families: inforder.family, ord.family, pairwise.family.

Pairwise Generic Pairwise Interaction model

Description

Creates an instance of a pairwise interaction point process model which can then be fitted to point
pattern data.

Usage

Pairwise(pot, name, par, parnames, printfun)

Pairwise 277

Arguments

pot An R language function giving the user-supplied pairwise interaction potential.

name Character string.

par List of numerical values for irregular parameters

parnames Vector of names of irregular parameters

printfun Do not specify this argument: for internal use only.

Details

This code constructs a member of the pairwise interaction family pairwise.family with arbitrary
pairwise interaction potential given by the user.

Each pair of points in the point pattern contributes a factor h(d) to the probability density, where d
is the distance between the two points. The factor term h(d) is

h(d) = exp(−θpot(d))

provided pot(d) is finite, where θ is the coefficient vector in the model.

The function pot must take as its first argument a matrix of interpoint distances, and evaluate the
potential for each of these distances. The result must be either a matrix with the same dimensions as
its input, or an array with its first two dimensions the same as its input (the latter case corresponds
to a vector-valued potential).

If irregular parameters are present, then the second argument to pot should be a vector of the same
type as par giving those parameter values.

The values returned by pot may be finite numeric values, or -Inf indicating a hard core (that is,
the corresponding interpoint distance is forbidden). We define h(d) = 0 if pot(d) = −∞. Thus, a
potential value of minus infinity is always interpreted as corresponding to h(d) = 0, regardless of
the sign and magnitude of θ.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

ppm, pairwise.family, ppm.object

Examples

#This is the same as StraussHard(r=0.7,h=0.05)
strpot <- function(d,par) {

r <- par$r
h <- par$h
value <- (d <= r)

278 pairwise.family

value[d < h] <- -Inf
value

}
mySH <- Pairwise(strpot, "StraussHard process", list(r=0.7,h=0.05),

c("interaction distance r", "hard core distance h"))
ppm(cells ~ 1, mySH, correction="isotropic")

Fiksel (1984) double exponential interaction
see Stoyan, Kendall, Mecke 1987 p 161

fikspot <- function(d, par) {
r <- par$r
h <- par$h
zeta <- par$zeta
value <- exp(-zeta * d)
value[d < h] <- -Inf
value[d > r] <- 0
value

}
Fiksel <- Pairwise(fikspot, "Fiksel double exponential process",

list(r=3.5, h=1, zeta=1),
c("interaction distance r",

"hard core distance h",
"exponential coefficient zeta"))

fit <- ppm(unmark(spruces) ~1, Fiksel, rbord=3.5)
fit
plot(fitin(fit), xlim=c(0,4))
coef(fit)
corresponding values obtained by Fiksel (1984) were -1.9 and -6.0

pairwise.family Pairwise Interaction Process Family

Description

An object describing the family of all pairwise interaction Gibbs point processes.

Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the pairwise interaction
family of point process models.

If you need to create a specific pairwise interaction model for use in modelling, use the function
Pairwise or one of the existing functions listed below.

Anyway, pairwise.family is an object of class "isf" containing a function pairwise.family$eval
for evaluating the sufficient statistics of any pairwise interaction point process model taking an ex-
ponential family form.

palmdiagnose 279

Value

Object of class "isf", see isf.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

Other families: pairsat.family, ord.family, inforder.family.

Pairwise interactions: Poisson, Pairwise, PairPiece, Fiksel, Hardcore, LennardJones, MultiHard,
MultiStrauss, MultiStraussHard, Strauss, StraussHard, Softcore.

Other interactions: AreaInter, Geyer, Saturated, Ord, OrdThresh.

palmdiagnose Diagnostic based on Palm Intensity

Description

Given a fitted cluster process or Cox process model, calculate a diagnostic which compares non-
parametric and parametric estimates of the Palm intensity.

Usage

palmdiagnose(object, ..., breaks = 30, trim = 30, rmax=Inf)

Arguments

object Fitted model (object of class "kppm") or a list of fitted models.

... Optional. Additional arguments which are fitted models of class "kppm".

breaks Optional argument passed to cut.default determining the breakpoints of dis-
tance values for the nonparametric estimate. Either an integer specifying the
number of breakpoints, or a numeric vector of distance values to be used as the
breakpoints.

trim Optional. Maximum value of the translation edge correction weight.

rmax Optional. Maximum interpoint distance r that should be considered. See De-
tails.

280 palmdiagnose

Details

This function computes the diagnostic proposed by Tanaka, Ogata and Stoyan (2008, Section 2.3)
for assessing goodness-of-fit of a Neyman-Scott cluster process model to a point pattern dataset.

The fitted model object should be an object of class "kppm" representing a Neyman-Scott cluster
process model or a Cox process model. In the current implementation, the model must be stationary.

The code computes parametric and non-parametric estimates of the Palm intensity λ0(r), loosely
speaking, the intensity of the point process given that there is a point at the origin. The paramet-
ric estimate is obtained from the fitted model by substituting the fitted parameter estimates into
expressions for the pair correlation and the intensity.

The non-parametric estimate is obtained by considering all pairs of data points, dividing the range
of interpoint distances into several equally-spaced bands (determined by the argument breaks),
counting the number of pairs of points whose interpoint distances fall in each band, and numerically
adjusting for edge effects. Tanaka, Ogata and Stoyan (2008) used the periodic (toroidal) edge
correction; our code uses the translation edge correction so that the method can be applied to data
in any window.

The result is a function value table (object of class "fv") containing the nonparametric and para-
metric estimates of the Palm intensity. The result also belongs to the class "palmdiag" which has a
method for plot. The default behaviour of plot.palmdiag is to plot the model fit as a curve, and
to display the nonparametric estimates as dots; this is the plot style proposed by Tanaka, Ogata and
Stoyan (2008). Alternative display styles are also supported by plot.palmdiag.

For computational efficiency, the argument rmax specifies the maximum value of interpoint distance
r for which estimates of λ0(r) shall be computed. The default rmax = Inf implies there is no
constraint on interpoint distance, and the resulting function object contains estimates of λ0(r) up to
the maximum distance that would have been observable in the window containing the original point
pattern data.

If there are additional arguments ... which are fitted models of class "kppm", or if object is a list
of fitted models of class "kppm", then the parametric estimates for each of the fitted models will be
included in the resulting function object. If names are attached to these fitted models, the names
will be used in the resulting function object.

Value

Function value table (object of class "fv") containing the nonparametric and parametric estimates
of the Palm intensity. Also belongs to the class "palmdiag" which has a plot method.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Tanaka, U., Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for Neyman-
Scott Point Processes. Biometrical Journal 50, 1, 43–57.

See Also

plot.palmdiag

panel.contour 281

Examples

fitK <- kppm(redwood)
R <- palmdiagnose(fitK)
plot(R)

fitg <- kppm(redwood, statistic="pcf")
R2 <- palmdiagnose(A=fitK, B=fitg)
plot(R2)

panel.contour Panel Plots using Colour Image or Contour Lines

Description

These functions can be passed to pairs or coplot to determine what kind of plotting is done in
each panel of a multi-panel graphical display.

Usage

panel.contour(x, y, ..., sigma = NULL)

panel.image(x, y, ..., sigma = NULL)

panel.histogram(x, ...)

Arguments

x, y Coordinates of points in a scatterplot.

... Extra graphics arguments, passed to contour.im, plot.im or rect, respec-
tively, to control the appearance of the panel.

sigma Bandwidth of kernel smoother, on a scale where x and y range between 0 and 1.

Details

These functions can serve as one of the arguments panel, lower.panel, upper.panel, diag.panel
passed to graphics commands like pairs or coplot, to determine what kind of plotting is done in
each panel of a multi-panel graphical display. In particular they work with pairs.im.

The functions panel.contour and panel.contour are suitable for the off-diagonal plots which
involve two datasets x and y. They first rescale x and y to the unit square, then apply kernel
smoothing with bandwidth sigma using density.ppp. Then panel.contour draws a contour plot
while panel.image draws a colour image.

The function panel.histogram is suitable for the diagonal plots which involve a single dataset x.
It displays a histogram of the data.

Value

Null.

282 panysib

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pairs.im, pairs.default, panel.smooth

Examples

pairs(bei.extra,
panel = panel.contour,
diag.panel = panel.histogram)

with(bei.extra,
pairs(grad, elev,

panel = panel.image,
diag.panel = panel.histogram))

pairs(marks(finpines), panel=panel.contour, diag.panel=panel.histogram)

panysib Probability that a Point Has Any Siblings

Description

Given a cluster process model, calculate the probability that a point of the process has any siblings.

Usage

panysib(object)

Arguments

object Fitted cluster process model (object of class "kppm").

Details

In a Poisson cluster process, two points are called siblings if they belong to the same cluster, that is,
if they had the same parent point. This function computes the probability that a given random point
has any siblings.

If object is a stationary point process, the result is a single number, which is the probability that
a typical point of the process has any siblings. If this number is small, then the process is approx-
imately a homogeneous Poisson process (complete spatial randomness). The converse is not true
(Baddeley et al, 2022).

Otherwise, the result is a pixel image, in which the value at any location u is the conditional prob-
ability, given there is a point of the process at u, that this point has any siblings. If the pixel values
are all small, then the process is approximately an inhomogeneous Poisson process.

This concept was proposed by Baddeley et al (2022).

parameters 283

Value

A single number (if object is a stationary point process) or a pixel image (otherwise).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Davies, T.M., Hazelton, M.L., Rakshit, S. and Turner, R. (2022) Fundamental prob-
lems in fitting spatial cluster process models. Spatial Statistics 52, 100709. DOI: 10.1016/j.spasta.2022.100709

See Also

psib

Examples

fit <- kppm(redwood ~ polynom(x,y,2))
plot(panysib(fit))

parameters Extract Model Parameters in Understandable Form

Description

Given a fitted model of some kind, this function extracts all the parameters needed to specify the
model, and returns them as a list.

Usage

parameters(model, ...)

S3 method for class 'dppm'
parameters(model, ...)

S3 method for class 'kppm'
parameters(model, ...)

S3 method for class 'slrm'
parameters(model, ...)

S3 method for class 'ppm'
parameters(model, ...)

S3 method for class 'profilepl'
parameters(model, ...)

284 parameters

S3 method for class 'fii'
parameters(model, ...)

S3 method for class 'interact'
parameters(model, ...)

Arguments

model A fitted model of some kind.

... Arguments passed to methods.

Details

The argument model should be a fitted model of some kind. This function extracts all the parameters
that would be needed to specify the model, and returns them as a list.

The function parameters is generic, with methods for class "ppm", "kppm", "dppm" and "profilepl"
and other classes.

Value

A named list, whose format depends on the fitted model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

coef

Examples

parameters(Strauss(0.1))
fit1 <- ppm(cells ~ x, Strauss(0.1))
parameters(fit1)
fit2 <- kppm(redwood ~ x, "Thomas")
parameters(fit2)

parres 285

parres Partial Residuals for Point Process Model

Description

Computes the smoothed partial residuals, a diagnostic for transformation of a covariate in a Poisson
point process model.

Usage

parres(model, covariate, ...,
smooth.effect=FALSE, subregion=NULL,
bw = "nrd0", adjust=1, from = NULL, to = NULL, n = 512,
bw.input = c("points", "quad"), bw.restrict=FALSE, covname)

Arguments

model Fitted point process model (object of class "ppm").
covariate The covariate of interest. Either a character string matching the name of one of

the canonical covariates in the model, or one of the names "x" or "y" referring
to the Cartesian coordinates, or one of the names of the covariates given when
model was fitted, or a pixel image (object of class "im") or function(x,y)
supplying the values of a covariate at any location. If the model depends on
only one covariate, then this covariate is the default; otherwise a covariate must
be specified.

smooth.effect Logical. Determines the choice of algorithm. See Details.
subregion Optional. A window (object of class "owin") specifying a subset of the spatial

domain of the data. The calculation will be confined to the data in this subregion.
bw Smoothing bandwidth or bandwidth rule (passed to density.default).
adjust Smoothing bandwidth adjustment factor (passed to density.default).
n, from, to Arguments passed to density.default to control the number and range of val-

ues at which the function will be estimated.
... Additional arguments passed to density.default.
bw.input Character string specifying the input data used for automatic bandwidth selec-

tion.
bw.restrict Logical value, specifying whether bandwidth selection is performed using data

from the entire spatial domain or from the subregion.
covname Optional. Character string to use as the name of the covariate.

Details

This command computes the smoothed partial residual diagnostic (Baddeley, Chang, Song and
Turner, 2012) for the transformation of a covariate in a Poisson point process model.

The argument model must be a fitted Poisson point process model.

The diagnostic works in two different ways:

286 parres

Canonical covariate: The argument covariate may be a character string which is the name of
one of the canonical covariates in the model. The canonical covariates are the functions Zj

that appear in the expression for the Poisson point process intensity

λ(u) = exp(β1Z1(u) + . . .+ βpZp(u))

at spatial location u. Type names(coef(model)) to see the names of the canonical covariates
in model. If the selected covariate is Zj , then the diagnostic plot concerns the model term
βjZj(u). The plot shows a smooth estimate of a function h(z) that should replace this linear
term, that is, βjZj(u) should be replaced by h(Zj(u)). The linear function is also plotted as
a dotted line.

New covariate: If the argument covariate is a pixel image (object of class "im") or a function(x,y),
it is assumed to provide the values of a covariate that is not present in the model. Alternatively
covariate can be the name of a covariate that was supplied when the model was fitted (i.e.
in the call to ppm) but which does not feature in the model formula. In either case we speak
of a new covariate Z(u). If the fitted model intensity is λ(u) then we consider modifying this
to λ(u) exp(h(Z(u))) where h(z) is some function. The diagnostic plot shows an estimate
of h(z). Warning: in this case the diagnostic is not theoretically justified. This option is
provided for research purposes.

Alternatively covariate can be one of the character strings "x" or "y" signifying the Cartesian
coordinates. The behaviour here depends on whether the coordinate was one of the canonical co-
variates in the model.

If there is more than one canonical covariate in the model that depends on the specified covariate,
then the covariate effect is computed using all these canonical covariates. For example in a log-
quadratic model which includes the terms x and I(x^2), the quadratic effect involving both these
terms will be computed.

There are two choices for the algorithm. If smooth.effect=TRUE, the fitted covariate effect (ac-
cording to model) is added to the point process residuals, then smoothing is applied to these values.
If smooth.effect=FALSE, the point process residuals are smoothed first, and then the fitted covari-
ate effect is added to the result.

The smoothing bandwidth is controlled by the arguments bw, adjust, bw.input and bw.restrict.
If bw is a numeric value, then the bandwidth is taken to be adjust * bw. If bw is a string representing
a bandwidth selection rule (recognised by density.default) then the bandwidth is selected by this
rule.

The data used for automatic bandwidth selection are specified by bw.input and bw.restrict. If
bw.input="points" (the default) then bandwidth selection is based on the covariate values at the
points of the original point pattern dataset to which the model was fitted. If bw.input="quad" then
bandwidth selection is based on the covariate values at every quadrature point used to fit the model.
If bw.restrict=TRUE then the bandwidth selection is performed using only data from inside the
subregion.

Value

A function value table (object of class "fv") containing the values of the smoothed partial residual,
the estimated variance, and the fitted effect of the covariate. Also belongs to the class "parres"
which has methods for print and plot.

Penttinen 287

Slow computation

In a large dataset, computation can be very slow if the default settings are used, because the smooth-
ing bandwidth is selected automatically. To avoid this, specify a numerical value for the bandwidth
bw. One strategy is to use a coarser subset of the data to select bw automatically. The selected
bandwidth can be read off the print output for parres.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>,
Ya-Mei Chang and Yong Song.

References

Baddeley, A., Chang, Y.-M., Song, Y. and Turner, R. (2013) Residual diagnostics for covariate
effects in spatial point process models. Journal of Computational and Graphical Statistics, 22,
886–905.

See Also

addvar, rhohat, rho2hat

Examples

X <- rpoispp(function(x,y){exp(3+x+2*x^2)})
model <- ppm(X ~x+y)
tra <- parres(model, "x")
plot(tra)
tra
plot(parres(model, "x", subregion=square(0.5)))
model2 <- ppm(X ~x+I(x^2)+y)
plot(parres(model2, "x"))
Z <- setcov(owin())
plot(parres(model2, Z))

#' when the model involves only one covariate
modelb <- ppm(bei ~ elev + I(elev^2), data=bei.extra)
plot(parres(modelb))

Penttinen Penttinen Interaction

Description

Creates an instance of the Penttinen pairwise interaction point process model, which can then be
fitted to point pattern data.

Usage

Penttinen(r)

288 Penttinen

Arguments

r circle radius

Details

Penttinen (1984, Example 2.1, page 18), citing Cormack (1979), described the pairwise interaction
point process with interaction factor

h(d) = eθA(d) = γA(d)

between each pair of points separated by a distance d. Here A(d) is the area of intersection
between two discs of radius r separated by a distance d, normalised so that A(0) = 1.

The scale of interaction is controlled by the disc radius r: two points interact if they are closer than
2r apart. The strength of interaction is controlled by the canonical parameter θ, which must be less
than or equal to zero, or equivalently by the parameter γ = eθ, which must lie between 0 and 1.

The potential is inhibitory, i.e.\ this model is only appropriate for regular point patterns. For γ = 0
the model is a hard core process with hard core diameter 2r. For γ = 1 the model is a Poisson
process.

The irregular parameter r must be given in the call to Penttinen, while the regular parameter θ
will be estimated.

This model can be considered as a pairwise approximation to the area-interaction model AreaInter.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

References

Cormack, R.M. (1979) Spatial aspects of competition between individuals. Pages 151–212 in Spa-
tial and Temporal Analysis in Ecology, eds. R.M. Cormack and J.K. Ord, International Co-operative
Publishing House, Fairland, MD, USA.

Penttinen, A. (1984) Modelling Interaction in Spatial Point Patterns: Parameter Estimation by the
Maximum Likelihood Method. Jyväskylä Studies in Computer Science, Economics and Statistics 7,
University of Jyväskylä, Finland.

See Also

ppm, ppm.object, Pairwise, AreaInter.

Examples

fit <- ppm(cells ~ 1, Penttinen(0.07))
fit
reach(fit) # interaction range is circle DIAMETER

plot.dppm 289

plot.dppm Plot a fitted determinantal point process

Description

Plots a fitted determinantal point process model, displaying the fitted intensity and the fitted sum-
mary function.

Usage

S3 method for class 'dppm'
plot(x, ..., what=c("intensity", "statistic"))

Arguments

x Fitted determinantal point process model. An object of class "dppm".

... Arguments passed to plot.ppm and plot.fv to control the plot.

what Character vector determining what will be plotted.

Details

This is a method for the generic function plot for the class "dppm" of fitted determinantal point
process models.

The argument x should be a determinantal point process model (object of class "dppm") obtained
using the function dppm.

The choice of plots (and the order in which they are displayed) is controlled by the argument what.
The options (partially matched) are "intensity" and "statistic".

This command is capable of producing two different plots:

what="intensity" specifies the fitted intensity of the model, which is plotted using plot.ppm. By
default this plot is not produced for stationary models.

what="statistic" specifies the empirical and fitted summary statistics, which are plotted using
plot.fv. This is only meaningful if the model has been fitted using the Method of Minimum
Contrast, and it is turned off otherwise.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

dppm, plot.ppm, plot.fv.

290 plot.influence.ppm

Examples

fit <- dppm(swedishpines ~ x + y, dppGauss, method="c")
plot(fit)

plot.influence.ppm Plot Influence Measure

Description

Plots an influence measure that has been computed by influence.ppm.

Usage

S3 method for class 'influence.ppm'
plot(x, ..., multiplot=TRUE)

Arguments

x Influence measure (object of class "influence.ppm") computed by influence.ppm.

... Arguments passed to plot.ppp to control the plotting.

multiplot Logical value indicating whether it is permissible to plot more than one panel.
This happens if the original point process model is multitype.

Details

This is the plot method for objects of class "influence.ppm". These objects are computed by the
command influence.ppm.

For a point process model fitted by maximum likelihood or maximum pseudolikelihood (the de-
fault), influence values are associated with the data points. The display shows circles centred at the
data points with radii proportional to the influence values. If the original data were a multitype point
pattern, then if multiplot=TRUE (the default), there is one such display for each possible type of
point, while if multiplot=FALSE there is a single plot combining all data points regardless of type.

For a model fitted by logistic composite likelihood (method="logi" in ppm) influence values are
associated with the data points and also with the dummy points used to fit the model. The display
consist of two panels, for the data points and dummy points respectively, showing circles with radii
proportional to the influence values. If the original data were a multitype point pattern, then if
multiplot=TRUE (the default), there is one pair of panels for each possible type of point, while if
multiplot=FALSE there is a single plot combining all data and dummy points regardless of type.

Use the argument clipwin to restrict the plot to a subset of the full data.

Value

None.

plot.kppm 291

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. and Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial
point process models. Scandinavian Journal of Statistics 40, 86–104.

See Also

influence.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
plot(influence(fit))

plot.kppm Plot a fitted cluster point process

Description

Plots a fitted cluster point process model, displaying the fitted intensity and the fitted K-function.

Usage

S3 method for class 'kppm'
plot(x, ...,

what=c("intensity", "statistic", "cluster"),
pause=interactive(),
xname)

Arguments

x Fitted cluster point process model. An object of class "kppm".

... Arguments passed to plot.ppm and plot.fv to control the plot.

what Character vector determining what will be plotted.

pause Logical value specifying whether to pause between plots.

xname Optional. Character string. The name of the object x for use in the title of the
plot.

292 plot.kppm

Details

This is a method for the generic function plot for the class "kppm" of fitted cluster point process
models.

The argument x should be a cluster point process model (object of class "kppm") obtained using the
function kppm.

The choice of plots (and the order in which they are displayed) is controlled by the argument what.
The options (partially matched) are "intensity", "statistic" and "cluster".

This command is capable of producing three different plots:

what="intensity" specifies the fitted intensity of the model, which is plotted using plot.ppm. By
default this plot is not produced for stationary models.

what="statistic" specifies the empirical and fitted summary statistics, which are plotted using
plot.fv. This is only meaningful if the model has been fitted using the Method of Minimum
Contrast, and it is turned off otherwise.

what="cluster" specifies a fitted cluster, which is computed by clusterfield and plotted by
plot.im. It is only meaningful for Poisson cluster (incl. Neyman-Scott) processes, and it is
turned off for log-Gaussian Cox processes (LGCP). If the model is stationary (and non-LGCP)
this option is turned on by default and shows a fitted cluster positioned at the centroid of the
observation window. For non-stationary (and non-LGCP) models this option is only invoked
if explicitly told so, and in that case an additional argument locations (see clusterfield)
must be given to specify where to position the parent point(s) .

Alternatively what="all" selects all available options.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

kppm, plot.ppm, plot.fv.

Examples

fit <- kppm(redwood~1, "Thomas")
plot(fit)

plot.leverage.ppm 293

plot.leverage.ppm Plot Leverage Function

Description

Generate a pixel image plot, or a contour plot, or a perspective plot, of a leverage function that has
been computed by leverage.ppm.

Usage

S3 method for class 'leverage.ppm'
plot(x, ...,

what=c("smooth", "nearest", "exact"),
showcut=TRUE,
args.cut=list(drawlabels=FALSE),
multiplot=TRUE)

S3 method for class 'leverage.ppm'
contour(x, ...,

what=c("smooth", "nearest"),
showcut=TRUE,
args.cut=list(col=3, lwd=3, drawlabels=FALSE),
multiplot=TRUE)

S3 method for class 'leverage.ppm'
persp(x, ...,

what=c("smooth", "nearest"),
main, zlab="leverage")

Arguments

x Leverage function (object of class "leverage.ppm") computed by leverage.ppm.

... Arguments passed to plot.im or contour.im or persp.im controlling the plot.

what Character string (partially matched) specifying the values to be plotted. See
Details.

showcut Logical. If TRUE, a contour line is plotted at the level equal to the theoretical
mean of the leverage.

args.cut Optional list of arguments passed to contour.default to control the plotting
of the contour line for the mean leverage.

multiplot Logical value indicating whether it is permissible to display several plot panels.

main Optional main title. A character string or character vector.

zlab Label for the z axis. A character string.

294 plot.leverage.ppm

Details

These functions are the plot, contour and persp methods for objects of class "leverage.ppm".
Such objects are computed by the command leverage.ppm.

The plot method displays the leverage function as a colour pixel image using plot.im, and draws a
single contour line at the mean leverage value using contour.default. Use the argument clipwin
to restrict the plot to a subset of the full data.

The contour method displays the leverage function as a contour plot, and also draws a single
contour line at the mean leverage value, using contour.im.

The persp method displays the leverage function as a surface in perspective view, using persp.im.

Since the exact values of leverage are computed only at a finite set of quadrature locations, there
are several options for these plots:

what="smooth": (the default) an image plot showing a smooth function, obtained by applying
kernel smoothing to the exact leverage values;

what="nearest": an image plot showing a piecewise-constant function, obtained by taking the
exact leverage value at the nearest quadrature point;

what="exact": a symbol plot showing the exact values of leverage as circles, centred at the quadra-
ture points, with diameters proportional to leverage.

The pixel images are already contained in the object x and were computed by leverage.ppm; the
resolution of these images is controlled by arguments to leverage.ppm.

Value

Same as for plot.im, contour.im and persp.im respectively.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial point
process models. Scandinavian Journal of Statistics 40, 86–104.

See Also

leverage.ppm.

Examples

if(offline <- !interactive()) op <- spatstat.options(npixel=32, ndummy.min=16)

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)
lef <- leverage(fit)
plot(lef)

plot.mppm 295

contour(lef)
persp(lef)

if(offline) spatstat.options(op)

plot.mppm plot a Fitted Multiple Point Process Model

Description

Given a point process model fitted to multiple point patterns by mppm, compute spatial trend or
conditional intensity surface of the model, in a form suitable for plotting, and (optionally) plot this
surface.

Usage

S3 method for class 'mppm'
plot(x, ...,

trend=TRUE, cif=FALSE, se=FALSE,
how=c("image", "contour", "persp"),
main)

Arguments

x A point process model fitted to multiple point patterns, typically obtained from
the model-fitting algorithm mppm. An object of class "mppm".

... Arguments passed to plot.ppm or plot.anylist controlling the plot.

trend Logical value indicating whether to plot the fitted trend.

cif Logical value indicating whether to plot the fitted conditional intensity.

se Logical value indicating whether to plot the standard error of the fitted trend.

how Single character string indicating the style of plot to be performed.

main Character string for the main title of the plot.

Details

This is the plot method for the class "mppm" of point process models fitted to multiple point patterns
(see mppm).

It invokes subfits to compute the fitted model for each individual point pattern dataset, then calls
plot.ppm to plot these individual models. These individual plots are displayed using plot.anylist,
which generates either a series of separate plot frames or an array of plot panels on a single page.

Value

NULL.

296 plot.msr

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

plot.ppm, mppm, plot.anylist

Examples

Synthetic data from known model
n <- 9
H <- hyperframe(V=1:n,

U=runif(n, min=-1, max=1))
H$Z <- setcov(square(1))
H$U <- with(H, as.im(U, as.rectangle(Z)))
H$Y <- with(H, rpoispp(eval.im(exp(2+3*Z))))

fit <- mppm(Y ~Z + U + V, data=H)

plot(fit)

plot.msr Plot a Signed or Vector-Valued Measure

Description

Plot a signed measure or vector-valued measure.

Usage

S3 method for class 'msr'
plot(x, ...,

add = FALSE,
how = c("image", "contour", "imagecontour"),
main = NULL,
do.plot = TRUE,
multiplot = TRUE,
massthresh = 0,
equal.markscale = FALSE,
equal.ribbon = FALSE)

plot.msr 297

Arguments

x The signed or vector measure to be plotted. An object of class "msr" (see msr).

... Extra arguments passed to Smooth.ppp to control the interpolation of the con-
tinuous density component of x, or passed to plot.im or plot.ppp to control
the appearance of the plot.

add Logical flag; if TRUE, the graphics are added to the existing plot. If FALSE (the
default) a new plot is initialised.

how String indicating how to display the continuous density component.

main String. Main title for the plot.

do.plot Logical value determining whether to actually perform the plotting.

multiplot Logical value indicating whether it is permissible to display a plot with mul-
tiple panels (representing different components of a vector-valued measure, or
different types of points in a multitype measure.)

massthresh Threshold for plotting atoms. A single numeric value or NULL. If massthresh=0
(the default) then only atoms with nonzero mass will be plotted. If massthresh
> 0 then only atoms whose absolute mass exceeds massthresh will be plotted.
If massthresh=NULL, then all atoms of the measure will be plotted.

equal.markscale

Logical value indicating whether different panels should use the same symbol
map (to represent the masses of atoms of the measure).

equal.ribbon Logical value indicating whether different panels should use the same colour
map (to represent the density values in the diffuse component of the measure).

Details

This is the plot method for the class "msr".

The continuous density component of x is interpolated from the existing data by Smooth.ppp, and
then displayed as a colour image by plot.im.

The discrete atomic component of x is then superimposed on this image by plotting the atoms as
circles (for positive mass) or squares (for negative mass) by plot.ppp. By default, atoms with zero
mass are not plotted at all.

To smooth both the discrete and continuous components, use Smooth.msr.

Use the argument clipwin to restrict the plot to a subset of the full data.

To remove atoms with tiny masses, use the argument massthresh.

Value

(Invisible) colour map (object of class "colourmap") for the colour image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

298 plot.palmdiag

See Also

msr, Smooth.ppp, Smooth.msr, plot.im, plot.ppp

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")
rs <- residuals(fit, type="score")

plot(rp)
plot(rs)
plot(rs, how="contour")

plot.palmdiag Plot the Palm Intensity Diagnostic

Description

Plot the Palm intensity diagnostic for a fitted cluster process or Cox process model.

Usage

S3 method for class 'palmdiag'
plot(x, ...,

style = c("intervals", "dots", "bands"),
args.dots = list(pch = 16), args.intervals = list(),
xlim=NULL, main)

Arguments

x Object of class "palmdiag" produced by palmdiagnose.

... Additional arguments passed to plot.fv when the fitted curve is plotted.

style Character string specifying the style of plot for the nonparametric estimates. See
Details.

args.dots Arguments passed to points when style="dots".

args.intervals Arguments passed to segments when style="intervals".

xlim Optional range of distances plotted along the horizontal axis. A numeric vector
of length 2.

main Optional main title for plot.

plot.palmdiag 299

Details

This function plots the diagnostic proposed by Tanaka, Ogata and Stoyan (2008, Section 2.3) for
assessing goodness-of-fit of a Neyman-Scott cluster process model to a point pattern dataset. The
diagnostic is computed by the function palmdiagnose.

First the Palm intensity of the fitted model is plotted as a function of interpoint distance r using
plot.fv. Then the nonparametric estimates of the Palm intensity are plotted on the same graph as
follows:

• if style="dots", the nonparametric estimate for each band of distances is plotted as a dot,
with horizontal coordinate at the middle of the band. This is the style proposed by Tanaka et
al (2008).

• if style="intervals" (the default), each nonparametric estimate is plotted as a dot, and a
95% confidence interval is plotted as a vertical line segment, centred on the dot. The confi-
dence interval is based on the Poisson approximation.

• if style="bands", the nonparametric estimates are drawn as a continuous curve which is flat
on each band of distances. The 95% confidence intervals are drawn as grey shading.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Tanaka, U., Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for Neyman-
Scott Point Processes. Biometrical Journal 50, 1, 43–57.

See Also

palmdiagnose

Examples

fit <- kppm(redwood)
R <- palmdiagnose(fit)
plot(R, style="d")
plot(R)
plot(R, style="b")

300 plot.plotppm

plot.plotppm Plot a plotppm Object Created by plot.ppm

Description

The function plot.ppm produces objects which specify plots of fitted point process models. The
function plot.plotppm carries out the actual plotting of these objects.

Usage

S3 method for class 'plotppm'
plot(x, data = NULL, trend = TRUE, cif = TRUE,

se = TRUE, pause = interactive(),
how = c("persp", "image", "contour"),
..., pppargs)

Arguments

x An object of class plotppm produced by plot.ppm()

.

data The point pattern (an object of class ppp) to which the point process model was
fitted (by ppm).

trend Logical scalar; should the trend component of the fitted model be plotted?
cif Logical scalar; should the complete conditional intensity of the fitted model be

plotted?
se Logical scalar; should the estimated standard error of the fitted intensity be plot-

ted?
pause Logical scalar indicating whether to pause with a prompt after each plot. Set

pause=FALSE if plotting to a file.
how Character string or character vector indicating the style or styles of plots to be

performed.
... Extra arguments to the plotting functions persp, image and contour.
pppargs List of extra arguments passed to plot.ppp when displaying the original point

pattern data.

Details

If argument data is supplied then the point pattern will be superimposed on the image and contour
plots.

Sometimes a fitted model does not have a trend component, or the trend component may constitute
all of the conditional intensity (if the model is Poisson). In such cases the object x will not contain
a trend component, or will contain only a trend component. This will also be the case if one of
the arguments trend and cif was set equal to FALSE in the call to plot.ppm() which produced x.
If this is so then only the item which is present will be plotted. Explicitly setting trend=TRUE, or
cif=TRUE, respectively, will then give an error.

plot.ppm 301

Value

None.

Warning

Arguments which are passed to persp, image, and contour via the . . . argument get passed to any
of the other functions listed in the how argument, and won’t be recognized by them. This leads
to a lot of annoying but harmless warning messages. Arguments to persp may be supplied via
spatstat.options() which alleviates the warning messages in this instance.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

plot.ppm()

Examples

if(interactive()) {
m <- ppm(cells ~ 1, Strauss(0.05))
mpic <- plot(m)
Perspective plot only, with altered parameters:
plot(mpic,how="persp", theta=-30,phi=40,d=4)

All plots, with altered parameters for perspective plot:
op <- spatstat.options(par.persp=list(theta=-30,phi=40,d=4))
plot(mpic)
Revert
spatstat.options(op)
}

plot.ppm plot a Fitted Point Process Model

Description

Given a fitted point process model obtained by ppm, create spatial trend and conditional intensity
surfaces of the model, in a form suitable for plotting, and (optionally) plot these surfaces.

Usage

S3 method for class 'ppm'
plot(x, ngrid = c(40,40), superimpose = TRUE,

trend = TRUE, cif = TRUE, se = TRUE, pause = interactive(),
how=c("persp","image", "contour"), plot.it = TRUE,
locations = NULL, covariates=NULL, ...)

302 plot.ppm

Arguments

x A fitted point process model, typically obtained from the model-fitting algorithm
ppm. An object of class "ppm".

ngrid The dimensions for a grid on which to evaluate, for plotting, the spatial trend
and conditional intensity. A vector of 1 or 2 integers. If it is of length 1, ngrid
is replaced by c(ngrid,ngrid).

superimpose logical flag; if TRUE (and if plot=TRUE) the original data point pattern will be
superimposed on the plots.

trend logical flag; if TRUE, the spatial trend surface will be produced.

cif logical flag; if TRUE, the conditional intensity surface will be produced.

se logical flag; if TRUE, the estimated standard error of the spatial trend surface will
be produced.

pause logical flag indicating whether to pause with a prompt after each plot. Set
pause=FALSE if plotting to a file. (This flag is ignored if plot=FALSE).

how character string or character vector indicating the style or styles of plots to be
performed. Ignored if plot=FALSE.

plot.it logical scalar; should a plot be produced immediately?

locations If present, this determines the locations of the pixels at which predictions are
computed. It must be a binary pixel image (an object of class "owin" with type
"mask"). (Incompatible with ngrid).

covariates Values of external covariates required by the fitted model. Passed to predict.ppm.

... extra arguments to the plotting functions persp, image and contour.

Details

This is the plot method for the class "ppm" (see ppm.object for details of this class).

It invokes predict.ppm to compute the spatial trend and conditional intensity of the fitted point
process model. See predict.ppm for more explanation about spatial trend and conditional intensity.

The default action is to create a rectangular grid of points in (the bounding box of) the observation
window of the data point pattern, and evaluate the spatial trend and conditional intensity of the fitted
spatial point process model x at these locations. If the argument locations= is supplied, then the
spatial trend and conditional intensity are calculated at the grid of points specified by this argument.

The argument locations, if present, should be a binary image mask (an object of class "owin" and
type "mask"). This determines a rectangular grid of locations, or a subset of such a grid, at which
predictions will be computed. Binary image masks are conveniently created using as.mask.

The argument covariates gives the values of any spatial covariates at the prediction locations. If
the trend formula in the fitted model involves spatial covariates (other than the Cartesian coordinates
x, y) then covariates is required.

The argument covariates has the same format and interpretation as in predict.ppm. It may be
either a data frame (the number of whose rows must match the number of pixels in locations
multiplied by the number of possible marks in the point pattern), or a list of images. If argument
locations is not supplied, and covariates is supplied, then it must be a list of images.

plot.ppm 303

If the fitted model was a marked (multitype) point process, then predictions are made for each
possible mark value in turn.

If the fitted model had no spatial trend, then the default is to omit calculating this (flat) surface,
unless trend=TRUE is set explicitly.

If the fitted model was Poisson, so that there were no spatial interactions, then the conditional
intensity and spatial trend are identical, and the default is to omit the conditional intensity, unless
cif=TRUE is set explicitly.

If plot.it=TRUE then plot.plotppm() is called upon to plot the class plotppm object which is
produced. (That object is also returned, silently.)

Plots are produced successively using persp, image and contour (or only a selection of these three,
if how is given). Extra graphical parameters controlling the display may be passed directly via the
arguments ... or indirectly reset using spatstat.options.

Value

An object of class plotppm. Such objects may be plotted by plot.plotppm().

This is a list with components named trend and cif, either of which may be missing. They will be
missing if the corresponding component does not make sense for the model, or if the corresponding
argument was set equal to FALSE.

Both trend and cif are lists of images. If the model is an unmarked point process, then they are
lists of length 1, so that trend[[1]] is an image of the spatial trend and cif[[1]] is an image of
the conditional intensity.

If the model is a marked point process, then trend[[i]] is an image of the spatial trend for the
mark m[i], and cif[[1]] is an image of the conditional intensity for the mark m[i], where m is the
vector of levels of the marks.

Warnings

See warnings in predict.ppm.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

plot.plotppm, ppm, ppm.object, predict.ppm, print.ppm, persp, image, contour, plot, spatstat.options

Examples

m <- ppm(cells ~1, Strauss(0.05))
pm <- plot(m) # The object ``pm'' will be plotted as well as saved

for future plotting.
pm

304 plot.profilepl

plot.profilepl Plot Profile Likelihood

Description

Plot the profile (pseudo) likelihood against the irregular parameters, for a model that was fitted by
maximum profile (pseudo)likelihood.

Usage

S3 method for class 'profilepl'
plot(x, ..., add = FALSE, main = NULL, tag = TRUE,

coeff = NULL, xvariable = NULL,
col = 1, lty = 1, lwd = 1,
col.opt = "green", lty.opt = 3, lwd.opt = 1)

Arguments

x A point process model fitted by maximum profile (pseudo)likelihood. Object of
class "profilepl", obtained from profilepl.

... Additional plot arguments passed to plot.default and lines.

add Logical. If TRUE, the plot is drawn over the existing plot.

main Optional. Main title for the plot. A character string or character vector.

tag Logical value. If TRUE (the default), when the plot contains multiple curves
corresponding to different values of a parameter, each curve will be labelled
with the values of the irregular parameter.

coeff Optional. If this is given, it should be a character string matching the name of
one of the fitted model coefficients. This coefficient will then be plotted on the
vertical axis.

xvariable Optional. The name of the irregular parameter that should be plotted along the
horizontal axis. The default is the first irregular parameter.

col, lty, lwd Graphical parameters (colour, line type, line width) for the curves on the plot.
col.opt, lty.opt, lwd.opt

Graphical parameters for indicating the optimal parameter value.

Details

This is the plot method for the class "profilepl" of fitted point process models obtained by
maximising the profile likelihood or profile pseudolikelihood.

The default behaviour is to plot the profile likelihood or profile pseudolikelihood on the vertical
axis, against the value of the irregular parameter on the horizontal axis.

If there are several irregular parameters, then one of them is plotted on the horizontal axis, and the
plot consists of many different curves, corresponding to different values of the other parameters.

plot.profilepl 305

The parameter to be plotted on the horizontal axis is specified by the argument xvariable; the
default is to use the parameter that was listed first in the original call to profilepl.

If coeff is given, it should be the name of one of the fitted model coefficients names(coef(as.ppm(x))).
The fitted value of that coefficient is plotted on the vertical axis.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

profilepl

Examples

live <- interactive()
nr <- if(live) 20 else 3

one irregular parameter
rr <- data.frame(r=seq(0.05,0.15, length=nr))
ps <- profilepl(rr, Strauss, cells)
plot(ps) # profile pseudolikelihood
plot(ps, coeff="Interaction") # fitted interaction coefficient log(gamma)

two irregular parameters
smax <- if(live) 3 else 2
rs <- expand.grid(r=seq(0.05,0.15, length=nr), sat=1:smax)
pg <- profilepl(rs, Geyer, cells)
plot(pg) # profile pseudolikelihood against r for each value of 'sat'
plot(pg, coeff="Interaction")
plot(pg, xvariable="sat", col=ifelse(r < 0.1, "red", "green"))

306 plot.rppm

plot.rppm Plot a Recursively Partitioned Point Process Model

Description

Given a model which has been fitted to point pattern data by recursive partitioning, plot the partition
tree or the fitted intensity.

Usage

S3 method for class 'rppm'
plot(x, ..., what = c("tree", "spatial"), treeplot=NULL)

Arguments

x Fitted point process model of class "rppm" produced by the function rppm.

what Character string (partially matched) specifying whether to plot the partition tree
or the fitted intensity.

... Arguments passed to plot.rpart and text.rpart (if what="tree") or passed
to plot.im (if what="spatial") controlling the appearance of the plot.

treeplot Optional. A function to be used to plot and label the partition tree, replacing the
two functions plot.rpart and text.rpart.

Details

If what="tree" (the default), the partition tree will be plotted using plot.rpart, and labelled using
text.rpart.

If the argument treeplot is given, then plotting and labelling will be performed by treeplot
instead. A good choice is the function prp in package rpart.plot.

If what="spatial", the predicted intensity will be computed using predict.rppm, and this inten-
sity will be plotted as an image using plot.im.

Value

If what="tree", a list containing x and y coordinates of the plotted nodes of the tree. If what="spatial",
the return value of plot.im.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

rppm

plot.slrm 307

Examples

Murchison gold data
mur <- solapply(murchison, rescale, s=1000, unitname="km")
mur$dfault <- distfun(mur$faults)
#
fit <- rppm(gold ~ dfault + greenstone, data=mur)
#
opa <- par(mfrow=c(1,2))
plot(fit)
plot(fit, what="spatial")
par(opa)

plot.slrm Plot a Fitted Spatial Logistic Regression

Description

Plots a fitted Spatial Logistic Regression model.

Usage

S3 method for class 'slrm'
plot(x, ..., type = "intensity")

Arguments

x a fitted spatial logistic regression model. An object of class "slrm".

... Extra arguments passed to plot.im to control the appearance of the plot.

type Character string (partially) matching one of "probabilities", "intensity"
or "link".

Details

This is a method for plot for fitted spatial logistic regression models (objects of class "slrm",
usually obtained from the function slrm).

This function plots the result of predict.slrm.

Value

None.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

slrm, predict.slrm, plot.im

308 Poisson

Examples

X <- copper$SouthPoints
Y <- copper$SouthLines
Z <- distmap(Y)
fit <- slrm(X ~ Z)
plot(fit)
plot(fit, type="link")

Poisson Poisson Point Process Model

Description

Creates an instance of the Poisson point process model which can then be fitted to point pattern
data.

Usage

Poisson()

Details

The function ppm, which fits point process models to point pattern data, requires an argument
interaction of class "interact" describing the interpoint interaction structure of the model to be
fitted. The appropriate description of the Poisson process is provided by the value of the function
Poisson.

This works for all types of Poisson processes including multitype and nonstationary Poisson pro-
cesses.

Value

An object of class "interact" describing the interpoint interaction structure of the Poisson point
process (namely, there are no interactions).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

ppm, Strauss

polynom 309

Examples

ppm(nztrees ~1, Poisson())
fit the stationary Poisson process to 'nztrees'
no edge correction needed

lon <- longleaf

longadult <- unmark(subset(lon, marks >= 30))
ppm(longadult ~ x, Poisson())
fit the nonstationary Poisson process
with intensity lambda(x,y) = exp(a + bx)

trees marked by species
lans <- lansing

ppm(lans ~ marks, Poisson())
fit stationary marked Poisson process
with different intensity for each species

ppm(lansing ~ marks * polynom(x,y,3), Poisson())
fit nonstationary marked Poisson process
with different log-cubic trend for each species

polynom Polynomial in One or Two Variables

Description

This function is used to represent a polynomial term in a model formula. It computes the homoge-
neous terms in the polynomial of degree n in one variable x or two variables x,y.

Usage

polynom(x, ...)

Arguments

x A numerical vector.

... Either a single integer n specifying the degree of the polynomial, or two argu-
ments y,n giving another vector of data y and the degree of the polynomial.

310 ppm

Details

This function is typically used inside a model formula in order to specify the most general possible
polynomial of order n involving one numerical variable x or two numerical variables x,y.

It is equivalent to poly(, raw=TRUE).

If only one numerical vector argument x is given, the function computes the vectors x^k for k = 1,
2, ..., n. These vectors are combined into a matrix with n columns.

If two numerical vector arguments x,y are given, the function computes the vectors x^k * y^m for k
>= 0 and m >= 0 satisfying 0 < k + m <= n. These vectors are combined into a matrix with one column
for each homogeneous term.

Value

A numeric matrix, with rows corresponding to the entries of x, and columns corresponding to the
terms in the polynomial.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

poly, harmonic

Examples

x <- 1:4
y <- 10 * (0:3)
polynom(x, 3)
polynom(x, y, 3)

ppm Fit Point Process Model to Data

Description

Fits a point process model to an observed point pattern.

Usage

ppm(Q, ...)

S3 method for class 'formula'
ppm(Q, interaction=NULL, ..., data=NULL, subset)

ppm 311

Arguments

Q A formula in the R language describing the model to be fitted.

interaction An object of class "interact" describing the point process interaction struc-
ture, or a function that makes such an object, or NULL indicating that a Poisson
process (stationary or nonstationary) should be fitted.

... Arguments passed to ppm.ppp or ppm.quad to control the model-fitting process.

data Optional. The values of spatial covariates (other than the Cartesian coordinates)
required by the model. Either a data frame, or a list whose entries are images,
functions, windows, tessellations or single numbers. See Details.

subset Optional. An expression (which may involve the names of the Cartesian coordi-
nates x and y and the names of entries in data) defining a subset of the spatial
domain, to which the model-fitting should be restricted. The result of evaluating
the expression should be either a logical vector, or a window (object of class
"owin") or a logical-valued pixel image (object of class "im").

Details

This function fits a point process model to an observed point pattern. The model may include spatial
trend, interpoint interaction, and dependence on covariates.

The model fitted by ppm is either a Poisson point process (in which different points do not interact
with each other) or a Gibbs point process (in which different points typically inhibit each other).
For clustered point process models, use kppm.

The function ppm is generic, with methods for the classes formula, ppp and quad. This page
describes the method for a formula.

The first argument is a formula in the R language describing the spatial trend model to be fitted.
It has the general form pattern ~ trend where the left hand side pattern is usually the name of
a spatial point pattern (object of class "ppp") to which the model should be fitted, or an expression
which evaluates to a point pattern; and the right hand side trend is an expression specifying the
spatial trend of the model.

Systematic effects (spatial trend and/or dependence on spatial covariates) are specified by the trend
expression on the right hand side of the formula. The trend may involve the Cartesian coordinates
x, y, the marks marks, the names of entries in the argument data (if supplied), or the names of
objects that exist in the R session. The trend formula specifies the logarithm of the intensity of a
Poisson process, or in general, the logarithm of the first order potential of the Gibbs process. The
formula should not use any names beginning with .mpl as these are reserved for internal use. If the
formula is pattern~1, then the model to be fitted is stationary (or at least, its first order potential is
constant).

The symbol . in the trend expression stands for all the covariates supplied in the argument data. For
example the formula pattern ~ . indicates an additive model with a main effect for each covariate
in data.

Stochastic interactions between random points of the point process are defined by the argument
interaction. This is an object of class "interact" which is initialised in a very similar way
to the usage of family objects in glm and gam. The interaction models currently available are:
AreaInter, BadGey, Concom, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer, Hardcore,
HierHard, HierStrauss, HierStraussHard, Hybrid, LennardJones, MultiHard, MultiStrauss,

312 ppm

MultiStraussHard, OrdThresh, Ord, Pairwise, PairPiece, Penttinen, Poisson, Saturated,
SatPiece, Softcore, Strauss, StraussHard and Triplets. See the examples below. Note that it
is possible to combine several interactions using Hybrid.

If interaction is missing or NULL, then the model to be fitted has no interpoint interactions, that is,
it is a Poisson process (stationary or nonstationary according to trend). In this case the methods of
maximum pseudolikelihood and maximum logistic likelihood coincide with maximum likelihood.

The fitted point process model returned by this function can be printed (by the print method print.ppm)
to inspect the fitted parameter values. If a nonparametric spatial trend was fitted, this can be ex-
tracted using the predict method predict.ppm.

To fit a model involving spatial covariates other than the Cartesian coordinates x and y, the values
of the covariates should either be supplied in the argument data, or should be stored in objects
that exist in the R session. Note that it is not sufficient to have observed the covariate only at the
points of the data point pattern; the covariate must also have been observed at other locations in the
window.

If it is given, the argument data is typically a list, with names corresponding to variables in the
trend formula. Each entry in the list is either

a pixel image, giving the values of a spatial covariate at a fine grid of locations. It should be an
object of class "im", see im.object.

a function, which can be evaluated at any location (x,y) to obtain the value of the spatial covariate.
It should be a function(x, y) or function(x, y, ...) in the R language. For marked
point pattern data, the covariate can be a function(x, y, marks) or function(x, y, marks,
...). The first two arguments of the function should be the Cartesian coordinates x and y.
The function may have additional arguments; if the function does not have default values for
these additional arguments, then the user must supply values for them, in covfunargs. See
the Examples.

a window, interpreted as a logical variable which is TRUE inside the window and FALSE outside it.
This should be an object of class "owin".

a tessellation, interpreted as a factor covariate. For each spatial location, the factor value indicates
which tile of the tessellation it belongs to. This should be an object of class "tess". (To make
a covariate in which each tile of the tessellation has a numerical value, convert the tessellation
to a function(x,y) using as.function.tess.)

a single number, indicating a covariate that is constant in this dataset.

The software will look up the values of each covariate at the required locations (quadrature points).

Note that, for covariate functions, only the name of the function appears in the trend formula. A
covariate function is treated as if it were a single variable. The function arguments do not appear in
the trend formula. See the Examples.

If data is a list, the list entries should have names corresponding to (some of) the names of covari-
ates in the model formula trend. The variable names x, y and marks are reserved for the Cartesian
coordinates and the mark values, and these should not be used for variables in data.

Alternatively, data may be a data frame giving the values of the covariates at specified locations.
Then pattern should be a quadrature scheme (object of class "quad") giving the corresponding
locations. See ppm.quad for details.

ppm 313

Value

An object of class "ppm" describing a fitted point process model.

See ppm.object for details of the format of this object and methods available for manipulating it.

Interaction parameters

Apart from the Poisson model, every point process model fitted by ppm has parameters that deter-
mine the strength and range of ‘interaction’ or dependence between points. These parameters are
of two types:

regular parameters: A parameter ϕ is called regular if the log likelihood is a linear function of θ
where θ = θ(ψ) is some transformation of ψ. [Then θ is called the canonical parameter.]

irregular parameters Other parameters are called irregular.

Typically, regular parameters determine the ‘strength’ of the interaction, while irregular parameters
determine the ‘range’ of the interaction. For example, the Strauss process has a regular parameter γ
controlling the strength of interpoint inhibition, and an irregular parameter r determining the range
of interaction.

The ppm command is only designed to estimate regular parameters of the interaction. It requires
the values of any irregular parameters of the interaction to be fixed. For example, to fit a Strauss
process model to the cells dataset, you could type ppm(cells ~ 1, Strauss(r=0.07)). Note that
the value of the irregular parameter r must be given. The result of this command will be a fitted
model in which the regular parameter γ has been estimated.

To determine the irregular parameters, there are several practical techniques, but no general sta-
tistical theory available. Useful techniques include maximum profile pseudolikelihood, which is
implemented in the command profilepl, and Newton-Raphson maximisation, implemented in the
experimental command ippm.

Some irregular parameters can be estimated directly from data: the hard-core radius in the model
Hardcore and the matrix of hard-core radii in MultiHard can be estimated easily from data. In
these cases, ppm allows the user to specify the interaction without giving the value of the irregu-
lar parameter. The user can give the hard core interaction as interaction=Hardcore() or even
interaction=Hardcore, and the hard core radius will then be estimated from the data.

Technical Warnings and Error Messages

See ppm.ppp for some technical warnings about the weaknesses of the algorithm, and explanation
of some common error messages.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Coeurjolly, J.-F., Rubak, E. and Waagepetersen, R. (2014) Logistic regression for
spatial Gibbs point processes. Biometrika 101 (2) 377–392.

314 ppm

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42 283–322.

Berman, M. and Turner, T.R. (1992) Approximating point process likelihoods with GLIM. Applied
Statistics 41, 31–38.

Besag, J. (1975) Statistical analysis of non-lattice data. The Statistician 24, 179-195.

Diggle, P.J., Fiksel, T., Grabarnik, P., Ogata, Y., Stoyan, D. and Tanemura, M. (1994) On parameter
estimation for pairwise interaction processes. International Statistical Review 62, 99-117.

Huang, F. and Ogata, Y. (1999) Improvements of the maximum pseudo-likelihood estimators in
various spatial statistical models. Journal of Computational and Graphical Statistics 8, 510–530.

Jensen, J.L. and Moeller, M. (1991) Pseudolikelihood for exponential family models of spatial point
processes. Annals of Applied Probability 1, 445–461.

Jensen, J.L. and Kuensch, H.R. (1994) On asymptotic normality of pseudo likelihood estimates for
pairwise interaction processes, Annals of the Institute of Statistical Mathematics 46, 475–486.

See Also

ppm.ppp and ppm.quad for more details on the fitting technique and edge correction.

ppm.object for details of how to print, plot and manipulate a fitted model.

ppp and quadscheme for constructing data.

Interactions: AreaInter, BadGey, Concom, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer,
Hardcore, HierHard, HierStrauss, HierStraussHard, Hybrid, LennardJones, MultiHard, MultiStrauss,
MultiStraussHard, OrdThresh, Ord, Pairwise, PairPiece, Penttinen, Poisson, Saturated,
SatPiece, Softcore, Strauss, StraussHard and Triplets.

See profilepl for advice on fitting nuisance parameters in the interaction, and ippm for irregular
parameters in the trend.

See valid.ppm and project.ppm for ensuring the fitted model is a valid point process.

See kppm for fitting Cox point process models and cluster point process models, and dppm for fitting
determinantal point process models.

Examples

online <- interactive()
if(!online) {

reduce grid sizes for efficiency in tests
spatstat.options(npixel=32, ndummy.min=16)

}

fit the stationary Poisson process
to point pattern 'nztrees'

ppm(nztrees ~ 1)

if(online) {
Q <- quadscheme(nztrees)
ppm(Q ~ 1)
equivalent.

ppm 315

}

fit1 <- ppm(nztrees ~ x)
fit the nonstationary Poisson process
with intensity function lambda(x,y) = exp(a + bx)
where x,y are the Cartesian coordinates
and a,b are parameters to be estimated

fit1
coef(fit1)
coef(summary(fit1))

ppm(nztrees ~ polynom(x,2))

fit the nonstationary Poisson process
with intensity function lambda(x,y) = exp(a + bx + cx^2)

if(online) {
library(splines)
ppm(nztrees ~ bs(x,df=3))

}
Fits the nonstationary Poisson process
with intensity function lambda(x,y) = exp(B(x))
where B is a B-spline with df = 3

ppm(nztrees ~ 1, Strauss(r=10), rbord=10)

Fit the stationary Strauss process with interaction range r=10
using the border method with margin rbord=10

ppm(nztrees ~ x, Strauss(13), correction="periodic")

Fit the nonstationary Strauss process with interaction range r=13
and exp(first order potential) = activity = beta(x,y) = exp(a+bx)
using the periodic correction.

Compare Maximum Pseudolikelihood, Huang-Ogata and Variational Bayes fits:
if(online) ppm(swedishpines ~ 1, Strauss(9))

ppm(swedishpines ~ 1, Strauss(9), method="VBlogi")

ppm(swedishpines ~ 1, Strauss(9), improve.type="ho",
nsim=if(!online) 8 else 99)

Elastic net fit:
if(require(glmnet)) {

ppm(swedishpines ~ x+y, Strauss(9), improve.type="enet")
}

COVARIATES
#
X <- rpoispp(20)
weirdfunction <- function(x,y){ 10 * x^2 + 5 * sin(10 * y) }

316 ppm.object

#
(a) covariate values as function
ppm(X ~ y + weirdfunction)
#
(b) covariate values in pixel image
Zimage <- as.im(weirdfunction, unit.square())
ppm(X ~ y + Z, covariates=list(Z=Zimage))
#
(c) covariate values in data frame
Q <- quadscheme(X)
xQ <- x.quad(Q)
yQ <- y.quad(Q)
Zvalues <- weirdfunction(xQ,yQ)
ppm(Q ~ y + Z, data=data.frame(Z=Zvalues))
Note Q not X

COVARIATE FUNCTION WITH EXTRA ARGUMENTS
#

f <- function(x,y,a){ y - a }
ppm(X ~ x + f, covfunargs=list(a=1/2))

COVARIATE: logical value TRUE inside window, FALSE outside
b <- owin(c(0.1, 0.6), c(0.1, 0.9))
ppm(X ~ b)

MULTITYPE POINT PROCESSES
fit stationary marked Poisson process
with different intensity for each species
if(online) {

ppm(lansing ~ marks, Poisson())
} else {
ama <- amacrine[square(0.7)]
a <- ppm(ama ~ marks, Poisson(), nd=16)
}

fit nonstationary marked Poisson process
with different log-cubic trend for each species
if(online) {
ppm(lansing ~ marks * polynom(x,y,3), Poisson())
} else {
b <- ppm(ama ~ marks * polynom(x,y,2), Poisson(), nd=16)
}

ppm.object Class of Fitted Point Process Models

Description

A class ppm to represent a fitted stochastic model for a point process. The output of ppm.

ppm.object 317

Details

An object of class ppm represents a stochastic point process model that has been fitted to a point
pattern dataset. Typically it is the output of the model fitter, ppm.

The class ppm has methods for the following standard generic functions:

generic method description
print print.ppm print details
plot plot.ppm plot fitted model
predict predict.ppm fitted intensity and conditional intensity
fitted fitted.ppm fitted intensity
coef coef.ppm fitted coefficients of model
anova anova.ppm Analysis of Deviance
formula formula.ppm Extract model formula
terms terms.ppm Terms in the model formula
labels labels.ppm Names of estimable terms in the model formula
residuals residuals.ppm Point process residuals
simulate simulate.ppm Simulate the fitted model
update update.ppm Change or refit the model
vcov vcov.ppm Variance/covariance matrix of parameter estimates
model.frame model.frame.ppm Model frame
model.matrix model.matrix.ppm Design matrix
logLik logLik.ppm log pseudo likelihood
extractAIC extractAIC.ppm pseudolikelihood counterpart of AIC
nobs nobs.ppm number of observations

Objects of class ppm can also be handled by the following standard functions, without requiring a
special method:

name description
confint Confidence intervals for parameters
step Stepwise model selection
drop1 One-step model improvement
add1 One-step model improvement

The class ppm also has methods for the following generic functions defined in the spatstat package:

generic method description
as.interact as.interact.ppm Interpoint interaction structure
as.owin as.owin.ppm Observation window of data
berman.test berman.test.ppm Berman’s test
envelope envelope.ppm Simulation envelopes
fitin fitin.ppm Fitted interaction
is.marked is.marked.ppm Determine whether the model is marked
is.multitype is.multitype.ppm Determine whether the model is multitype
is.poisson is.poisson.ppm Determine whether the model is Poisson
is.stationary is.stationary.ppm Determine whether the model is stationary
cdf.test cdf.test.ppm Spatial distribution test

318 ppm.object

quadrat.test quadrat.test.ppm Quadrat counting test
reach reach.ppm Interaction range of model
rmhmodel rmhmodel.ppm Model in a form that can be simulated
rmh rmh.ppm Perform simulation
unitname unitname.ppm Name of unit of length

Information about the data (to which the model was fitted) can be extracted using data.ppm,
dummy.ppm and quad.ppm.

Internal format

If you really need to get at the internals, a ppm object contains at least the following entries:

coef the fitted regular parameters (as returned by glm)
trend the trend formula or NULL
interaction the point process interaction family (an object of class "interact") or NULL
Q the quadrature scheme used
maxlogpl the maximised value of log pseudolikelihood
correction name of edge correction method used

See ppm for explanation of these concepts. The irregular parameters (e.g. the interaction radius of
the Strauss process) are encoded in the interaction entry. However see the Warnings.

Warnings

The internal representation of ppm objects may change slightly between releases of the spatstat
package.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

ppm, coef.ppm, fitted.ppm, print.ppm, predict.ppm, plot.ppm.

Examples

fit <- ppm(cells ~ x, Strauss(0.1), correction="periodic")
fit
coef(fit)

pred <- predict(fit)

pred <- predict(fit, ngrid=20, type="trend")
if(interactive()) {
plot(fit)
}

ppm.ppp 319

ppm.ppp Fit Point Process Model to Point Pattern Data

Description

Fits a point process model to an observed point pattern.

Usage

S3 method for class 'ppp'
ppm(Q, trend=~1, interaction=Poisson(),

...,
covariates=data,
data=NULL,
covfunargs = list(),
subset,
clipwin,
correction="border",
rbord=reach(interaction),
use.gam=FALSE,
method=c("mpl", "logi", "VBlogi"),
forcefit=FALSE,
improve.type = c("none", "ho", "enet"),
improve.args=list(),
emend=project,
project=FALSE,
prior.mean = NULL,
prior.var = NULL,
nd = NULL,
eps = NULL,
quad.args=list(),
gcontrol=list(),
nsim=100, nrmh=1e5, start=NULL, control=list(nrep=nrmh),
verb=TRUE,
callstring=NULL)

S3 method for class 'quad'
ppm(Q, trend=~1, interaction=Poisson(),

...,
covariates=data,
data=NULL,
covfunargs = list(),
subset,
clipwin,
correction="border",
rbord=reach(interaction),
use.gam=FALSE,

320 ppm.ppp

method=c("mpl", "logi", "VBlogi"),
forcefit=FALSE,
improve.type = c("none", "ho", "enet"),
improve.args=list(),
emend=project,
project=FALSE,
prior.mean = NULL,
prior.var = NULL,
nd = NULL,
eps = NULL,
quad.args=list(),
gcontrol=list(),
nsim=100, nrmh=1e5, start=NULL, control=list(nrep=nrmh),
verb=TRUE,
callstring=NULL)

Arguments

Q A data point pattern (of class "ppp") to which the model will be fitted, or a
quadrature scheme (of class "quad") containing this pattern.

trend An R formula object specifying the spatial trend to be fitted. The default for-
mula, ~1, indicates the model is stationary and no trend is to be fitted.

interaction An object of class "interact" describing the point process interaction struc-
ture, or a function that makes such an object, or NULL indicating that a Poisson
process (stationary or nonstationary) should be fitted.

... Ignored.
data, covariates

The values of any spatial covariates (other than the Cartesian coordinates) re-
quired by the model. Either a data frame, or a list whose entries are images,
functions, windows, tessellations or single numbers. See Details.

subset Optional. An expression (which may involve the names of the Cartesian coordi-
nates x and y and the names of entries in data) defining a subset of the spatial
domain, to which the likelihood or pseudolikelihood should be restricted. See
Details. The result of evaluating the expression should be either a logical vector,
or a window (object of class "owin") or a logical-valued pixel image (object of
class "im").

clipwin Optional. A spatial window (object of class "owin") to which data will be re-
stricted, before model-fitting is performed. See Details.

covfunargs A named list containing the values of any additional arguments required by co-
variate functions.

correction The name of the edge correction to be used. The default is "border" indicating
the border correction. Other possibilities may include "Ripley", "isotropic",
"periodic", "translate" and "none", depending on the interaction.

rbord If correction = "border" this argument specifies the distance by which the
window should be eroded for the border correction.

use.gam Logical flag; if TRUE then computations are performed using gam instead of glm.

ppm.ppp 321

method String (partially matched) specifying the method used to fit the model. Options
are "mpl" for the method of Maximum PseudoLikelihood (the default), "logi"
for the Logistic Likelihood method and "VBlogi" for the Variational Bayes Lo-
gistic Likelihood method.

forcefit Logical flag for internal use. If forcefit=FALSE, some trivial models will be
fitted by a shortcut. If forcefit=TRUE, the generic fitting method will always
be used.

improve.type String (partially matched) specifying a method for improving the initial fit. If
improve.type = "none" (the default), no improvement is performed. If improve.type="ho",
the Huang-Ogata approximate maximum likelihood method is used. If improve.type="enet",
the model coefficients are re-estimated using a regularized version of the com-
posite likelihood.

improve.args Arguments used to control the algorithm for improving the initial fit. See De-
tails.

emend, project (These are equivalent: project is an older name for emend.) Logical value.
Setting emend=TRUE will ensure that the fitted model is always a valid point
process by applying emend.ppm.

prior.mean Optional vector of prior means for canonical parameters (for method="VBlogi").
See Details.

prior.var Optional prior variance covariance matrix for canonical parameters (for method="VBlogi").
See Details.

nd Optional. Integer or pair of integers. The dimension of the grid of dummy points
(nd * nd or nd[1] * nd[2]) used to evaluate the integral in the pseudolikelihood.
Incompatible with eps.

eps Optional. A positive number, or a vector of two positive numbers, giving the
horizontal and vertical spacing, respectively, of the grid of dummy points. In-
compatible with nd.

quad.args Arguments controlling the construction of the quadrature scheme, when Q is
a point pattern. A list of arguments that will be passed to quadscheme or (if
method="logi") to quadscheme.logi.

gcontrol Optional. List of parameters passed to glm.control (or passed to gam.control
if use.gam=TRUE) controlling the model-fitting algorithm.

nsim Number of simulated realisations to generate (for improve.type="ho")

nrmh Number of Metropolis-Hastings iterations for each simulated realisation (for
improve.type="ho")

start, control Arguments passed to rmh controlling the behaviour of the Metropolis-Hastings
algorithm (for improve.type="ho")

verb Logical flag indicating whether to print progress reports (for improve.type="ho")

callstring Internal use only.

Details

NOTE: This help page describes the old syntax of the function ppm, described in many older
documents. This old syntax is still supported. However, if you are learning about ppm for the first
time, we recommend you use the new syntax described in the help file for ppm.

322 ppm.ppp

This function fits a point process model to an observed point pattern. The model may include spatial
trend, interpoint interaction, and dependence on covariates.

basic use: In basic use, Q is a point pattern dataset (an object of class "ppp") to which we wish to
fit a model.
The syntax of ppm() is closely analogous to the R functions glm and gam. The analogy is:

glm ppm
formula trend
family interaction

The point process model to be fitted is specified by the arguments trend and interaction
which are respectively analogous to the formula and family arguments of glm().
Systematic effects (spatial trend and/or dependence on spatial covariates) are specified by
the argument trend. This is an R formula object, which may be expressed in terms of the
Cartesian coordinates x, y, the marks marks, or the variables in covariates (if supplied), or
both. It specifies the logarithm of the first order potential of the process. The formula should
not use any names beginning with .mpl as these are reserved for internal use. If trend is
absent or equal to the default, ~1, then the model to be fitted is stationary (or at least, its first
order potential is constant).
The symbol . in the trend expression stands for all the covariates supplied in the argument
data. For example the formula ~ . indicates an additive model with a main effect for each
covariate in data.
Stochastic interactions between random points of the point process are defined by the ar-
gument interaction. This is an object of class "interact" which is initialised in a very
similar way to the usage of family objects in glm and gam. The models currently available
are: AreaInter, BadGey, Concom, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer,
Hardcore, HierHard, HierStrauss, HierStraussHard, Hybrid, LennardJones, MultiHard,
MultiStrauss, MultiStraussHard, OrdThresh, Ord, Pairwise, PairPiece, Penttinen,
Poisson, Saturated, SatPiece, Softcore, Strauss, StraussHard and Triplets. See the
examples below. It is also possible to combine several interactions using Hybrid.
If interaction is missing or NULL, then the model to be fitted has no interpoint interactions,
that is, it is a Poisson process (stationary or nonstationary according to trend). In this case
the methods of maximum pseudolikelihood and maximum logistic likelihood coincide with
maximum likelihood.
The fitted point process model returned by this function can be printed (by the print method
print.ppm) to inspect the fitted parameter values. If a nonparametric spatial trend was fitted,
this can be extracted using the predict method predict.ppm.

Models with covariates: To fit a model involving spatial covariates other than the Cartesian coor-
dinates x and y, the values of the covariates should be supplied in the argument covariates.
Note that it is not sufficient to have observed the covariate only at the points of the data point
pattern; the covariate must also have been observed at other locations in the window.
Typically the argument covariates is a list, with names corresponding to variables in the
trend formula. Each entry in the list is either

a pixel image, giving the values of a spatial covariate at a fine grid of locations. It should be
an object of class "im", see im.object.

ppm.ppp 323

a function, which can be evaluated at any location (x,y) to obtain the value of the spa-
tial covariate. It should be a function(x, y) or function(x, y, ...) in the R lan-
guage. For marked point pattern data, the covariate can be a function(x, y, marks)
or function(x, y, marks, ...). The first two arguments of the function should be the
Cartesian coordinates x and y. The function may have additional arguments; if the func-
tion does not have default values for these additional arguments, then the user must supply
values for them, in covfunargs. See the Examples.

a window, interpreted as a logical variable which is TRUE inside the window and FALSE out-
side it. This should be an object of class "owin".

a tessellation, interpreted as a factor covariate. For each spatial location, the factor value
indicates which tile of the tessellation it belongs to. This should be an object of class
"tess".

a single number, indicating a covariate that is constant in this dataset.
The software will look up the values of each covariate at the required locations (quadrature
points).
Note that, for covariate functions, only the name of the function appears in the trend formula.
A covariate function is treated as if it were a single variable. The function arguments do not
appear in the trend formula. See the Examples.
If covariates is a list, the list entries should have names corresponding to the names of
covariates in the model formula trend. The variable names x, y and marks are reserved for
the Cartesian coordinates and the mark values, and these should not be used for variables in
covariates.
If covariates is a data frame, Q must be a quadrature scheme (see under Quadrature Schemes
below). Then covariates must have as many rows as there are points in Q. The ith row of
covariates should contain the values of spatial variables which have been observed at the ith
point of Q.

Quadrature schemes: In advanced use, Q may be a ‘quadrature scheme’. This was originally just
a technicality but it has turned out to have practical uses, as we explain below.
Quadrature schemes are required for our implementation of the method of maximum pseudo-
likelihood. The definition of the pseudolikelihood involves an integral over the spatial window
containing the data. In practice this integral must be approximated by a finite sum over a set
of quadrature points. We use the technique of Baddeley and Turner (2000), a generalisation
of the Berman-Turner (1992) device. In this technique the quadrature points for the numeri-
cal approximation include all the data points (points of the observed point pattern) as well as
additional ‘dummy’ points.
Quadrature schemes are also required for the method of maximum logistic likelihood, which
combines the data points with additional ‘dummy’ points.
A quadrature scheme is an object of class "quad" (see quad.object) which specifies both
the data point pattern and the dummy points for the quadrature scheme, as well as the quadra-
ture weights associated with these points. If Q is simply a point pattern (of class "ppp", see
ppp.object) then it is interpreted as specifying the data points only; a set of dummy points
specified by default.dummy() is added, and the default weighting rule is invoked to compute
the quadrature weights.
Finer quadrature schemes (i.e. those with more dummy points) generally yield a better ap-
proximation, at the expense of higher computational load.
An easy way to fit models using a finer quadrature scheme is to let Q be the original point pat-
tern data, and use the argument nd to determine the number of dummy points in the quadrature

324 ppm.ppp

scheme.
Complete control over the quadrature scheme is possible. See quadscheme for an overview.
Use quadscheme(X, D, method="dirichlet") to compute quadrature weights based on the
Dirichlet tessellation, or quadscheme(X, D, method="grid") to compute quadrature weights
by counting points in grid squares, where X and D are the patterns of data points and dummy
points respectively. Alternatively use pixelquad to make a quadrature scheme with a dummy
point at every pixel in a pixel image.
The argument quad.args can be used to control the construction of the quadrature scheme.
For example quad.args=list(quasi=TRUE, method="dirichlet", eps=0.1) would cre-
ate dummy points according to a quasirandom pattern, with a typical spacing of 0.1 units
between dummy points, and compute quadrature weights based on the Dirichlet tessellation.
A practical advantage of quadrature schemes arises when we want to fit a model involving
covariates (e.g. soil pH). Suppose we have only been able to observe the covariates at a small
number of locations. Suppose cov.dat is a data frame containing the values of the covariates
at the data points (i.e.\ cov.dat[i,] contains the observations for the ith data point) and
cov.dum is another data frame (with the same columns as cov.dat) containing the covariate
values at another set of points whose locations are given by the point pattern Y. Then setting
Q = quadscheme(X,Y) combines the data points and dummy points into a quadrature scheme,
and covariates = rbind(cov.dat, cov.dum) combines the covariate data frames. We can
then fit the model by calling ppm(Q, ..., covariates).

Model-fitting technique: There are several choices for the technique used to fit the model.

method="mpl" (the default): the model will be fitted by maximising the pseudolikelihood
(Besag, 1975) using the Berman-Turner computational approximation (Berman and Turner,
1992; Baddeley and Turner, 2000). Maximum pseudolikelihood is equivalent to maxi-
mum likelihood if the model is a Poisson process. Maximum pseudolikelihood is biased
if the interpoint interaction is very strong, unless there is a large number of dummy points.
The default settings for method='mpl' specify a moderately large number of dummy
points, striking a compromise between speed and accuracy.

method="logi": the model will be fitted by maximising the logistic likelihood (Baddeley
et al, 2014). This technique is roughly equivalent in speed to maximum pseudolikeli-
hood, but is believed to be less biased. Because it is less biased, the default settings for
method='logi' specify a relatively small number of dummy points, so that this method
is the fastest, in practice.

method="VBlogi": the model will be fitted in a Bayesian setup by maximising the posterior
probability density for the canonical model parameters. This uses the variational Bayes
approximation to the posterior derived from the logistic likelihood as described in Rajala
(2014). The prior is assumed to be multivariate Gaussian with mean vector prior.mean
and variance-covariance matrix prior.var.

Note that method='logi' and method='VBlogi' involve randomisation, so that the results
are subject to random variation.
After this initial fit, there are several ways to improve the fit:

improve.type="none": No further improvement is performed.
improve.type="ho": the model will be re-fitted by applying the approximate maximum like-

lihood method of Huang and Ogata (1999). See below. The Huang-Ogata method is
slower than the other options, but has better statistical properties. This method involves
randomisation, so the results are subject to random variation.

ppm.ppp 325

improve.type="enet": The model will be re-fitted using a regularized version of the com-
posite likelihood. See below.

Huang-Ogata method: If improve.type="ho" then the model will be fitted using the Huang-
Ogata (1999) approximate maximum likelihood method. First the model is fitted by maximum
pseudolikelihood as described above, yielding an initial estimate of the parameter vector θ0.
From this initial model, nsim simulated realisations are generated. The score and Fisher in-
formation of the model at θ = θ0 are estimated from the simulated realisations. Then one step
of the Fisher scoring algorithm is taken, yielding an updated estimate θ1. The corresponding
model is returned.
Simulated realisations are generated using rmh. The iterative behaviour of the Metropolis-
Hastings algorithm is controlled by the arguments start and control which are passed to
rmh.
As a shortcut, the argument nrmh determines the number of Metropolis-Hastings iterations run
to produce one simulated realisation (if control is absent). Also if start is absent or equal
to NULL, it defaults to list(n.start=N) where N is the number of points in the data point
pattern.

Regularization: This requires the package glmnet. Details to be written.
Edge correction Edge correction should be applied to the sufficient statistics of the model, to re-

duce bias. The argument correction is the name of an edge correction method. The de-
fault correction="border" specifies the border correction, in which the quadrature window
(the domain of integration of the pseudolikelihood) is obtained by trimming off a margin of
width rbord from the observation window of the data pattern. Not all edge corrections are
implemented (or implementable) for arbitrary windows. Other options depend on the argu-
ment interaction, but these generally include correction="periodic" (the periodic or
toroidal edge correction in which opposite edges of a rectangular window are identified) and
correction="translate" (the translation correction, see Baddeley 1998 and Baddeley and
Turner 2000). For pairwise interaction models there is also Ripley’s isotropic correction, iden-
tified by correction="isotropic" or "Ripley".

Subsetting The arguments subset and clipwin specify that the model should be fitted to a re-
stricted subset of the available data. These arguments are equivalent for Poisson point process
models, but different for Gibbs models. If clipwin is specified, then all the available data will
be restricted to this spatial region, and data outside this region will be discarded, before the
model is fitted. If subset is specified, then no data are deleted, but the domain of integration
of the likelihood or pseudolikelihood is restricted to the subset. For Poisson models, these
two arguments have the same effect; but for a Gibbs model, interactions between points inside
and outside the subset are taken into account, while interactions between points inside and
outside the clipwin are ignored.

Value

An object of class "ppm" describing a fitted point process model.

See ppm.object for details of the format of this object and methods available for manipulating it.

Interaction parameters

Apart from the Poisson model, every point process model fitted by ppm has parameters that deter-
mine the strength and range of ‘interaction’ or dependence between points. These parameters are
of two types:

326 ppm.ppp

regular parameters: A parameter ϕ is called regular if the log likelihood is a linear function of θ
where θ = θ(ψ) is some transformation of ψ. [Then θ is called the canonical parameter.]

irregular parameters Other parameters are called irregular.

Typically, regular parameters determine the ‘strength’ of the interaction, while irregular parameters
determine the ‘range’ of the interaction. For example, the Strauss process has a regular parameter γ
controlling the strength of interpoint inhibition, and an irregular parameter r determining the range
of interaction.

The ppm command is only designed to estimate regular parameters of the interaction. It requires
the values of any irregular parameters of the interaction to be fixed. For example, to fit a Strauss
process model to the cells dataset, you could type ppm(cells, ~1, Strauss(r=0.07)). Note
that the value of the irregular parameter r must be given. The result of this command will be a fitted
model in which the regular parameter γ has been estimated.

To determine the irregular parameters, there are several practical techniques, but no general sta-
tistical theory available. Useful techniques include maximum profile pseudolikelihood, which is
implemented in the command profilepl, and Newton-Raphson maximisation, implemented in the
experimental command ippm.

Some irregular parameters can be estimated directly from data: the hard-core radius in the model
Hardcore and the matrix of hard-core radii in MultiHard can be estimated easily from data. In
these cases, ppm allows the user to specify the interaction without giving the value of the irregu-
lar parameter. The user can give the hard core interaction as interaction=Hardcore() or even
interaction=Hardcore, and the hard core radius will then be estimated from the data.

Error and Warning Messages

Some common error messages and warning messages are listed below, with explanations.

“Model is invalid” or “Model is not valid” The fitted model coefficients do not define a valid
point process. This can occur because some of the fitted coefficients are NA (perhaps because
the model formula included redundant covariates so that the coefficients cannot be estimated),
or because the fitted interaction coefficients do not define a valid point process (e.g. because a
point process model which always has inhibition between points was fitted to a clustered point
pattern). See valid.ppm for detailed information.

“System is computationally singular” or “Fisher information matrix is singular” The software
cannot calculate standard errors or confidence intervals for the coefficients of the fitted model.
This requires the (asymptotic) variance-covariance matrix, which is the inverse matrix of the
Fisher information matrix of the fitted model. The error message states that the determinant
of the Fisher information matrix is zero, or close to zero, so that the matrix cannot be inverted.
This error is usually reported when the model is printed, because the print method calculates
standard errors for the fitted parameters. Singularity usually occurs because the spatial coordi-
nates in the original data were very large numbers (e.g. expressed in metres) so that the fitted
coefficients were very small numbers. The simple remedy is to rescale the data, for example,
to convert from metres to kilometres by X <- rescale(X, 1000), then re-fit the model. Sin-
gularity can also occur if the covariate values are very large numbers, or if the covariates are
approximately collinear.

“Covariate values were NA or undefined at X% (M out of N) of the quadrature points” The co-
variate data (typically a pixel image) did not provide values of the covariate at some of the
spatial locations in the observation window of the point pattern. This means that the spatial

ppm.ppp 327

domain of the pixel image does not completely cover the observation window of the point
pattern. If the percentage is small, this warning can be ignored - typically it happens because
of rounding effects which cause the pixel image to be one-pixel-width narrower than the ob-
servation window. However if more than a few percent of covariate values are undefined, it
would be prudent to check that the pixel images are correct, and are correctly registered in
their spatial relation to the observation window.

“Some tiles with positive area do not contain any quadrature points: relative error = X%” A
problem has arisen when creating the quadrature scheme used to fit the model. In the default
rule for computing the quadrature weights, space is divided into rectangular tiles, and the
number of quadrature points (data and dummy points) in each tile is counted. It is possible for
a tile with non-zero area to contain no quadrature points; in this case, the quadrature scheme
will contribute a bias to the model-fitting procedure. A small relative error (less than 2 per-
cent) is not important. Relative errors of a few percent can occur because of the shape of the
window. If the relative error is greater than about 5 percent, we recommend trying different
parameters for the quadrature scheme, perhaps setting a larger value of nd to increase the num-
ber of dummy points. A relative error greater than 10 percent indicates a major problem with
the input data: in this case, extract the quadrature scheme by applying quad.ppm to the fitted
model, and inspect it. (The most likely cause of this problem is that the spatial coordinates of
the original data were not handled correctly, for example, coordinates of the locations and the
window boundary were incompatible.)

“Model is unidentifiable” It is not possible to estimate all the model parameters from this dataset.
The error message gives a further explanation, such as “data pattern is empty”. Choose a
simpler model, or check the data.

“N data points are illegal (zero conditional intensity)” In a Gibbs model (i.e. with interaction
between points), the conditional intensity may be zero at some spatial locations, indicating
that the model forbids the presence of a point at these locations. However if the conditional
intensity is zero at a data point, this means that the model is inconsistent with the data. Modify
the interaction parameters so that the data point is not illegal (e.g. reduce the value of the hard
core radius) or choose a different interaction.

Warnings

The implementation of the Huang-Ogata method is experimental; several bugs were fixed in spat-
stat 1.19-0.

See the comments above about the possible inefficiency and bias of the maximum pseudolikelihood
estimator.

The accuracy of the Berman-Turner approximation to the pseudolikelihood depends on the number
of dummy points used in the quadrature scheme. The number of dummy points should at least equal
the number of data points.

The parameter values of the fitted model do not necessarily determine a valid point process. Some
of the point process models are only defined when the parameter values lie in a certain subset. For
example the Strauss process only exists when the interaction parameter γ is less than or equal to 1,
corresponding to a value of ppm()$theta[2] less than or equal to 0.

By default (if emend=FALSE) the algorithm maximises the pseudolikelihood without constraining
the parameters, and does not apply any checks for sanity after fitting the model. This is because the
fitted parameter value could be useful information for data analysis. To constrain the parameters to

328 ppm.ppp

ensure that the model is a valid point process, set emend=TRUE. See also the functions valid.ppm
and emend.ppm.

The trend formula should not use any variable names beginning with the prefixes .mpl or Interaction
as these names are reserved for internal use. The data frame covariates should have as many rows
as there are points in Q. It should not contain variables called x, y or marks as these names are
reserved for the Cartesian coordinates and the marks.

If the model formula involves one of the functions poly(), bs() or ns() (e.g. applied to spatial
coordinates x and y), the fitted coefficients can be misleading. The resulting fit is not to the raw
spatial variates (x, x^2, x*y, etc.) but to a transformation of these variates. The transformation
is implemented by poly() in order to achieve better numerical stability. However the resulting
coefficients are appropriate for use with the transformed variates, not with the raw variates. This
affects the interpretation of the constant term in the fitted model, logbeta. Conventionally, β is the
background intensity, i.e. the value taken by the conditional intensity function when all predictors
(including spatial or “trend” predictors) are set equal to 0. However the coefficient actually produced
is the value that the log conditional intensity takes when all the predictors, including the transformed
spatial predictors, are set equal to 0, which is not the same thing.

Worse still, the result of predict.ppm can be completely wrong if the trend formula contains one of
the functions poly(), bs() or ns(). This is a weakness of the underlying function predict.glm.

If you wish to fit a polynomial trend, we offer an alternative to poly(), namely polynom(), which
avoids the difficulty induced by transformations. It is completely analogous to poly except that it
does not orthonormalise. The resulting coefficient estimates then have their natural interpretation
and can be predicted correctly. Numerical stability may be compromised.

Values of the maximised pseudolikelihood are not comparable if they have been obtained with
different values of rbord.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Coeurjolly, J.-F., Rubak, E. and Waagepetersen, R. (2014) Logistic regression for
spatial Gibbs point processes. Biometrika 101 (2) 377–392.

Baddeley, A. and Turner, R. Practical maximum pseudolikelihood for spatial point patterns. Aus-
tralian and New Zealand Journal of Statistics 42 (2000) 283–322.

Berman, M. and Turner, T.R. Approximating point process likelihoods with GLIM. Applied Statis-
tics 41 (1992) 31–38.

Besag, J. Statistical analysis of non-lattice data. The Statistician 24 (1975) 179-195.

Diggle, P.J., Fiksel, T., Grabarnik, P., Ogata, Y., Stoyan, D. and Tanemura, M. On parameter esti-
mation for pairwise interaction processes. International Statistical Review 62 (1994) 99-117.

Huang, F. and Ogata, Y. Improvements of the maximum pseudo-likelihood estimators in various
spatial statistical models. Journal of Computational and Graphical Statistics 8 (1999) 510-530.

Jensen, J.L. and Moeller, M. Pseudolikelihood for exponential family models of spatial point pro-
cesses. Annals of Applied Probability 1 (1991) 445–461.

ppmInfluence 329

Jensen, J.L. and Kuensch, H.R. On asymptotic normality of pseudo likelihood estimates for pairwise
interaction processes, Annals of the Institute of Statistical Mathematics 46 (1994) 475-486.

Rajala T. (2014) A note on Bayesian logistic regression for spatial exponential family Gibbs point
processes, Preprint on ArXiv.org. https://arxiv.org/abs/1411.0539

See Also

ppm.object for details of how to print, plot and manipulate a fitted model.

ppp and quadscheme for constructing data.

Interactions: AreaInter, BadGey, Concom, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer,
Hardcore, HierHard, HierStrauss, HierStraussHard, Hybrid, LennardJones, MultiHard, MultiStrauss,
MultiStraussHard, OrdThresh, Ord, Pairwise, PairPiece, Penttinen, Poisson, Saturated,
SatPiece, Softcore, Strauss, StraussHard and Triplets.

See profilepl for advice on fitting nuisance parameters in the interaction, and ippm for irregular
parameters in the trend.

See valid.ppm and emend.ppm for ensuring the fitted model is a valid point process.

Examples

fit the stationary Poisson process
to point pattern 'nztrees'

ppm(nztrees)
ppm(nztrees ~ 1)
equivalent.

Q <- quadscheme(nztrees)
ppm(Q)
equivalent.

fit1 <- ppm(nztrees, ~ x)
fit the nonstationary Poisson process
with intensity function lambda(x,y) = exp(a + bx)
where x,y are the Cartesian coordinates
and a,b are parameters to be estimated

For other examples, see help(ppm)

ppmInfluence Leverage and Influence Measures for Spatial Point Process Model

Description

Calculates all the leverage and influence measures described in influence.ppm, leverage.ppm
and dfbetas.ppm.

https://arxiv.org/abs/1411.0539

330 ppmInfluence

Usage

ppmInfluence(fit,
what = c("leverage", "influence", "dfbetas"),
...,
iScore = NULL, iHessian = NULL, iArgs = NULL,
drop = FALSE,
fitname = NULL)

Arguments

fit A fitted point process model of class "ppm".

what Character vector specifying which quantities are to be calculated. Default is to
calculate all quantities.

... Ignored.
iScore, iHessian

Components of the score vector and Hessian matrix for the irregular parameters,
if required. See Details.

iArgs List of extra arguments for the functions iScore, iHessian if required.

drop Logical. Whether to include (drop=FALSE) or exclude (drop=TRUE) contribu-
tions from quadrature points that were not used to fit the model.

fitname Optional character string name for the fitted model fit.

Details

This function calculates all the leverage and influence measures described in influence.ppm,
leverage.ppm and dfbetas.ppm.

When analysing large datasets, the user can call ppmInfluence to perform the calculations effi-
ciently, then extract the leverage and influence values as desired. For example the leverage can be
extracted either as result$leverage or leverage(result).

If the point process model trend has irregular parameters that were fitted (using ippm) then the
influence calculation requires the first and second derivatives of the log trend with respect to the
irregular parameters. The argument iScore should be a list, with one entry for each irregular
parameter, of R functions that compute the partial derivatives of the log trend (i.e. log intensity or
log conditional intensity) with respect to each irregular parameter. The argument iHessian should
be a list, with p2 entries where p is the number of irregular parameters, of R functions that compute
the second order partial derivatives of the log trend with respect to each pair of irregular parameters.

Value

A list containing the leverage and influence measures specified by what. The result also belongs to
the class "ppmInfluence".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

predict.dppm 331

See Also

leverage.ppm, influence.ppm, dfbetas.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~ x+y)
fI <- ppmInfluence(fit)

fitlev <- fI$leverage
fitlev <- leverage(fI)

fitinf <- fI$influence
fitinf <- influence(fI)

fitdfb <- fI$dfbetas
fitdfb <- dfbetas(fI)

predict.dppm Prediction from a Fitted Determinantal Point Process Model

Description

Given a fitted determinantal point process model, these functions compute the fitted intensity.

Usage

S3 method for class 'dppm'
fitted(object, ...)

S3 method for class 'dppm'
predict(object, ...)

Arguments

object Fitted determinantal point process model. An object of class "dppm".

... Arguments passed to fitted.ppm or predict.ppm respectively.

Details

These functions are methods for the generic functions fitted and predict. The argument object
should be a determinantal point process model (object of class "dppm") obtained using the function
dppm.

The intensity of the fitted model is computed, using fitted.ppm or predict.ppm respectively.

332 predict.kppm

Value

The value of fitted.dppm is a numeric vector giving the fitted values at the quadrature points.

The value of predict.dppm is usually a pixel image (object of class "im"), but see predict.ppm
for details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

dppm, plot.dppm, fitted.ppm, predict.ppm

Examples

if(interactive()) {
fit <- dppm(swedishpines ~ x + y, dppGauss())

} else {
fit <- dppm(redwood ~ x, dppGauss())

}
predict(fit)

predict.kppm Prediction from a Fitted Cluster Point Process Model

Description

Given a fitted cluster point process model, these functions compute the fitted intensity.

Usage

S3 method for class 'kppm'
fitted(object, ...)

S3 method for class 'kppm'
predict(object, ...)

Arguments

object Fitted cluster point process model. An object of class "kppm".

... Arguments passed to fitted.ppm or predict.ppm respectively.

Details

These functions are methods for the generic functions fitted and predict. The argument object
should be a cluster point process model (object of class "kppm") obtained using the function kppm.

The intensity of the fitted model is computed, using fitted.ppm or predict.ppm respectively.

predict.mppm 333

Value

The value of fitted.kppm is a numeric vector giving the fitted values at the quadrature points.

The value of predict.kppm is usually a pixel image (object of class "im"), but see predict.ppm
for details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

kppm, plot.kppm, vcov.kppm, fitted.ppm, predict.ppm

Examples

fit <- kppm(redwood ~ x, "Thomas")
predict(fit)

predict.mppm Prediction for Fitted Multiple Point Process Model

Description

Given a fitted multiple point process model obtained by mppm, evaluate the spatial trend and/or the
conditional intensity of the model. By default, predictions are evaluated over a grid of locations,
yielding pixel images of the trend and conditional intensity. Alternatively predictions may be eval-
uated at specified locations with specified values of the covariates.

Usage

S3 method for class 'mppm'
predict(object, ..., newdata = NULL, type = c("trend", "cif"),

ngrid = 40, locations=NULL, verbose=FALSE)

Arguments

object The fitted model. An object of class "mppm" obtained from mppm.

... Ignored.

newdata Optional. New values of the covariates, for which the predictions should be
computed. See Details.

type Type of predicted values required. A character string or vector of character
strings. Options are "trend" for the spatial trend (first-order term) and "cif"
or "lambda" for the conditional intensity. Alternatively type="all" selects all
options.

ngrid Dimensions of the grid of spatial locations at which prediction will be performed
(if locations=NULL). An integer or a pair of integers.

334 predict.mppm

locations Optional. The locations at which predictions should be performed. A list of
point patterns, with one entry for each row of newdata.

verbose Logical flag indicating whether to print progress reports.

Details

This function computes the spatial trend and the conditional intensity of a spatial point process
model that has been fitted to several spatial point patterns. See Chapter 16 of Baddeley, Rubak and
Turner (2015) for explanation and examples.

Note that by “spatial trend” we mean the (exponentiated) first order potential and not the intensity
of the process. [For example if we fit the stationary Strauss process with parameters β and γ, then
the spatial trend is constant and equal to β.] The conditional intensity λ(u,X) of the fitted model
is evaluated at each required spatial location u, with respect to the response point pattern X.

If newdata=NULL, predictions are computed for the original values of the covariates, to which
the model was fitted. Otherwise newdata should be a hyperframe (see hyperframe) containing
columns of covariates as required by the model. If type includes "cif", then newdata must also
include a column of spatial point pattern responses, in order to compute the conditional intensity.

If locations=NULL, then predictions are performed at an ngrid by ngrid grid of locations in the
window for each response point pattern. The result will be a hyperframe containing a column of
images of the trend (if selected) and a column of images of the conditional intensity (if selected).
The result can be plotted.

If locations is given, then it should be a list of point patterns (objects of class "ppp"). Predictions
are performed at these points, and the results are returned as mark values attached to the locations.
The result is a hyperframe containing columns called trend and/or cif. The column called trend
contains marked point patterns in which the point locations are the locations and the mark value
is the predicted trend. The column called cif contains marked point patterns in which the point
locations are the locations and the mark value is the predicted conditional intensity.

Value

A hyperframe with columns named trend and/or cif.

If locations=NULL, the entries of the hyperframe are pixel images.

If locations is not null, the entries are marked point patterns constructed by attaching the predicted
values to the locations point patterns.

Models that depend on row number

The point process model that is described by an mppm object may be a different point process for
each row of the original hyperframe of data. This occurs if the model formula includes the variable
id (representing row number) or if the model has a different interpoint interaction on each row.

If the point process model is different on each row of the original data, then either

• newdata is missing. Predictions are computed for each row of the original data using the point
process model that applies on each row.

• newdata must have the same number of rows as the original data. Each row of newdata is
assumed to be a replacement for the corresponding row of the original data. The prediction

predict.ppm 335

for row i of newdata will be computed for the point process model that applies to row i of
the original data.

• newdata must include a column called id specifying the row number, and therefore identify-
ing which of the point process models should apply. The predictions for row i of newdata
will be computed for the point process model that applies to row k of the original data, where
k = newdata$id[i].

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. and Turner, R. Practical maximum pseudolikelihood for spatial point patterns. Aus-
tralian and New Zealand Journal of Statistics 42 (2000) 283–322.

Baddeley, A., Bischof, L., Sintorn, I.-M., Haggarty, S., Bell, M. and Turner, R. Analysis of a
designed experiment where the response is a spatial point pattern. In preparation.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

mppm, fitted.mppm, hyperframe

Examples

h <- hyperframe(Bugs=waterstriders)
fit <- mppm(Bugs ~ x, data=h, interaction=Strauss(7))
prediction on a grid
p <- predict(fit)
plot(p$trend)
prediction at specified locations
loc <- with(h, runifpoint(20, Window(Bugs)))
p2 <- predict(fit, locations=loc)
plot(p2$trend)

predict.ppm Prediction from a Fitted Point Process Model

Description

Given a fitted point process model obtained by ppm, evaluate the spatial trend or the conditional
intensity of the model at new locations.

336 predict.ppm

Usage

S3 method for class 'ppm'
predict(object, window=NULL, ngrid=NULL, locations=NULL,

covariates=NULL,
type=c("trend", "cif", "intensity", "count"),
se=FALSE,
interval=c("none", "confidence", "prediction"),
level = 0.95,
X=data.ppm(object), correction, ignore.hardcore=FALSE,
...,
dimyx=NULL, eps=NULL,
rule.eps = c("adjust.eps", "grow.frame", "shrink.frame"),
new.coef=NULL, check=TRUE, repair=TRUE)

Arguments

object A fitted point process model, typically obtained from the model-fitting algorithm
ppm. An object of class "ppm" (see ppm.object).

window Optional. A window (object of class "owin") delimiting the locations where
predictions should be computed. Defaults to the window of the original data
used to fit the model object.

ngrid Optional. Dimensions of a rectangular grid of locations inside window where
the predictions should be computed. An integer, or an integer vector of length
2, specifying the number of grid points in the y and x directions. (Incompatible
with locations. Equivalent to dimyx.)

locations Optional. Data giving the exact x, y coordinates (and marks, if required) of
locations at which predictions should be computed. Either a point pattern, or
a data frame with columns named x and y, or a binary image mask, or a pixel
image. (Incompatible with ngrid, dimyx and eps).

covariates Values of external covariates required by the model. Either a data frame or a list
of images. See Details.

type Character string. Indicates which property of the fitted model should be pre-
dicted. Options are "trend" for the spatial trend, "cif" or "lambda" for the
conditional intensity, "intensity" for the intensity, and "count" for the total
number of points in window.

se Logical value indicating whether to calculate standard errors as well.

interval String (partially matched) indicating whether to produce estimates (interval="none",
the default) or a confidence interval (interval="confidence") or a prediction
interval (interval="prediction").

level Coverage probability for the confidence or prediction interval.

X Optional. A point pattern (object of class "ppp") to be taken as the data point
pattern when calculating the conditional intensity. The default is to use the orig-
inal data to which the model was fitted.

correction Name of the edge correction to be used in calculating the conditional intensity.
Options include "border" and "none". Other options may include "periodic",

predict.ppm 337

"isotropic" and "translate" depending on the model. The default correction
is the one that was used to fit object.

ignore.hardcore

Advanced use only. Logical value specifying whether to compute only the finite
part of the interaction potential (effectively removing any hard core interaction
terms).

... Ignored.

dimyx Equivalent to ngrid.

eps Width and height of pixels in the prediction grid. A numerical value, or numeric
vector of length 2.

rule.eps Argument passed to as.mask controlling the discretisation. See as.mask.

new.coef Numeric vector of parameter values to replace the fitted model parameters coef(object).

check Logical value indicating whether to check the internal format of object. If
there is any possibility that this object has been restored from a dump file, or
has otherwise lost track of the environment where it was originally computed,
set check=TRUE.

repair Logical value indicating whether to repair the internal format of object, if it is
found to be damaged.

Details

This function computes properties of a fitted spatial point process model (object of class "ppm").
For a Poisson point process it can compute the fitted intensity function, or the expected number of
points in a region. For a Gibbs point process it can compute the spatial trend (first order potential),
conditional intensity, and approximate intensity of the process. Point estimates, standard errors,
confidence intervals and prediction intervals are available.

Given a point pattern dataset, we may fit a point process model to the data using the model-fitting
algorithm ppm. This returns an object of class "ppm" representing the fitted point process model (see
ppm.object). The parameter estimates in this fitted model can be read off simply by printing the
ppm object. The spatial trend, conditional intensity and intensity of the fitted model are evaluated
using this function predict.ppm.

The default action is to create a rectangular grid of points in the observation window of the data
point pattern, and evaluate the spatial trend at these locations.

The argument type specifies the values that are desired:

If type="trend": the “spatial trend” of the fitted model is evaluated at each required spatial loca-
tion u. See below.

If type="cif": the conditional intensity λ(u,X) of the fitted model is evaluated at each required
spatial location u, with respect to the data point pattern X .

If type="intensity": the intensity λ(u) of the fitted model is evaluated at each required spatial
location u.

If type="count": the expected total number of points (or the expected number of points falling in
window) is evaluated. If window is a tessellation, the expected number of points in each tile of
the tessellation is evaluated.

338 predict.ppm

The spatial trend, conditional intensity, and intensity are all equivalent if the fitted model is a Poisson
point process. However, if the model is not a Poisson process, then they are all different. The
“spatial trend” is the (exponentiated) first order potential, and not the intensity of the process. [For
example if we fit the stationary Strauss process with parameters β and γ, then the spatial trend is
constant and equal to β, while the intensity is a smaller value.]

The default is to compute an estimate of the desired quantity. If interval="confidence" or
interval="prediction", the estimate is replaced by a confidence interval or prediction interval.

If se=TRUE, then a standard error is also calculated, and is returned together with the (point or
interval) estimate.

The spatial locations where predictions are required, are determined by the (incompatible) argu-
ments ngrid and locations.

• If the argument ngrid is present, then predictions are performed at a rectangular grid of loca-
tions in the window window. The result of prediction will be a pixel image or images.

• If locations is present, then predictions will be performed at the spatial locations given by
this dataset. These may be an arbitrary list of spatial locations, or they may be a rectangular
grid. The result of prediction will be either a numeric vector or a pixel image or images.

• If neither ngrid nor locations is given, then ngrid is assumed. The value of ngrid defaults
to spatstat.options("npixel"), which is initialised to 128 when spatstat is loaded.

The argument locations may be a point pattern, a data frame or a list specifying arbitrary locations;
or it may be a binary image mask (an object of class "owin" with type "mask") or a pixel image
(object of class "im") specifying (a subset of) a rectangular grid of locations.

• If locations is a point pattern (object of class "ppp"), then prediction will be performed at
the points of the point pattern. The result of prediction will be a vector of predicted values,
one value for each point. If the model is a marked point process, then locations should be a
marked point pattern, with marks of the same kind as the model; prediction will be performed
at these marked points. The result of prediction will be a vector of predicted values, one value
for each (marked) point.

• If locations is a data frame or list, then it must contain vectors locations$x and locations$y
specifying the x, y coordinates of the prediction locations. Additionally, if the model is a
marked point process, then locations must also contain a factor locations$marks specify-
ing the marks of the prediction locations. These vectors must have equal length. The result of
prediction will be a vector of predicted values, of the same length.

• If locations is a binary image mask, then prediction will be performed at each pixel in this
binary image where the pixel value is TRUE (in other words, at each pixel that is inside the
window). If the fitted model is an unmarked point process, then the result of prediction will
be an image. If the fitted model is a marked point process, then prediction will be performed
for each possible value of the mark at each such location, and the result of prediction will be
a list of images, one for each mark value.

• If locations is a pixel image (object of class "im"), then prediction will be performed at each
pixel in this image where the pixel value is defined (i.e.\ where the pixel value is not NA).

The argument covariates gives the values of any spatial covariates at the prediction locations. If
the trend formula in the fitted model involves spatial covariates (other than the Cartesian coordinates
x, y) then covariates is required. The format and use of covariates are analogous to those of
the argument of the same name in ppm. It is either a data frame or a list of images.

predict.ppm 339

• If covariates is a list of images, then the names of the entries should correspond to the names
of covariates in the model formula trend. Each entry in the list must be an image object (of
class "im", see im.object). The software will look up the pixel values of each image at the
quadrature points.

• If covariates is a data frame, then the ith row of covariates is assumed to contain covariate
data for the ith location. When locations is a data frame, this just means that each row of
covariates contains the covariate data for the location specified in the corresponding row
of locations. When locations is a binary image mask, the row covariates[i,] must
correspond to the location x[i],y[i] where x = as.vector(raster.x(locations)) and y
= as.vector(raster.y(locations)).

Note that if you only want to use prediction in order to generate a plot of the predicted values, it
may be easier to use plot.ppm which calls this function and plots the results.

Value

If total is given: a numeric vector or matrix.

If locations is given and is a data frame: a vector of predicted values for the spatial locations
(and marks, if required) given in locations.

If ngrid is given, or if locations is given and is a binary image mask or a pixel image: If object
is an unmarked point process, the result is a pixel image object (of class "im", see im.object)
containing the predictions. If object is a multitype point process, the result is a list of pixel images,
containing the predictions for each type at the same grid of locations.

The “predicted values” are either values of the spatial trend (if type="trend"), values of the condi-
tional intensity (if type="cif" or type="lambda"), values of the intensity (if type="intensity")
or numbers of points (if type="count").

If se=TRUE, then the result is a list with two entries, the first being the predicted values in the format
described above, and the second being the standard errors in the same format.

Warnings

The current implementation invokes predict.glm so that prediction is wrong if the trend formula
in object involves terms in ns(), bs() or poly(). This is a weakness of predict.glm itself!

Error messages may be very opaque, as they tend to come from deep in the workings of predict.glm.
If you are passing the covariates argument and the function crashes, it is advisable to start by
checking that all the conditions listed above are satisfied.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A. and Turner, R. Practical maximum pseudolikelihood for spatial point patterns. Aus-
tralian and New Zealand Journal of Statistics 42 (2000) 283–322.

Berman, M. and Turner, T.R. Approximating point process likelihoods with GLIM. Applied Statis-
tics 41 (1992) 31–38.

340 predict.rppm

See Also

ppm, ppm.object, plot.ppm, print.ppm, fitted.ppm, spatstat.options

Examples

m <- ppm(cells ~ polynom(x,y,2), Strauss(0.05))
trend <- predict(m, type="trend")
if(human <- interactive()) {
image(trend)
points(cells)
}
cif <- predict(m, type="cif")
if(human) {
persp(cif)
}
mj <- ppm(japanesepines ~ harmonic(x,y,2))
se <- predict(mj, se=TRUE) # image of standard error
ci <- predict(mj, interval="c") # two images, confidence interval

prediction interval for total number of points
predict(mj, type="count", interval="p")

prediction intervals for counts in tiles
predict(mj, window=quadrats(japanesepines, 3), type="count", interval="p")

prediction at arbitrary locations
predict(mj, locations=data.frame(x=0.3, y=0.4))

X <- runifpoint(5, Window(japanesepines))
predict(mj, locations=X, se=TRUE)

multitype
rr <- matrix(0.06, 2, 2)
ma <- ppm(amacrine ~ marks, MultiStrauss(rr))
Z <- predict(ma)
Z <- predict(ma, type="cif")
predict(ma, locations=data.frame(x=0.8, y=0.5,marks="on"), type="cif")

predict.rppm Make Predictions From a Recursively Partitioned Point Process Model

Description

Given a model which has been fitted to point pattern data by recursive partitioning, compute the
predicted intensity of the model.

predict.rppm 341

Usage

S3 method for class 'rppm'
predict(object, ...)

S3 method for class 'rppm'
fitted(object, ...)

Arguments

object Fitted point process model of class "rppm" produced by the function rppm.

... Optional arguments passed to predict.ppm to specify the locations where pre-
diction is required. (Ignored by fitted.rppm)

Details

These functions are methods for the generic functions fitted and predict. They compute the
fitted intensity of a point process model. The argument object should be a fitted point process
model of class "rppm" produced by the function rppm.

The fitted method computes the fitted intensity at the original data points, yielding a numeric
vector with one entry for each data point.

The predict method computes the fitted intensity at any locations. By default, predictions are
calculated at a regular grid of spatial locations, and the result is a pixel image giving the predicted
intensity values at these locations.

Alternatively, predictions can be performed at other locations, or a finer grid of locations, or
only at certain specified locations, using additional arguments ... which will be interpreted by
predict.ppm. Common arguments are ngrid to increase the grid resolution, window to specify the
prediction region, and locations to specify the exact locations of predictions. See predict.ppm
for details of these arguments.

Predictions are computed by evaluating the explanatory covariates at each desired location, and
applying the recursive partitioning rule to each set of covariate values.

Value

The result of fitted.rppm is a numeric vector.

The result of predict.rppm is a pixel image, a list of pixel images, or a numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rppm, plot.rppm

342 predict.slrm

Examples

fit <- rppm(unmark(gorillas) ~ vegetation, data=gorillas.extra)
plot(predict(fit))
lambdaX <- fitted(fit)
lambdaX[1:5]
Mondriaan pictures
plot(predict(rppm(redwoodfull ~ x + y)))
points(redwoodfull)

predict.slrm Predicted or Fitted Values from Spatial Logistic Regression

Description

Given a fitted Spatial Logistic Regression model, this function computes the fitted probabilities for
each pixel, or the fitted point process intensity, or the values of the linear predictor in each pixel.

Usage

S3 method for class 'slrm'
predict(object, ..., type = "intensity",

newdata=NULL, window=NULL)

Arguments

object a fitted spatial logistic regression model. An object of class "slrm".
... Optional arguments passed to pixellate determining the pixel resolution for

the discretisation of the point pattern.
type Character string (partially) matching one of "probabilities", "intensity"

or "link".
newdata Optional. List containing new covariate values for the prediction. See Details.
window Optional. New window in which to predict. An object of class "owin".

Details

This is a method for predict for spatial logistic regression models (objects of class "slrm", usually
obtained from the function slrm).

The argument type determines which quantity is computed. If type="intensity"), the value of
the point process intensity is computed at each pixel. If type="probabilities") the probability of
the presence of a random point in each pixel is computed. If type="link", the value of the linear
predictor is computed at each pixel.

If newdata = NULL (the default), the algorithm computes fitted values of the model (based on the
data that was originally used to fit the model object).

If newdata is given, the algorithm computes predicted values of the model, using the new values
of the covariates provided by newdata. The argument newdata should be a list; names of entries
in the list should correspond to variables appearing in the model formula of the object. Each list
entry may be a pixel image or a single numeric value.

print.ppm 343

Value

A pixel image (object of class "im") containing the predicted values for each pixel.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

slrm

Examples

X <- rpoispp(42)
fit <- slrm(X ~ x+y)
plot(predict(fit))

X <- copper$SouthPoints
Y <- copper$SouthLines
Z <- distmap(Y)
fitc <- slrm(X ~ Z)
pc <- predict(fitc)

Znew <- distmap(copper$Lines)[copper$SouthWindow]
pcnew <- predict(fitc, newdata=list(Z=Znew))

print.ppm Print a Fitted Point Process Model

Description

Default print method for a fitted point process model.

Usage

S3 method for class 'ppm'
print(x,...,

what=c("all", "model", "trend", "interaction", "se", "errors"))

Arguments

x A fitted point process model, typically obtained from the model-fittingg algo-
rithm ppm. An object of class "ppm".

what Character vector (partially-matched) indicating what information should be printed.

... Ignored.

344 profilepl

Details

This is the print method for the class "ppm". It prints information about the fitted model in a
sensible format.

The argument what makes it possible to print only some of the information.

If what is missing, then by default, standard errors for the estimated coefficients of the model will be
printed only if the model is a Poisson point process. To print the standard errors for a non-Poisson
model, call print.ppm with the argument what given explicitly, or reset the default rule by typing
spatstat.options(print.ppm.SE="always").

Value

none.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

ppm.object for details of the class "ppm".

ppm for generating these objects.

plot.ppm, predict.ppm

Examples

m <- ppm(cells ~1, Strauss(0.05))
m

profilepl Fit Models by Profile Maximum Pseudolikelihood or AIC

Description

Fits point process models by maximising the profile likelihood, profile pseudolikelihood, profile
composite likelihood or AIC.

Usage

profilepl(s, f, ..., aic=FALSE, rbord=NULL, verbose = TRUE, fast=TRUE)

profilepl 345

Arguments

s Data frame containing values of the irregular parameters over which the criterion
will be computed.

f Function (such as Strauss) that generates an interpoint interaction object, given
values of the irregular parameters.

... Data passed to ppm to fit the model.

aic Logical value indicating whether to find the parameter values which minimise
the AIC (aic=TRUE) or maximise the profile likelihood (aic=FALSE, the default).

rbord Radius for border correction (same for all models). If omitted, this will be com-
puted from the interactions.

verbose Logical value indicating whether to print progress reports.

fast Logical value indicating whether to use a faster, less accurate model-fitting tech-
nique when computing the profile pseudolikelihood. See Section on Speed and
Accuracy.

Details

The model-fitting function ppm fits point process models to point pattern data. However, only the
‘regular’ parameters of the model can be fitted by ppm. The model may also depend on ‘irregular’
parameters that must be fixed in any call to ppm.

This function profilepl is a wrapper which finds the values of the irregular parameters that give
the best fit. If aic=FALSE (the default), the best fit is the model which maximises the likelihood
(if the models are Poisson processes) or maximises the pseudolikelihood or logistic likelihood. If
aic=TRUE then the best fit is the model which minimises the Akaike Information Criterion AIC.ppm.

The argument s must be a data frame whose columns contain values of the irregular parameters
over which the maximisation is to be performed.

An irregular parameter may affect either the interpoint interaction or the spatial trend.

interaction parameters: in a call to ppm, the argument interaction determines the interaction
between points. It is usually a call to a function such as Strauss. The arguments of this
call are irregular parameters. For example, the interaction radius parameter r of the Strauss
process, determined by the argument r to the function Strauss, is an irregular parameter.

trend parameters: in a call to ppm, the spatial trend may depend on covariates, which are supplied
by the argument covariates. These covariates may be functions written by the user, of the
form function(x,y,...), and the extra arguments ... are irregular parameters.

The argument f determines the interaction for each model to be fitted. It would typically be one
of the functions Poisson, AreaInter, BadGey, DiggleGatesStibbard, DiggleGratton, Fiksel,
Geyer, Hardcore, LennardJones, OrdThresh, Softcore, Strauss or StraussHard. Alternatively
it could be a function written by the user.

Columns of s which match the names of arguments of f will be interpreted as interaction parame-
ters. Other columns will be interpreted as trend parameters.

The data frame s must provide values for each argument of f, except for the optional arguments,
which are those arguments of f that have the default value NA.

346 profilepl

To find the best fit, each row of s will be taken in turn. Interaction parameters in this row will be
passed to f, resulting in an interaction object. Then ppm will be applied to the data ... using this
interaction. Any trend parameters will be passed to ppm through the argument covfunargs. This
results in a fitted point process model. The value of the log pseudolikelihood or AIC from this
model is stored. After all rows of s have been processed in this way, the row giving the maximum
value of log pseudolikelihood will be found.

The object returned by profilepl contains the profile pseudolikelihood (or profile AIC) function,
the best fitting model, and other data. It can be plotted (yielding a plot of the log pseudolikelihood or
AIC values against the irregular parameters) or printed (yielding information about the best fitting
values of the irregular parameters).

In general, f may be any function that will return an interaction object (object of class "interact")
that can be used in a call to ppm. Each argument of f must be a single value.

Value

An object of class "profilepl". There are methods for plot, print, summary, simulate, as.ppm,
fitin and parameters for objects of this class.

The components of the object include

fit Best-fitting model

param The data frame s

iopt Row index of the best-fitting parameters in s

To extract the best fitting model you can also use as.ppm.

Speed and Accuracy

Computation of the profile pseudolikelihood can be time-consuming. We recommend starting with
a small experiment in which s contains only a few rows of values. This will indicate roughly
the optimal values of the parameters. Then a full calculation using more finely spaced values can
identify the exact optimal values.

It is normal that the procedure appears to slow down at the end. During the computation of the
profile pseudolikelihood, the model-fitting procedure is accelerated by omitting some calculations
that are not needed for computing the pseudolikelihood. When the optimal parameter values have
been identified, they are used to fit the final model in its entirety. Fitting the final model can take
longer than computing the profile pseudolikelihood.

If fast=TRUE (the default), then additional shortcuts are taken in order to accelerate the computation
of the profile log pseudolikelihood. These shortcuts mean that the values of the profile log pseudo-
likelihood in the result ($prof) may not be equal to the values that would be obtained if the model
was fitted normally. Currently this happens only for the area interaction AreaInter. It may be wise
to do a small experiment with fast=TRUE and then a definitive calculation with fast=FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

prune.rppm 347

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

See Also

plot.profilepl

Examples

human <- interactive()
one irregular parameter
if(human) {

rr <- data.frame(r=seq(0.05,0.15, by=0.01))
} else {

rr <- data.frame(r=c(0.05,0.1,0.15))
}
ps <- profilepl(rr, Strauss, cells)
ps
plot(ps)

two irregular parameters
if(human) {

rs <- expand.grid(r=seq(0.05,0.15, by=0.01),sat=1:3)
} else {

rs <- expand.grid(r=c(0.07,0.12),sat=1:2)
}
pg <- profilepl(rs, Geyer, cells)
pg
as.ppm(pg)

more information
summary(pg)

multitype pattern with a common interaction radius
RR <- data.frame(R=seq(0.03,0.05,by=0.01))
MS <- function(R) { MultiStrauss(radii=diag(c(R,R))) }
pm <- profilepl(RR, MS, amacrine ~marks)

prune.rppm Prune a Recursively Partitioned Point Process Model

Description

Given a model which has been fitted to point pattern data by recursive partitioning, apply pruning
to reduce the complexity of the partition tree.

348 pseudoR2

Usage

S3 method for class 'rppm'
prune(tree, ...)

Arguments

tree Fitted point process model of class "rppm" produced by the function rppm.

... Arguments passed to prune.rpart to control the pruning procedure.

Details

This is a method for the generic function prune for the class "rppm". An object of this class is a
point process model, fitted to point pattern data by recursive partitioning, by the function rppm.

The recursive partition tree will be pruned using prune.rpart. The result is another object of class
"rppm".

Value

Object of class "rppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

rppm, plot.rppm, predict.rppm.

Examples

Murchison gold data
mur <- solapply(murchison, rescale, s=1000, unitname="km")
mur$dfault <- distfun(mur$faults)
fit <- rppm(gold ~ dfault + greenstone, data=mur)
fit
prune(fit, cp=0.1)

pseudoR2 Calculate Pseudo-R-Squared for Point Process Model

Description

Given a fitted point process model, calculate the pseudo-R-squared value, which measures the frac-
tion of variation in the data that is explained by the model.

pseudoR2 349

Usage

pseudoR2(object, ...)

S3 method for class 'ppm'
pseudoR2(object, ..., keepoffset=TRUE)

S3 method for class 'slrm'
pseudoR2(object, ..., keepoffset=TRUE)

Arguments

object Fitted point process model. An object of class "ppm" or "slrm".

keepoffset Logical value indicating whether to retain offset terms in the model when com-
puting the deviance difference. See Details.

... Additional arguments passed to deviance.ppm or deviance.slrm.

Details

The function pseudoR2 is generic, with methods for fitted point process models of class "ppm" and
"slrm".

This function computes McFadden’s pseudo-Rsquared

R2 = 1− D

D0

where D is the deviance of the fitted model object, and D0 is the deviance of the null model.
Deviance is defined as twice the negative log-likelihood or log-pseudolikelihood.

The null model is usually obtained by re-fitting the model using the trend formula ~1. However
if the original model formula included offset terms, and if keepoffset=TRUE (the default), then
the null model formula consists of these offset terms. This ensures that the pseudoR2 value is
non-negative.

Value

A single numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

deviance.ppm, deviance.slrm.

350 psib

Examples

fit <- ppm(swedishpines ~ x+y)
pseudoR2(fit)

xcoord <- as.im(function(x,y) x, Window(swedishpines))
fut <- ppm(swedishpines ~ offset(xcoord/200) + y)
pseudoR2(fut)

psib Sibling Probability of Cluster Point Process

Description

Computes the sibling probability of a cluster point process model.

Usage

psib(object)

S3 method for class 'kppm'
psib(object)

Arguments

object Fitted cluster point process model (object of class "kppm").

Details

In a Poisson cluster process, two points are called siblings if they belong to the same cluster, that
is, if they had the same parent point. If two points of the process are separated by a distance r, the
probability that they are siblings is p(r) = 1 − 1/g(r) where g is the pair correlation function of
the process.

The value p(0) = 1 − 1/g(0) is the probability that, if two points of the process are situated very
close to each other, they came from the same cluster. This probability is an index of the strength of
clustering, with high values suggesting strong clustering.

This concept was proposed in Baddeley, Rubak and Turner (2015, page 479) and Baddeley (2017).
It was shown in Baddeley et al (2022) that the sibling probability is directly related to the strength
of clustering.

Value

A single number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

psst 351

References

Baddeley, A. (2017) Local composite likelihood for spatial point processes. Spatial Statistics 22,
261–295.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Baddeley, A., Davies, T.M., Hazelton, M.L., Rakshit, S. and Turner, R. (2022) Fundamental prob-
lems in fitting spatial cluster process models. Spatial Statistics 52, 100709. DOI: 10.1016/j.spasta.2022.100709

See Also

kppm, panysib

Examples

fit <- kppm(redwood ~1, "Thomas")
psib(fit)

psst Pseudoscore Diagnostic For Fitted Model against General Alternative

Description

Given a point process model fitted to a point pattern dataset, and any choice of functional summary
statistic, this function computes the pseudoscore test statistic of goodness-of-fit for the model.

Usage

psst(object, fun, r = NULL, breaks = NULL, ...,
model=NULL,
trend = ~1, interaction = Poisson(), rbord = reach(interaction),
truecoef=NULL, hi.res=NULL, funargs = list(correction="best"),
verbose=TRUE)

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
or a point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").

fun Summary function to be applied to each point pattern.

r Optional. Vector of values of the argument r at which the function S(r) should
be computed. This argument is usually not specified. There is a sensible default.

breaks Optional alternative to r for advanced use.

... Ignored.

model Optional. A fitted point process model (object of class "ppm") to be re-fitted to
the data using update.ppm, if object is a point pattern. Overrides the argu-
ments trend,interaction,rbord.

352 psst

trend, interaction, rbord
Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern. See ppm for details.

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true
coefficient vector of the point process model, in calculating the diagnostic. In-
compatible with hi.res.

hi.res Optional. List of parameters passed to quadscheme. If this argument is present,
the model will be re-fitted at high resolution as specified by these parameters.
The coefficients of the resulting fitted model will be taken as the true coeffi-
cients. Then the diagnostic will be computed for the default quadrature scheme,
but using the high resolution coefficients.

funargs List of additional arguments to be passed to fun.

verbose Logical value determining whether to print progress reports during the compu-
tation.

Details

Let x be a point pattern dataset consisting of points x1, . . . , xn in a window W . Consider a point
process model fitted to x, with conditional intensity λ(u, x) at location u. For the purpose of testing
goodness-of-fit, we regard the fitted model as the null hypothesis. Given a functional summary
statistic S, consider a family of alternative models obtained by exponential tilting of the null model
by S. The pseudoscore for the null model is

V (r) =
∑
i

∆S(xi, x, r)−
∫
W

∆S(u, x, r)λ(u, x)du

where the ∆ operator is

∆S(u, x, r) = S(x ∪ {u}, r)− S(x \ u, r)

the difference between the values of S for the point pattern with and without the point u.

According to the Georgii-Nguyen-Zessin formula, V (r) should have mean zero if the model is
correct (ignoring the fact that the parameters of the model have been estimated). Hence V (r) can
be used as a diagnostic for goodness-of-fit.

This algorithm computes V (r) by direct evaluation of the sum and integral. It is computationally
intensive, but it is available for any summary statistic S(r).

The diagnostic V (r) is also called the pseudoresidual of S. On the right hand side of the equation
for V (r) given above, the sum over points of x is called the pseudosum and the integral is called
the pseudocompensator.

Value

A function value table (object of class "fv"), essentially a data frame of function values.

Columns in this data frame include dat for the pseudosum, com for the compensator and res for
the pseudoresidual.

There is a plot method for this class. See fv.object.

psstA 353

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Special cases: psstA, psstG.

Alternative functions: Kres, Gres.

Examples

if(live <- interactive()) {
fit0 <- ppm(cells ~ 1)

} else {
fit0 <- ppm(cells ~ 1, nd=8)

}
G0 <- psst(fit0, Gest)
G0
if(live) plot(G0)

psstA Pseudoscore Diagnostic For Fitted Model against Area-Interaction Al-
ternative

Description

Given a point process model fitted to a point pattern dataset, this function computes the pseudoscore
diagnostic of goodness-of-fit for the model, against moderately clustered or moderately inhibited
alternatives of area-interaction type.

Usage

psstA(object, r = NULL, breaks = NULL, ...,
model = NULL,
trend = ~1, interaction = Poisson(),
rbord = reach(interaction), ppmcorrection = "border",
correction = "all",
truecoef = NULL, hi.res = NULL,
nr=spatstat.options("psstA.nr"),
ngrid=spatstat.options("psstA.ngrid"))

354 psstA

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
or a point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").

r Optional. Vector of values of the argument r at which the diagnostic should be
computed. This argument is usually not specified. There is a sensible default.

breaks This argument is for internal use only.
... Extra arguments passed to quadscheme to determine the quadrature scheme, if

object is a point pattern.
model Optional. A fitted point process model (object of class "ppm") to be re-fitted to

the data using update.ppm, if object is a point pattern. Overrides the argu-
ments trend,interaction,rbord,ppmcorrection.

trend, interaction, rbord
Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern. See ppm for details.

ppmcorrection Optional. Character string specifying the edge correction for the pseudolikeli-
hood to be used in fitting the point process model. Passed to ppm.

correction Optional. Character string specifying which diagnostic quantities will be com-
puted. Options are "all" and "best". The default is to compute all diagnostic
quantities.

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true
coefficient vector of the point process model, in calculating the diagnostic. In-
compatible with hi.res.

hi.res Optional. List of parameters passed to quadscheme. If this argument is present,
the model will be re-fitted at high resolution as specified by these parameters.
The coefficients of the resulting fitted model will be taken as the true coeffi-
cients. Then the diagnostic will be computed for the default quadrature scheme,
but using the high resolution coefficients.

nr Optional. Number of r values to be used if r is not specified.
ngrid Integer. Number of points in the square grid used to compute the approximate

area.

Details

This function computes the pseudoscore test statistic which can be used as a diagnostic for goodness-
of-fit of a fitted point process model.

Let x be a point pattern dataset consisting of points x1, . . . , xn in a window W . Consider a point
process model fitted to x, with conditional intensity λ(u, x) at location u. For the purpose of testing
goodness-of-fit, we regard the fitted model as the null hypothesis. The alternative hypothesis is a
family of hybrid models obtained by combining the fitted model with the area-interaction process
(see AreaInter). The family of alternatives includes models that are slightly more regular than the
fitted model, and others that are slightly more clustered than the fitted model.

The pseudoscore, evaluated at the null model, is

V (r) =
∑
i

A(xi, x, r)−
∫
W

A(u, x, r)λ(u, x)du

psstA 355

where
A(u, x, r) = B(x ∪ {u}, r)−B(x \ u, r)

where B(x, r) is the area of the union of the discs of radius r centred at the points of x (i.e. B(x, r)
is the area of the dilation of x by a distance r). Thus A(u, x, r) is the unclaimed area associated
with u, that is, the area of that part of the disc of radius r centred at the point u that is not covered
by any of the discs of radius r centred at points of x.

According to the Georgii-Nguyen-Zessin formula, V (r) should have mean zero if the model is
correct (ignoring the fact that the parameters of the model have been estimated). Hence V (r) can
be used as a diagnostic for goodness-of-fit.

The diagnostic V (r) is also called the pseudoresidual of S. On the right hand side of the equation
for V (r) given above, the sum over points of x is called the pseudosum and the integral is called
the pseudocompensator.

Value

A function value table (object of class "fv"), essentially a data frame of function values.

Columns in this data frame include dat for the pseudosum, com for the compensator and res for
the pseudoresidual.

There is a plot method for this class. See fv.object.

Warning

This computation can take a very long time.

To shorten the computation time, choose smaller values of the arguments nr and ngrid, or reduce
the values of their defaults spatstat.options("psstA.nr") and spatstat.options("psstA.ngrid").

Computation time is roughly proportional to nr * npoints * ngrid^2 where npoints is the number
of points in the point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Alternative functions: psstG, psst, Gres, Kres.

Point process models: ppm.

Options: spatstat.options

356 psstG

Examples

if(live <- interactive()) {
X <- rStrauss(200,0.1,0.05)

} else {
pso <- spatstat.options(psstA.ngrid=16,psstA.nr=10,

ndummy.min=16,npixel=32)
X <- cells

}

plot(psstA(X))
plot(psstA(X, interaction=Strauss(0.05)))

if(!live) spatstat.options(pso)

psstG Pseudoscore Diagnostic For Fitted Model against Saturation Alterna-
tive

Description

Given a point process model fitted to a point pattern dataset, this function computes the pseudoscore
diagnostic of goodness-of-fit for the model, against moderately clustered or moderately inhibited
alternatives of saturation type.

Usage

psstG(object, r = NULL, breaks = NULL, ...,
model=NULL,
trend = ~1, interaction = Poisson(), rbord = reach(interaction),
truecoef = NULL, hi.res = NULL)

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
or a point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").

r Optional. Vector of values of the argument r at which the diagnostic should be
computed. This argument is usually not specified. There is a sensible default.

breaks Optional alternative to r for advanced use.

... Ignored.

model Optional. A fitted point process model (object of class "ppm") to be re-fitted to
the data using update.ppm, if object is a point pattern. Overrides the argu-
ments trend,interaction,rbord,ppmcorrection.

trend, interaction, rbord
Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern. See ppm for details.

psstG 357

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true
coefficient vector of the point process model, in calculating the diagnostic. In-
compatible with hi.res.

hi.res Optional. List of parameters passed to quadscheme. If this argument is present,
the model will be re-fitted at high resolution as specified by these parameters.
The coefficients of the resulting fitted model will be taken as the true coeffi-
cients. Then the diagnostic will be computed for the default quadrature scheme,
but using the high resolution coefficients.

Details

This function computes the pseudoscore test statistic which can be used as a diagnostic for goodness-
of-fit of a fitted point process model.

Consider a point process model fitted to x, with conditional intensity λ(u, x) at location u. For the
purpose of testing goodness-of-fit, we regard the fitted model as the null hypothesis. The alternative
hypothesis is a family of hybrid models obtained by combining the fitted model with the Geyer
saturation process (see Geyer) with saturation parameter 1. The family of alternatives includes
models that are more regular than the fitted model, and others that are more clustered than the fitted
model.

For any point pattern x, and any r > 0, let S(x, r) be the number of points in x whose nearest
neighbour (the nearest other point in x) is closer than r units. Then the pseudoscore for the null
model is

V (r) =
∑
i

∆S(xi, x, r)−
∫
W

∆S(u, x, r)λ(u, x)du

where the ∆ operator is

∆S(u, x, r) = S(x ∪ {u}, r)− S(x \ u, r)

the difference between the values of S for the point pattern with and without the point u.

According to the Georgii-Nguyen-Zessin formula, V (r) should have mean zero if the model is
correct (ignoring the fact that the parameters of the model have been estimated). Hence V (r) can
be used as a diagnostic for goodness-of-fit.

The diagnostic V (r) is also called the pseudoresidual of S. On the right hand side of the equation
for V (r) given above, the sum over points of x is called the pseudosum and the integral is called
the pseudocompensator.

Value

A function value table (object of class "fv"), essentially a data frame of function values.

Columns in this data frame include dat for the pseudosum, com for the compensator and res for
the pseudoresidual.

There is a plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

358 qqplot.ppm

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Alternative functions: psstA, psst, Kres, Gres.

Examples

if(live <- interactive()) {
X <- rStrauss(200,0.1,0.05)

} else {
pso <- spatstat.options(ndummy.min=16,npixel=32)
X <- cells

}

plot(psstG(X))
plot(psstG(X, interaction=Strauss(0.05)))

if(!live) spatstat.options(pso)

qqplot.ppm Q-Q Plot of Residuals from Fitted Point Process Model

Description

Given a point process model fitted to a point pattern, produce a Q-Q plot based on residuals from
the model.

Usage

qqplot.ppm(fit, nsim=100, expr=NULL, ..., type="raw",
style="mean", fast=TRUE, verbose=TRUE, plot.it=TRUE,
dimyx=NULL, nrep=if(fast) 5e4 else 1e5,
control=update(default.rmhcontrol(fit), nrep=nrep),
saveall=FALSE,
monochrome=FALSE,
limcol=if(monochrome) "black" else "red",
maxerr=max(100, ceiling(nsim/10)),
check=TRUE, repair=TRUE, envir.expr)

Arguments

fit The fitted point process model, which is to be assessed using the Q-Q plot. An
object of class "ppm". Smoothed residuals obtained from this fitted model will
provide the “data” quantiles for the Q-Q plot.

nsim The number of simulations from the “reference” point process model.

qqplot.ppm 359

expr Determines the simulation mechanism which provides the “theoretical” quan-
tiles for the Q-Q plot. See Details.

... Arguments passed to diagnose.ppm influencing the computation of residuals.

type String indicating the type of residuals or weights to be used. Current options are
"eem" for the Stoyan-Grabarnik exponential energy weights, "raw" for the raw
residuals, "inverse" for the inverse-lambda residuals, and "pearson" for the
Pearson residuals. A partial match is adequate.

style Character string controlling the type of Q-Q plot. Options are "classical" and
"mean". See Details.

fast Logical flag controlling the speed and accuracy of computation. Use fast=TRUE
for interactive use and fast=FALSE for publication standard plots. See Details.

verbose Logical flag controlling whether the algorithm prints progress reports during
long computations.

plot.it Logical flag controlling whether the function produces a plot or simply returns
a value (silently).

dimyx Dimensions of the pixel grid on which the smoothed residual field will be cal-
culated. A vector of two integers.

nrep If control is absent, then nrep gives the number of iterations of the Metropolis-
Hastings algorithm that should be used to generate one simulation of the fitted
point process.

control List of parameters controlling the Metropolis-Hastings algorithm rmh which
generates each simulated realisation from the model (unless the model is Pois-
son). This list becomes the argument control of rmh.default. It overrides
nrep.

saveall Logical flag indicating whether to save all the intermediate calculations.

monochrome Logical flag indicating whether the plot should be in black and white (monochrome=TRUE),
or in colour (monochrome=FALSE).

limcol String. The colour to be used when plotting the 95% limit curves.

maxerr Maximum number of failures tolerated while generating simulated realisations.
See Details.

check Logical value indicating whether to check the internal format of fit. If there
is any possibility that this object has been restored from a dump file, or has
otherwise lost track of the environment where it was originally computed, set
check=TRUE.

repair Logical value indicating whether to repair the internal format of fit, if it is
found to be damaged.

envir.expr Optional. An environment in which the expression expr should be evaluated.

Details

This function generates a Q-Q plot of the residuals from a fitted point process model. It is an
addendum to the suite of diagnostic plots produced by the function diagnose.ppm, kept separate
because it is computationally intensive. The quantiles of the theoretical distribution are estimated
by simulation.

360 qqplot.ppm

In classical statistics, a Q-Q plot of residuals is a useful diagnostic for checking the distributional
assumptions. Analogously, in spatial statistics, a Q-Q plot of the (smoothed) residuals from a fitted
point process model is a useful way to check the interpoint interaction part of the model (Baddeley
et al, 2005). The systematic part of the model (spatial trend, covariate effects, etc) is assessed using
other plots made by diagnose.ppm.

The argument fit represents the fitted point process model. It must be an object of class "ppm"
(typically produced by the maximum pseudolikelihood fitting algorithm ppm). Residuals will be
computed for this fitted model using residuals.ppm, and the residuals will be kernel-smoothed to
produce a “residual field”. The values of this residual field will provide the “data” quantiles for the
Q-Q plot.

The argument expr is not usually specified. It provides a way to modify the “theoretical” or “refer-
ence” quantiles for the Q-Q plot.

In normal usage we set expr=NULL. The default is to generate nsim simulated realisations of the
fitted model fit, re-fit this model to each of the simulated patterns, evaluate the residuals from
these fitted models, and use the kernel-smoothed residual field from these fitted models as a sample
from the reference distribution for the Q-Q plot.

In advanced use, expr may be an expression. It will be re-evaluated nsim times, and should
include random computations so that the results are not identical each time. The result of evaluating
expr should be either a point pattern (object of class "ppp") or a fitted point process model (object
of class "ppm"). If the value is a point pattern, then the original fitted model fit will be fitted to this
new point pattern using update.ppm, to yield another fitted model. Smoothed residuals obtained
from these nsim fitted models will yield the “theoretical” quantiles for the Q-Q plot.

Alternatively expr can be a list of point patterns, or an envelope object that contains a list of point
patterns (typically generated by calling envelope with savepatterns=TRUE). These point patterns
will be used as the simulated patterns.

Simulation is performed (if expr=NULL) using the Metropolis-Hastings algorithm rmh. Each sim-
ulated realisation is the result of running the Metropolis-Hastings algorithm from an independent
random starting state each time. The iterative and termination behaviour of the Metropolis-Hastings
algorithm are governed by the argument control. See rmhcontrol for information about this ar-
gument. As a shortcut, the argument nrep determines the number of Metropolis-Hastings iterations
used to generate each simulated realisation, if control is absent.

By default, simulations are generated in an expanded window. Use the argument control to change
this, as explained in the section on Warning messages.

The argument type selects the type of residual or weight that will be computed. For options, see
diagnose.ppm.

The argument style determines the type of Q-Q plot. It is highly recommended to use the default,
style="mean".

style="classical" The quantiles of the residual field for the data (on the y axis) are plotted
against the quantiles of the pooled simulations (on the x axis). This plot is biased, and there-
fore difficult to interpret, because of strong autocorrelations in the residual field and the large
differences in sample size.

style="mean" The order statistics of the residual field for the data are plotted against the sample
means, over the nsim simulations, of the corresponding order statistics of the residual field
for the simulated datasets. Dotted lines show the 2.5 and 97.5 percentiles, over the nsim
simulations, of each order statistic.

qqplot.ppm 361

The argument fast is a simple way to control the accuracy and speed of computation. If fast=FALSE,
the residual field is computed on a fine grid of pixels (by default 100 by 100 pixels, see below)
and the Q-Q plot is based on the complete set of order statistics (usually 10,000 quantiles). If
fast=TRUE, the residual field is computed on a coarse grid (at most 40 by 40 pixels) and the Q-
Q plot is based on the percentiles only. This is about 7 times faster. It is recommended to use
fast=TRUE for interactive data analysis and fast=FALSE for definitive plots for publication.

The argument dimyx gives full control over the resolution of the pixel grid used to calculate the
smoothed residuals. Its interpretation is the same as the argument dimyx to the function as.mask.
Note that dimyx[1] is the number of pixels in the y direction, and dimyx[2] is the number in
the x direction. If dimyx is not present, then the default pixel grid dimensions are controlled by
spatstat.options("npixel").

Since the computation is so time-consuming, qqplot.ppm returns a list containing all the data
necessary to re-display the Q-Q plot. It is advisable to assign the result of qqplot.ppm to something
(or use .Last.value if you forgot to.) The return value is an object of class "qqppm". There are
methods for plot.qqppm and print.qqppm. See the Examples.

The argument saveall is usually set to FALSE. If saveall=TRUE, then the intermediate results
of calculation for each simulated realisation are saved and returned. The return value includes a
3-dimensional array sim containing the smoothed residual field images for each of the nsim real-
isations. When saveall=TRUE, the return value is an object of very large size, and should not be
saved on disk.

Errors may occur during the simulation process, because random data are generated. For example:

• one of the simulated patterns may be empty.

• one of the simulated patterns may cause an error in the code that fits the point process model.

• the user-supplied argument expr may have a bug.

Empty point patterns do not cause a problem for the code, but they are reported. Other problems that
would lead to a crash are trapped; the offending simulated data are discarded, and the simulation is
retried. The argument maxerr determines the maximum number of times that such errors will be
tolerated (mainly as a safeguard against an infinite loop).

Value

An object of class "qqppm" containing the information needed to reproduce the Q-Q plot. Entries x
and y are numeric vectors containing quantiles of the simulations and of the data, respectively.

Side Effects

Produces a Q-Q plot if plot.it is TRUE.

Warning messages

A warning message will be issued if any of the simulations trapped an error (a potential crash).

A warning message will be issued if all, or many, of the simulated point patterns are empty. This
usually indicates a problem with the simulation procedure.

The default behaviour of qqplot.ppm is to simulate patterns on an expanded window (specified
through the argument control) in order to avoid edge effects. The model’s trend is extrapolated

362 qqplot.ppm

over this expanded window. If the trend is strongly inhomogeneous, the extrapolated trend may
have very large (or even infinite) values. This can cause the simulation algorithm to produce empty
patterns.

The only way to suppress this problem entirely is to prohibit the expansion of the window, by setting
the control argument to something like control=list(nrep=1e6, expand=1). Here expand=1
means there will be no expansion. See rmhcontrol for more information about the argument
control.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Stoyan, D. and Grabarnik, P. (1991) Second-order characteristics for stochastic structures connected
with Gibbs point processes. Mathematische Nachrichten, 151:95–100.

See Also

diagnose.ppm, lurking, residuals.ppm, eem, ppm.object, ppm, rmh, rmhcontrol

Examples

fit <- ppm(cells ~1, Poisson())
diagnose.ppm(fit) # no suggestion of departure from stationarity
if(interactive()) {

qqplot.ppm(fit, 80) # strong evidence of non-Poisson interaction
diagnose.ppm(fit, type="pearson")
qqplot.ppm(fit, type="pearson")
}

capture the plot coordinates
mypreciousdata <- qqplot.ppm(fit, 4, type="pearson")
or use the idiom .Last.value if you forgot to assign them
qqplot.ppm(fit, 4, type="pearson")
mypreciousdata <- .Last.value
plot(mypreciousdata)

##
Q-Q plots based on fixed n
The above QQ plots used simulations from the (fitted) Poisson process.
But I want to simulate conditional on n, instead of Poisson
Do this by setting rmhcontrol(p=1)
fixit <- list(p=1)
if(interactive()) {qqplot.ppm(fit, 100, control=fixit)}

quad.ppm 363

##
Inhomogeneous Poisson data
X <- rpoispp(function(x,y){1000 * exp(-3*x)}, 1000)
plot(X)
Inhomogeneous Poisson model
fit <- ppm(X ~x, Poisson())
if(interactive()) {qqplot.ppm(fit, 100)}

conclusion: fitted inhomogeneous Poisson model looks OK

##
Advanced use of 'expr' argument
#
set the initial conditions in Metropolis-Hastings algorithm
#
expr <- expression(rmh(fit, start=list(n.start=42), verbose=FALSE))
if(interactive()) qqplot.ppm(fit, 100, expr)

quad.ppm Extract Quadrature Scheme Used to Fit a Point Process Model

Description

Given a fitted point process model, this function extracts the quadrature scheme used to fit the
model.

Usage

quad.ppm(object, drop=FALSE, clip=FALSE)

Arguments

object fitted point process model (an object of class "ppm" or "kppm" or "lppm").

drop Logical value determining whether to delete quadrature points that were not
used to fit the model.

clip Logical value determining whether to erode the window, if object was fitted
using the border correction. See Details.

Details

An object of class "ppm" represents a point process model that has been fitted to data. It is typically
produced by the model-fitting algorithm ppm.

The maximum pseudolikelihood algorithm in ppm approximates the pseudolikelihood integral by
a sum over a finite set of quadrature points, which is constructed by augmenting the original data

364 quad.ppm

point pattern by a set of “dummy” points. The fitted model object returned by ppm contains complete
information about this quadrature scheme. See ppm or ppm.object for further information.

This function quad.ppm extracts the quadrature scheme. A typical use of this function would be to
inspect the quadrature scheme (points and weights) to gauge the accuracy of the approximation to
the exact pseudolikelihood.

Some quadrature points may not have been used in fitting the model. This happens if the border
correction is used, and in other cases (e.g. when the value of a covariate is NA at these points). The
argument drop specifies whether these unused quadrature points shall be deleted (drop=TRUE) or
retained (drop=FALSE) in the return value.

The quadrature scheme has a window, which by default is set to equal the window of the original
data. However this window may be larger than the actual domain of integration of the pseudolike-
lihood or composite likelihood that was used to fit the model. If clip=TRUE then the window of the
quadrature scheme is set to the actual domain of integration. This option only has an effect when the
model was fitted using the border correction; then the window is obtained by eroding the original
data window by the border correction distance.

See ppm.object for a list of all operations that can be performed on objects of class "ppm". See
quad.object for a list of all operations that can be performed on objects of class "quad".

This function can also be applied to objects of class "kppm" and "lppm".

Value

A quadrature scheme (object of class "quad").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

ppm.object, quad.object, ppm

Examples

fit <- ppm(cells ~1, Strauss(r=0.1))
Q <- quad.ppm(fit)

plot(Q)

npoints(Q$data)
npoints(Q$dummy)

quadrat.test.mppm 365

quadrat.test.mppm Chi-Squared Test for Multiple Point Process Model Based on Quadrat
Counts

Description

Performs a chi-squared goodness-of-fit test of a Poisson point process model fitted to multiple point
patterns.

Usage

S3 method for class 'mppm'
quadrat.test(X, ...)

Arguments

X An object of class "mppm" representing a point process model fitted to multiple
point patterns. It should be a Poisson model.

... Arguments passed to quadrat.test.ppm which determine the size of the quadrats.

Details

This function performs a χ2 test of goodness-of-fit for a Poisson point process model, based on
quadrat counts. It can also be used to perform a test of Complete Spatial Randomness for a list of
point patterns.

The function quadrat.test is generic, with methods for point patterns (class "ppp"), point process
models (class "ppm") and multiple point process models (class "mppm").

For this function, the argument X should be a multiple point process model (object of class "mppm")
obtained by fitting a point process model to a list of point patterns using the function mppm.

To perform the test, the data point patterns are extracted from X. For each point pattern

• the window of observation is divided into rectangular tiles, and the number of data points in
each tile is counted, as described in quadratcount.

• The expected number of points in each quadrat is calculated, as determined by the fitted model.

Then we perform a single χ2 test of goodness-of-fit based on these observed and expected counts.

Value

An object of class "htest". Printing the object gives comprehensible output about the outcome of
the test. The p-value of the test is stored in the component p.value.

The return value also belongs to the special class "quadrat.test". Plotting the object will display,
for each window, the position of the quadrats, annotated by their observed and expected counts and
the Pearson residuals. See the examples.

The return value also has an attribute "components" which is a list containing the results of χ2 tests
of goodness-of-fit for each individual point pattern.

366 quadrat.test.ppm

Testing Complete Spatial Randomness

If the intention is to test Complete Spatial Randomness (CSR) there are two options:

• CSR with the same intensity of points in each point pattern;

• CSR with a different, unrelated intensity of points in each point pattern.

In the first case, suppose P is a list of point patterns we want to test. Then fit the multiple model
fit1 <- mppm(P ~1) which signifies a Poisson point process model with a constant intensity. Then
apply quadrat.test(fit1).

In the second case, fit the model fit2 <- mppm(P ~id) which signifies a Poisson point process with
a different constant intensity for each point pattern. Then apply quadrat.test(fit2).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

mppm, quadrat.test

Examples

H <- hyperframe(X=waterstriders)
Poisson with constant intensity for all patterns
fit1 <- mppm(X~1, H)
quadrat.test(fit1, nx=2)

uniform Poisson with different intensity for each pattern
fit2 <- mppm(X ~ id, H)
quadrat.test(fit2, nx=2)

quadrat.test.ppm Dispersion Test for Spatial Point Pattern Based on Quadrat Counts

Description

Performs a test of Complete Spatial Randomness for a given point pattern, based on quadrat counts.
Alternatively performs a goodness-of-fit test of a fitted inhomogeneous Poisson model. By default
performs chi-squared tests; can also perform Monte Carlo based tests.

quadrat.test.ppm 367

Usage

S3 method for class 'ppm'
quadrat.test(X, nx=5, ny=nx,

alternative=c("two.sided", "regular", "clustered"),
method=c("Chisq", "MonteCarlo"),
conditional=TRUE, CR=1, df.est=NULL,
...,
xbreaks=NULL, ybreaks=NULL, tess=NULL,
nsim=1999)

S3 method for class 'slrm'
quadrat.test(X, nx=5, ny=nx,

alternative=c("two.sided", "regular", "clustered"),
method=c("Chisq", "MonteCarlo"),
conditional=TRUE, CR=1, df.est=NULL,
...,
xbreaks=NULL, ybreaks=NULL, tess=NULL,
nsim=1999)

Arguments

X A point pattern (object of class "ppp") to be subjected to the goodness-of-fit test.
Alternatively a fitted point process model (object of class "ppm" or "slrm") to
be tested. Alternatively X can be the result of applying quadratcount to a point
pattern.

nx, ny Numbers of quadrats in the x and y directions. Incompatible with xbreaks and
ybreaks.

alternative Character string (partially matched) specifying the alternative hypothesis.

method Character string (partially matched) specifying the test to use: either method="Chisq"
for the chi-squared test (the default), or method="MonteCarlo" for a Monte
Carlo test.

conditional Logical. Should the Monte Carlo test be conducted conditionally upon the ob-
served number of points of the pattern? Ignored if method="Chisq".

CR Optional. Numerical value. The exponent for the Cressie-Read test statistic. See
Details.

df.est Optional. Advanced use only. The number of fitted parameters, or the number
of degrees of freedom lost by estimation of parameters.

... Ignored.

xbreaks Optional. Numeric vector giving the x coordinates of the boundaries of the
quadrats. Incompatible with nx.

ybreaks Optional. Numeric vector giving the y coordinates of the boundaries of the
quadrats. Incompatible with ny.

tess Tessellation (object of class "tess" or something acceptable to as.tess) deter-
mining the quadrats. Incompatible with nx, ny, xbreaks, ybreaks.

nsim The number of simulated samples to generate when method="MonteCarlo".

368 quadrat.test.ppm

Details

These functions perform χ2 tests or Monte Carlo tests of goodness-of-fit for a point process model,
based on quadrat counts.

The function quadrat.test is generic, with methods for point patterns (class "ppp"), split point
patterns (class "splitppp"), point process models (class "ppm" or "slrm") and quadrat count tables
(class "quadratcount").

• if X is a point pattern, we test the null hypothesis that the data pattern is a realisation of
Complete Spatial Randomness (the uniform Poisson point process). Marks in the point pattern
are ignored. (If lambda is given then the null hypothesis is the Poisson process with intensity
lambda.)

• if X is a split point pattern, then for each of the component point patterns (taken separately)
we test the null hypotheses of Complete Spatial Randomness. See quadrat.test.splitppp
for documentation.

• If X is a fitted point process model, then it should be a Poisson point process model. The data
to which this model was fitted are extracted from the model object, and are treated as the data
point pattern for the test. We test the null hypothesis that the data pattern is a realisation of the
(inhomogeneous) Poisson point process specified by X.

In all cases, the window of observation is divided into tiles, and the number of data points in each
tile is counted, as described in quadratcount. The quadrats are rectangular by default, or may be
regions of arbitrary shape specified by the argument tess. The expected number of points in each
quadrat is also calculated, as determined by CSR (in the first case) or by the fitted model (in the
second case). Then the Pearson X2 statistic

X2 = sum((observed− expected)2/expected)

is computed.

If method="Chisq" then a χ2 test of goodness-of-fit is performed by comparing the test statistic to
the χ2 distribution with m− k degrees of freedom, where m is the number of quadrats and k is the
number of fitted parameters (equal to 1 for quadrat.test.ppp). The default is to compute the two-
sided p-value, so that the test will be declared significant if X2 is either very large or very small.
One-sided p-values can be obtained by specifying the alternative. An important requirement of
the χ2 test is that the expected counts in each quadrat be greater than 5.

If method="MonteCarlo" then a Monte Carlo test is performed, obviating the need for all expected
counts to be at least 5. In the Monte Carlo test, nsim random point patterns are generated from
the null hypothesis (either CSR or the fitted point process model). The Pearson X2 statistic is
computed as above. The p-value is determined by comparing the X2 statistic for the observed
point pattern, with the values obtained from the simulations. Again the default is to compute the
two-sided p-value.

If conditional is TRUE then the simulated samples are generated from the multinomial distribution
with the number of “trials” equal to the number of observed points and the vector of probabilities
equal to the expected counts divided by the sum of the expected counts. Otherwise the simulated
samples are independent Poisson counts, with means equal to the expected counts.

quadrat.test.ppm 369

If the argument CR is given, then instead of the Pearson X2 statistic, the Cressie-Read (1984) power
divergence test statistic

2nI =
2

CR(CR+ 1)

∑
i

[(
Xi

Ei

)C

R− 1

]

is computed, where Xi is the ith observed count and Ei is the corresponding expected count. The
value CR=1 gives the Pearson X2 statistic; CR=0 gives the likelihood ratio test statistic G2; CR=-1/2
gives the Freeman-Tukey statistic T 2; CR=-1 gives the modified likelihood ratio test statistic GM2;
and CR=-2 gives Neyman’s modified statistic NM2. In all cases the asymptotic distribution of this
test statistic is the same χ2 distribution as above.

The return value is an object of class "htest". Printing the object gives comprehensible output
about the outcome of the test.

The return value also belongs to the special class "quadrat.test". Plotting the object will display
the quadrats, annotated by their observed and expected counts and the Pearson residuals. See the
examples.

Value

An object of class "htest". See chisq.test for explanation.

The return value is also an object of the special class "quadrattest", and there is a plot method
for this class. See the examples.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Cressie, N. and Read, T.R.C. (1984) Multinomial goodness-of-fit tests. Journal of the Royal Statis-
tical Society, Series B 46, 440–464.

See Also

quadrat.test.splitppp, quadratcount, quadrats, quadratresample, chisq.test, cdf.test.

To test a Poisson point process model against a specific alternative, use anova.ppm.

Examples

fitted model: inhomogeneous Poisson
fitx <- ppm(simdat ~ x)
quadrat.test(fitx)

an equivalent test (results differ due to discretisation effects):
quadrat.test(simdat, lambda=predict(fitx), df.est=length(coef(fitx)))

370 ranef.mppm

ranef.mppm Extract Random Effects from Point Process Model

Description

Given a point process model fitted to a list of point patterns, extract the fixed effects of the model.
A method for ranef.

Usage

S3 method for class 'mppm'
ranef(object, ...)

Arguments

object A fitted point process model (an object of class "mppm").

... Ignored.

Details

This is a method for the generic function ranef.

The argument object must be a fitted point process model (object of class "mppm") produced by
the fitting algorithm mppm). This represents a point process model that has been fitted to a list of
several point pattern datasets. See mppm for information.

This function extracts the coefficients of the random effects of the model.

Value

A data frame, or list of data frames, as described in the help for ranef.lme.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented in spatstat by Adrian Bad-
deley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net> and Ege
Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

fixef.mppm, coef.mppm

rdpp 371

Examples

H <- hyperframe(Y = waterstriders)
Tweak data to exaggerate differences
H$Y[[1]] <- rthin(H$Y[[1]], 0.3)

m1 <- mppm(Y ~ id, data=H, Strauss(7))
ranef(m1)
m2 <- mppm(Y ~ 1, random=~1|id, data=H, Strauss(7))
ranef(m2)

rdpp Simulation of a Determinantal Point Process

Description

Generates simulated realisations from a determinantal point process.

Usage

rdpp(eig, index, basis = "fourierbasis",
window = boxx(rep(list(0:1), ncol(index))),
reject_max = 10000, progress = 0, debug = FALSE, ...)

Arguments

eig vector of values between 0 and 1 specifying the non-zero eigenvalues for the
process.

index data.frame or matrix (or something acceptable to as.matrix) specifying in-
dices of the basis functions.

basis character string giving the name of the basis.

window window (of class "owin", "box3" or "boxx") giving the domain of the point
process.

reject_max integer giving the maximal number of trials for rejection sampling.

progress integer giving the interval for making a progress report. The value zero turns
reporting off.

debug logical value indicating whether debug informationb should be outputted.

... Ignored.

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

372 reach

Examples

index <- expand.grid(-2:2,-2:2)
eig <- exp(-rowSums(index^2))
X <- rdpp(eig, index)
X
To simulate a det. projection p. p. with the given indices set eig=1:
XX <- rdpp(1, index)
XX

reach Interaction Distance of a Point Process Model

Description

Computes the interaction distance of a point process model.

Usage

S3 method for class 'ppm'
reach(x, ..., epsilon=0)

S3 method for class 'interact'
reach(x, ...)

S3 method for class 'fii'
reach(x, ..., epsilon)

Arguments

x Either a fitted point process model (object of class "ppm"), an interpoint interac-
tion (object of class "interact"), a fitted interpoint interaction (object of class
"fii") or a point process model for simulation (object of class "rmhmodel").

epsilon Numerical threshold below which interaction is treated as zero. See details.

... Other arguments are ignored.

Details

The function reach computes the ‘interaction distance’ or ‘interaction range’ of a point process
model.

The definition of the interaction distance depends on the type of point process model. This help
page explains the interaction distance for a Gibbs point process. For other kinds of models, see
reach.kppm and reach.dppm.

For a Gibbs point process model, the interaction distance is the shortest distance D such that any
two points in the process which are separated by a distance greater than D do not interact with each
other.

reach 373

For example, the interaction range of a Strauss process (see Strauss or rStrauss) with parameters
β, γ, r is equal to r, unless γ = 1 in which case the model is Poisson and the interaction range is
0. The interaction range of a Poisson process is zero. The interaction range of the Ord threshold
process (see OrdThresh) is infinite, since two points may interact at any distance apart.

The function reach is generic, with methods for the case where x is

• a fitted point process model (object of class "ppm", usually obtained from the model-fitting
function ppm);

• an interpoint interaction structure (object of class "interact") created by one of the functions
Poisson, Strauss, StraussHard, MultiStrauss, MultiStraussHard, Softcore, DiggleGratton,
Pairwise, PairPiece, Geyer, LennardJones, Saturated, OrdThresh or Ord;

• a fitted interpoint interaction (object of class "fii") extracted from a fitted point process
model by the command fitin;

• a point process model for simulation (object of class "rmhmodel"), usually obtained from
rmhmodel.

When x is an "interact" object, reach(x) returns the maximum possible interaction range for any
point process model with interaction structure given by x. For example, reach(Strauss(0.2))
returns 0.2.

When x is a "ppm" object, reach(x) returns the interaction range for the point process model
represented by x. For example, a fitted Strauss process model with parameters beta,gamma,r will
return either 0 or r, depending on whether the fitted interaction parameter gamma is equal or not
equal to 1.

For some point process models, such as the soft core process (see Softcore), the interaction dis-
tance is infinite, because the interaction terms are positive for all pairs of points. A practical solution
is to compute the distance at which the interaction contribution from a pair of points falls below a
threshold epsilon, on the scale of the log conditional intensity. This is done by setting the argument
epsilon to a positive value.

Value

The interaction distance, or NA if this cannot be computed from the information given.

Other types of models

Methods for reach are also defined for point process models of class "kppm" and "dppm". Their
technical definition is different from this one. See reach.kppm and reach.dppm.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

ppm, Poisson, Strauss, StraussHard, MultiStrauss, MultiStraussHard, Softcore, DiggleGratton,
Pairwise, PairPiece, Geyer, LennardJones, Saturated, OrdThresh, Ord.

reach.rmhmodel

See reach.kppm and reach.dppm for other types of point process models.

374 reach.dppm

Examples

reach(Poisson())
returns 0

reach(Strauss(r=7))
returns 7
fit <- ppm(swedishpines ~ 1, Strauss(r=7))
reach(fit)
returns 7

reach(OrdThresh(42))
returns Inf

reach(MultiStrauss(matrix(c(1,3,3,1),2,2)))
returns 3

reach.dppm Range of Interaction for a Determinantal Point Process Model

Description

Returns the range of interaction for a determinantal point process model.

Usage

S3 method for class 'dppm'
reach(x, ...)

S3 method for class 'detpointprocfamily'
reach(x, ...)

Arguments

x Model of class "detpointprocfamily" or "dppm".

... Additional arguments passed to the range function of the given model.

Details

The range of interaction for a determinantal point process model may defined as the smallest number
R such that g(r) = 1 for all r ≥ R, where g is the pair correlation function. For many models the
range is infinite, but one may instead use a value where the pair correlation function is sufficiently
close to 1. For example in the Matérn model this defaults to finding R such that g(R) = 0.99.

Value

Numeric

reach.kppm 375

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

Examples

reach(dppMatern(lambda=100, alpha=.01, nu=1, d=2))

reach.kppm Range of Interaction for a Cox or Cluster Point Process Model

Description

Returns the range of interaction for a Cox or cluster point process model.

Usage

S3 method for class 'kppm'
reach(x, ..., epsilon)

Arguments

x Fitted point process model of class "kppm".

epsilon Optional numerical value. Differences smaller than epsilon are treated as zero.

... Additional arguments passed to the range function of the given model.

Details

The range of interaction for a fitted point process model of class "kppm" may defined as the smallest
number R such that g(r) = 1 for all r ≥ R, where g is the pair correlation function.

For many models the range is infinite, but one may instead use a value where the pair correlation
function is sufficiently close to 1. The argument epsilon specifies the tolerance; there is a sensible
default.

Value

Numeric

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

Examples

fit <- kppm(redwood ~ 1)
reach(fit)

376 relrisk.ppm

relrisk.ppm Parametric Estimate of Spatially-Varying Relative Risk

Description

Given a point process model fitted to a multitype point pattern, this function computes the fitted
spatially-varying probability of each type of point, or the ratios of such probabilities, according to
the fitted model. Optionally the standard errors of the estimates are also computed.

Usage

S3 method for class 'ppm'
relrisk(X, ...,

at = c("pixels", "points"),
relative = FALSE, se = FALSE,
casecontrol = TRUE, control = 1, case,
ngrid = NULL, window = NULL)

Arguments

X A fitted point process model (object of class "ppm").

... Ignored.

at String specifying whether to compute the probability values at a grid of pixel
locations (at="pixels") or only at the points of X (at="points").

relative Logical. If FALSE (the default) the algorithm computes the probabilities of each
type of point. If TRUE, it computes the relative risk, the ratio of probabilities of
each type relative to the probability of a control.

se Logical value indicating whether to compute standard errors as well.

casecontrol Logical. Whether to treat a bivariate point pattern as consisting of cases and
controls, and return only the probability or relative risk of a case. Ignored if
there are more than 2 types of points. See Details.

control Integer, or character string, identifying which mark value corresponds to a con-
trol.

case Integer, or character string, identifying which mark value corresponds to a case
(rather than a control) in a bivariate point pattern. This is an alternative to the
argument control in a bivariate point pattern. Ignored if there are more than 2
types of points.

ngrid Optional. Dimensions of a rectangular grid of locations inside window where
the predictions should be computed. An integer, or an integer vector of length
2, specifying the number of grid points in the y and x directions. (Applies only
when at="pixels".)

window Optional. A window (object of class "owin") delimiting the locations where
predictions should be computed. Defaults to the window of the original data
used to fit the model object. (Applies only when at="pixels".)

relrisk.ppm 377

Details

The command relrisk is generic and can be used to estimate relative risk in different ways.

This function relrisk.ppm is the method for fitted point process models (class "ppm"). It computes
parametric estimates of relative risk, using the fitted model.

If X is a bivariate point pattern (a multitype point pattern consisting of two types of points) then by
default, the points of the first type (the first level of marks(X)) are treated as controls or non-events,
and points of the second type are treated as cases or events. Then by default this command computes
the spatially-varying probability of a case, i.e. the probability p(u) that a point at spatial location u
will be a case. If relative=TRUE, it computes the spatially-varying relative risk of a case relative
to a control, r(u) = p(u)/(1− p(u)).

If X is a multitype point pattern withm > 2 types, or if X is a bivariate point pattern and casecontrol=FALSE,
then by default this command computes, for each type j, a nonparametric estimate of the spatially-
varying probability of an event of type j. This is the probability pj(u) that a point at spatial location
u will belong to type j. If relative=TRUE, the command computes the relative risk of an event of
type j relative to a control, rj(u) = pj(u)/pk(u), where events of type k are treated as controls.
The argument control determines which type k is treated as a control.

If at = "pixels" the calculation is performed for every spatial location u on a fine pixel grid, and
the result is a pixel image representing the function p(u) or a list of pixel images representing the
functions pj(u) or rj(u) for j = 1, . . . ,m. An infinite value of relative risk (arising because the
probability of a control is zero) will be returned as NA.

If at = "points" the calculation is performed only at the data points xi. By default the result is
a vector of values p(xi) giving the estimated probability of a case at each data point, or a matrix
of values pj(xi) giving the estimated probability of each possible type j at each data point. If
relative=TRUE then the relative risks r(xi) or rj(xi) are returned. An infinite value of relative risk
(arising because the probability of a control is zero) will be returned as Inf.

Probabilities and risks are computed from the fitted intensity of the model, using predict.ppm. If
se=TRUE then standard errors will also be computed, based on asymptotic theory, using vcov.ppm.

Value

If se=FALSE (the default), the format is described below. If se=TRUE, the result is a list of two
entries, estimate and SE, each having the format described below.

If X consists of only two types of points, and if casecontrol=TRUE, the result is a pixel image (if
at="pixels") or a vector (if at="points"). The pixel values or vector values are the probabilities
of a case if relative=FALSE, or the relative risk of a case (probability of a case divided by the
probability of a control) if relative=TRUE.

If X consists of more than two types of points, or if casecontrol=FALSE, the result is:

• (if at="pixels") a list of pixel images, with one image for each possible type of point. The
result also belongs to the class "solist" so that it can be printed and plotted.

• (if at="points") a matrix of probabilities, with rows corresponding to data points xi, and
columns corresponding to types j.

The pixel values or matrix entries are the probabilities of each type of point if relative=FALSE,
or the relative risk of each type (probability of each type divided by the probability of a control) if
relative=TRUE.

378 repul.dppm

If relative=FALSE, the resulting values always lie between 0 and 1. If relative=TRUE, the results
are either non-negative numbers, or the values Inf or NA.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

There is another method relrisk.ppp for point pattern datasets which computes nonparametric
estimates of relative risk by kernel smoothing.

See also relrisk, relrisk.ppp, ppm

Examples

fit <- ppm(chorley ~ marks * (x+y))
rr <- relrisk(fit, relative=TRUE, control="lung", se=TRUE)
plot(rr$estimate)
plot(rr$SE)
rrX <- relrisk(fit, at="points", relative=TRUE, control="lung")

repul.dppm Repulsiveness Index of a Determinantal Point Process Model

Description

Computes a measure of the degree of repulsion between points in a determinantal point process
model.

Usage

repul(model, ...)

S3 method for class 'dppm'
repul(model, ...)

Arguments

model A fitted point process model of determinantal type (object of class "dppm").

... Ignored.

residualMeasure 379

Details

The repulsiveness index µ of a determinantal point process model was defined by Lavancier, Møller
and Rubak (2015) as

µ = λ

∫
(1− g(x)) dx

where λ is the intensity of the model and g(x) is the pair correlation function, and the integral is
taken over all two-dimensional vectors x.

Values of µ are dimensionless. Larger values of µ indicate stronger repulsion between points.

If the model is stationary, the result is a single number.

If the model is not stationary, the result is a pixel image (obtained by multiplying the spatially-
varying intensity by the integral defined above).

Value

A numeric value or a pixel image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Lavancier, F., Møller, J. and Rubak, E. (2015), Determinantal point process models and statistical
inference. Journal of Royal Statistical Society: Series B (Statistical Methodology), 77, 853–877.

See Also

dppm

Examples

jpines <- residualspaper$Fig1

fit <- dppm(jpines ~ 1, dppGauss)
repul(fit)

residualMeasure Residual Measure for an Observed Point Pattern and a Fitted Intensity

Description

Given a point pattern and an estimate of its intensity function obtained in any fashion, compute the
residual measure.

380 residualMeasure

Usage

residualMeasure(Q, lambda,
type = c("raw", "inverse", "Pearson", "pearson"),
...)

Arguments

Q A point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").

lambda Predicted intensity. An image (object of class "im") or a list of images.

type Character string (partially matched) specifying the type of residuals.

... Arguments passed to quadscheme if Q is a point pattern.

Details

This command constructs the residual measure for the model in which Q is the observed point pattern
or quadrature scheme, and lambda is the estimated intensity function obtained in some fashion.

Value

A measure (object of class "msr").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

See Also

residuals.ppm

Examples

nonparametric regression estimate of intensity
as a function of terrain elevation
f <- rhohat(bei, bei.extra$elev)
predicted intensity as a function of location
lam <- predict(f)
residuals
res <- residualMeasure(bei, lam)
res
plot(res)

residuals.dppm 381

residuals.dppm Residuals for Fitted Determinantal Point Process Model

Description

Given a determinantal point process model fitted to a point pattern, compute residuals.

Usage

S3 method for class 'dppm'
residuals(object, ...)

Arguments

object The fitted determinatal point process model (an object of class "dppm") for
which residuals should be calculated.

... Arguments passed to residuals.ppm.

Details

This function extracts the intensity component of the model using as.ppm and then applies residuals.ppm
to compute the residuals.

Use plot.msr to plot the residuals directly.

Value

An object of class "msr" representing a signed measure or vector-valued measure (see msr). This
object can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

msr, dppm

Examples

fit <- dppm(swedishpines ~ x, dppGauss, method="c")
rr <- residuals(fit)

382 residuals.kppm

residuals.kppm Residuals for Fitted Cox or Cluster Point Process Model

Description

Given a Cox or cluster point process model fitted to a point pattern, compute residuals.

Usage

S3 method for class 'kppm'
residuals(object, ...)

Arguments

object The fitted point process model (an object of class "kppm") for which residuals
should be calculated.

... Arguments passed to residuals.ppm.

Details

This function extracts the intensity component of the model using as.ppm and then applies residuals.ppm
to compute the residuals.

Use plot.msr to plot the residuals directly.

Value

An object of class "msr" representing a signed measure or vector-valued measure (see msr). This
object can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

msr, kppm

Examples

fit <- kppm(redwood ~ x, "Thomas")
rr <- residuals(fit)

residuals.mppm 383

residuals.mppm Residuals for Point Process Model Fitted to Multiple Point Patterns

Description

Given a point process model fitted to multiple point patterns, compute residuals for each pattern.

Usage

S3 method for class 'mppm'
residuals(object, type = "raw", ...,

fittedvalues = fitted.mppm(object))

Arguments

object Fitted point process model (object of class "mppm").

... Ignored.

type Type of residuals: either "raw", "pearson" or "inverse". Partially matched.

fittedvalues Advanced use only. Fitted values of the model to be used in the calculation.

Details

Baddeley et al (2005) defined residuals for the fit of a point process model to spatial point pattern
data. For an explanation of these residuals, see the help file for residuals.ppm.

This function computes the residuals for a point process model fitted to multiple point patterns. The
object should be an object of class "mppm" obtained from mppm.

The return value is a list. The number of entries in the list equals the number of point patterns in
the original data. Each entry in the list has the same format as the output of residuals.ppm. That
is, each entry in the list is a signed measure (object of class "msr") giving the residual measure for
the corresponding point pattern.

Value

A list of signed measures (objects of class "msr") giving the residual measure for each of the
original point patterns. See Details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

384 residuals.ppm

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

mppm, residuals.mppm

Examples

fit <- mppm(Bugs ~ x, hyperframe(Bugs=waterstriders))
r <- residuals(fit)
compute total residual for each point pattern
rtot <- sapply(r, integral.msr)
standardise the total residuals
areas <- sapply(windows.mppm(fit), area.owin)
rtot/sqrt(areas)

residuals.ppm Residuals for Fitted Point Process Model

Description

Given a point process model fitted to a point pattern, compute residuals.

Usage

S3 method for class 'ppm'
residuals(object, type="raw", ...,

check=TRUE, drop=FALSE,
fittedvalues=NULL,
new.coef=NULL, dropcoef=FALSE,
quad=NULL)

Arguments

object The fitted point process model (an object of class "ppm") for which residuals
should be calculated.

type String indicating the type of residuals to be calculated. Current options are
"raw", "inverse", "pearson" and "score". A partial match is adequate.

... Ignored.

check Logical value indicating whether to check the internal format of object. If
there is any possibility that this object has been restored from a dump file, or
has otherwise lost track of the environment where it was originally computed,
set check=TRUE.

residuals.ppm 385

drop Logical value determining whether to delete quadrature points that were not
used to fit the model. See quad.ppm for explanation.

fittedvalues Vector of fitted values for the conditional intensity at the quadrature points, from
which the residuals will be computed. For expert use only.

new.coef Optional. Numeric vector of coefficients for the model, replacing coef(object).
See the section on Modified Residuals below.

dropcoef Internal use only.

quad Optional. Data specifying how to re-fit the model. A list of arguments passed to
quadscheme. See the section on Modified Residuals below.

Details

This function computes several kinds of residuals for the fit of a point process model to a spa-
tial point pattern dataset (Baddeley et al, 2005). Use plot.msr to plot the residuals directly, or
diagnose.ppm to produce diagnostic plots based on these residuals.

The argument object must be a fitted point process model (object of class "ppm"). Such objects
are produced by the maximum pseudolikelihood fitting algorithm ppm. This fitted model object
contains complete information about the original data pattern.

Residuals are attached both to the data points and to some other points in the window of observation
(namely, to the dummy points of the quadrature scheme used to fit the model). If the fitted model
is correct, then the sum of the residuals over all (data and dummy) points in a spatial region B has
mean zero. For further explanation, see Baddeley et al (2005).

The type of residual is chosen by the argument type. Current options are

"raw": the raw residuals
rj = zj − wjλj

at the quadrature points uj , where zj is the indicator equal to 1 if uj is a data point and 0 if uj
is a dummy point; wj is the quadrature weight attached to uj ; and

λj = λ̂(uj , x)

is the conditional intensity of the fitted model at uj . These are the spatial analogue of the
martingale residuals of a one-dimensional counting process.

"inverse": the ‘inverse-lambda’ residuals (Baddeley et al, 2005)

r
(I)
j =

rj
λj

=
zj
λj

− wj

obtained by dividing the raw residuals by the fitted conditional intensity. These are a counter-
part of the exponential energy marks (see eem).

"pearson": the Pearson residuals (Baddeley et al, 2005)

r
(P)
j =

rj√
λj

=
zj√
λj

− wj

√
λj

obtained by dividing the raw residuals by the square root of the fitted conditional intensity. The
Pearson residuals are standardised, in the sense that if the model (true and fitted) is Poisson,
then the sum of the Pearson residuals in a spatial region B has variance equal to the area of B.

386 residuals.ppm

"score": the score residuals (Baddeley et al, 2005)

rj = (zj − wjλj)xj

obtained by multiplying the raw residuals rj by the covariates xj for quadrature point j. The
score residuals always sum to zero.

The result of residuals.ppm is a measure (object of class "msr"). Use plot.msr to plot the
residuals directly, or diagnose.ppm to produce diagnostic plots based on these residuals. Use
integral.msr to compute the total residual.

By default, the window of the measure is the same as the original window of the data. If drop=TRUE
then the window is the domain of integration of the pseudolikelihood or composite likelihood.
This only matters when the model object was fitted using the border correction: in that case, if
drop=TRUE the window of the residuals is the erosion of the original data window by the border
correction distance rbord.

Value

An object of class "msr" representing a signed measure or vector-valued measure (see msr). This
object can be plotted.

Modified Residuals

Sometimes we want to modify the calculation of residuals by using different values for the model
parameters. This capability is provided by the arguments new.coef and quad.

If new.coef is given, then the residuals will be computed by taking the model parameters to be
new.coef. This should be a numeric vector of the same length as the vector of fitted model param-
eters coef(object).

If new.coef is missing and quad is given, then the model parameters will be determined by re-
fitting the model using a new quadrature scheme specified by quad. Residuals will be computed for
the original model object using these new parameter values.

The argument quad should normally be a list of arguments in name=value format that will be passed
to quadscheme (together with the original data points) to determine the new quadrature scheme. It
may also be a quadrature scheme (object of class "quad") to which the model should be fitted, or a
point pattern (object of class "ppp") specifying the dummy points in a new quadrature scheme.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

residuals.rppm 387

See Also

msr, diagnose.ppm, ppm.object, ppm

Examples

fit <- ppm(cells, ~x, Strauss(r=0.15))

Pearson residuals
rp <- residuals(fit, type="pe")
rp

simulated data
X <- rStrauss(100,0.7,0.05)
fit Strauss model
fit <- ppm(X, ~1, Strauss(0.05))
res.fit <- residuals(fit)

check that total residual is 0
integral.msr(residuals(fit, drop=TRUE))

true model parameters
truecoef <- c(log(100), log(0.7))
res.true <- residuals(fit, new.coef=truecoef)

residuals.rppm Residuals for Recursively Partitioned Point Process Model

Description

Given a point process model that was fitted to a point pattern by recursive partitioning (regression
tree) methods, compute the residual measure.

Usage

S3 method for class 'rppm'
residuals(object,

type=c("raw", "inverse", "Pearson"),
...)

Arguments

object The fitted point process model (an object of class "ppm") for which residuals
should be calculated.

type String (partially matched) indicating the type of residuals to be calculated.

... Ignored.

388 residuals.slrm

Details

This function computes the residual measure for a point process model that was fitted to point
pattern data by recursive partitioning of the covariates.

The argument object must be a fitted model object of class "rppm"). Such objects are created by
the fitting algorithm rppm.

The type of residual is chosen by the argument type.

Value

A measure (object of class "msr").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

See Also

residuals.ppm

Examples

fit <- rppm(bei ~ elev + grad, data=bei.extra)
res <- residuals(fit)
plot(res)

residuals.slrm Residuals for Fitted Spatial Logistic Regression Model

Description

Given a spatial logistic regression model fitted to a point pattern, compute the residuals for each
pixel.

Usage

S3 method for class 'slrm'
residuals(object,

type=c("raw", "deviance", "pearson", "working",
"response", "partial", "score"),

...)

residuals.slrm 389

Arguments

object The fitted point process model (an object of class "ppm") for which residuals
should be calculated.

type String (partially matched) indicating the type of residuals to be calculated.

... Ignored.

Details

This function computes several kinds of residuals for the fit of a spatial logistic regression model to
a spatial point pattern dataset.

The argument object must be a fitted spatial logistic regression model (object of class "slrm").
Such objects are created by the fitting algorithm slrm.

The residuals are computed for each pixel that was used to fit the original model. The residuals are
returned as a pixel image (if the residual values are scalar), or a list of pixel images (if the residual
values are vectors).

The type of residual is chosen by the argument type.

For a given pixel, suppose p is the fitted probability of presence of a point, and y is the presence
indicator (equal to 1 if the pixel contains any data points, and equal to 0 otherwise). Then

• type="raw" or type="response" specifies the response residual

r = y − p

• type="pearson" is the Pearson residual

rP =
y − p√
p(1− p)

• type="deviance" is the deviance residual

rD = (−1)y+1
√

−2(ylogp+ (1− y)log(1− p))

• type="score" specifies the score residuals

rS = (y − p)x

where x is the vector of canonical covariate values for the pixel

• type="working" specifies the working residuals as defined in residuals.glm

• type="partial" specifies the partial residuals as defined in residuals.glm

Value

A pixel image (if the residual values are scalar), or a list of pixel images (if the residual values are
vectors).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

390 response

See Also

residuals.glm, residuals.ppm

Examples

d <- if(interactive()) 128 else 32
H <- unmark(humberside)
fit <- slrm(H ~ x + y, dimyx=d)

plot(residuals(fit))

plot(residuals(fit, type="score"))

response Extract the Values of the Response from a Fitted Model

Description

Given a fitted model (of any kind) extract the values of the response variable. For a point process
model, the observed point pattern is extracted.

Usage

response(object)

S3 method for class 'lm'
response(object)

S3 method for class 'glm'
response(object)

S3 method for class 'ppm'
response(object)

S3 method for class 'kppm'
response(object)

S3 method for class 'dppm'
response(object)

S3 method for class 'slrm'
response(object)

S3 method for class 'rppm'
response(object)

S3 method for class 'mppm'
response(object)

rex 391

Arguments

object A fitted model (object of class "lm", "glm", "ppm", "kppm", "dppm", "slrm",
"rppm", or "mppm" or some other class).

Details

For fitted linear models of class "lm" and fitted generalized linear models of class "glm", the nu-
merical values of the response variable are extracted if they are available, and otherwise NULL is
returned.

For fitted point process models of class "ppm", "kppm", "dppm", "slrm", "lppm" or "rppm", the
original data point pattern is extracted.

For a fitted point process model of class "mppm", the list of original data point patterns is extracted.

Value

For response.lm and response.glm, a numeric vector, or NULL.

For response.ppm, response.kppm, response.dppm, response.slrm and response.rppm, a
two-dimensional spatial point pattern (class "ppp").

For response.mppm, a list of two-dimensional spatial point patterns (objects of class "ppp"). The
list also belongs to classes "solist" and "ppplist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

Examples

fit <- ppm(cells ~ x)
response(fit)

rex Richardson Extrapolation

Description

Performs Richardson Extrapolation on a sequence of approximate values.

Usage

rex(x, r = 2, k = 1, recursive = FALSE)

392 rex

Arguments

x A numeric vector or matrix, whose columns are successive estimates or approx-
imations to a vector of parameters.

r A number greater than 1. The ratio of successive step sizes. See Details.

k Integer. The order of convergence assumed. See Details.

recursive Logical value indicating whether to perform one step of Richardson extrapola-
tion (recursive=FALSE, the default) or repeat the extrapolation procedure until
a best estimate is obtained (recursive=TRUE.

Details

Richardson extrapolation is a general technique for improving numerical approximations, often
used in numerical integration (Brezinski and Zaglia, 1991). It can also be used to improve parameter
estimates in statistical models (Baddeley and Turner, 2014).

The successive columns of x are assumed to have been obtained using approximations with step
sizes a, a/r, a/r2, . . . where a is the initial step size (which does not need to be specified).

Estimates based on a step size s are assumed to have an error of order sk.

Thus, the default values r=2 and k=1 imply that the errors in the second column of x should be
roughly (1/r)k = 1/2 as large as the errors in the first column, and so on.

Value

A matrix whose columns contain a sequence of improved estimates.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

References

Baddeley, A. and Turner, R. (2014) Bias correction for parameter estimates of spatial point process
models. Journal of Statistical Computation and Simulation 84, 1621–1643. DOI: 10.1080/00949655.2012.755976

Brezinski, C. and Zaglia, M.R. (1991) Extrapolation Methods. Theory and Practice. North-
Holland.

See Also

bc

Examples

integrals of sin(x) and cos(x) from 0 to pi
correct answers: 2, 0
est <- function(nsteps) {

xx <- seq(0, pi, length=nsteps)
ans <- pi * c(mean(sin(xx)), mean(cos(xx)))
names(ans) <- c("sin", "cos")
ans

rhohat.ppm 393

}
X <- cbind(est(10), est(20), est(40))
X
rex(X)
rex(X, recursive=TRUE)

fitted Gibbs point process model
fit0 <- ppm(cells ~ 1, Strauss(0.07), nd=16)
fit1 <- update(fit0, nd=32)
fit2 <- update(fit0, nd=64)
co <- cbind(coef(fit0), coef(fit1), coef(fit2))
co
rex(co, k=2, recursive=TRUE)

rhohat.ppm Nonparametric Estimate of Intensity as Function of a Covariate

Description

Computes a nonparametric estimate of the intensity of a point process, as a function of a (continu-
ous) spatial covariate.

Usage

S3 method for class 'ppm'
rhohat(object, covariate, ...,

weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local", "decreasing", "increasing",

"mountain", "valley", "piecewise"),
subset=NULL,
do.CI=TRUE,
jitter=TRUE, jitterfactor=1, interpolate=TRUE,
dimyx=NULL, eps=NULL,
rule.eps = c("adjust.eps", "grow.frame", "shrink.frame"),
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL,
bwref=bw,
covname, confidence=0.95, positiveCI, breaks=NULL)

S3 method for class 'slrm'
rhohat(object, covariate, ...,

weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local", "decreasing", "increasing",

"mountain", "valley", "piecewise"),
subset=NULL,

394 rhohat.ppm

do.CI=TRUE,
jitter=TRUE, jitterfactor=1, interpolate=TRUE,
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL,
bwref=bw,
covname, confidence=0.95, positiveCI, breaks=NULL)

Arguments

object A point pattern (object of class "ppp" or "lpp"), a quadrature scheme (object of
class "quad") or a fitted point process model (object of class "ppm", "slrm" or
"lppm").

covariate Either a function(x,y) or a pixel image (object of class "im") providing the
values of the covariate at any location. Alternatively one of the strings "x" or
"y" signifying the Cartesian coordinates.

weights Optional weights attached to the data points. Either a numeric vector of weights
for each data point, or a pixel image (object of class "im") or a function(x,y)
providing the weights.

method Character string determining the estimation method. See Details.

horvitz Logical value indicating whether to use Horvitz-Thompson weights. See De-
tails.

smoother Character string determining the smoothing algorithm and the type of curve that
will be estimated. See Details.

subset Optional. A spatial window (object of class "owin") specifying a subset of the
data, from which the estimate should be calculated.

do.CI Logical value specifying whether to calculate standard errors and confidence
bands.

jitter Logical value. If jitter=TRUE (the default), the values of the covariate at the
data points will be jittered (randomly perturbed by adding a small amount of
noise) using the function jitter. If jitter=FALSE, the covariate values at the
data points will not be altered. See the section on Randomisation and discreti-
sation.

jitterfactor Numeric value controlling the scale of noise added to the covariate values at the
data points when jitter=TRUE. Passed to the function jitter as the argument
factor.

interpolate Logical value specifying whether to use spatial interpolation to obtain the values
of the covariate at the data points, when the covariate is a pixel image (object
of class "im"). If interpolate=FALSE, the covariate value for each data point
is simply the value of the covariate image at the pixel centre that is nearest to
the data point. If interpolate=TRUE, the covariate value for each data point is
obtained by interpolating the nearest pixel values using interp.im.

dimyx, eps, rule.eps
Arguments controlling the pixel resolution at which the covariate will be evalu-
ated. See Details.

bw Smoothing bandwidth or bandwidth rule (passed to density.default).

rhohat.ppm 395

adjust Smoothing bandwidth adjustment factor (passed to density.default).

n, from, to Arguments passed to density.default to control the number and range of val-
ues at which the function will be estimated.

bwref Optional. An alternative value of bw to use when smoothing the reference den-
sity (the density of the covariate values observed at all locations in the window).

... Additional arguments passed to density.default or locfit.

covname Optional. Character string to use as the name of the covariate.

confidence Confidence level for confidence intervals. A number between 0 and 1.

positiveCI Logical value. If TRUE, confidence limits are always positive numbers; if FALSE,
the lower limit of the confidence interval may sometimes be negative. Default is
FALSE if smoother="kernel" and TRUE if smoother="local". See Details.

breaks Breakpoints for the piecewise-constant function computed when smoother='piecewise'.
Either a vector of numeric values specifying the breakpoints, or a single integer
specifying the number of equally-spaced breakpoints. There is a sensible de-
fault.

Details

This command estimates the relationship between point process intensity and a given spatial co-
variate. Such a relationship is sometimes called a resource selection function (if the points are
organisms and the covariate is a descriptor of habitat) or a prospectivity index (if the points are min-
eral deposits and the covariate is a geological variable). This command uses nonparametric methods
which do not assume a particular form for the relationship.

If object is a point pattern, and baseline is missing or null, this command assumes that object
is a realisation of a point process with intensity function λ(u) of the form

λ(u) = ρ(Z(u))

where Z is the spatial covariate function given by covariate, and ρ(z) is the resource selection
function or prospectivity index. A nonparametric estimator of the function ρ(z) is computed.

If object is a point pattern, and baseline is given, then the intensity function is assumed to be

λ(u) = ρ(Z(u))B(u)

where B(u) is the baseline intensity at location u. A nonparametric estimator of the relative inten-
sity ρ(z) is computed.

If object is a fitted point process model, suppose X is the original data point pattern to which the
model was fitted. Then this command assumes X is a realisation of a Poisson point process with
intensity function of the form

λ(u) = ρ(Z(u))κ(u)

where κ(u) is the intensity of the fitted model object. A nonparametric estimator of the relative
intensity ρ(z) is computed.

The nonparametric estimation procedure is controlled by the arguments smoother, method and
horvitz.

The argument smoother selects the type of estimation technique.

396 rhohat.ppm

• If smoother="kernel" (the default), the nonparametric estimator is a kernel smoothing es-
timator of ρ(z) (Guan, 2008; Baddeley et al, 2012). The estimated function ρ(z) will be a
smooth function of z which takes nonnegative values. If do.CI=TRUE (the default), confi-
dence bands are also computed, assuming a Poisson point process. See the section on Smooth
estimates.

• If smoother="local", the nonparametric estimator is a local regression estimator of ρ(z)
(Baddeley et al, 2012) obtained using local likelihood. The estimated function ρ(z) will be
a smooth function of z. If do.CI=TRUE (the default), confidence bands are also computed,
assuming a Poisson point process. See the section on Smooth estimates.

• If smoother="increasing", we assume that ρ(z) is an increasing function of z, and use
the nonparametric maximum likelihood estimator of ρ(z) described by Sager (1982). The
estimated function will be a step function, that is increasing as a function of z. Confidence
bands are not computed. See the section on Monotone estimates.

• If smoother="decreasing", we assume that ρ(z) is a decreasing function of z, and use the
nonparametric maximum likelihood estimator of ρ(z) described by Sager (1982). The esti-
mated function will be a step function, that is decreasing as a function of z. Confidence bands
are not computed. See the section on Monotone estimates.

• If smoother="mountain", we assume that ρ(z) is a function with an inverted U shape, with a
single peak at a value z0, so that ρ(z) is an increasing function of z for z < z0 and a decreasing
function of z for z > z0. We compute the nonparametric maximum likelihood estimator.
The estimated function will be a step function, which is increasing and then decreasing as a
function of z. Confidence bands are not computed. See the section on Unimodal estimates.

• If smoother="valley", we assume that ρ(z) is a function with a U shape, with a single
minimum at a value z0, so that ρ(z) is a decreasing function of z for z < z0 and an increasing
function of z for z > z0. We compute the nonparametric maximum likelihood estimator.
The estimated function will be a step function, which is decreasing and then increasing as a
function of z. Confidence bands are not computed. See the section on Unimodal estimates.

• If smoother="piecewise", the estimate of ρ(z) is piecewise constant. The range of covariate
values is divided into several intervals (ranges or bands). The endpoints of these intervals are
the breakpoints, which may be specified by the argument breaks; there is a sensible default.
The estimate of ρ(z) takes a constant value on each interval. The estimate of ρ(z) in each
interval of covariate values is simply the average intensity (number of points per unit area) in
the relevant sub-region. If do.CI=TRUE (the default), confidence bands are computed assuming
a Poisson process.

See Baddeley (2018) for a comparison of these estimation techniques (except for "mountain" and
"valley").

If the argument weights is present, then the contribution from each data point X[i] to the estimate
of ρ is multiplied by weights[i].

If the argument subset is present, then the calculations are performed using only the data inside
this spatial region.

This technique assumes that covariate has continuous values. It is not applicable to covariates with
categorical (factor) values or discrete values such as small integers. For a categorical covariate, use
intensity.quadratcount applied to the result of quadratcount(X, tess=covariate).

The argument covariate should be a pixel image, or a function, or one of the strings "x" or "y"
signifying the cartesian coordinates. It will be evaluated on a fine grid of locations, with spatial
resolution controlled by the arguments dimyx,eps,rule.eps which are passed to as.mask.

rhohat.ppm 397

Value

A function value table (object of class "fv") containing the estimated values of ρ (and confidence
limits) for a sequence of values ofZ. Also belongs to the class "rhohat" which has special methods
for print, plot and predict.

Smooth estimates

Smooth estimators of ρ(z) were proposed by Baddeley and Turner (2005) and Baddeley et al (2012).
Similar estimators were proposed by Guan (2008) and in the literature on relative distributions
(Handcock and Morris, 1999).

The estimated function ρ(z) will be a smooth function of z.

The smooth estimation procedure involves computing several density estimates and combining
them. The algorithm used to compute density estimates is determined by smoother:

• If smoother="kernel", the smoothing procedure is based on fixed-bandwidth kernel density
estimation, performed by density.default.

• If smoother="local", the smoothing procedure is based on local likelihood density estima-
tion, performed by locfit.

The argument method determines how the density estimates will be combined to obtain an estimate
of ρ(z):

• If method="ratio", then ρ(z) is estimated by the ratio of two density estimates, The numer-
ator is a (rescaled) density estimate obtained by smoothing the values Z(yi) of the covariate
Z observed at the data points yi. The denominator is a density estimate of the reference dis-
tribution of Z. See Baddeley et al (2012), equation (8). This is similar but not identical to an
estimator proposed by Guan (2008).

• If method="reweight", then ρ(z) is estimated by applying density estimation to the values
Z(yi) of the covariate Z observed at the data points yi, with weights inversely proportional to
the reference density of Z. See Baddeley et al (2012), equation (9).

• If method="transform", the smoothing method is variable-bandwidth kernel smoothing, im-
plemented by applying the Probability Integral Transform to the covariate values, yielding
values in the range 0 to 1, then applying edge-corrected density estimation on the interval
[0, 1], and back-transforming. See Baddeley et al (2012), equation (10).

If horvitz=TRUE, then the calculations described above are modified by using Horvitz-Thompson
weighting. The contribution to the numerator from each data point is weighted by the reciprocal
of the baseline value or fitted intensity value at that data point; and a corresponding adjustment is
made to the denominator.

Pointwise confidence intervals for the true value of ρ(z) are also calculated for each z, and will
be plotted as grey shading. The confidence intervals are derived using the central limit theorem,
based on variance calculations which assume a Poisson point process. If positiveCI=FALSE, the
lower limit of the confidence interval may sometimes be negative, because the confidence intervals
are based on a normal approximation to the estimate of ρ(z). If positiveCI=TRUE, the confidence
limits are always positive, because the confidence interval is based on a normal approximation to
the estimate of log(ρ(z)). For consistency with earlier versions, the default is positiveCI=FALSE
for smoother="kernel" and positiveCI=TRUE for smoother="local".

398 rhohat.ppm

Monotone estimates

The nonparametric maximum likelihood estimator of a monotone function ρ(z) was described by
Sager (1982). This method assumes that ρ(z) is either an increasing function of z, or a decreasing
function of z. The estimated function will be a step function, increasing or decreasing as a function
of z.

This estimator is chosen by specifying smoother="increasing" or smoother="decreasing".
The argument method is ignored this case.

To compute the estimate of ρ(z), the algorithm first computes several primitive step-function esti-
mates, and then takes the maximum of these primitive functions.

If smoother="decreasing", each primitive step function takes the form ρ(z) = λ when z ≤ t, and
ρ(z) = 0 when z > t, where and λ is a primitive estimate of intensity based on the data for Z ≤ t.
The jump location t will be the value of the covariate Z at one of the data points. The primitive
estimate λ is the average intensity (number of points divided by area) for the region of space where
the covariate value is less than or equal to t.

If horvitz=TRUE, then the calculations described above are modified by using Horvitz-Thompson
weighting. The contribution to the numerator from each data point is weighted by the reciprocal
of the baseline value or fitted intensity value at that data point; and a corresponding adjustment is
made to the denominator.

Confidence intervals are not available for the monotone estimators.

Unimodal estimators

If smoother="valley" then we estimate a U-shaped function. A function ρ(z) is U-shaped if it is
decreasing when z < z0 and increasing when z > z0, where z0 is called the critical value. The
nonparametric maximum likelihood estimate of such a function can be computed by profiling over
z0. The algorithm considers all possible candidate values of the critical value z0, and estimates
the function ρ(z) separately on the left and right of z0 using the monotone estimators described
above. These function estimates are combined into a single function, and the Poisson point process
likelihood is computed. The optimal value of z0 is the one which maximises the Poisson point
process likelihood.

If smoother="mountain" then we estimate a function which has an inverted U shape. A function
ρ(z) is inverted-U-shaped if it is increasing when z < z0 and decreasing when z > z0. The
nonparametric maximum likelihood estimate of such a function can be computed by profiling over
z0 using the same technique mutatis mutandis.

Confidence intervals are not available for the unimodal estimators.

Randomisation

By default, rhohat adds a small amount of random noise to the data. This is designed to suppress
the effects of discretisation in pixel images.

This strategy means that rhohat does not produce exactly the same result when the computation is
repeated. If you need the results to be exactly reproducible, set jitter=FALSE.

By default, the values of the covariate at the data points will be randomly perturbed by adding a
small amount of noise using the function jitter. To reduce this effect, set jitterfactor to a
number smaller than 1. To suppress this effect entirely, set jitter=FALSE.

rmh.ppm 399

Author(s)

Smoothing algorithm by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ya-Mei Chang,
Yong Song, and Rolf Turner <rolfturner@posteo.net>.

Nonparametric maximum likelihood algorithm by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Chang, Y.-M., Song, Y. and Turner, R. (2012) Nonparametric estimation of the de-
pendence of a point process on spatial covariates. Statistics and Its Interface 5 (2), 221–236.

Baddeley, A. and Turner, R. (2005) Modelling spatial point patterns in R. In: A. Baddeley, P. Gre-
gori, J. Mateu, R. Stoica, and D. Stoyan, editors, Case Studies in Spatial Point Pattern Modelling,
Lecture Notes in Statistics number 185. Pages 23–74. Springer-Verlag, New York, 2006. ISBN:
0-387-28311-0.

Baddeley, A. (2018) A statistical commentary on mineral prospectivity analysis. Chapter 2, pages
25–65 in Handbook of Mathematical Geosciences: Fifty Years of IAMG, edited by B.S. Daya Sagar,
Q. Cheng and F.P. Agterberg. Springer, Berlin.

Guan, Y. (2008) On consistent nonparametric intensity estimation for inhomogeneous spatial point
processes. Journal of the American Statistical Association 103, 1238–1247.

Handcock, M.S. and Morris, M. (1999) Relative Distribution Methods in the Social Sciences.
Springer, New York.

Sager, T.W. (1982) Nonparametric maximum likelihood estimation of spatial patterns. Annals of
Statistics 10, 1125–1136.

See Also

rho2hat, methods.rhohat, parres.

See ppm for a parametric method for the same problem.

Examples

X <- rpoispp(function(x,y){exp(3+3*x)})

fit <- ppm(X ~x)
rr <- rhohat(fit, "y")

rmh.ppm Simulate from a Fitted Point Process Model

Description

Given a point process model fitted to data, generate a random simulation of the model, using the
Metropolis-Hastings algorithm.

400 rmh.ppm

Usage

S3 method for class 'ppm'
rmh(model, start=NULL,

control=default.rmhcontrol(model, w=w),
...,
w = NULL,
project=TRUE,
nsim=1, drop=TRUE, saveinfo=TRUE,
verbose=TRUE, new.coef=NULL)

Arguments

model A fitted point process model (object of class "ppm", see ppm.object) which it
is desired to simulate. This fitted model is usually the result of a call to ppm. See
Details below.

start Data determining the initial state of the Metropolis-Hastings algorithm. See
rmhstart for description of these arguments. Defaults to list(x.start=data.ppm(model))

control Data controlling the iterative behaviour of the Metropolis-Hastings algorithm.
See rmhcontrol for description of these arguments.

... Further arguments passed to rmhcontrol, or to rmh.default, or to covariate
functions in the model.

w Optional. Window in which the simulations should be generated. Default is the
window of the original data.

project Logical flag indicating what to do if the fitted model is invalid (in the sense
that the values of the fitted coefficients do not specify a valid point process). If
project=TRUE the closest valid model will be simulated; if project=FALSE an
error will occur.

nsim Number of simulated point patterns that should be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a single point pattern.

saveinfo Logical value indicating whether to save auxiliary information.

verbose Logical flag indicating whether to print progress reports.

new.coef New values for the canonical parameters of the model. A numeric vector of the
same length as coef(model).

Details

This function generates simulated realisations from a point process model that has been fitted to
point pattern data. It is a method for the generic function rmh for the class "ppm" of fitted point
process models. To simulate other kinds of point process models, see rmh or rmh.default.

The argument model describes the fitted model. It must be an object of class "ppm" (see ppm.object),
and will typically be the result of a call to the point process model fitting function ppm.

The current implementation enables simulation from any fitted model involving the interactions
AreaInter, DiggleGratton, DiggleGatesStibbard, Geyer, Hardcore, MultiStrauss, MultiStraussHard,

rmh.ppm 401

PairPiece, Poisson, Strauss, StraussHard and Softcore, including nonstationary models. See
the examples.

It is also possible to simulate hybrids of several such models. See Hybrid and the examples.

It is possible that the fitted coefficients of a point process model may be “illegal”, i.e. that there may
not exist a mathematically well-defined point process with the given parameter values. For example,
a Strauss process with interaction parameter γ > 1 does not exist, but the model-fitting procedure
used in ppm will sometimes produce values of γ greater than 1. In such cases, if project=FALSE
then an error will occur, while if project=TRUE then rmh.ppm will find the nearest legal model
and simulate this model instead. (The nearest legal model is obtained by projecting the vector of
coefficients onto the set of valid coefficient vectors. The result is usually the Poisson process with
the same fitted intensity.)

The arguments start and control are lists of parameters determining the initial state and the
iterative behaviour, respectively, of the Metropolis-Hastings algorithm.

The argument start is passed directly to rmhstart. See rmhstart for details of the parameters of
the initial state, and their default values.

The argument control is first passed to rmhcontrol. Then if any additional arguments ... are
given, update.rmhcontrol is called to update the parameter values. See rmhcontrol for details of
the iterative behaviour parameters, and default.rmhcontrol for their default values.

Note that if you specify expansion of the simulation window using the parameter expand (so that
the model will be simulated on a window larger than the original data window) then the model must
be capable of extrapolation to this larger window. This is usually not possible for models which
depend on external covariates, because the domain of a covariate image is usually the same as the
domain of the fitted model.

After extracting the relevant information from the fitted model object model, rmh.ppm invokes the
default rmh algorithm rmh.default, unless the model is Poisson. If the model is Poisson then
the Metropolis-Hastings algorithm is not needed, and the model is simulated directly, using one of
rpoispp, rmpoispp, rpoint or rmpoint.

See rmh.default for further information about the implementation, or about the Metropolis-Hastings
algorithm.

Value

A point pattern (an object of class "ppp"; see ppp.object) or a list of point patterns.

Warnings

See Warnings in rmh.default.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

402 rmh.ppm

See Also

simulate.ppm, rmh, rmhmodel, rmhcontrol, default.rmhcontrol, update.rmhcontrol, rmhstart,
rmh.default, ppp.object, ppm,

Interactions: AreaInter, DiggleGratton, DiggleGatesStibbard, Geyer, Hardcore, Hybrid,
MultiStrauss, MultiStraussHard, PairPiece, Poisson, Strauss, StraussHard, Softcore

Examples

live <- interactive()
op <- spatstat.options()
spatstat.options(rmh.nrep=1e5)
Nrep <- 1e5

X <- swedishpines
if(live) plot(X, main="Swedish Pines data")

Poisson process
fit <- ppm(X, ~1, Poisson())
Xsim <- rmh(fit)
if(live) plot(Xsim, main="simulation from fitted Poisson model")

Strauss process
fit <- ppm(X, ~1, Strauss(r=7))
Xsim <- rmh(fit)
if(live) plot(Xsim, main="simulation from fitted Strauss model")

if(live) {
Strauss process simulated on a larger window
then clipped to original window
Xsim <- rmh(fit, control=list(nrep=Nrep, expand=1.1, periodic=TRUE))
Xsim <- rmh(fit, nrep=Nrep, expand=2, periodic=TRUE)

}

if(live) {
X <- rSSI(0.05, 100)
piecewise-constant pairwise interaction function
fit <- ppm(X, ~1, PairPiece(seq(0.02, 0.1, by=0.01)))
Xsim <- rmh(fit)

}

marked point pattern
Y <- amacrine

if(live) {
marked Poisson models
fit <- ppm(Y)
fit <- ppm(Y,~marks)
fit <- ppm(Y,~polynom(x,2))
fit <- ppm(Y,~marks+polynom(x,2))
fit <- ppm(Y,~marks*polynom(x,y,2))
Ysim <- rmh(fit)

rmhmodel.ppm 403

}

multitype Strauss models
MS <- MultiStrauss(radii=matrix(0.07, ncol=2, nrow=2),

types = levels(Y$marks))
if(live) {
fit <- ppm(Y ~marks, MS)
Ysim <- rmh(fit)
}

fit <- ppm(Y ~ marks*polynom(x,y,2), MS)
Ysim <- rmh(fit)
if(live) plot(Ysim, main="simulation from fitted inhomogeneous Multitype Strauss")

spatstat.options(op)

if(live) {
Hybrid model
fit <- ppm(redwood, ~1, Hybrid(A=Strauss(0.02), B=Geyer(0.1, 2)))
Y <- rmh(fit)

}

rmhmodel.ppm Interpret Fitted Model for Metropolis-Hastings Simulation.

Description

Converts a fitted point process model into a format that can be used to simulate the model by the
Metropolis-Hastings algorithm.

Usage

S3 method for class 'ppm'
rmhmodel(model, w, ..., verbose=TRUE, project=TRUE,

control=rmhcontrol(),
new.coef=NULL)

Arguments

model Fitted point process model (object of class "ppm").

w Optional. Window in which the simulations should be generated.

... Ignored.

verbose Logical flag indicating whether to print progress reports while the model is being
converted.

project Logical flag indicating what to do if the fitted model does not correspond to a
valid point process. See Details.

control Parameters determining the iterative behaviour of the simulation algorithm. Passed
to rmhcontrol.

404 rmhmodel.ppm

new.coef New values for the canonical parameters of the model. A numeric vector of the
same length as coef(model).

Details

The generic function rmhmodel takes a description of a point process model in some format, and
converts it into an object of class "rmhmodel" so that simulations of the model can be generated
using the Metropolis-Hastings algorithm rmh.

This function rmhmodel.ppm is the method for the class "ppm" of fitted point process models.

The argument model should be a fitted point process model (object of class "ppm") typically ob-
tained from the model-fitting function ppm. This will be converted into an object of class "rmhmodel".

The optional argument w specifies the window in which the pattern is to be generated. If specified,
it must be in a form which can be coerced to an object of class owin by as.owin.

Not all fitted point process models obtained from ppm can be simulated. We have not yet imple-
mented simulation code for the LennardJones and OrdThresh models.

It is also possible that a fitted point process model obtained from ppm may not correspond to a valid
point process. For example a fitted model with the Strauss interpoint interaction may have any
value of the interaction parameter γ; however the Strauss process is not well-defined for γ > 1
(Kelly and Ripley, 1976).

The argument project determines what to do in such cases. If project=FALSE, a fatal error will
occur. If project=TRUE, the fitted model parameters will be adjusted to the nearest values which
do correspond to a valid point process. For example a Strauss process with γ > 1 will be projected
to a Strauss process with γ = 1, equivalent to a Poisson process.

Value

An object of class "rmhmodel", which is essentially a list of parameter values for the model.

There is a print method for this class, which prints a sensible description of the model chosen.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns (2nd ed.) Arnold, London.

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

Kelly, F.P. and Ripley, B.D. (1976) On Strauss’s model for clustering. Biometrika 63, 357–360.

roc.ppm 405

See Also

rmhmodel, rmhmodel.list, rmhmodel.default, rmh, rmhcontrol, rmhstart, ppm, AreaInter,
BadGey, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer, Hardcore, Hybrid, LennardJones,
MultiStrauss, MultiStraussHard, PairPiece, Penttinen, Poisson, Softcore, Strauss, StraussHard
and Triplets.

Examples

fit1 <- ppm(cells ~1, Strauss(0.07))
mod1 <- rmhmodel(fit1)

fit2 <- ppm(cells ~x, Geyer(0.07, 2))
mod2 <- rmhmodel(fit2)

fit3 <- ppm(cells ~x, Hardcore(0.07))
mod3 <- rmhmodel(fit3)

Then rmh(mod1), etc

roc.ppm Receiver Operating Characteristic

Description

Computes the Receiver Operating Characteristic curve for a point pattern or a fitted point process
model.

Usage

S3 method for class 'ppm'
roc(X, ...)

S3 method for class 'kppm'
roc(X, ...)

S3 method for class 'slrm'
roc(X, ...)

Arguments

X Point pattern (object of class "ppp" or "lpp") or fitted point process model
(object of class "ppm", "kppm", "slrm" or "lppm").

... Arguments passed to as.mask controlling the pixel resolution for calculations.

406 roc.ppm

Details

This command computes Receiver Operating Characteristic curve. The area under the ROC is
computed by auc.

For a point pattern X and a covariate Z, the ROC is a plot showing the ability of the covariate to
separate the spatial domain into areas of high and low density of points. For each possible threshold
z, the algorithm calculates the fraction a(z) of area in the study region where the covariate takes
a value greater than z, and the fraction b(z) of data points for which the covariate value is greater
than z. The ROC is a plot of b(z) against a(z) for all thresholds z.

For a fitted point process model, the ROC shows the ability of the fitted model intensity to separate
the spatial domain into areas of high and low density of points. The ROC is not a diagnostic for the
goodness-of-fit of the model (Lobo et al, 2007).

(For spatial logistic regression models (class "slrm") replace “intensity” by “probability of pres-
ence” in the text above.)

Value

Function value table (object of class "fv") which can be plotted to show the ROC curve.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Lobo, J.M., Jiménez-Valverde, A. and Real, R. (2007) AUC: a misleading measure of the perfor-
mance of predictive distribution models. Global Ecology and Biogeography 17(2) 145–151.

Nam, B.-H. and D’Agostino, R. (2002) Discrimination index, the area under the ROC curve. Pages
267–279 in Huber-Carol, C., Balakrishnan, N., Nikulin, M.S. and Mesbah, M., Goodness-of-fit tests
and model validity, Birkhäuser, Basel.

See Also

auc

Examples

fit <- ppm(swedishpines ~ x+y)
plot(roc(fit))

rppm 407

rppm Recursively Partitioned Point Process Model

Description

Fits a recursive partition model to point pattern data.

Usage

rppm(..., rpargs=list())

Arguments

... Arguments passed to ppm specifying the point pattern data and the explanatory
covariates.

rpargs Optional list of arguments passed to rpart controlling the recursive partitioning
procedure.

Details

This function attempts to find a simple rule for predicting low and high intensity regions of points
in a point pattern, using explanatory covariates.

The arguments ... specify the point pattern data and explanatory covariates in the same way as
they would be in the function ppm.

The recursive partitioning algorithm rpart is then used to find a partitioning rule.

Value

An object of class "rppm". There are methods for print, plot, fitted, predict and prune for
this class.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984) Classification and Regression
Trees. Wadsworth.

See Also

plot.rppm, predict.rppm, update.rppm, prune.rppm.

408 SatPiece

Examples

New Zealand trees data: trees planted along border
Use covariates 'x', 'y'
nzfit <- rppm(nztrees ~ x + y)
nzfit
prune(nzfit, cp=0.035)
Murchison gold data: numeric and logical covariates
mur <- solapply(murchison, rescale, s=1000, unitname="km")
mur$dfault <- distfun(mur$faults)
#
mfit <- rppm(gold ~ dfault + greenstone, data=mur)
mfit
Gorillas data: factor covariates
(symbol '.' indicates 'all variables')
gfit <- rppm(unmark(gorillas) ~ . , data=gorillas.extra)
gfit

SatPiece Piecewise Constant Saturated Pairwise Interaction Point Process
Model

Description

Creates an instance of a saturated pairwise interaction point process model with piecewise constant
potential function. The model can then be fitted to point pattern data.

Usage

SatPiece(r, sat)

Arguments

r vector of jump points for the potential function

sat vector of saturation values, or a single saturation value

Details

This is a generalisation of the Geyer saturation point process model, described in Geyer, to the case
of multiple interaction distances. It can also be described as the saturated analogue of a pairwise
interaction process with piecewise-constant pair potential, described in PairPiece.

The saturated point process with interaction radii r1, . . . , rk, saturation thresholds s1, . . . , sk, in-
tensity parameter β and interaction parameters γ1, . . . , gammak, is the point process in which each
point xi in the pattern X contributes a factor

βγ
v1(xi,X)
1 . . . gamma

vk(xi,X)
k

to the probability density of the point pattern, where

vj(xi, X) = min(sj , tj(xi, X))

SatPiece 409

where tj(xi, X) denotes the number of points in the pattern X which lie at a distance between rj−1

and rj from the point xi. We take r0 = 0 so that t1(xi, X) is the number of points of X that lie
within a distance r1 of the point xi.

SatPiece is used to fit this model to data. The function ppm(), which fits point process models to
point pattern data, requires an argument of class "interact" describing the interpoint interaction
structure of the model to be fitted. The appropriate description of the piecewise constant Saturated
pairwise interaction is yielded by the function SatPiece(). See the examples below.

Simulation of this point process model is not yet implemented. This model is not locally stable (the
conditional intensity is unbounded).

The argument r specifies the vector of interaction distances. The entries of r must be strictly
increasing, positive numbers.

The argument sat specifies the vector of saturation parameters. It should be a vector of the same
length as r, and its entries should be nonnegative numbers. Thus sat[1] corresponds to the distance
range from 0 to r[1], and sat[2] to the distance range from r[1] to r[2], etc. Alternatively sat
may be a single number, and this saturation value will be applied to every distance range.

Infinite values of the saturation parameters are also permitted; in this case vj(xi, X) = tj(xi, X)
and there is effectively no ‘saturation’ for the distance range in question. If all the saturation pa-
rameters are set to Inf then the model is effectively a pairwise interaction process, equivalent to
PairPiece (however the interaction parameters γ obtained from SatPiece are the square roots of
the parameters γ obtained from PairPiece).

If r is a single number, this model is virtually equivalent to the Geyer process, see Geyer.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>
in collaboration with Hao Wang and Jeff Picka

See Also

ppm, pairsat.family, Geyer, PairPiece, BadGey.

Examples

SatPiece(c(0.1,0.2), c(1,1))
prints a sensible description of itself
SatPiece(c(0.1,0.2), 1)

ppm(cells ~1, SatPiece(c(0.07, 0.1, 0.13), 2))
fit a stationary piecewise constant Saturated pairwise interaction process

ppm(cells ~polynom(x,y,3), SatPiece(c(0.07, 0.1, 0.13), 2))
nonstationary process with log-cubic polynomial trend

410 simulate.dppm

Saturated Saturated Pairwise Interaction model

Description

Experimental.

Usage

Saturated(pot, name)

Arguments

pot An S language function giving the user-supplied pairwise interaction potential.

name Character string.

Details

This is experimental. It constructs a member of the “saturated pairwise” family pairsat.family.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

ppm, pairsat.family, Geyer, SatPiece, ppm.object

simulate.dppm Simulation of Determinantal Point Process Model

Description

Generates simulated realisations from a determinantal point process model.

simulate.dppm 411

Usage

S3 method for class 'dppm'
simulate(object, nsim = 1, seed = NULL, ...,

W = NULL, trunc = 0.99, correction = "periodic", rbord = reach(object))

S3 method for class 'detpointprocfamily'
simulate(object, nsim = 1, seed = NULL, ...,

W = NULL, trunc = 0.99, correction = "periodic", rbord = reach(object))

Arguments

object Determinantal point process model. An object of class "detpointprocfamily"
or "dppm".

nsim Number of simulated realisations.

seed an object specifying whether and how to initialise the random number gener-
ator. Either NULL or an integer that will be used in a call to set.seed before
simulating the point patterns.

... Arguments passed on to rdpp.

W Object specifying the window of simulation (defaults to a unit box if nothing else
is sensible – see Details). Can be any single argument acceptable to as.boxx
(e.g. an "owin", "box3" or "boxx" object).

trunc Numeric value specifying how the model truncation is preformed. See Details.

correction Character string specifying the type of correction to use. The options are "periodic"
(default) and "border". See Details.

rbord Numeric value specifying the extent of the border correction if this correction is
used. See Details.

Details

These functions are methods for the generic function simulate for the classes "detpointprocfamily"
and "dppm" of determinantal point process models.

The return value is a list of nsim point patterns. It also carries an attribute "seed" that captures
the initial state of the random number generator. This follows the convention used in simulate.lm
(see simulate). It can be used to force a sequence of simulations to be repeated exactly, as shown
in the examples for simulate.

The exact simulation of a determinantal point process model involves an infinite series, which typ-
ically has no analytical solution. In the implementation a truncation is performed. The truncation
trunc can be specified either directly as a positive integer or as a fraction between 0 and 1. In the
latter case the truncation is chosen such that the expected number of points in a simulation is trunc
times the theoretical expected number of points in the model. The default is 0.99.

The window of the returned point pattern(s) can be specified via the argument W. For a fitted model
(of class "dppm") it defaults to the observation window of the data used to fit the model. For
inhomogeneous models it defaults to the window of the intensity image. Otherwise it defaults to
a unit box. For non-rectangular windows simulation is done in the containing rectangle and then
restricted to the window. For inhomogeneous models a stationary model is first simulated using the
maximum intensity and then the result is obtained by thinning.

412 simulate.kppm

The default is to use periodic edge correction for simulation such that opposite edges are glued
together. If border correction is used then the simulation is done in an extended window. Edge
effects are theoretically completely removed by doubling the size of the window in each spatial
dimension, but for practical purposes much less extension may be sufficient. The numeric rbord
determines the extent of the extra space added to the window.

Value

A list of length nsim containing simulated point patterns. If the patterns are two-dimensional, then
they are objects of class "ppp", and the list has class "solist". Otherwise, the patterns are objects
of class "ppx" and the list has class "anylist".

The return value also carries an attribute "seed" that captures the initial state of the random number
generator. See Details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Lavancier, F. Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference Journal of the Royal Statistical Society, Series B 77, 853–977.

See Also

rdpp, simulate

Examples

if(interactive()) {
nsim <- 2
lam <- 100

} else {
nsim <- 1
lam <- 30

}
model <- dppGauss(lambda=lam, alpha=.05, d=2)
simulate(model, nsim)

simulate.kppm Simulate a Fitted Cluster Point Process Model

Description

Generates simulated realisations from a fitted cluster point process model.

simulate.kppm 413

Usage

S3 method for class 'kppm'
simulate(object, nsim = 1, seed=NULL, ...,

window=NULL, covariates=NULL,
n.cond = NULL, w.cond = NULL,
verbose=TRUE, retry=10,
drop=FALSE)

Arguments

object Fitted cluster point process model. An object of class "kppm".

nsim Number of simulated realisations.

seed an object specifying whether and how to initialise the random number gener-
ator. Either NULL or an integer that will be used in a call to set.seed before
simulating the point patterns.

... Additional arguments passed to the relevant random generator. See Details.

window Optional. Window (object of class "owin") in which the model should be simu-
lated.

covariates Optional. A named list containing new values for the covariates in the model.

n.cond Optional. Integer specifying a fixed number of points. See the section on Con-
ditional Simulation.

w.cond Optional. Conditioning region. A window (object of class "owin") specify-
ing the region which must contain exactly n.cond points. See the section on
Conditional Simulation.

verbose Logical. Whether to print progress reports (when nsim > 1).

retry Number of times to repeat the simulation if it fails (e.g. because of insufficient
memory).

drop Logical. If nsim=1 and drop=TRUE, the result will be a point pattern, rather than
a list containing a point pattern.

Details

This function is a method for the generic function simulate for the class "kppm" of fitted cluster
point process models.

Simulations are performed by rThomas, rMatClust, rCauchy, rVarGamma or rLGCP depending on
the model.

Additional arguments ... are passed to the relevant function performing the simulation. For exam-
ple the argument saveLambda is recognised by all of the simulation functions.

The return value is a list of point patterns. It also carries an attribute "seed" that captures the
initial state of the random number generator. This follows the convention used in simulate.lm
(see simulate). It can be used to force a sequence of simulations to be repeated exactly, as shown
in the examples for simulate.

414 simulate.kppm

Value

A list of length nsim containing simulated point patterns (objects of class "ppp"). (For conditional
simulation, the length of the result may be shorter than nsim).

The return value also carries an attribute "seed" that captures the initial state of the random number
generator. See Details.

Conditional Simulation

If n.cond is specified, it should be a single integer. Simulation will be conditional on the event
that the pattern contains exactly n.cond points (or contains exactly n.cond points inside the region
w.cond if it is given).

Conditional simulation uses the rejection algorithm described in Section 6.2 of Moller, Syversveen
and Waagepetersen (1998). There is a maximum number of proposals which will be attempted.
Consequently the return value may contain fewer than nsim point patterns.

Warning: new implementation for LGCP

The simulation algorithm for log-Gaussian Cox processes has been completely re-written in spat-
stat.random version 3.2-0 to avoid depending on the package RandomFields which is now de-
funct (and is sadly missed).

It is no longer possible to replicate results of simulate.kppm for log-Gaussian Cox processes that
were obtained using previous versions of spatstat.random.

The current code for simulating log-Gaussian Cox processes is a new implementation and should
be considered vulnerable to new bugs.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Møller, J., Syversveen, A. and Waagepetersen, R. (1998) Log Gaussian Cox Processes. Scandina-
vian Journal of Statistics 25, 451–482.

See Also

kppm, rThomas, rMatClust, rCauchy, rVarGamma, rLGCP, simulate.ppm, simulate

Examples

if(offline <- !interactive()) {
spatstat.options(npixel=32, ndummy.min=16)

}

fit <- kppm(redwood ~x, "Thomas")

simulate.mppm 415

simulate(fit, 2)

simulate(fit, n.cond=60)

if(offline) reset.spatstat.options()

simulate.mppm Simulate a Point Process Model Fitted to Several Point Patterns

Description

Generates simulated realisations from a point process model that was fitted to several point patterns.

Usage

S3 method for class 'mppm'
simulate(object, nsim=1, ..., verbose=TRUE)

Arguments

object Point process model fitted to several point patterns. An object of class "mppm".

nsim Number of simulated realisations (of each original pattern).

... Further arguments passed to simulate.ppm to control the simulation.

verbose Logical value indicating whether to print progress reports.

Details

This function is a method for the generic function simulate for the class "mppm" of fitted point
process models for replicated point pattern data.

The result is a hyperframe with n rows and nsim columns, where n is the number of original point
pattern datasets to which the model was fitted. Each column of the hyperframe contains a simulated
version of the original data.

For each of the original point pattern datasets, the fitted model for this dataset is extracted using
subfits, then nsim simulated realisations of this model are generated using simulate.ppm, and
these are stored in the corresponding row of the output.

Value

A hyperframe.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

mppm, simulate.ppm.

416 simulate.ppm

Examples

H <- hyperframe(Bugs=waterstriders)
fit <- mppm(Bugs ~ id, H)
y <- simulate(fit, nsim=2)
y
plot(y[1,,drop=TRUE], main="Simulations for Waterstriders pattern 1")
plot(y[,1,drop=TRUE], main="Simulation 1 for each Waterstriders pattern")

simulate.ppm Simulate a Fitted Gibbs Point Process Model

Description

Generates simulated realisations from a fitted Gibbs or Poisson point process model.

Usage

S3 method for class 'ppm'
simulate(object, nsim=1, ...,

singlerun = FALSE,
start = NULL,
control = default.rmhcontrol(object, w=w),
w = window,
window = NULL,
project=TRUE, new.coef=NULL,
verbose=FALSE, progress=(nsim > 1),
drop=FALSE)

Arguments

object Fitted point process model. An object of class "ppm".

nsim Number of simulated realisations.

singlerun Logical. Whether to generate the simulated realisations from a single long run
of the Metropolis-Hastings algorithm (singlerun=TRUE) or from separate, in-
dependent runs of the algorithm (singlerun=FALSE, the default).

start Data determining the initial state of the Metropolis-Hastings algorithm. See
rmhstart for description of these arguments. Defaults to list(n.start=npoints(data.ppm(object)))
meaning that the initial state of the algorithm has the same number of points as
the original dataset.

control Data controlling the running of the Metropolis-Hastings algorithm. See rmhcontrol
for description of these arguments.

w, window Optional. The window in which the model is defined. An object of class "owin".

... Further arguments passed to rmhcontrol, or to rmh.default, or to covariate
functions in the model.

simulate.ppm 417

project Logical flag indicating what to do if the fitted model is invalid (in the sense
that the values of the fitted coefficients do not specify a valid point process). If
project=TRUE the closest valid model will be simulated; if project=FALSE an
error will occur.

verbose Logical flag indicating whether to print progress reports from rmh.ppm during
the simulation of each point pattern.

progress Logical flag indicating whether to print progress reports for the sequence of
simulations.

new.coef New values for the canonical parameters of the model. A numeric vector of the
same length as coef(object).

drop Logical. If nsim=1 and drop=TRUE, the result will be a point pattern, rather than
a list containing a point pattern.

Details

This function is a method for the generic function simulate for the class "ppm" of fitted point
process models.

Simulations are performed by rmh.ppm.

If singlerun=FALSE (the default), the simulated patterns are the results of independent runs of
the Metropolis-Hastings algorithm. If singlerun=TRUE, a single long run of the algorithm is per-
formed, and the state of the simulation is saved every nsave iterations to yield the simulated pat-
terns.

In the case of a single run, the behaviour is controlled by the parameters nsave,nburn,nrep. These
are described in rmhcontrol. They may be passed in the ... arguments or included in control. It
is sufficient to specify two of the three parameters nsave,nburn,nrep.

Value

A list of length nsim containing simulated point patterns (objects of class "ppp"). It also belongs
to the class "solist", so that it can be plotted, and the class "timed", so that the total computation
time is recorded.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

ppm, simulate.kppm, simulate

Examples

fit <- ppm(japanesepines, ~1, Strauss(0.1))
simulate(fit, 2)
simulate(fit, 2, singlerun=TRUE, nsave=1e4, nburn=1e4)

418 simulate.slrm

simulate.slrm Simulate a Fitted Spatial Logistic Regression Model

Description

Generates simulated realisations from a fitted spatial logistic regresson model

Usage

S3 method for class 'slrm'
simulate(object, nsim = 1, seed=NULL, ...,

window=NULL, covariates=NULL, verbose=TRUE, drop=FALSE)

Arguments

object Fitted spatial logistic regression model. An object of class "slrm".

nsim Number of simulated realisations.

seed an object specifying whether and how to initialise the random number gener-
ator. Either NULL or an integer that will be used in a call to set.seed before
simulating the point patterns.

... Ignored.

window Optional. Window (object of class "owin") in which the model should be simu-
lated.

covariates Optional. A named list containing new values for the covariates in the model.

verbose Logical. Whether to print progress reports (when nsim > 1).

drop Logical. If nsim=1 and drop=TRUE, the result will be a point pattern, rather than
a list containing a point pattern.

Details

This function is a method for the generic function simulate for the class "slrm" of fitted spatial
logistic regression models.

Simulations are performed by rpoispp after the intensity has been computed by predict.slrm.

The return value is a list of point patterns. It also carries an attribute "seed" that captures the
initial state of the random number generator. This follows the convention used in simulate.lm
(see simulate). It can be used to force a sequence of simulations to be repeated exactly, as shown
in the examples for simulate.

Value

A list of length nsim containing simulated point patterns (objects of class "ppp").

The return value also carries an attribute "seed" that captures the initial state of the random number
generator. See Details.

slrm 419

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

slrm, rpoispp, simulate.ppm, simulate.kppm, simulate

Examples

X <- copper$SouthPoints
fit <- slrm(X ~ 1)
simulate(fit, 2)
fitxy <- slrm(X ~ x+y)
simulate(fitxy, 2, window=square(2))

slrm Spatial Logistic Regression

Description

Fits a spatial logistic regression model to a spatial point pattern.

Usage

slrm(formula, ..., data = NULL, offset = TRUE, link = "logit",
dataAtPoints=NULL, splitby=NULL)

Arguments

formula The model formula. See Details.

... Optional arguments passed to as.mask determining the pixel resolution for the
discretisation of the point pattern.

data Optional. A list containing data required in the formula. The names of entries in
the list should correspond to variable names in the formula. The entries should
be point patterns, pixel images or windows.

offset Logical flag indicating whether the model formula should be augmented by an
offset equal to the logarithm of the pixel area.

link The link function for the regression model. A character string, specifying a link
function for binary regression.

dataAtPoints Optional. Exact values of the covariates at the data points. A data frame, with
column names corresponding to variables in the formula, with one row for each
point in the point pattern dataset.

splitby Optional. Character string identifying a window. The window will be used to
split pixels into sub-pixels.

420 slrm

Details

This function fits a Spatial Logistic Regression model (Tukey, 1972; Agterberg, 1974) to a spatial
point pattern dataset. The logistic function may be replaced by another link function.

The formula specifies the form of the model to be fitted, and the data to which it should be fitted.
The formula must be an R formula with a left and right hand side.

The left hand side of the formula is the name of the point pattern dataset, an object of class "ppp".

The right hand side of the formula is an expression, in the usual R formula syntax, representing
the functional form of the linear predictor for the model.

Each variable name that appears in the formula may be

• one of the reserved names x and y, referring to the Cartesian coordinates;

• the name of an entry in the list data, if this argument is given;

• the name of an object in the parent environment, that is, in the environment where the call to
slrm was issued.

Each object appearing on the right hand side of the formula may be

• a pixel image (object of class "im") containing the values of a covariate;

• a window (object of class "owin"), which will be interpreted as a logical covariate which is
TRUE inside the window and FALSE outside it;

• a function in the R language, with arguments x,y, which can be evaluated at any location to
obtain the values of a covariate.

See the Examples below.

The fitting algorithm discretises the point pattern onto a pixel grid. The value in each pixel is 1 if
there are any points of the point pattern in the pixel, and 0 if there are no points in the pixel. The
dimensions of the pixel grid will be determined as follows:

• The pixel grid will be determined by the extra arguments ... if they are specified (for example
the argument dimyx can be used to specify the number of pixels).

• Otherwise, if the right hand side of the formula includes the names of any pixel images
containing covariate values, these images will determine the pixel grid for the discretisation.
The covariate image with the finest grid (the smallest pixels) will be used.

• Otherwise, the default pixel grid size is given by spatstat.options("npixel").

The covariates are evaluated at the centre of each pixel. If dataAtPoints is given, then the covariate
values at the corresponding pixels are overwritten by the entries of dataAtPoints (and the spatial
coordinates are overwritten by the exact spatial coordinates of the data points).

If link="logit" (the default), the algorithm fits a Spatial Logistic Regression model. This model
states that the probability p that a given pixel contains a data point, is related to the covariates
through

log
p

1− p
= η

where η is the linear predictor of the model (a linear combination of the covariates, whose form is
specified by the formula).

slrm 421

If link="cloglog" then the algorithm fits a model stating that

log(− log(1− p)) = η

.

If offset=TRUE (the default), the model formula will be augmented by adding an offset term equal
to the logarithm of the pixel area. This ensures that the fitted parameters are approximately indepen-
dent of pixel size. If offset=FALSE, the offset is not included, and the traditional form of Spatial
Logistic Regression is fitted.

Value

An object of class "slrm" representing the fitted model.

There are many methods for this class, including methods for print, fitted, predict, anova,
coef, logLik, terms, update, formula and vcov. Automated stepwise model selection is possible
using step. Confidence intervals for the parameters can be computed using confint.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

References

Agterberg, F.P. (1974) Automatic contouring of geological maps to detect target areas for mineral
exploration. Journal of the International Association for Mathematical Geology 6, 373–395.

Baddeley, A., Berman, M., Fisher, N.I., Hardegen, A., Milne, R.K., Schuhmacher, D., Shah, R.
and Turner, R. (2010) Spatial logistic regression and change-of-support for spatial Poisson point
processes. Electronic Journal of Statistics 4, 1151–1201. DOI: 10.1214/10-EJS581

Tukey, J.W. (1972) Discussion of paper by F.P. Agterberg and S.C. Robinson. Bulletin of the In-
ternational Statistical Institute 44 (1) p. 596. Proceedings, 38th Congress, International Statistical
Institute.

See Also

anova.slrm, coef.slrm, fitted.slrm, logLik.slrm, plot.slrm, predict.slrm, vcov.slrm

Examples

if(offline <- !interactive()) op <- spatstat.options(npixel=32)

X <- copper$SouthPoints
slrm(X ~ 1)
slrm(X ~ x+y)

slrm(X ~ x+y, link="cloglog")
specify a grid of 2-km-square pixels
slrm(X ~ 1, eps=2)

Y <- copper$SouthLines
Z <- distmap(Y)

422 Smooth.msr

slrm(X ~ Z)
slrm(X ~ Z, dataAtPoints=list(Z=nncross(X,Y,what="dist")))

mur <- solapply(murchison, rescale, s=1000, unitname="km")
mur$dfault <- distfun(mur$faults)
slrm(gold ~ dfault, data=mur)
slrm(gold ~ dfault + greenstone, data=mur)
slrm(gold ~ dfault, data=mur, splitby="greenstone")

if(offline) spatstat.options(op)

Smooth.msr Smooth a Signed or Vector-Valued Measure

Description

Apply kernel smoothing to a signed measure or vector-valued measure.

Usage

S3 method for class 'msr'
Smooth(X, ..., drop=TRUE)

Arguments

X Object of class "msr" representing a signed measure or vector-valued measure.

... Arguments passed to density.ppp controlling the smoothing bandwidth and
the pixel resolution.

drop Logical. If TRUE (the default), the result of smoothing a scalar-valued measure
is a pixel image. If FALSE, the result of smoothing a scalar-valued measure is a
list containing one pixel image.

Details

This function applies kernel smoothing to a signed measure or vector-valued measure X. The Gaus-
sian kernel is used.

The object X would typically have been created by residuals.ppm or msr.

Value

A pixel image or a list of pixel images. For scalar-valued measures, a pixel image (object of class
"im") provided drop=TRUE. For vector-valued measures (or if drop=FALSE), a list of pixel images;
the list also belongs to the class "solist" so that it can be printed and plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Softcore 423

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

See Also

Smooth, msr, plot.msr

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")
rs <- residuals(fit, type="score")

plot(Smooth(rp))
plot(Smooth(rs))

Softcore The Soft Core Point Process Model

Description

Creates an instance of the Soft Core point process model which can then be fitted to point pattern
data.

Usage

Softcore(kappa, sigma0=NA)

Arguments

kappa The exponent κ of the Soft Core interaction

sigma0 Optional. Initial estimate of the parameter σ. A positive number.

Details

The (stationary) Soft Core point process with parameters β and σ and exponent κ is the pairwise
interaction point process in which each point contributes a factor β to the probability density of the
point pattern, and each pair of points contributes a factor

exp

{
−
(σ
d

)2/κ
}

to the density, where d is the distance between the two points. See the Examples for a plot of this
interaction curve.

424 Softcore

Thus the process has probability density

f(x1, . . . , xn) = αβn(x) exp

−
∑
i<j

(
σ

||xi − xj ||

)2/κ

where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern, α
is the normalising constant, and the sum on the right hand side is over all unordered pairs of points
of the pattern.

This model describes an “ordered” or “inhibitive” process, with the strength of inhibition decreasing
smoothly with distance. The interaction is controlled by the parameters σ and κ.

• The spatial scale of interaction is controlled by the parameter σ, which is a positive real
number interpreted as a distance, expressed in the same units of distance as the spatial data.
The parameter σ is the distance at which the pair potential reaches the threshold value 0.37.

• The shape of the interaction function is controlled by the exponent κ which is a dimensionless
number in the range (0, 1), with larger values corresponding to a flatter shape (or a more
gradual decay rate). The process is well-defined only for κ in (0, 1). The limit of the model
as κ→ 0 is the hard core process with hard core distance h = σ.

• The “strength” of the interaction is determined by both of the parameters σ and κ. The larger
the value of κ, the wider the range of distances over which the interaction has an effect. If σ
is very small, the interaction is very weak for all practical purposes (theoretically if σ = 0 the
model reduces to the Poisson point process).

The nonstationary Soft Core process is similar except that the contribution of each individual point
xi is a function β(xi) of location, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the Soft Core process pairwise interaction is yielded by the function
Softcore(). See the examples below.

The main argument is the exponent kappa. When kappa is fixed, the model becomes an exponential
family with canonical parameters log β and

log γ =
2

κ
log σ

The canonical parameters are estimated by ppm(), not fixed in Softcore().

The optional argument sigma0 can be used to improve numerical stability. If sigma0 is given, it
should be a positive number, and it should be a rough estimate of the parameter σ.

Value

An object of class "interact" describing the interpoint interaction structure of the Soft Core pro-
cess with exponent κ.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

split.msr 425

References

Ogata, Y, and Tanemura, M. (1981). Estimation of interaction potentials of spatial point patterns
through the maximum likelihood procedure. Annals of the Institute of Statistical Mathematics, B
33, 315–338.

Ogata, Y, and Tanemura, M. (1984). Likelihood analysis of spatial point patterns. Journal of the
Royal Statistical Society, series B 46, 496–518.

See Also

ppm, pairwise.family, ppm.object

Examples

fit the stationary Soft Core process to `cells'
fit5 <- ppm(cells ~1, Softcore(kappa=0.5), correction="isotropic")

study shape of interaction and explore effect of parameters
fit2 <- update(fit5, Softcore(kappa=0.2))
fit8 <- update(fit5, Softcore(kappa=0.8))
plot(fitin(fit2), xlim=c(0, 0.4),

main="Pair potential (sigma = 0.1)",
xlab=expression(d), ylab=expression(h(d)), legend=FALSE)

plot(fitin(fit5), add=TRUE, col=4)
plot(fitin(fit8), add=TRUE, col=3)
legend("bottomright", col=c(1,4,3), lty=1,

legend=expression(kappa==0.2, kappa==0.5, kappa==0.8))

split.msr Divide a Measure into Parts

Description

Decomposes a measure into components, each component being a measure.

Usage

S3 method for class 'msr'
split(x, f, drop = FALSE, ...)

Arguments

x Measure (object of class "msr") to be decomposed.

f Factor or tessellation determining the decomposition. Argument passed to split.ppp.
See Details.

drop Logical value indicating whether empty components should be retained in the
list (drop=FALSE, the default) or deleted (drop=TRUE).

... Ignored.

426 split.msr

Details

An object of class "msr" represents a signed (i.e. real-valued) or vector-valued measure in the
spatstat package. See msr for explanation.

This function is a method for the generic split. It divides the measure x into components, each of
which is a measure.

A measure x is represented in spatstat by a finite set of sample points with values attached to them.
The function split.msr divides this pattern of sample points into several sub-patterns of points
using split.ppp. For each sub-pattern, the values attached to these points are extracted from x,
and these values and sample points determine a measure, which is a component or piece of the
original x.

The argument f can be missing, if the sample points of x are multitype points. In this case, x repre-
sents a measure associated with marked spatial locations, and the command split(x) separates x
into a list of component measures, one for each possible mark.

Otherwise the argument f is passed to split.ppp. It should be either a factor (of length equal to
the number of sample points of x) or a tessellation (object of class "tess" representing a division
of space into tiles) as documented under split.ppp.

Value

A list, each of whose entries is a measure (object of class "msr").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

msr, [.msr, with.msr

Examples

split by tessellation
a <- residuals(ppm(cells ~ x))
aa <- split(a, dirichlet(runifpoint(4)))
aa
sapply(aa, integral)

split by type of point
b <- residuals(ppm(amacrine ~ marks + x))
bb <- split(b)
bb

Strauss 427

Strauss The Strauss Point Process Model

Description

Creates an instance of the Strauss point process model which can then be fitted to point pattern data.

Usage

Strauss(r)

Arguments

r The interaction radius of the Strauss process

Details

The (stationary) Strauss process with interaction radius r and parameters β and γ is the pairwise
interaction point process in which each point contributes a factor β to the probability density of the
point pattern, and each pair of points closer than r units apart contributes a factor γ to the density.

Thus the probability density is

f(x1, . . . , xn) = αβn(x)γs(x)

where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern,
s(x) is the number of distinct unordered pairs of points that are closer than r units apart, and α is
the normalising constant.

The interaction parameter γ must be less than or equal to 1 so that this model describes an “ordered”
or “inhibitive” pattern.

The nonstationary Strauss process is similar except that the contribution of each individual point xi
is a function β(xi) of location, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The appro-
priate description of the Strauss process pairwise interaction is yielded by the function Strauss().
See the examples below.

Note the only argument is the interaction radius r. When r is fixed, the model becomes an expo-
nential family. The canonical parameters log(β) and log(γ) are estimated by ppm(), not fixed in
Strauss().

Value

An object of class "interact" describing the interpoint interaction structure of the Strauss process
with interaction radius r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

428 StraussHard

References

Kelly, F.P. and Ripley, B.D. (1976) On Strauss’s model for clustering. Biometrika 63, 357–360.

Strauss, D.J. (1975) A model for clustering. Biometrika 62, 467–475.

See Also

ppm, pairwise.family, ppm.object

Examples

Strauss(r=0.1)
prints a sensible description of itself

ppm(cells ~1, Strauss(r=0.07))
fit the stationary Strauss process to `cells'

ppm(cells ~polynom(x,y,3), Strauss(r=0.07))
fit a nonstationary Strauss process with log-cubic polynomial trend

StraussHard The Strauss / Hard Core Point Process Model

Description

Creates an instance of the “Strauss/ hard core” point process model which can then be fitted to point
pattern data.

Usage

StraussHard(r, hc=NA)

Arguments

r The interaction radius of the Strauss interaction

hc The hard core distance. Optional.

Details

A Strauss/hard core process with interaction radius r, hard core distance h < r, and parameters β
and γ, is a pairwise interaction point process in which

• distinct points are not allowed to come closer than a distance h apart

• each pair of points closer than r units apart contributes a factor γ to the probability density.

StraussHard 429

This is a hybrid of the Strauss process and the hard core process.

The probability density is zero if any pair of points is closer than h units apart, and otherwise equals

f(x1, . . . , xn) = αβn(x)γs(x)

where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern,
s(x) is the number of distinct unordered pairs of points that are closer than r units apart, and α is
the normalising constant.

The interaction parameter γ may take any positive value (unlike the case for the Strauss process).
If γ < 1, the model describes an “ordered” or “inhibitive” pattern. If γ > 1, the model is “ordered”
or “inhibitive” up to the distance h, but has an “attraction” between points lying at distances in the
range between h and r.

If γ = 1, the process reduces to a classical hard core process with hard core distance h. If γ = 0,
the process reduces to a classical hard core process with hard core distance r.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The ap-
propriate description of the Strauss/hard core process pairwise interaction is yielded by the function
StraussHard(). See the examples below.

The canonical parameter log(γ) is estimated by ppm(), not fixed in StraussHard().

If the hard core distance argument hc is missing or NA, it will be estimated from the data when
ppm is called. The estimated value of hc is the minimum nearest neighbour distance multiplied by
n/(n+ 1), where n is the number of data points.

Value

An object of class "interact" describing the interpoint interaction structure of the “Strauss/hard
core” process with Strauss interaction radius r and hard core distance hc.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

Strauss, D.J. (1975) A model for clustering. Biometrika 62, 467–475.

See Also

ppm, pairwise.family, ppm.object

430 subfits

Examples

StraussHard(r=1,hc=0.02)
prints a sensible description of itself

ppm(cells ~1, StraussHard(r=0.1, hc=0.05))
fit the stationary Strauss/hard core process to `cells'

ppm(cells ~ polynom(x,y,3), StraussHard(r=0.1, hc=0.05))
fit a nonstationary Strauss/hard core process
with log-cubic polynomial trend

subfits Extract List of Individual Point Process Models

Description

Takes a Gibbs point process model that has been fitted to several point patterns simultaneously, and
produces a list of fitted point process models for the individual point patterns.

Usage

subfits(object, what="models", verbose=FALSE, new.coef=NULL)
subfits.old(object, what="models", verbose=FALSE, new.coef=NULL)
subfits.new(object, what="models", verbose=FALSE)

Arguments

object An object of class "mppm" representing a point process model fitted to several
point patterns.

what What should be returned. Either "models" to return the fitted models, or "interactions"
to return the fitted interactions only.

verbose Logical flag indicating whether to print progress reports.
new.coef Advanced use only. Numeric vector or matrix of coefficients to replaced the

fitted coefficients coef(object).

Details

object is assumed to have been generated by mppm. It represents a point process model that has
been fitted to a list of several point patterns, with covariate data.

For each of the individual point pattern datasets, this function derives the corresponding fitted model
for that dataset only (i.e. a point process model for the ith point pattern, that is consistent with
object).

If what="models", the result is a list of point process models (a list of objects of class "ppm"), one
model for each point pattern dataset in the original fit. If what="interactions", the result is a list
of fitted interpoint interactions (a list of objects of class "fii").

Two different algorithms are provided, as subfits.old and subfits.new. Currently subfits is
the same as the old algorithm subfits.old because the newer algorithm is too memory-hungry.

suffstat 431

Value

A list of point process models (a list of objects of class "ppm") or a list of fitted interpoint interac-
tions (a list of objects of class "fii").

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented in spatstat by Adrian Bad-
deley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net> and Ege
Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

mppm, ppm

Examples

H <- hyperframe(Wat=waterstriders)
fit <- mppm(Wat~x, data=H)
subfits(fit)

H$Wat[[3]] <- rthin(H$Wat[[3]], 0.1)
fit2 <- mppm(Wat~x, data=H, random=~1|id)
subfits(fit2)

suffstat Sufficient Statistic of Point Process Model

Description

The canonical sufficient statistic of a point process model is evaluated for a given point pattern.

Usage

suffstat(model, X=data.ppm(model))

Arguments

model A fitted point process model (object of class "ppm").

X A point pattern (object of class "ppp").

432 suffstat

Details

The canonical sufficient statistic of model is evaluated for the point pattern X. This computation is
useful for various Monte Carlo methods.

Here model should be a point process model (object of class "ppm", see ppm.object), typically
obtained from the model-fitting function ppm. The argument X should be a point pattern (object of
class "ppp").

Every point process model fitted by ppm has a probability density of the form

f(x) = Z(θ) exp(θTS(x))

where x denotes a typical realisation (i.e. a point pattern), θ is the vector of model coefficients,
Z(θ) is a normalising constant, and S(x) is a function of the realisation x, called the “canonical
sufficient statistic” of the model.

For example, the stationary Poisson process has canonical sufficient statistic S(x) = n(x), the
number of points in x. The stationary Strauss process with interaction range r (and fitted with no
edge correction) has canonical sufficient statistic S(x) = (n(x), s(x)) where s(x) is the number of
pairs of points in x which are closer than a distance r to each other.

suffstat(model, X) returns the value of S(x), where S is the canonical sufficient statistic associ-
ated with model, evaluated when x is the given point pattern X. The result is a numeric vector, with
entries which correspond to the entries of the coefficient vector coef(model).

The sufficient statistic S does not depend on the fitted coefficients of the model. However it does
depend on the irregular parameters which are fixed in the original call to ppm, for example, the
interaction range r of the Strauss process.

The sufficient statistic also depends on the edge correction that was used to fit the model. For
example in a Strauss process,

• If the model is fitted with correction="none", the sufficient statistic is S(x) = (n(x), s(x))
where n(x) is the number of points and s(x) is the number of pairs of points which are closer
than r units apart.

• If the model is fitted with correction="periodic", the sufficient statistic is the same as
above, except that distances are measured in the periodic sense.

• If the model is fitted with correction="translate", then n(x) is unchanged but s(x) is
replaced by a weighted sum (the sum of the translation correction weights for all pairs of
points which are closer than r units apart).

• If the model is fitted with correction="border" (the default), then points lying less than r
units from the boundary of the observation window are treated as fixed. Thus n(x) is replaced
by the number nr(x) of points lying at least r units from the boundary of the observation win-
dow, and s(x) is replaced by the number sr(x) of pairs of points, which are closer than r units
apart, and at least one of which lies more than r units from the boundary of the observation
window.

Non-finite values of the sufficient statistic (NA or -Inf) may be returned if the point pattern X is not
a possible realisation of the model (i.e. if X has zero probability of occurring under model for all
values of the canonical coefficients θ).

Value

A numeric vector of sufficient statistics. The entries correspond to the model coefficients coef(model).

summary.dppm 433

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppm

Examples

fitS <- ppm(swedishpines~1, Strauss(7))
suffstat(fitS)
X <- rpoispp(intensity(swedishpines), win=Window(swedishpines))
suffstat(fitS, X)

summary.dppm Summarizing a Fitted Determinantal Point Process Model

Description

summary method for class "dppm".

Usage

S3 method for class 'dppm'
summary(object, ..., quick=FALSE)

S3 method for class 'summary.dppm'
print(x, ...)

Arguments

object A fitted determinantal point process model (object of class "dppm").
quick Logical value controlling the scope of the summary.
... Arguments passed to summary.ppm or print.summary.ppm controlling the treat-

ment of the trend component of the model.
x Object of class "summary.dppm" as returned by summary.dppm.

Details

This is a method for the generic summary for the class "dppm". An object of class "dppm" describes
a fitted determinantal point process model. See dppm.

summary.dppm extracts information about the type of model that has been fitted, the data to which
the model was fitted, and the values of the fitted coefficients.

print.summary.dppm prints this information in a comprehensible format.

In normal usage, print.summary.dppm is invoked implicitly when the user calls summary.dppm
without assigning its value to anything. See the examples.

434 summary.kppm

Value

summary.dppm returns an object of class "summary.dppm", while print.summary.dppm returns
NULL.

The result of summary.dppm includes at least the following components:

Xname character string name of the original point pattern data

stationary logical value indicating whether the model is stationary

trend Object of class summary.ppm summarising the trend

repul Repulsiveness index

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

Examples

jpines <- residualspaper$Fig1

fit <- dppm(jpines ~ 1, dppGauss)
summary(fit)

summary.kppm Summarizing a Fitted Cox or Cluster Point Process Model

Description

summary method for class "kppm".

Usage

S3 method for class 'kppm'
summary(object, ..., quick=FALSE)

S3 method for class 'summary.kppm'
print(x, ...)

Arguments

object A fitted Cox or cluster point process model (object of class "kppm").

quick Logical value controlling the scope of the summary.

... Arguments passed to summary.ppm or print.summary.ppm controlling the treat-
ment of the trend component of the model.

x Object of class "summary.kppm" as returned by summary.kppm.

summary.kppm 435

Details

This is a method for the generic summary for the class "kppm". An object of class "kppm" describes
a fitted Cox or cluster point process model. See kppm.

summary.kppm extracts information about the type of model that has been fitted, the data to which
the model was fitted, and the values of the fitted coefficients.

print.summary.kppm prints this information in a comprehensible format.

In normal usage, print.summary.kppm is invoked implicitly when the user calls summary.kppm
without assigning its value to anything. See the examples.

You can also type coef(summary(object)) to extract a table of the fitted coefficients of the point
process model object together with standard errors and confidence limits.

Value

summary.kppm returns an object of class "summary.kppm", while print.summary.kppm returns
NULL.

The result of summary.kppm includes at least the following components:

Xname character string name of the original point pattern data

stationary logical value indicating whether the model is stationary

clusters the clusters argument to kppm

modelname character string describing the model

isPCP TRUE if the model is a Poisson cluster process, FALSE if it is a log-Gaussian Cox
process

lambda Estimated intensity: numeric value, or pixel image

mu Mean cluster size: numeric value, pixel image, or NULL

clustpar list of fitted parameters for the cluster model

clustargs list of fixed parameters for the cluster model, if any

callstring character string representing the original call to kppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Davies, T.M., Hazelton, M.L., Rakshit, S. and Turner, R. (2022) Fundamental prob-
lems in fitting spatial cluster process models. Spatial Statistics 52, 100709. DOI: 10.1016/j.spasta.2022.100709

Examples

fit <- kppm(redwood ~ 1, "Thomas")
summary(fit)
coef(summary(fit))

436 summary.ppm

summary.ppm Summarizing a Fitted Point Process Model

Description

summary method for class "ppm".

Usage

S3 method for class 'ppm'
summary(object, ..., quick=FALSE, fine=FALSE)
S3 method for class 'summary.ppm'

print(x, ...)

Arguments

object A fitted point process model.

... Ignored.

quick Logical flag controlling the scope of the summary.

fine Logical value passed to vcov.ppm determining whether to compute the quick,
coarse estimate of variance (fine=FALSE, the default) or the slower, finer esti-
mate (fine=TRUE).

x Object of class "summary.ppm" as returned by summary.ppm.

Details

This is a method for the generic summary for the class "ppm". An object of class "ppm" describes a
fitted point process model. See ppm.object) for details of this class.

summary.ppm extracts information about the type of model that has been fitted, the data to which the
model was fitted, and the values of the fitted coefficients. (If quick=TRUE then only the information
about the type of model is extracted.)

print.summary.ppm prints this information in a comprehensible format.

In normal usage, print.summary.ppm is invoked implicitly when the user calls summary.ppm with-
out assigning its value to anything. See the examples.

You can also type coef(summary(object)) to extract a table of the fitted coefficients of the point
process model object together with standard errors and confidence limits.

Value

summary.ppm returns an object of class "summary.ppm", while print.summary.ppm returns NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

thomas.estK 437

Examples

invent some data
X <- rpoispp(42)
fit a model to it
fit <- ppm(X ~ x, Strauss(r=0.1))
summarize the fitted model
summary(fit)
`quick' option
summary(fit, quick=TRUE)
coefficients with standard errors and CI
coef(summary(fit))
coef(summary(fit, fine=TRUE))

save the full summary
s <- summary(fit)
print it
print(s)
s
extract stuff
names(s)
coef(s)
s$args$correction
s$name
s$trend$value

multitype pattern
fit <- ppm(demopat ~marks, Poisson())
summary(fit)

model with external covariates
fitX <- ppm(X, ~Z, covariates=list(Z=function(x,y){x+y}))
summary(fitX)

thomas.estK Fit the Thomas Point Process by Minimum Contrast

Description

Fits the Thomas point process to a point pattern dataset by the Method of Minimum Contrast using
the K function.

Usage

thomas.estK(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

438 thomas.estK

Arguments

X Data to which the Thomas model will be fitted. Either a point pattern or a
summary statistic. See Details.

startpar Vector of starting values for the parameters of the Thomas process.

lambda Optional. An estimate of the intensity of the point process.

q, p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

Details

This algorithm fits the Thomas point process model to a point pattern dataset by the Method of
Minimum Contrast, using the K function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The K function of
the point pattern will be computed using Kest, and the method of minimum contrast will be
applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the K function, and this
object should have been obtained by a call to Kest or one of its relatives.

The algorithm fits the Thomas point process to X, by finding the parameters of the Thomas model
which give the closest match between the theoretical K function of the Thomas process and the
observed K function. For a more detailed explanation of the Method of Minimum Contrast, see
mincontrast.

The Thomas point process is described in Møller and Waagepetersen (2003, pp. 61–62). It is
a cluster process formed by taking a pattern of parent points, generated according to a Poisson
process with intensity κ, and around each parent point, generating a random number of offspring
points, such that the number of offspring of each parent is a Poisson random variable with mean µ,
and the locations of the offspring points of one parent are independent and isotropically Normally
distributed around the parent point with standard deviation σ which is equal to the parameter scale.
The named vector of stating values can use either sigma2 (σ2) or scale as the name of the second
component, but the latter is recommended for consistency with other cluster models.

The theoretical K-function of the Thomas process is

K(r) = πr2 +
1

κ
(1− exp(− r2

4σ2
)).

The theoretical intensity of the Thomas process is λ = κµ.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters κ and σ2. Then the remaining parameter µ is inferred from the estimated intensity λ.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

thomas.estK 439

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The Thomas process can be simulated, using rThomas.

Homogeneous or inhomogeneous Thomas process models can also be fitted using the function kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Rasmus Plenge Waagepetersen <rw@math.auc.dk>. Adapted for spatstat by Adrian Baddeley
<Adrian.Baddeley@curtin.edu.au>.

References

Diggle, P. J., Besag, J. and Gleaves, J. T. (1976) Statistical analysis of spatial point patterns by
means of distance methods. Biometrics 32 659–667.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Thomas, M. (1949) A generalisation of Poisson’s binomial limit for use in ecology. Biometrika 36,
18–25.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, lgcp.estK, matclust.estK, mincontrast, Kest, rThomas to simulate the fitted model.

Examples

u <- thomas.estK(redwood, c(kappa=10, scale=0.1))
u
plot(u)

440 thomas.estpcf

thomas.estpcf Fit the Thomas Point Process by Minimum Contrast

Description

Fits the Thomas point process to a point pattern dataset by the Method of Minimum Contrast using
the pair correlation function.

Usage

thomas.estpcf(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ..., pcfargs=list())

Arguments

X Data to which the Thomas model will be fitted. Either a point pattern or a
summary statistic. See Details.

startpar Vector of starting values for the parameters of the Thomas process.

lambda Optional. An estimate of the intensity of the point process.

q, p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing
in the estimation of the pair correlation function.

Details

This algorithm fits the Thomas point process model to a point pattern dataset by the Method of
Minimum Contrast, using the pair correlation function pcf.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation
function of the point pattern will be computed using pcf, and the method of minimum contrast
will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits the Thomas point process to X, by finding the parameters of the Thomas model
which give the closest match between the theoretical pair correlation function of the Thomas pro-
cess and the observed pair correlation function. For a more detailed explanation of the Method of
Minimum Contrast, see mincontrast.

The Thomas point process is described in Møller and Waagepetersen (2003, pp. 61–62). It is
a cluster process formed by taking a pattern of parent points, generated according to a Poisson

thomas.estpcf 441

process with intensity κ, and around each parent point, generating a random number of offspring
points, such that the number of offspring of each parent is a Poisson random variable with mean µ,
and the locations of the offspring points of one parent are independent and isotropically Normally
distributed around the parent point with standard deviation σ which is equal to the parameter scale.
The named vector of stating values can use either sigma2 (σ2) or scale as the name of the second
component, but the latter is recommended for consistency with other cluster models.

The theoretical pair correlation function of the Thomas process is

g(r) = 1 +
1

4πκσ2
exp(− r2

4σ2
)).

The theoretical intensity of the Thomas process is λ = κµ.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters κ and σ2. Then the remaining parameter µ is inferred from the estimated intensity λ.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The Thomas process can be simulated, using rThomas.

Homogeneous or inhomogeneous Thomas process models can also be fitted using the function kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Diggle, P. J., Besag, J. and Gleaves, J. T. (1976) Statistical analysis of spatial point patterns by
means of distance methods. Biometrics 32 659–667.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

442 traj

Thomas, M. (1949) A generalisation of Poisson’s binomial limit for use in ecology. Biometrika 36,
18–25.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

thomas.estK mincontrast, pcf, rThomas to simulate the fitted model.

Examples

u <- thomas.estpcf(redwood, c(kappa=10, scale=0.1))
u
plot(u, legendpos="topright")
u2 <- thomas.estpcf(redwood, c(kappa=10, scale=0.1),

pcfargs=list(stoyan=0.12))

traj Extract trajectory of function evaluations

Description

Extract the history of evaluations of the objective function performed when a cluster process model
was fitted.

Usage

traj(object)

Arguments

object Fitted cluster point process model (object of class "kppm") or objective function
surface (object of class "objsurf").

Details

Under appropriate circumstances, the fitted model object contains the history of evaluations of the
objective function that were performed by the optimisation algorithm. This history is extracted by
traj.

The result is a data frame containing the input parameter values for the objective function, and the
corresponding value of the objective function, that were considered by the optimisation algorithm.
This data frame also belongs to the class "traj" which has methods for plot, print and other
purposes.

Value

Either a data frame (belonging to class "traj") or NULL.

triplet.family 443

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

methods.traj

Examples

fit <- kppm(redwood, trajectory=TRUE)
h <- traj(fit)

triplet.family Triplet Interaction Family

Description

An object describing the family of all Gibbs point processes with interaction order equal to 3.

Details

Advanced Use Only!
This structure would not normally be touched by the user. It describes the interaction structure of
Gibbs point processes which have infinite order of interaction, such as the triplet interaction process
Triplets.

Anyway, triplet.family is an object of class "isf" containing a function triplet.family$eval
for evaluating the sufficient statistics of a Gibbs point process model taking an exponential family
form.

Value

Object of class "isf", see isf.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

See Also

Triplets to create the triplet interaction process structure.

Other families: pairwise.family, pairsat.family, inforder.family, ord.family.

444 Triplets

Triplets The Triplet Point Process Model

Description

Creates an instance of Geyer’s triplet interaction point process model which can then be fitted to
point pattern data.

Usage

Triplets(r)

Arguments

r The interaction radius of the Triplets process

Details

The (stationary) Geyer triplet process (Geyer, 1999) with interaction radius r and parameters β and
γ is the point process in which each point contributes a factor β to the probability density of the
point pattern, and each triplet of close points contributes a factor γ to the density. A triplet of close
points is a group of 3 points, each pair of which is closer than r units apart.

Thus the probability density is

f(x1, . . . , xn) = αβn(x)γs(x)

where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern,
s(x) is the number of unordered triples of points that are closer than r units apart, and α is the
normalising constant.

The interaction parameter γ must be less than or equal to 1 so that this model describes an “ordered”
or “inhibitive” pattern.

The nonstationary Triplets process is similar except that the contribution of each individual point xi
is a function β(xi) of location, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The appro-
priate description of the Triplets process pairwise interaction is yielded by the function Triplets().
See the examples below.

Note the only argument is the interaction radius r. When r is fixed, the model becomes an expo-
nential family. The canonical parameters log(β) and log(γ) are estimated by ppm(), not fixed in
Triplets().

Value

An object of class "interact" describing the interpoint interaction structure of the Triplets process
with interaction radius r.

unitname 445

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

ppm, triplet.family, ppm.object

Examples

Triplets(r=0.1)
prints a sensible description of itself

ppm(cells ~1, Triplets(r=0.2))
fit the stationary Triplets process to `cells'

ppm(cells ~polynom(x,y,3), Triplets(r=0.2))
fit a nonstationary Triplets process with log-cubic polynomial trend

unitname Name for Unit of Length

Description

Inspect or change the name of the unit of length in a spatial dataset.

Usage

S3 method for class 'dppm'
unitname(x)
S3 method for class 'kppm'
unitname(x)
S3 method for class 'minconfit'
unitname(x)
S3 method for class 'ppm'
unitname(x)
S3 method for class 'slrm'
unitname(x)
S3 replacement method for class 'dppm'
unitname(x) <- value

446 unitname

S3 replacement method for class 'kppm'
unitname(x) <- value
S3 replacement method for class 'minconfit'
unitname(x) <- value
S3 replacement method for class 'ppm'
unitname(x) <- value
S3 replacement method for class 'slrm'
unitname(x) <- value

Arguments

x A spatial dataset. Either a point pattern (object of class "ppp"), a line segment
pattern (object of class "psp"), a window (object of class "owin"), a pixel im-
age (object of class "im"), a tessellation (object of class "tess"), a quadrature
scheme (object of class "quad"), or a fitted point process model (object of class
"ppm" or "kppm" or "slrm" or "dppm" or "minconfit").

value Name of the unit of length. See Details.

Details

Spatial datasets in the spatstat package may include the name of the unit of length. This name is
used when printing or plotting the dataset, and in some other applications.

unitname(x) extracts this name, and unitname(x) <- value sets the name to value.

A valid name is either

• a single character string

• a vector of two character strings giving the singular and plural forms of the unit name

• a list of length 3, containing two character strings giving the singular and plural forms of the
basic unit, and a number specifying the multiple of this unit.

Note that re-setting the name of the unit of length does not affect the numerical values in x. It
changes only the string containing the name of the unit of length. To rescale the numerical values,
use rescale.

Value

The return value of unitname is an object of class "unitname" containing the name of the unit of
length in x. There are methods for print, summary, as.character, rescale and compatible.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rescale, owin, ppp

unstack.msr 447

Examples

X <- runifrect(20)

if the unit of length is 1 metre:
unitname(X) <- c("metre", "metres")

if the unit of length is 6 inches:
unitname(X) <- list("inch", "inches", 6)

unstack.msr Separate a Vector Measure into its Scalar Components

Description

Converts a vector-valued measure into a list of scalar-valued measures.

Usage

S3 method for class 'msr'
unstack(x, ...)

Arguments

x A measure (object of class "msr").
... Ignored.

Details

This is a method for the generic unstack for the class "msr" of measures.

If x is a vector-valued measure, then y <- unstack(x) is a list of scalar-valued measures defined
by the components of x. The jth entry of the list, y[[j]], is equivalent to the jth component of the
vector measure x.

If x is a scalar-valued measure, then the result is a list consisting of one entry, which is x.

Value

A list of measures, of class "solist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

unstack

unstack.ppp

split.msr.

448 update.dppm

Examples

fit <- ppm(cells ~ x)
m <- residuals(fit, type="score")
m
unstack(m)

update.detpointprocfamily

Set Parameter Values in a Determinantal Point Process Model

Description

Set parameter values in a determinantal point process model object.

Usage

S3 method for class 'detpointprocfamily'
update(object, ...)

Arguments

object object of class "detpointprocfamily".

... arguments of the form tag=value specifying the parameters values to set.

Value

Another object of class "detpointprocfamily".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

update.dppm Update a Fitted Determinantal Point Process Model

Description

update method for class "dppm".

Usage

S3 method for class 'dppm'
update(object, ..., evaluate=TRUE,

envir=environment(terms(object)))

update.dppm 449

Arguments

object Fitted determinantal point process model. An object of class "dppm", obtained
from dppm.

... Arguments passed to dppm.

evaluate Logical value indicating whether to return the updated fitted model (evaluate=TRUE,
the default) or just the updated call to dppm (evaluate=FALSE).

envir Environment in which to re-evaluate the call to dppm.

Details

object should be a fitted determinantal point process model, obtained from the model-fitting func-
tion dppm. The model will be updated according to the new arguments provided.

If the argument trend is provided, it determines the intensity in the updated model. It should be an
R formula (with or without a left hand side). It may include the symbols + or - to specify addition
or deletion of terms in the current model formula, as shown in the Examples below. The symbol .
refers to the current contents of the formula.

The intensity in the updated model is determined by the argument trend if it is provided, or other-
wise by any unnamed argument that is a formula, or otherwise by the formula of the original model,
formula(object).

The spatial point pattern data to which the new model is fitted is determined by the left hand side
of the updated model formula, if this is present. Otherwise it is determined by the argument X if it
is provided, or otherwise by any unnamed argument that is a point pattern or a quadrature scheme.

The model is refitted using dppm.

Value

Another fitted cluster point process model (object of class "dppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

dppm, plot.dppm, predict.dppm, simulate.dppm, methods.dppm.

Examples

fit <- dppm(swedishpines ~ x + y, dppGauss, method="c")
fitx <- update(fit, ~x)
fit2 <- update(fit, flipxy(swedishpines))

450 update.interact

update.interact Update an Interpoint Interaction

Description

This command updates the object using the arguments given.

Usage

S3 method for class 'interact'
update(object, ...)

Arguments

object Interpoint interaction (object of class "interact").

... Additional or replacement values of parameters of object.

Details

This is a method for the generic function update for the class "interact" of interpoint interactions.
It updates the object using the parameters given in the extra arguments

The extra arguments must be given in the form name=value and must be recognisable to the inter-
action object. They override any parameters of the same name in object.

Value

Another object of class "interact", equivalent to object except for changes in parameter values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

update.ppm

Examples

Str <- Strauss(r=1)
Str
update(Str, r=2)

M <- MultiStrauss(radii=matrix(1,2,2))
update(M, types=c("on", "off"))

update.kppm 451

update.kppm Update a Fitted Cluster Point Process Model

Description

update method for class "kppm".

Usage

S3 method for class 'kppm'
update(object, ..., evaluate=TRUE,

envir=environment(terms(object)))

Arguments

object Fitted cluster point process model. An object of class "kppm", obtained from
kppm.

... Arguments passed to kppm.

evaluate Logical value indicating whether to return the updated fitted model (evaluate=TRUE,
the default) or just the updated call to kppm (evaluate=FALSE).

envir Environment in which to re-evaluate the call to kppm.

Details

object should be a fitted cluster point process model, obtained from the model-fitting function
kppm. The model will be updated according to the new arguments provided.

If the argument trend is provided, it determines the intensity in the updated model. It should be an
R formula (with or without a left hand side). It may include the symbols + or - to specify addition
or deletion of terms in the current model formula, as shown in the Examples below. The symbol .
refers to the current contents of the formula.

The intensity in the updated model is determined by the argument trend if it is provided, or other-
wise by any unnamed argument that is a formula, or otherwise by the formula of the original model,
formula(object).

The spatial point pattern data to which the new model is fitted is determined by the left hand side
of the updated model formula, if this is present. Otherwise it is determined by the argument X if it
is provided, or otherwise by any unnamed argument that is a point pattern or a quadrature scheme.

The model is refitted using kppm.

Value

Another fitted cluster point process model (object of class "kppm".

452 update.ppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

kppm, plot.kppm, predict.kppm, simulate.kppm, methods.kppm, vcov.kppm

Examples

fit <- kppm(redwood ~1, "Thomas")
fitx <- update(fit, ~ . + x)
fitM <- update(fit, clusters="MatClust")
fitC <- update(fit, cells)
fitCx <- update(fit, cells ~ x)

update.ppm Update a Fitted Point Process Model

Description

update method for class "ppm".

Usage

S3 method for class 'ppm'
update(object, ..., fixdummy=TRUE, use.internal=NULL,

envir=environment(terms(object)))

Arguments

object An existing fitted point process model, typically produced by ppm.

... Arguments to be updated in the new call to ppm.

fixdummy Logical flag indicating whether the quadrature scheme for the call to ppm should
use the same set of dummy points as that in the original call.

use.internal Optional. Logical flag indicating whether the model should be refitted using the
internally saved data (use.internal=TRUE) or by re-evaluating these data in the
current frame (use.internal=FALSE).

envir Environment in which to re-evaluate the call to ppm.

update.ppm 453

Details

This is a method for the generic function update for the class "ppm". An object of class "ppm"
describes a fitted point process model. See ppm.object) for details of this class.

update.ppm will modify the point process model specified by object according to the new argu-
ments given, then re-fit it. The actual re-fitting is performed by the model-fitting function ppm.

If you are comparing several model fits to the same data, or fits of the same model to different data,
it is strongly advisable to use update.ppm rather than trying to fit them by hand. This is because
update.ppm re-fits the model in a way which is comparable to the original fit.

The arguments ... are matched to the formal arguments of ppm as follows.

First, all the named arguments in ... are matched with the formal arguments of ppm. Use name=NULL
to remove the argument name from the call.

Second, any unnamed arguments in ... are matched with formal arguments of ppm if the matching
is obvious from the class of the object. Thus ... may contain

• exactly one argument of class "ppp" or "quad", which will be interpreted as the named argu-
ment Q;

• exactly one argument of class "formula", which will be interpreted as the named argument
trend (or as specifying a change to the trend formula);

• exactly one argument of class "interact", which will be interpreted as the named argument
interaction;

• exactly one argument of class "data.frame", which will be interpreted as the named argu-
ment covariates.

The trend argument can be a formula that specifies a change to the current trend formula. For
example, the formula ~ . + Z specifies that the additional covariate Z will be added to the right hand
side of the trend formula in the existing object.

The argument fixdummy=TRUE ensures comparability of the objects before and after updating.
When fixdummy=FALSE, calling update.ppm is exactly the same as calling ppm with the updated
arguments. However, the original and updated models are not strictly comparable (for example,
their pseudolikelihoods are not strictly comparable) unless they used the same set of dummy points
for the quadrature scheme. Setting fixdummy=TRUE ensures that the re-fitting will be performed
using the same set of dummy points. This is highly recommended.

The value of use.internal determines where to find data to re-evaluate the model (data for the ar-
guments mentioned in the original call to ppm that are not overwritten by arguments to update.ppm).

If use.internal=FALSE, then arguments to ppm are re-evaluated in the frame where you call
update.ppm. This is like the behaviour of the other methods for update. This means that if you
have changed any of the objects referred to in the call, these changes will be taken into account.
Also if the original call to ppm included any calls to random number generators, these calls will be
recomputed, so that you will get a different outcome of the random numbers.

If use.internal=TRUE, then arguments to ppm are extracted from internal data stored inside the
current fitted model object. This is useful if you don’t want to re-evaluate anything. It is also
necessary if if object has been restored from a dump file using load or source. In such cases, we
have lost the environment in which object was fitted, and data cannot be re-evaluated.

By default, if use.internal is missing, update.ppm will re-evaluate the arguments if this is pos-
sible, and use internal data if not.

454 update.ppm

Value

Another fitted point process model (object of class "ppm").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

Examples

data(cells)

fit the stationary Poisson process
fit <- ppm(nztrees, ~ 1)

fit a nonstationary Poisson process
fitP <- update(fit, trend=~x)
fitP <- update(fit, ~x)

change the trend formula: add another term to the trend
fitPxy <- update(fitP, ~ . + y)
change the trend formula: remove the x variable
fitPy <- update(fitPxy, ~ . - x)

fit a stationary Strauss process
fitS <- update(fit, interaction=Strauss(13))
fitS <- update(fit, Strauss(13))

refit using a different edge correction
fitS <- update(fitS, correction="isotropic")

re-fit the model to a subset
of the original point pattern
nzw <- owin(c(0,148),c(0,95))
nzsub <- nztrees[,nzw]
fut <- update(fitS, Q=nzsub)
fut <- update(fitS, nzsub)

WARNING: the point pattern argument is called 'Q'

ranfit <- ppm(rpoispp(42), ~1, Poisson())
ranfit
different random data!
update(ranfit)
the original data
update(ranfit, use.internal=TRUE)

update.rppm 455

update.rppm Update a Recursively Partitioned Point Process Model

Description

update method for class "rppm".

Usage

S3 method for class 'rppm'
update(object, ..., envir=environment(terms(object)))

Arguments

object Fitted recursively partitioned point process model. An object of class "rppm",
obtained from rppm.

... Arguments passed to rppm.

envir Environment in which to re-evaluate the call to rppm.

Details

object should be a fitted recursively partitioned point process model, obtained from the model-
fitting function rppm.

The model will be updated according to the new arguments provided.

Value

Another fitted recursively partitioned point process model (object of class "rppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rppm.

Examples

fit <- rppm(nztrees ~ x)
newfit <- update(fit, . ~ x + y)

456 valid

valid Check Whether Point Process Model is Valid

Description

Determines whether a point process model object corresponds to a valid point process.

Usage

valid(object, ...)

Arguments

object Object of some class, describing a point process model.

... Additional arguments passed to methods.

Details

The function valid is generic, with methods for the classes "ppm" and "dppmodel".

An object representing a point process is called valid if all its parameter values are known (for
example, no parameter takes the value NA or NaN) and the parameter values correspond to a well-
defined point process (for example, the parameter values satisfy all the constraints that are imposed
by mathematical theory.)

See the methods for further details.

Value

A logical value, or NA.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

valid.ppm, valid.detpointprocfamily

valid.detpointprocfamily 457

valid.detpointprocfamily

Check Validity of a Determinantal Point Process Model

Description

Checks the validity of a determinantal point process model.

Usage

S3 method for class 'detpointprocfamily'
valid(object, ...)

Arguments

object Model of class "detpointprocfamily".

... Ignored.

Value

Logical

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

valid

Examples

model1 <- dppMatern(lambda=100, alpha=.01, nu=1, d=2)
valid(model1)
model2 <- dppMatern(lambda=100, alpha=1, nu=1, d=2)
valid(model2)

458 valid.ppm

valid.ppm Check Whether Point Process Model is Valid

Description

Determines whether a fitted point process model satisfies the integrability conditions for existence
of the point process.

Usage

S3 method for class 'ppm'
valid(object, warn=TRUE, ...)

Arguments

object Fitted point process model (object of class "ppm").
warn Logical value indicating whether to issue a warning if the validity of the model

cannot be checked (due to unavailability of the required code).
... Ignored.

Details

This is a method for the generic function valid for Poisson and Gibbs point process models (class
"ppm").

The model-fitting function ppm fits Gibbs point process models to point pattern data. By default,
ppm does not check whether the fitted model actually exists as a point process. This checking is
done by valid.ppm.

Unlike a regression model, which is well-defined for any values of the fitted regression coefficients,
a Gibbs point process model is only well-defined if the fitted interaction parameters satisfy some
constraints. A famous example is the Strauss process (see Strauss) which exists only when the
interaction parameter γ is less than or equal to 1. For values γ > 1, the probability density is not
integrable and the process does not exist (and cannot be simulated).

By default, ppm does not enforce the constraint that a fitted Strauss process (for example) must
satisfy γ ≤ 1. This is because a fitted parameter value of γ > 1 could be useful information for data
analysis, as it indicates that the Strauss model is not appropriate, and suggests a clustered model
should be fitted.

The function valid.ppm checks whether the fitted model object specifies a well-defined point
process. It returns TRUE if the model is well-defined.

Another possible reason for invalid models is that the data may not be adequate for estimation of
the model parameters. In this case, some of the fitted coefficients could be NA or infinite values. If
this happens then valid.ppm returns FALSE.

Use the function project.ppm to force the fitted model to be valid.

Value

A logical value, or NA.

valid.slrm 459

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

ppm, project.ppm

Examples

fit1 <- ppm(cells, ~1, Strauss(0.1))
valid(fit1)
fit2 <- ppm(redwood, ~1, Strauss(0.1))
valid(fit2)

valid.slrm Check Whether Spatial Logistic Regression Model is Valid

Description

Determines whether a fitted spatial logistic regression model is a well-defined model.

Usage

S3 method for class 'slrm'
valid(object, warn=TRUE, ...)

Arguments

object Fitted spatial logistic regression model (object of class "slrm").

warn Logical value indicating whether to issue a warning if the validity of the model
cannot be checked (due to unavailability of the required code).

... Ignored.

Details

This is a method for the generic function valid for spatial logistic regression models (class "slrm").

In a model fitted by slrm, some of the fitted coefficients may be NA or infinite values. This can
occur if the data are not adequate for estimation of the model parameters. The model is said to be
unidentifiable or confounded.

The function valid.slrm checks whether the fitted coefficients of object specify a well-defined
model. It returns TRUE if the model is well-defined, and FALSE otherwise.

Use the function emend.slrm to force the fitted model to be valid.

Value

A logical value, or NA.

460 varcount

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

slrm, emend.slrm

Examples

fit1 <- slrm(cells ~ x)
valid(fit1)
fit2 <- slrm(cells ~ x + I(x))
valid(fit2)

varcount Predicted Variance of the Number of Points

Description

Given a fitted point process model, calculate the predicted variance of the number of points in a
nominated set B.

Usage

varcount(model, B=Window(model), ..., dimyx = NULL, relative=FALSE)

Arguments

model A fitted point process model (object of class "ppm", "kppm" or "dppm").

B A window (object of class "owin" specifying the region in which the points
are counted. Alternatively a pixel image (object of class "im") or a function of
spatial coordinates specifying a numerical weight for each random point. The
default is the window of the original point pattern data to which the model was
fitted.

... Additional arguments passed to B when it is a function.

dimyx Spatial resolution for the calculations. Argument passed to as.mask.

relative Logical value specifying whether to divide the variance by the mean value.

Details

The function varcount calculates the variance of the number of points falling in a specified window
B according to the model. It can also calculate the variance of a sum of weights attached to each
random point.

If relative=FALSE (the default), the result is the variance. If relative=TRUE, the result is the
variance divided by the mean, which is the overdispersion index (equal to 1 if the number of points
has a Poisson distribution).

varcount 461

The model should be a fitted point process model (object of class "ppm", "kppm" or "dppm").

• If B is a window, varcount calculates the variance of the number of points falling in B, ac-
cording to the fitted model.
If the model depends on spatial covariates other than the Cartesian coordinates, then B should
be a subset of the domain in which these covariates are defined.

• If B is a pixel image, varcount calculates the variance of T =
∑

iB(xi), the sum of the
values of B over all random points falling in the domain of the image.
If the model depends on spatial covariates other than the Cartesian coordinates, then the do-
main of the pixel image, as.owin(B), should be a subset of the domain in which these covari-
ates are defined.

• If B is a function(x,y) or function(x,y,...) then varcount calculates the variance of
T =

∑
iB(xi), the sum of the values of B over all random points falling inside the window

W=as.owin(model), the window in which the original data were observed.

The variance calculation involves the intensity and the pair correlation function of the model. The
calculation is exact (up to discretisation error) for models of class "kppm" and "dppm", and for
Poisson point process models of class "ppm". For Gibbs point process models of class "ppm" the
calculation depends on the Poisson-saddlepoint approximations to the intensity and pair correlation
function, which are rough approximations. The approximation is not yet implemented for some
Gibbs models.

Value

A single number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

predict.ppm, predict.kppm, predict.dppm

Examples

fitT <- kppm(redwood ~ 1, "Thomas")
B <- owin(c(0, 0.5), c(-0.5, 0))
varcount(fitT, B)

fitS <- ppm(swedishpines ~ 1, Strauss(9))
BS <- square(50)
varcount(fitS, BS)

462 vargamma.estK

vargamma.estK Fit the Neyman-Scott Cluster Point Process with Variance Gamma ker-
nel

Description

Fits the Neyman-Scott cluster point process, with Variance Gamma kernel, to a point pattern dataset
by the Method of Minimum Contrast.

Usage

vargamma.estK(X, startpar=c(kappa=1,scale=1), nu = -1/4, lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the model.

nu Numerical value controlling the shape of the tail of the clusters. A number
greater than -1/2.

lambda Optional. An estimate of the intensity of the point process.

q, p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

Details

This algorithm fits the Neyman-Scott Cluster point process model with Variance Gamma kernel
(Jalilian et al, 2013) to a point pattern dataset by the Method of Minimum Contrast, using the K
function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The K function of
the point pattern will be computed using Kest, and the method of minimum contrast will be
applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the K function, and this
object should have been obtained by a call to Kest or one of its relatives.

The algorithm fits the Neyman-Scott Cluster point process with Variance Gamma kernel to X, by
finding the parameters of the model which give the closest match between the theoreticalK function
of the model and the observed K function. For a more detailed explanation of the Method of
Minimum Contrast, see mincontrast.

vargamma.estK 463

The Neyman-Scott cluster point process with Variance Gamma kernel is described in Jalilian et
al (2013). It is a cluster process formed by taking a pattern of parent points, generated according
to a Poisson process with intensity κ, and around each parent point, generating a random number
of offspring points, such that the number of offspring of each parent is a Poisson random variable
with mean µ, and the locations of the offspring points of one parent have a common distribution
described in Jalilian et al (2013).

The shape of the kernel is determined by the dimensionless index nu. This is the parameter ν′ =
α/2 − 1 appearing in equation (12) on page 126 of Jalilian et al (2013). In previous versions of
spatstat instead of specifying nu (called nu.ker at that time) the user could specify nu.pcf which
is the parameter ν = α− 1 appearing in equation (13), page 127 of Jalilian et al (2013). These are
related by nu.pcf = 2 * nu.ker + 1 and nu.ker = (nu.pcf - 1)/2. This syntax is still supported
but not recommended for consistency across the package. In that case exactly one of nu.ker or
nu.pcf must be specified.

If the argument lambda is provided, then this is used as the value of the point process intensity λ.
Otherwise, if X is a point pattern, then λ will be estimated from X. If X is a summary statistic and
lambda is missing, then the intensity λ cannot be estimated, and the parameter µ will be returned
as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The corresponding model can be simulated using rVarGamma.

The parameter eta appearing in startpar is equivalent to the scale parameter omega used in
rVarGamma.

Homogeneous or inhomogeneous Neyman-Scott/VarGamma models can also be fitted using the
function kppm and the fitted models can be simulated using simulate.kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Jalilian, A., Guan, Y. and Waagepetersen, R. (2013) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119-137.

464 vargamma.estpcf

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, vargamma.estpcf, lgcp.estK, thomas.estK, cauchy.estK, mincontrast, Kest, Kmodel.

rVarGamma to simulate the model.

Examples

if(interactive()) {
u <- vargamma.estK(redwood)
print(u)
plot(u)

}

vargamma.estpcf Fit the Neyman-Scott Cluster Point Process with Variance Gamma ker-
nel

Description

Fits the Neyman-Scott cluster point process, with Variance Gamma kernel, to a point pattern dataset
by the Method of Minimum Contrast, using the pair correlation function.

Usage

vargamma.estpcf(X, startpar=c(kappa=1,scale=1), nu = -1/4, lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL,
..., pcfargs = list())

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the model.

nu Numerical value controlling the shape of the tail of the clusters. A number
greater than -1/2.

lambda Optional. An estimate of the intensity of the point process.

q, p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing
in the estimation of the pair correlation function.

vargamma.estpcf 465

Details

This algorithm fits the Neyman-Scott Cluster point process model with Variance Gamma kernel
(Jalilian et al, 2013) to a point pattern dataset by the Method of Minimum Contrast, using the pair
correlation function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation
function of the point pattern will be computed using pcf, and the method of minimum contrast
will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits the Neyman-Scott Cluster point process with Variance Gamma kernel to X, by
finding the parameters of the model which give the closest match between the theoretical pair cor-
relation function of the model and the observed pair correlation function. For a more detailed
explanation of the Method of Minimum Contrast, see mincontrast.

The Neyman-Scott cluster point process with Variance Gamma kernel is described in Jalilian et
al (2013). It is a cluster process formed by taking a pattern of parent points, generated according
to a Poisson process with intensity κ, and around each parent point, generating a random number
of offspring points, such that the number of offspring of each parent is a Poisson random variable
with mean µ, and the locations of the offspring points of one parent have a common distribution
described in Jalilian et al (2013).

The shape of the kernel is determined by the dimensionless index nu. This is the parameter ν′ =
α/2 − 1 appearing in equation (12) on page 126 of Jalilian et al (2013). In previous versions of
spatstat instead of specifying nu (called nu.ker at that time) the user could specify nu.pcf which
is the parameter ν = α− 1 appearing in equation (13), page 127 of Jalilian et al (2013). These are
related by nu.pcf = 2 * nu.ker + 1 and nu.ker = (nu.pcf - 1)/2. This syntax is still supported
but not recommended for consistency across the package. In that case exactly one of nu.ker or
nu.pcf must be specified.

If the argument lambda is provided, then this is used as the value of the point process intensity λ.
Otherwise, if X is a point pattern, then λ will be estimated from X. If X is a summary statistic and
lambda is missing, then the intensity λ cannot be estimated, and the parameter µ will be returned
as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The corresponding model can be simulated using rVarGamma.

The parameter eta appearing in startpar is equivalent to the scale parameter omega used in
rVarGamma.

Homogeneous or inhomogeneous Neyman-Scott/VarGamma models can also be fitted using the
function kppm and the fitted models can be simulated using simulate.kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

466 vcov.kppm

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Jalilian, A., Guan, Y. and Waagepetersen, R. (2013) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119-137.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, vargamma.estK, lgcp.estpcf, thomas.estpcf, cauchy.estpcf, mincontrast, pcf, pcfmodel.

rVarGamma to simulate the model.

Examples

u <- vargamma.estpcf(redwood)
u
plot(u, legendpos="topright")

vcov.kppm Variance-Covariance Matrix for a Fitted Cluster Point Process Model

Description

Returns the variance-covariance matrix of the estimates of the parameters of a fitted cluster point
process model.

Usage

S3 method for class 'kppm'
vcov(object, ...,

what=c("vcov", "corr", "fisher"),
fast = NULL, rmax = NULL, eps.rmax = 0.01,
verbose = TRUE)

vcov.kppm 467

Arguments

object A fitted cluster point process model (an object of class "kppm".)

... Ignored.

what Character string (partially-matched) that specifies what matrix is returned. Op-
tions are "vcov" for the variance-covariance matrix, "corr" for the correlation
matrix, and "fisher" for the Fisher information matrix.

fast Logical specifying whether tapering (using sparse matrices from Matrix) should
be used to speed up calculations. Warning: This is expected to underestimate
the true asymptotic variances/covariances.

rmax Optional. The dependence range. Not usually specified by the user. Only used
when fast=TRUE.

eps.rmax Numeric. A small positive number which is used to determine rmax from the
tail behaviour of the pair correlation function when fast option (fast=TRUE) is
used. Namely rmax is the smallest value of r at which (g(r) − 1)/(g(0) − 1)
falls below eps.rmax. Only used when fast=TRUE. Ignored if rmax is provided.

verbose Logical value indicating whether to print progress reports during very long cal-
culations.

Details

This function computes the asymptotic variance-covariance matrix of the estimates of the canonical
(regression) parameters in the cluster point process model object. It is a method for the generic
function vcov.

The result is an n * n matrix where n = length(coef(model)).

To calculate a confidence interval for a regression parameter, use confint as shown in the examples.

Value

A square matrix.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Ported to spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Ege Rubak <rubak@math.aau.dk>.

References

Waagepetersen, R. (2007) Estimating functions for inhomogeneous spatial point processes with
incomplete covariate data. Biometrika 95, 351–363.

See Also

kppm, vcov, vcov.ppm

468 vcov.mppm

Examples

fit <- kppm(redwood ~ x + y)
vcov(fit)
vcov(fit, what="corr")

confidence interval
confint(fit)
cross-check the confidence interval by hand:
sd <- sqrt(diag(vcov(fit)))
t(coef(fit) + 1.96 * outer(sd, c(lower=-1, upper=1)))

vcov.mppm Calculate Variance-Covariance Matrix for Fitted Multiple Point Pro-
cess Model

Description

Given a fitted multiple point process model, calculate the variance-covariance matrix of the param-
eter estimates.

Usage

S3 method for class 'mppm'
vcov(object, ..., what="vcov", err="fatal")

Arguments

object A multiple point process model (object of class "mppm").

... Arguments recognised by vcov.ppm.

what Character string indicating which quantity should be calculated. Options include
"vcov" for the variance-covariance matrix, "corr" for the correlation matrix,
and "fisher" for the Fisher information matrix.

err Character string indicating what action to take if an error occurs. Either "fatal",
"warn" or "null".

Details

This is a method for the generic function vcov.

The argument object should be a fitted multiple point process model (object of class "mppm")
generated by mppm.

The variance-covariance matrix of the parameter estimates is computed using asymptotic theory for
maximum likelihood (for Poisson processes) or estimating equations (for other Gibbs models).

If what="vcov" (the default), the variance-covariance matrix is returned. If what="corr", the
variance-covariance matrix is normalised to yield a correlation matrix, and this is returned. If
what="fisher", the Fisher information matrix is returned instead.

vcov.ppm 469

In all three cases, the rows and columns of the matrix correspond to the parameters (coefficients) in
the same order as in coef{model}.

If errors or numerical problems occur, the argument err determines what will happen. If err="fatal"
an error will occur. If err="warn" a warning will be issued and NA will be returned. If err="null",
no warning is issued, but NULL is returned.

Value

A numeric matrix (or NA or NULL).

Error messages

An error message that reports system is computationally singular indicates that the determinant of
the Fisher information matrix of one of the models was either too large or too small for reliable
numerical calculation. See vcov.ppm for suggestions on how to handle this.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <rolfturner@posteo.net> and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

vcov, vcov.ppm, mppm

Examples

fit <- mppm(Wat ~x, data=hyperframe(Wat=waterstriders))
vcov(fit)

vcov.ppm Variance-Covariance Matrix for a Fitted Point Process Model

Description

Returns the variance-covariance matrix of the estimates of the parameters of a fitted point process
model.

470 vcov.ppm

Usage

S3 method for class 'ppm'
vcov(object, ...,

what = c("vcov", "corr", "fisher"),
verbose = TRUE,
fine=FALSE,
gam.action=c("warn", "fatal", "silent"),
matrix.action=c("warn", "fatal", "silent"),
logi.action=c("warn", "fatal", "silent"),
nacoef.action=c("warn", "fatal", "silent"),
hessian=FALSE)

Arguments

object A fitted point process model (an object of class "ppm".)

... Ignored.

what Character string (partially-matched) that specifies what matrix is returned. Op-
tions are "vcov" for the variance-covariance matrix, "corr" for the correlation
matrix, and "fisher" or "Fisher" for the Fisher information matrix.

fine Logical value indicating whether to use a quick estimate (fine=FALSE, the de-
fault) or a slower, more accurate estimate (fine=TRUE).

verbose Logical. If TRUE, a message will be printed if various minor problems are en-
countered.

gam.action String indicating what to do if object was fitted by gam.

matrix.action String indicating what to do if the matrix is ill-conditioned (so that its inverse
cannot be calculated).

logi.action String indicating what to do if object was fitted via the logistic regression ap-
proximation using a non-standard dummy point process.

nacoef.action String indicating what to do if some of the fitted coefficients are NA (so that
variance cannot be calculated).

hessian Logical. Use the negative Hessian matrix of the log pseudolikelihood instead of
the Fisher information.

Details

This function computes the asymptotic variance-covariance matrix of the estimates of the canonical
parameters in the point process model object. It is a method for the generic function vcov.

object should be an object of class "ppm", typically produced by ppm.

The canonical parameters of the fitted model object are the quantities returned by coef.ppm(object).
The function vcov calculates the variance-covariance matrix for these parameters.

The argument what provides three options:

what="vcov" return the variance-covariance matrix of the parameter estimates

what="corr" return the correlation matrix of the parameter estimates

vcov.ppm 471

what="fisher" return the observed Fisher information matrix.

In all three cases, the result is a square matrix. The rows and columns of the matrix correspond to
the canonical parameters given by coef.ppm(object). The row and column names of the matrix
are also identical to the names in coef.ppm(object).

For models fitted by the Berman-Turner approximation (Berman and Turner, 1992; Baddeley and
Turner, 2000) to the maximum pseudolikelihood (using the default method="mpl" in the call to
ppm), the implementation works as follows.

• If the fitted model object is a Poisson process, the calculations are based on standard asymp-
totic theory for the maximum likelihood estimator (Kutoyants, 1998). The observed Fisher in-
formation matrix of the fitted model object is first computed, by summing over the Berman-
Turner quadrature points in the fitted model. The asymptotic variance-covariance matrix is
calculated as the inverse of the observed Fisher information. The correlation matrix is then
obtained by normalising.

• If the fitted model is not a Poisson process (i.e. it is some other Gibbs point process) then
the calculations are based on Coeurjolly and Rubak (2012). A consistent estimator of the
variance-covariance matrix is computed by summing terms over all pairs of data points. If
required, the Fisher information is calculated as the inverse of the variance-covariance matrix.

For models fitted by the Huang-Ogata method (method="ho" in the call to ppm), the implementation
uses the Monte Carlo estimate of the Fisher information matrix that was computed when the original
model was fitted.

For models fitted by the logistic regression approximation to the maximum pseudolikelihood (method="logi"
in the call to ppm),

• Calculations are based on Baddeley et al. (2013). A consistent estimator of the variance-
covariance matrix is computed by summing terms over all pairs of data points. If required, the
Fisher information is calculated as the inverse of the variance-covariance matrix.

• The calculations depend on the type of dummy pattern used when the model was fitted:

– currently only the dummy types "stratrand" (the default), "binomial" and "poisson"
as generated by quadscheme.logi are supported.

– For other dummy types the behavior depends on the argument logi.action. If logi.action="fatal"
an error is produced. Otherwise, for dummy types "grid" and "transgrid" the for-
mulas for "stratrand" are used which in many cases should be conservative. For an
arbitrary, user-specified dummy pattern (type "given"), the formulas for "poisson" are
used which in many cases should be conservative. If logi.action="warn" a warning is
issued, otherwise the calculation proceeds without a warning.

• The result of the calculation is random (i.e. not deterministic) when dummy type is "stratrand"
(the default) because some of the variance terms are estimated by random sampling. This can
be avoided by specifying dummytype='poisson' or dummytype='binomial' in the call to
ppm when the model is fitted.

The argument verbose makes it possible to suppress some diagnostic messages.

The asymptotic theory is not correct if the model was fitted using gam (by calling ppm with use.gam=TRUE).
The argument gam.action determines what to do in this case. If gam.action="fatal", an error
is generated. If gam.action="warn", a warning is issued and the calculation proceeds using the

472 vcov.ppm

incorrect theory for the parametric case, which is probably a reasonable approximation in many
applications. If gam.action="silent", the calculation proceeds without a warning.

If hessian=TRUE then the negative Hessian (second derivative) matrix of the log pseudolikelihood,
and its inverse, will be computed. For non-Poisson models, this is not a valid estimate of variance,
but is useful for other calculations.

Note that standard errors and 95% confidence intervals for the coefficients can also be obtained
using confint(object) or coef(summary(object)).

Value

A square matrix.

Error messages

An error message that reports system is computationally singular indicates that the determinant of
the Fisher information matrix was either too large or too small for reliable numerical calculation.

If this message occurs, try repeating the calculation using fine=TRUE.

Singularity can occur because of numerical overflow or collinearity in the covariates. To check this,
rescale the coordinates of the data points and refit the model. See the Examples.

In a Gibbs model, a singular matrix may also occur if the fitted model is a hard core process: this is
a feature of the variance estimator.

Author(s)

Original code for Poisson point process was written by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <rolfturner@posteo.net>. New code for stationary Gibbs point processes was
generously contributed by Ege Rubak <rubak@math.aau.dk> and Jean-François Coeurjolly. New
code for generic Gibbs process written by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.
New code for logistic method written by Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Coeurjolly, J.-F., Rubak, E. and Waagepetersen, R. (2014) Logistic regression for
spatial Gibbs point processes. Biometrika 101 (2) 377–392.

Coeurjolly, J.-F. and Rubak, E. (2013) Fast covariance estimation for innovations computed from a
spatial Gibbs point process. Scandinavian Journal of Statistics 40 669–684.

Kutoyants, Y.A. (1998) Statistical Inference for Spatial Poisson Processes, Lecture Notes in
Statistics 134. New York: Springer 1998.

See Also

vcov for the generic,

ppm for information about fitted models,

confint for confidence intervals.

vcov.slrm 473

Examples

X <- rpoispp(42)
fit <- ppm(X ~ x + y)
vcov(fit)
vcov(fit, what="Fish")

example of singular system
m <- ppm(demopat ~polynom(x,y,2))

try(v <- vcov(m))

rescale x, y coordinates to range [0,1] x [0,1] approximately
demopatScale <- rescale(demopat, 10000)
m <- ppm(demopatScale ~ polynom(x,y,2))
v <- vcov(m)

Gibbs example
fitS <- ppm(swedishpines ~1, Strauss(9))
coef(fitS)
sqrt(diag(vcov(fitS)))

vcov.slrm Variance-Covariance Matrix for a Fitted Spatial Logistic Regression

Description

Returns the variance-covariance matrix of the estimates of the parameters of a point process model
that was fitted by spatial logistic regression.

Usage

S3 method for class 'slrm'
vcov(object, ...,

what=c("vcov", "corr", "fisher", "Fisher"))

Arguments

object A fitted point process model of class "slrm".

... Ignored.

what Character string (partially-matched) that specifies what matrix is returned. Op-
tions are "vcov" for the variance-covariance matrix, "corr" for the correlation
matrix, and "fisher" or "Fisher" for the Fisher information matrix.

474 vcov.slrm

Details

This function computes the asymptotic variance-covariance matrix of the estimates of the canonical
parameters in the point process model object. It is a method for the generic function vcov.

object should be an object of class "slrm", typically produced by slrm. It represents a Poisson
point process model fitted by spatial logistic regression.

The canonical parameters of the fitted model object are the quantities returned by coef.slrm(object).
The function vcov calculates the variance-covariance matrix for these parameters.

The argument what provides three options:

what="vcov" return the variance-covariance matrix of the parameter estimates

what="corr" return the correlation matrix of the parameter estimates

what="fisher" return the observed Fisher information matrix.

In all three cases, the result is a square matrix. The rows and columns of the matrix correspond to
the canonical parameters given by coef.slrm(object). The row and column names of the matrix
are also identical to the names in coef.slrm(object).

Note that standard errors and 95% confidence intervals for the coefficients can also be obtained
using confint(object) or coef(summary(object)).

Standard errors for the fitted intensity can be obtained using predict.slrm.

Value

A square matrix.

Error messages

An error message that reports system is computationally singular indicates that the determinant of
the Fisher information matrix was either too large or too small for reliable numerical calculation.
This can occur because of numerical overflow or collinearity in the covariates.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net> .

References

Baddeley, A., Berman, M., Fisher, N.I., Hardegen, A., Milne, R.K., Schuhmacher, D., Shah, R.
and Turner, R. (2010) Spatial logistic regression and change-of-support for spatial Poisson point
processes. Electronic Journal of Statistics 4, 1151–1201. DOI: 10.1214/10-EJS581

See Also

vcov for the generic,

slrm for information about fitted models,

predict.slrm for other kinds of calculation about the model,

confint for confidence intervals.

Window.ppm 475

Examples

X <- rpoispp(42)
fit <- slrm(X ~ x + y)
vcov(fit)
vcov(fit, what="corr")
vcov(fit, what="f")

Window.ppm Extract Window of Spatial Object

Description

Given a spatial object (such as a point pattern or pixel image) in two dimensions, these functions
extract the window in which the object is defined.

Usage

S3 method for class 'ppm'
Window(X, ..., from=c("points", "covariates"))

S3 method for class 'kppm'
Window(X, ..., from=c("points", "covariates"))

S3 method for class 'dppm'
Window(X, ..., from=c("points", "covariates"))

S3 method for class 'slrm'
Window(X, ..., from=c("points", "covariates"))

S3 method for class 'msr'
Window(X, ...)

Arguments

X A spatial object.

... Ignored.

from Character string. See Details.

476 with.msr

Details

These are methods for the generic function Window which extract the spatial window in which
the object X is defined. The argument from applies when X is a fitted two-dimensional point pro-
cess model (object of class "ppm", "kppm", "slrm" or "dppm"). If from="data" (the default),
Window extracts the window of the original point pattern data to which the model was fitted. If
from="covariates" then Window returns the window in which the spatial covariates of the model
were provided.

Value

An object of class "owin" (see owin.object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Window, Window.ppp, Window.psp.

owin.object

Examples

A <- ppm(cells ~ 1)
Window(A)

with.msr Evaluate Expression Involving Components of a Measure

Description

An expression involving the names of components of a measure is evaluated.

Usage

S3 method for class 'msr'
with(data, expr, ...)

Arguments

data A measure (object of class "msr").

expr An expression to be evaluated.

... Ignored.

with.msr 477

Details

This is a method for the generic function with for the class "msr". The argument data should be
an object of class "msr" representing a measure (a function which assigns a value to each subset of
two-dimensional space).

This function can be used to extract the components of the measure, or to perform more complicated
manipulations of the components.

The argument expr should be an un-evaluated expression in the R language. The expression may
involve any of the variable names listed below with their corresponding meanings.

qlocations (point pattern) all quadrature locations
qweights (numeric) all quadrature weights
density (numeric) density value at each quadrature point
discrete (numeric) discrete mass at each quadrature point
continuous (numeric) increment of continuous component
increment (numeric) increment of measure
is.atom (logical) whether quadrature point is an atom
atoms (point pattern) locations of atoms
atommass (numeric) massess of atoms

The measure is the sum of discrete and continuous components. The discrete component assigns
non-zero mass to several points called atoms. The continuous component has a density which
should be integrated over a region to determine the value for that region.

An object of class "msr" approximates the continuous component by a sum over quadrature points.
The quadrature points are chosen so that they include the atoms of the measure. In the list above,
we have increment = continuous + discrete, continuous = density * qweights, is.atom =
(discrete > 0), atoms = qlocations[is.atom] and atommass = discrete[is.atom].

Value

The result of evaluating the expression could be an object of any kind.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

msr, split.msr, measureContinuous, measurePositive

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")

with(rp, atoms)
with(rp, qlocations %mark% continuous)

478 zclustermodel

zclustermodel Cluster Point Process Model

Description

Experimental code. Creates an object representing a cluster point process model. Typically used
for theoretical calculations about such a model.

Usage

zclustermodel(name = "Thomas", ..., mu, kappa, scale)

Arguments

name Name of the cluster process. One of "Thomas", "MatClust", "VarGamma" or
"Cauchy".

... Other arguments needed for the model.

mu Mean cluster size. A single number, or a pixel image.

kappa Parent intensity. A single number.

scale Cluster scale parameter of the model.

Details

Experimental.

Value

Object of the experimental class "zclustermodel".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

methods.zclustermodel

Examples

m <- zclustermodel("Thomas", kappa=10, mu=5, scale=0.1)

zgibbsmodel 479

zgibbsmodel Gibbs Model

Description

Experimental code. Creates an object representing a Gibbs point process model. Typically used for
theoretical calculations about such a model.

Usage

zgibbsmodel(beta = 1, interaction = NULL, icoef = NULL)

Arguments

beta First order trend term. A numeric value, numeric vector, pixel image, function,
or a list of such objects.

interaction Object of class "interact" specifying the interpoint interaction structure, or
NULL representing the Poisson process.

icoef Numeric vector of coefficients for the interpoint interaction.

Details

Experimental.

Value

Object belonging to the experimental class zgibbsmodel.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

methods.zgibbsmodel

Examples

m <- zgibbsmodel(10, Strauss(0.1), -0.5)

Index

∗ Cox point process
ic.kppm, 153
kppm, 185

∗ Envelope of simulations
envelope.ppm, 109

∗ Gibbs point process
ppm, 310
ppm.ppp, 319

∗ Goodness-of-fit
berman.test.ppm, 40
cdf.test.mppm, 47
cdf.test.ppm, 50
envelope.ppm, 109
quadrat.test.mppm, 365

∗ Model diagnostics
addvar, 16
as.function.leverage.ppm, 27
as.fv.kppm, 28
Extract.influence.ppm, 119
Extract.leverage.ppm, 120
Gres, 138
influence.ppm, 156
Kres, 193
leverage.ppm, 198
leverage.slrm, 200
methods.influence.ppm, 233
methods.leverage.ppm, 235
parres, 285
plot.influence.ppm, 290
plot.leverage.ppm, 293
psst, 351
psstA, 353
psstG, 356

∗ Model selection
anova.mppm, 19
anova.ppm, 21
anova.slrm, 23

∗ Neyman-Scott cluster process
ic.kppm, 153

kppm, 185
∗ Poisson point process

ppm, 310
ppm.ppp, 319

∗ Prospectivity
rhohat.ppm, 393

∗ Resource Selection Function
rhohat.ppm, 393

∗ Test of clustering
quadrat.test.ppm, 366

∗ Test of randomness
envelope.ppm, 109
quadrat.test.ppm, 366

∗ arith
polynom, 309

∗ attribute
ppm.object, 316

∗ cluster process
ic.kppm, 153
kppm, 185

∗ datagen
rdpp, 371
rmh.ppm, 399
rmhmodel.ppm, 403
simulate.dppm, 410

∗ determinantal point process
dppm, 90

∗ diagnostics
leverage.ppm, 198
leverage.slrm, 200

∗ fit model
improve.kppm, 154

∗ hplot
diagnose.ppm, 75
envelope.ppm, 109
lurking, 216
lurking.mppm, 220
methods.objsurf, 237
panel.contour, 281

480

INDEX 481

plot.mppm, 295
plot.msr, 296
plot.plotppm, 300
plot.ppm, 301
plot.profilepl, 304
plot.rppm, 306
plot.slrm, 307
qqplot.ppm, 358

∗ htest
berman.test.ppm, 40
cdf.test.mppm, 47
cdf.test.ppm, 50
envelope.ppm, 109
quadrat.test.mppm, 365
quadrat.test.ppm, 366

∗ iteration
envelope.ppm, 109

∗ manip
as.function.leverage.ppm, 27
as.fv.kppm, 28
as.layered.msr, 30
as.owin.ppm, 31
data.ppm, 68
domain.ppm, 83
Extract.influence.ppm, 119
Extract.leverage.ppm, 120
Extract.msr, 122
harmonise.msr, 144
is.dppm, 167
is.marked.ppm, 169
is.multitype.ppm, 171
is.ppm, 173
methods.influence.ppm, 233
methods.leverage.ppm, 235
quad.ppm, 363
response, 390
split.msr, 425
unitname, 445
unstack.msr, 447
Window.ppm, 475
with.msr, 476

∗ math
bc.ppm, 39
closepaircounts, 53
dummify, 99
integral.msr, 158
LambertW, 195
measureContinuous, 226

measureVariation, 227
measureWeighted, 229
rex, 391

∗ methods
anova.mppm, 19
anova.ppm, 21
anova.slrm, 23
coef.mppm, 60
coef.ppm, 62
coef.slrm, 63
fitted.ppm, 127
fitted.slrm, 130
fixef.mppm, 131
formula.ppm, 132
logLik.slrm, 215
methods.dppm, 230
methods.fii, 231
methods.kppm, 234
methods.slrm, 238
Ops.msr, 270
predict.slrm, 342
ranef.mppm, 370
residuals.dppm, 381
residuals.kppm, 382
residuals.ppm, 384
residuals.rppm, 387
residuals.slrm, 388
summary.dppm, 433
summary.kppm, 434
summary.ppm, 436
update.ppm, 452
vcov.kppm, 466
vcov.mppm, 468
vcov.ppm, 469
vcov.slrm, 473

∗ models
addvar, 16
anova.mppm, 19
anova.ppm, 21
anova.slrm, 23
AreaInter, 24
as.interact, 29
as.ppm, 34
BadGey, 37
bc.ppm, 39
cauchy.estK, 42
cauchy.estpcf, 45
clusterfit, 56

482 INDEX

coef.mppm, 60
coef.ppm, 62
coef.slrm, 63
compareFit, 64
Concom, 66
data.ppm, 68
detpointprocfamilyfun, 69
dfbetas.ppm, 72
dffit.ppm, 73
diagnose.ppm, 75
DiggleGatesStibbard, 80
DiggleGratton, 81
dim.detpointprocfamily, 83
dppeigen, 88
dppkernel, 90
dppm, 90
dppparbounds, 96
dppspecden, 98
dppspecdenrange, 99
dummy.ppm, 100
eem, 102
effectfun, 103
emend, 105
emend.ppm, 106
emend.slrm, 107
exactMPLEstrauss, 117
Fiksel, 123
fitin.ppm, 124
fitted.mppm, 126
fitted.ppm, 127
fitted.slrm, 130
fixef.mppm, 131
Gcom, 133
Geyer, 136
Gres, 138
Hardcore, 140
hardcoredist, 141
harmonic, 142
HierHard, 145
hierpair.family, 146
HierStrauss, 147
HierStraussHard, 149
Hybrid, 150
hybrid.family, 152
ic.kppm, 153
influence.ppm, 156
inforder.family, 158
intensity.dppm, 160

intensity.ppm, 161
intensity.slrm, 162
interactionorder, 164
ippm, 165
is.dppm, 167
is.hybrid, 168
is.marked.ppm, 169
is.multitype.ppm, 171
is.poissonclusterprocess, 172
is.ppm, 173
is.stationary.ppm, 174
Kcom, 177
Kmodel, 180
Kmodel.kppm, 182
Kmodel.ppm, 183
kppm, 185
Kres, 193
LennardJones, 196
leverage.ppm, 198
leverage.slrm, 200
lgcp.estK, 201
lgcp.estpcf, 204
logLik.dppm, 207
logLik.kppm, 209
logLik.mppm, 211
logLik.ppm, 213
logLik.slrm, 215
lurking, 216
lurking.mppm, 220
matclust.estK, 222
matclust.estpcf, 224
methods.zclustermodel, 241
methods.zgibbsmodel, 242
mincontrast, 244
model.depends, 246
model.frame.ppm, 248
model.images, 249
model.matrix.mppm, 251
model.matrix.ppm, 253
model.matrix.slrm, 255
mppm, 256
msr, 259
MultiHard, 262
MultiStrauss, 263
MultiStraussHard, 265
objsurf, 268
Ord, 271
ord.family, 272

INDEX 483

OrdThresh, 273
PairPiece, 274
pairsat.family, 275
Pairwise, 276
pairwise.family, 278
palmdiagnose, 279
panysib, 282
parameters, 283
parres, 285
Penttinen, 287
plot.dppm, 289
plot.influence.ppm, 290
plot.kppm, 291
plot.leverage.ppm, 293
plot.mppm, 295
plot.palmdiag, 298
plot.plotppm, 300
plot.ppm, 301
plot.profilepl, 304
plot.rppm, 306
plot.slrm, 307
Poisson, 308
ppm, 310
ppm.ppp, 319
ppmInfluence, 329
predict.dppm, 331
predict.kppm, 332
predict.mppm, 333
predict.ppm, 335
predict.rppm, 340
predict.slrm, 342
print.ppm, 343
profilepl, 344
prune.rppm, 347
pseudoR2, 348
psib, 350
psst, 351
psstA, 353
psstG, 356
qqplot.ppm, 358
quad.ppm, 363
ranef.mppm, 370
rdpp, 371
reach, 372
reach.dppm, 374
reach.kppm, 375
relrisk.ppm, 376
repul.dppm, 378

residualMeasure, 379
residuals.dppm, 381
residuals.kppm, 382
residuals.mppm, 383
residuals.ppm, 384
residuals.rppm, 387
residuals.slrm, 388
response, 390
rhohat.ppm, 393
rmh.ppm, 399
rppm, 407
SatPiece, 408
Saturated, 410
simulate.dppm, 410
simulate.kppm, 412
simulate.mppm, 415
simulate.ppm, 416
simulate.slrm, 418
slrm, 419
Smooth.msr, 422
Softcore, 423
Strauss, 427
StraussHard, 428
subfits, 430
suffstat, 431
summary.dppm, 433
summary.kppm, 434
summary.ppm, 436
thomas.estK, 437
thomas.estpcf, 440
triplet.family, 443
Triplets, 444
update.detpointprocfamily, 448
update.dppm, 448
update.interact, 450
update.kppm, 451
update.ppm, 452
update.rppm, 455
valid, 456
valid.detpointprocfamily, 457
valid.ppm, 458
valid.slrm, 459
varcount, 460
vargamma.estK, 462
vargamma.estpcf, 464
vcov.kppm, 466
vcov.mppm, 468
vcov.ppm, 469

484 INDEX

vcov.slrm, 473
zclustermodel, 478
zgibbsmodel, 479

∗ nonparametric
npfun, 267
palmdiagnose, 279
plot.palmdiag, 298
rhohat.ppm, 393

∗ optimize
bc.ppm, 39
rex, 391

∗ package
spatstat.model-package, 8

∗ point process model
dppm, 90
ic.kppm, 153
kppm, 185
ppm, 310
ppm.ppp, 319

∗ print
print.ppm, 343

∗ spatial
addvar, 16
anova.mppm, 19
anova.ppm, 21
anova.slrm, 23
AreaInter, 24
as.function.leverage.ppm, 27
as.fv.kppm, 28
as.interact, 29
as.layered.msr, 30
as.owin.ppm, 31
as.ppm, 34
auc.ppm, 35
BadGey, 37
bc.ppm, 39
berman.test.ppm, 40
cauchy.estK, 42
cauchy.estpcf, 45
cdf.test.mppm, 47
cdf.test.ppm, 50
closepaircounts, 53
clusterfield.kppm, 55
clusterfit, 56
clusterkernel.kppm, 58
clusterradius.kppm, 59
coef.mppm, 60
coef.ppm, 62

coef.slrm, 63
compareFit, 64
Concom, 66
data.ppm, 68
detpointprocfamilyfun, 69
dfbetas.ppm, 72
dffit.ppm, 73
diagnose.ppm, 75
DiggleGatesStibbard, 80
DiggleGratton, 81
dim.detpointprocfamily, 83
domain.ppm, 83
dppeigen, 88
dppkernel, 90
dppm, 90
dppparbounds, 96
dppspecden, 98
dppspecdenrange, 99
dummy.ppm, 100
eem, 102
effectfun, 103
emend, 105
emend.ppm, 106
emend.slrm, 107
envelope.ppm, 109
exactMPLEstrauss, 117
Extract.influence.ppm, 119
Extract.leverage.ppm, 120
Extract.msr, 122
Fiksel, 123
fitin.ppm, 124
fitted.mppm, 126
fitted.ppm, 127
fitted.slrm, 130
fixef.mppm, 131
formula.ppm, 132
Gcom, 133
Geyer, 136
Gres, 138
Hardcore, 140
hardcoredist, 141
harmonic, 142
harmonise.msr, 144
HierHard, 145
hierpair.family, 146
HierStrauss, 147
HierStraussHard, 149
Hybrid, 150

INDEX 485

hybrid.family, 152
ic.kppm, 153
improve.kppm, 154
influence.ppm, 156
inforder.family, 158
integral.msr, 158
intensity.dppm, 160
intensity.ppm, 161
intensity.slrm, 162
interactionorder, 164
ippm, 165
is.dppm, 167
is.hybrid, 168
is.marked.ppm, 169
is.multitype.ppm, 171
is.poissonclusterprocess, 172
is.ppm, 173
is.stationary.ppm, 174
isf.object, 176
Kcom, 177
Kmodel, 180
Kmodel.kppm, 182
Kmodel.ppm, 183
kppm, 185
Kres, 193
LennardJones, 196
leverage.ppm, 198
leverage.slrm, 200
lgcp.estK, 201
lgcp.estpcf, 204
logLik.dppm, 207
logLik.kppm, 209
logLik.mppm, 211
logLik.ppm, 213
logLik.slrm, 215
lurking, 216
lurking.mppm, 220
matclust.estK, 222
matclust.estpcf, 224
measureContinuous, 226
measureVariation, 227
measureWeighted, 229
methods.dppm, 230
methods.fii, 231
methods.influence.ppm, 233
methods.kppm, 234
methods.leverage.ppm, 235
methods.objsurf, 237

methods.slrm, 238
methods.zclustermodel, 241
methods.zgibbsmodel, 242
mincontrast, 244
model.depends, 246
model.frame.ppm, 248
model.images, 249
model.matrix.mppm, 251
model.matrix.ppm, 253
model.matrix.slrm, 255
mppm, 256
msr, 259
MultiHard, 262
MultiStrauss, 263
MultiStraussHard, 265
npfun, 267
objsurf, 268
Ops.msr, 270
Ord, 271
ord.family, 272
OrdThresh, 273
PairPiece, 274
pairsat.family, 275
Pairwise, 276
pairwise.family, 278
palmdiagnose, 279
panel.contour, 281
panysib, 282
parameters, 283
parres, 285
Penttinen, 287
plot.dppm, 289
plot.influence.ppm, 290
plot.kppm, 291
plot.leverage.ppm, 293
plot.mppm, 295
plot.msr, 296
plot.plotppm, 300
plot.ppm, 301
plot.profilepl, 304
plot.rppm, 306
plot.slrm, 307
Poisson, 308
ppm, 310
ppm.object, 316
ppm.ppp, 319
ppmInfluence, 329
predict.dppm, 331

486 INDEX

predict.kppm, 332
predict.mppm, 333
predict.ppm, 335
predict.rppm, 340
predict.slrm, 342
print.ppm, 343
profilepl, 344
prune.rppm, 347
pseudoR2, 348
psib, 350
psst, 351
psstA, 353
psstG, 356
qqplot.ppm, 358
quad.ppm, 363
quadrat.test.mppm, 365
quadrat.test.ppm, 366
ranef.mppm, 370
rdpp, 371
reach, 372
reach.dppm, 374
reach.kppm, 375
relrisk.ppm, 376
repul.dppm, 378
residualMeasure, 379
residuals.dppm, 381
residuals.kppm, 382
residuals.mppm, 383
residuals.ppm, 384
residuals.rppm, 387
residuals.slrm, 388
rhohat.ppm, 393
rmh.ppm, 399
rmhmodel.ppm, 403
roc.ppm, 405
rppm, 407
SatPiece, 408
Saturated, 410
simulate.dppm, 410
simulate.kppm, 412
simulate.mppm, 415
simulate.ppm, 416
simulate.slrm, 418
slrm, 419
Smooth.msr, 422
Softcore, 423
spatstat.model-package, 8
split.msr, 425

Strauss, 427
StraussHard, 428
subfits, 430
suffstat, 431
summary.dppm, 433
summary.kppm, 434
summary.ppm, 436
thomas.estK, 437
thomas.estpcf, 440
triplet.family, 443
Triplets, 444
unitname, 445
unstack.msr, 447
update.detpointprocfamily, 448
update.dppm, 448
update.interact, 450
update.kppm, 451
update.ppm, 452
update.rppm, 455
valid, 456
valid.detpointprocfamily, 457
valid.ppm, 458
valid.slrm, 459
varcount, 460
vargamma.estK, 462
vargamma.estpcf, 464
vcov.kppm, 466
vcov.mppm, 468
vcov.ppm, 469
vcov.slrm, 473
Window.ppm, 475
with.msr, 476
zclustermodel, 478
zgibbsmodel, 479

∗ utilities
dummy.ppm, 100

[, 120, 121
[.im, 121
[.influence.ppm, 234
[.influence.ppm

(Extract.influence.ppm), 119
[.leverage.ppm, 121, 236
[.leverage.ppm (Extract.leverage.ppm),

120
[.msr, 261, 426
[.msr (Extract.msr), 122
[.ppp, 119

ad.test, 48, 50, 52, 53

INDEX 487

add1, 317
addvar, 14, 16, 287
AIC, 10, 12, 212
AIC.dppm (logLik.dppm), 207
AIC.kppm (logLik.kppm), 209
AIC.mppm (logLik.mppm), 211
AIC.ppm, 345
AIC.ppm (logLik.ppm), 213
amacrine, 170, 171
anova, 19, 21, 24
anova.glm, 19–21, 24
anova.mppm, 19
anova.ppm, 11, 21, 215, 317, 369
anova.slrm, 13, 23, 421
AreaInter, 12, 24, 158, 164, 279, 288, 311,

314, 322, 329, 345, 346, 354, 400,
402, 405

as.boxx, 411
as.function.leverage.ppm, 27, 199, 236
as.function.tess, 312
as.fv.dppm (as.fv.kppm), 28
as.fv.kppm, 28, 192
as.fv.minconfit (as.fv.kppm), 28
as.im.leverage.ppm, 28, 199
as.im.leverage.ppm

(methods.leverage.ppm), 235
as.interact, 11, 29, 232, 317
as.interact.fii, 125, 232
as.interact.ppm, 317
as.interact.zgibbsmodel

(methods.zgibbsmodel), 242
as.isf.zgibbsmodel

(methods.zgibbsmodel), 242
as.layered, 31
as.layered.msr, 30, 261
as.mask, 36, 40, 50, 55, 72, 155, 198, 302,

337, 361, 396, 405, 419, 460
as.matrix, 371
as.owin, 32, 34, 133, 157, 199, 215, 317, 404
as.owin.dppm (as.owin.ppm), 31
as.owin.influence.ppm

(methods.influence.ppm), 233
as.owin.kppm (as.owin.ppm), 31
as.owin.leverage.ppm

(methods.leverage.ppm), 235
as.owin.lpp, 34
as.owin.msr (as.owin.ppm), 31
as.owin.ppm, 31, 317

as.owin.rmhmodel, 34
as.owin.slrm (as.owin.ppm), 31
as.ppm, 34, 346, 381, 382
as.ppm.dppm, 94, 230
as.ppm.kppm, 192, 235
as.ppp.influence.ppm, 157
as.ppp.influence.ppm

(methods.influence.ppm), 233
as.tess, 367
auc, 406
auc.kppm (auc.ppm), 35
auc.ppm, 35
auc.slrm (auc.ppm), 35

BadGey, 12, 37, 38, 138, 311, 314, 322, 329,
345, 405, 409

bc, 392
bc (bc.ppm), 39
bc.ppm, 39
berman.test, 53, 317
berman.test.ppm, 40, 317

cauchy.estK, 10, 42, 46, 192, 464
cauchy.estpcf, 10, 44, 45, 192, 466
cdf.test, 42, 47–49, 317, 369
cdf.test.mppm, 47
cdf.test.ppm, 50, 317
cdf.test.slrm (cdf.test.ppm), 50
chisq.test, 369
closepaircounts, 53
closepairs, 54
clusterfield, 55, 59, 292
clusterfield.function, 55
clusterfield.kppm, 10, 55
clusterfit, 56, 92, 94, 188, 192
clusterkernel, 60
clusterkernel.character, 58, 59
clusterkernel.kppm, 58
clusterradius.kppm, 10, 59
clusterradius.zclustermodel

(methods.zclustermodel), 241
coef, 61, 62, 64, 125, 230, 232, 235, 284
coef.dppm (methods.dppm), 230
coef.fii (methods.fii), 231
coef.kppm, 10
coef.kppm (methods.kppm), 234
coef.mppm, 60, 132, 259, 370
coef.ppm, 11, 62, 133, 215, 317, 318, 471
coef.slrm, 13, 63, 239, 421, 474

488 INDEX

coef.summary.fii (methods.fii), 231
coef<-.fii (methods.fii), 231
collapse.fv, 65
compareFit, 15, 64
compatible, 446
Concom, 12, 66, 311, 314, 322, 329
confint, 317, 421, 467, 472, 474
contour, 237, 300, 302, 303
contour.default, 237, 293, 294
contour.im, 281, 293, 294
contour.leverage.ppm

(plot.leverage.ppm), 293
contour.objsurf (methods.objsurf), 237
coplot, 281
crosspaircounts (closepaircounts), 53
cut.default, 279
cvm.test, 48, 50, 52, 53

data.ppm, 68, 103, 318
dclf.test, 116
default.dummy, 323
default.expand, 116
default.rmhcontrol, 401, 402
density.default, 17, 285, 286, 394, 395, 397
density.ppp, 55, 76, 281, 422
detpointprocfamilyfun, 69
deviance, 214, 239
deviance.ppm, 349
deviance.ppm (logLik.ppm), 213
deviance.slrm, 349
deviance.slrm (methods.slrm), 238
dfbetas, 72, 200
dfbetas.ppm, 14, 72, 74, 129, 157, 199, 201,

260, 261, 329–331
dfbetas.slrm (leverage.slrm), 200
dffit, 200
dffit (dffit.ppm), 73
dffit.ppm, 14, 73, 201, 260, 261
dffit.slrm (leverage.slrm), 200
diagnose.ppm, 14, 75, 102, 103, 217,

219–221, 359, 360, 362, 385–387
DiggleGatesStibbard, 12, 80, 311, 314, 322,

329, 345, 400, 402, 405
DiggleGratton, 12, 81, 81, 311, 314, 322,

329, 345, 373, 400, 402, 405
dim.detpointprocfamily, 83
domain, 84, 157, 199
domain.dppm (domain.ppm), 83

domain.influence.ppm
(methods.influence.ppm), 233

domain.kppm (domain.ppm), 83
domain.leverage.ppm

(methods.leverage.ppm), 235
domain.lpp, 84
domain.msr (domain.ppm), 83
domain.ppm, 83
domain.quadratcount, 84
domain.quadrattest, 84
domain.rmhmodel, 84
domain.slrm (domain.ppm), 83
dppapproxkernel, 85, 90
dppapproxpcf, 85
dppBessel, 86, 88, 89, 91, 92, 94, 96, 98
dppCauchy, 87, 87, 89, 91, 92, 94, 96, 98
dppeigen, 88
dppGauss, 87, 88, 89, 91, 92, 94, 96, 98
dppkernel, 90
dppm, 13, 90, 104, 175, 208, 230, 249–251,

254, 269, 289, 314, 331, 332, 379,
381, 433, 449

dppMatern, 87–89, 91, 92, 94, 95, 98
dppparbounds, 96
dppPowerExp, 87–89, 91, 92, 94, 96, 97
dppspecden, 98, 99
dppspecdenrange, 98, 99
drop1, 10, 12, 317
dummify, 99
dummy.ppm, 100, 318

eem, 77–79, 102, 220, 362, 385
effectfun, 11, 103
emend, 105, 106–108
emend.ppm, 105, 106, 321, 328, 329
emend.slrm, 107, 459, 460
envelope, 13, 317, 360
envelope.envelope, 112, 114, 116
envelope.kppm (envelope.ppm), 109
envelope.pp3, 112
envelope.ppm, 109, 317
envelope.slrm (envelope.ppm), 109
ewcdf, 48, 51
exactMPLEstrauss, 117
Extract.influence.ppm, 119
Extract.leverage.ppm, 120
Extract.msr, 122
extractAIC, 208, 209, 212, 214
extractAIC.dppm (logLik.dppm), 207

INDEX 489

extractAIC.kppm (logLik.kppm), 209
extractAIC.mppm (logLik.mppm), 211
extractAIC.ppm, 133, 317
extractAIC.ppm (logLik.ppm), 213

Fest, 26, 116
Fiksel, 12, 123, 279, 311, 314, 322, 329, 345,

405
fitin, 11, 30, 232, 317, 346, 373
fitin (fitin.ppm), 124
fitin.ppm, 124, 317
fitted, 130, 131, 331, 332, 341
fitted.dppm, 94
fitted.dppm (predict.dppm), 331
fitted.kppm, 10, 192
fitted.kppm (predict.kppm), 332
fitted.mppm, 126, 335
fitted.ppm, 11, 127, 133, 215, 317, 318,

331–333, 340
fitted.rppm (predict.rppm), 340
fitted.slrm, 13, 130, 421
fixef, 131
fixef.mppm, 61, 131, 370
formula, 132, 230, 235, 239, 247, 258
formula.dppm (methods.dppm), 230
formula.kppm, 10
formula.kppm (methods.kppm), 234
formula.ppm, 11, 132, 215, 317
formula.slrm (methods.slrm), 238
fourierbasis, 70
Frame, 84
fv.object, 29, 104, 114, 116, 135, 139, 179,

194, 245, 352, 355, 357

gam, 143, 256, 322
gam.control, 257, 321
Gcom, 15, 65, 133, 138, 139, 179
Gest, 115, 116, 136, 139
getCall, 212
getCall.mppm (logLik.mppm), 211
Geyer, 12, 37, 38, 136, 137, 138, 164, 275,

276, 279, 311, 314, 322, 329, 345,
357, 373, 400, 402, 405, 408–410

glm, 143, 247, 256, 257, 311, 320, 322
glm.control, 257, 321
Gres, 15, 65, 135, 136, 138, 194, 353, 355, 358

Hardcore, 12, 140, 279, 311, 313, 314, 322,
326, 329, 345, 400, 402, 405

hardcoredist, 141
harmonic, 142, 310
harmonise, 144
harmonise.msr, 144
has.offset (model.depends), 246
HierHard, 12, 145, 148, 150, 311, 314, 322,

329
hierpair.family, 146, 176
HierStrauss, 12, 146, 147, 147, 150, 311,

314, 322, 329
HierStraussHard, 12, 146, 148, 149, 311,

314, 322, 329
Hybrid, 12, 38, 138, 150, 152, 168, 169, 311,

312, 314, 322, 329, 401, 402, 405
hybrid.family, 152, 176
hyperframe, 48, 251, 256, 257, 334, 335

ic (ic.kppm), 153
ic.kppm, 153
im, 251
im.object, 251, 312, 322, 339
image, 237, 300, 302, 303
image.objsurf (methods.objsurf), 237
improve.kppm, 10, 154, 156, 187, 188, 192
influence, 157, 200
influence.measures, 200, 201
influence.ppm, 14, 73, 119, 120, 156, 199,

201, 233, 234, 290, 291, 329–331
influence.slrm (leverage.slrm), 200
inforder.family, 147, 152, 158, 176, 276,

279, 443
integral, 157, 159, 199
integral.influence.ppm

(methods.influence.ppm), 233
integral.leverage.ppm

(methods.leverage.ppm), 235
integral.msr, 158, 261, 386
intensity, 161–163
intensity.detpointprocfamily

(intensity.dppm), 160
intensity.dppm, 160
intensity.ppm, 11, 161, 163
intensity.ppp, 162
intensity.quadratcount, 396
intensity.slrm, 162
intensity.zclustermodel

(methods.zclustermodel), 241
intensity.zgibbsmodel

(methods.zgibbsmodel), 242

490 INDEX

interactionorder, 164
interactionorder.zgibbsmodel

(methods.zgibbsmodel), 242
interp.im, 394
ippm, 72, 157, 165, 199, 254, 313, 314, 326,

329, 330
is.dppm, 167
is.hybrid, 11, 168
is.kppm (is.ppm), 173
is.lppm (is.ppm), 173
is.marked, 170, 175, 317
is.marked.ppm, 169, 317
is.marked.ppp, 170
is.multitype, 172, 317
is.multitype.ppm, 171, 317
is.multitype.ppp, 172
is.poisson, 317
is.poisson.interact

(is.stationary.ppm), 174
is.poisson.kppm (is.stationary.ppm), 174
is.poisson.ppm, 317
is.poisson.ppm (is.stationary.ppm), 174
is.poisson.slrm (is.stationary.ppm), 174
is.poisson.zgibbsmodel

(methods.zgibbsmodel), 242
is.poissonclusterprocess, 172
is.ppm, 173
is.slrm (is.ppm), 173
is.stationary, 317
is.stationary.detpointprocfamily

(is.stationary.ppm), 174
is.stationary.dppm (is.stationary.ppm),

174
is.stationary.kppm (is.stationary.ppm),

174
is.stationary.ppm, 174, 317
is.stationary.slrm (is.stationary.ppm),

174
is.stationary.zgibbsmodel

(methods.zgibbsmodel), 242
isf.object, 146, 152, 158, 176, 272, 276,

279, 443

Jest, 116
jitter, 394, 398

Kcom, 15, 65, 136, 177, 193, 194
Kest, 43, 44, 57, 92, 94, 115, 116, 177–179,

181, 183, 184, 188, 192, 194, 202,

204, 222–224, 245, 438, 439, 462,
464

Kinhom, 57, 92, 94, 188, 192
Kmodel, 44, 180, 182–184, 464
Kmodel.detpointprocfamily

(Kmodel.dppm), 181
Kmodel.dppm, 94, 181
Kmodel.kppm, 10, 181, 182, 184, 192
Kmodel.ppm, 11, 181, 183, 183
Kmodel.zclustermodel

(methods.zclustermodel), 241
kppm, 10, 14, 35, 44, 46, 55, 58–60, 154–156,

173, 175, 182, 183, 185, 203, 204,
206, 207, 209, 210, 223–226, 235,
246, 249–251, 254, 269, 292, 311,
314, 332, 333, 351, 382, 414, 435,
439, 441, 451, 452, 463–467

Kres, 15, 65, 139, 179, 193, 353, 355, 358
ks.test, 48, 50, 52, 53

labels, 230, 235, 239
labels.dppm (methods.dppm), 230
labels.kppm (methods.kppm), 234
labels.slrm (methods.slrm), 238
LambertW, 195
layered, 31, 33
LennardJones, 12, 196, 279, 311, 314, 322,

329, 345, 373, 404, 405
leverage, 200
leverage (leverage.ppm), 198
leverage.ppm, 14, 27, 73, 121, 157, 198, 201,

236, 293, 294, 329–331
leverage.slrm, 200
lgcp.estK, 10, 44, 192, 201, 207, 224, 226,

245, 246, 439, 464
lgcp.estpcf, 10, 46, 192, 203, 204, 204, 466
lines, 217, 304
lines.traj (methods.traj), 239
lm, 143, 247, 257
lme, 256, 258
lmeControl, 257
load, 453
locfit, 395, 397
logLik, 208, 209, 212, 214, 216
logLik.dppm, 207
logLik.kppm, 209
logLik.mppm, 211
logLik.ppm, 11, 133, 208, 210, 213, 317
logLik.slrm, 13, 215, 421

INDEX 491

lohboot, 14, 115
longleaf, 170, 171
lurking, 76, 79, 216, 221, 362
lurking.mppm, 220
lurking.ppm, 221, 222

mad.test, 113, 116
matclust.estK, 10, 192, 204, 222, 226, 245,

246, 439
matclust.estpcf, 10, 192, 207, 224
mean.leverage.ppm

(methods.leverage.ppm), 235
measureContinuous, 226, 261, 477
measureDiscrete, 228
measureDiscrete (measureContinuous), 226
measureNegative (measureVariation), 227
measurePositive, 227, 229, 477
measurePositive (measureVariation), 227
measureVariation, 227, 261
measureWeighted, 229, 261
methods.dppm, 94, 230, 449
methods.fii, 125, 231
methods.influence.ppm, 233
methods.kppm, 192, 234, 452
methods.leverage.ppm, 235
methods.objsurf, 237, 269
methods.ppm (ppm.object), 316
methods.rhohat, 399
methods.slrm, 238
methods.traj, 239, 443
methods.zclustermodel, 241, 478
methods.zgibbsmodel, 242, 479
mincontrast, 10, 43–46, 56, 57, 92, 94, 188,

192, 202–207, 223–226, 244, 269,
438–442, 462–466

model.covariates (model.depends), 246
model.depends, 11, 246
model.frame, 249
model.frame.dppm (model.frame.ppm), 248
model.frame.glm, 248, 249
model.frame.kppm (model.frame.ppm), 248
model.frame.ppm, 11, 133, 215, 248, 317
model.frame.slrm (model.frame.ppm), 248
model.images, 11, 249, 254, 255
model.is.additive (model.depends), 246
model.matrix, 100, 247, 251, 252, 254, 255
model.matrix.dppm (model.matrix.ppm),

253

model.matrix.ippm (model.matrix.ppm),
253

model.matrix.kppm (model.matrix.ppm),
253

model.matrix.lm, 250–253, 255
model.matrix.mppm, 251
model.matrix.ppm, 133, 215, 249–251, 253,

317
model.matrix.slrm, 255
mppm, 19, 20, 49, 61, 79, 126, 127, 131, 212,

221, 252, 256, 295, 296, 333, 335,
365, 366, 370, 383, 384, 415, 430,
431, 468, 469

msr, 31, 73, 78, 122, 144, 159, 220, 227–229,
259, 297, 298, 381, 382, 386, 387,
422, 423, 426, 477

MultiHard, 12, 141, 146, 262, 265, 266, 279,
311, 313, 314, 322, 326, 329

MultiStrauss, 12, 148, 263, 263, 265, 266,
279, 311, 314, 322, 329, 373, 400,
402, 405

MultiStraussHard, 12, 150, 263, 265, 279,
312, 314, 322, 329, 373, 400, 402,
405

nleqslv, 91, 93, 94, 187, 189, 190
nlm, 165, 166
nobs, 208, 209, 214
nobs.dppm (logLik.dppm), 207
nobs.kppm (logLik.kppm), 209
nobs.mppm (logLik.mppm), 211
nobs.ppm, 317
nobs.ppm (logLik.ppm), 213
npfun, 267

objsurf, 238, 268
offset, 247
Ops.msr, 261, 270
optim, 43–46, 56, 91, 94, 118, 187–190, 202,

203, 205, 206, 222–225, 244–246,
438–441, 462–465

Ord, 12, 271, 272, 273, 279, 312, 314, 322,
329, 373

ord.family, 147, 152, 158, 176, 272, 276,
279, 443

OrdThresh, 12, 271–273, 273, 279, 312, 314,
322, 329, 345, 373, 404

owin, 34, 446
owin.object, 32–34, 476

492 INDEX

PairPiece, 12, 38, 274, 279, 312, 314, 322,
329, 373, 401, 402, 405, 408, 409

pairs, 281
pairs.default, 282
pairs.im, 281, 282
pairsat.family, 38, 147, 152, 158, 176, 273,

275, 279, 409, 410, 443
Pairwise, 12, 82, 276, 278, 279, 288, 312,

314, 322, 329, 373
pairwise.family, 26, 67, 81, 124, 138, 141,

147, 152, 158, 176, 197, 263, 265,
266, 273, 275–277, 278, 425, 428,
429, 443

palmdiagnose, 279, 298, 299
panel.contour, 281
panel.histogram (panel.contour), 281
panel.image (panel.contour), 281
panel.smooth, 282
panysib, 282, 351
parameters, 10, 11, 283, 346
parres, 14, 18, 285, 399
pcf, 45, 46, 57, 92, 94, 115, 116, 181, 183,

184, 188, 192, 205, 207, 225, 226,
440, 442, 465, 466

pcf.ppp, 45, 205, 224, 440, 464
pcfinhom, 57, 92, 94, 188, 192
pcfmodel, 46, 182, 184, 466
pcfmodel (Kmodel), 180
pcfmodel.detpointprocfamily

(Kmodel.dppm), 181
pcfmodel.dppm, 94
pcfmodel.dppm (Kmodel.dppm), 181
pcfmodel.kppm, 10, 192
pcfmodel.kppm (Kmodel.kppm), 182
pcfmodel.ppm, 11
pcfmodel.ppm (Kmodel.ppm), 183
pcfmodel.zclustermodel

(methods.zclustermodel), 241
Penttinen, 12, 287, 312, 314, 322, 329, 405
persp, 237, 300, 302, 303
persp.default, 237
persp.im, 293, 294
persp.leverage.ppm (plot.leverage.ppm),

293
persp.objsurf (methods.objsurf), 237
pixellate, 342
pixellate.ppp, 55
pixelquad, 324

plot, 232, 237, 289, 292, 303, 304, 307, 346
plot.anylist, 295, 296
plot.bermantest, 42
plot.cdftest, 52, 53
plot.default, 76, 217, 304
plot.diagppm (diagnose.ppm), 75
plot.dppm, 94, 230, 289, 332, 449
plot.envelope, 113, 114, 116
plot.fii (methods.fii), 231
plot.fv, 29, 114, 116, 289, 291, 292, 298, 299
plot.im, 281, 292–294, 297, 298, 306, 307
plot.influence.ppm, 157, 234, 290
plot.kppm, 10, 192, 235, 291, 333, 452
plot.leverage.ppm, 199, 236, 293
plot.mppm, 295
plot.msr, 261, 296, 381, 382, 385, 386, 423
plot.objsurf (methods.objsurf), 237
plot.palmdiag, 280, 298
plot.plotppm, 300, 303
plot.ppm, 11, 133, 215, 289, 291, 292, 295,

296, 300, 301, 301, 317, 318, 339,
340, 344

plot.ppp, 290, 297, 298, 300
plot.profilepl, 304, 347
plot.qqppm, 361
plot.rpart, 306
plot.rppm, 306, 341, 348, 407
plot.slrm, 13, 239, 307, 421
plot.solist, 251
plot.traj (methods.traj), 239
points, 298
Poisson, 12, 30, 279, 308, 312, 314, 322, 329,

345, 373, 401, 402, 405
poly, 310, 328
polynom, 143, 309
pool.envelope, 114, 116
ppm, 11, 14, 17, 19, 21–23, 25, 26, 30, 35, 37,

38, 42, 53, 62, 63, 65–68, 75, 77,
79–82, 92, 94, 101–104, 106, 107,
116, 118, 119, 123–125, 128, 129,
132–134, 136–141, 143, 145,
147–151, 156, 165–171, 175–179,
183, 184, 187, 188, 192, 194, 196,
197, 214, 215, 217–220, 247,
249–251, 254, 256, 257, 259,
262–266, 272–275, 277, 286, 288,
290, 300–303, 308, 310, 316–318,
321, 335–338, 340, 343–346, 352,

INDEX 493

354–356, 360, 362–364, 373, 378,
385, 387, 399–402, 404, 405, 407,
409, 410, 417, 424, 425, 427–429,
431–433, 444, 445, 452, 453, 458,
459, 470–472

ppm.object, 26, 63, 67–69, 79, 81, 82, 101,
103, 124, 125, 129, 138, 141, 197,
251, 254, 263, 265, 266, 272, 273,
275, 277, 288, 302, 303, 313, 314,
316, 325, 329, 336, 337, 340, 344,
362, 364, 387, 400, 410, 425, 428,
429, 432, 436, 445, 453

ppm.ppp, 192, 311, 313, 314, 319
ppm.quad, 311, 312, 314
ppm.quad (ppm.ppp), 319
ppmInfluence, 73, 157, 199, 329
ppp, 116, 314, 329, 446
ppp.object, 69, 101, 323, 401, 402
predict, 331, 332, 341, 342
predict.dppm, 94, 230, 331, 449, 461
predict.glm, 328, 339
predict.kppm, 10, 192, 235, 332, 452, 461
predict.mppm, 127, 333
predict.ppm, 11, 104, 129, 133, 161, 215,

302, 303, 312, 317, 318, 322, 328,
331–333, 335, 341, 344, 377, 461

predict.rppm, 306, 340, 348, 407
predict.slrm, 13, 163, 239, 307, 342, 418,

421, 474
predict.zclustermodel

(methods.zclustermodel), 241
print, 230, 232, 235, 237, 239, 346
print.dppm (methods.dppm), 230
print.fii (methods.fii), 231
print.kppm (methods.kppm), 234
print.mppm, 61, 259
print.objsurf (methods.objsurf), 237
print.ppm, 11, 63, 151, 303, 312, 317, 318,

322, 340, 343
print.qqppm, 361
print.slrm (methods.slrm), 238
print.summary.dppm (summary.dppm), 433
print.summary.fii (methods.fii), 231
print.summary.kppm (summary.kppm), 434
print.summary.objsurf

(methods.objsurf), 237
print.summary.ppm, 433, 434
print.summary.ppm (summary.ppm), 436

print.traj (methods.traj), 239
print.zclustermodel

(methods.zclustermodel), 241
print.zgibbsmodel

(methods.zgibbsmodel), 242
profilepl, 35, 123, 167, 304, 305, 313, 314,

326, 329, 344
project.ppm, 11, 314, 458, 459
project.ppm (emend.ppm), 106
prune, 348
prune.rpart, 348
prune.rppm, 347, 407
pseudoR2, 348
psib, 283, 350
psst, 15, 65, 136, 139, 179, 194, 267, 351,

355, 358
psstA, 15, 65, 136, 139, 179, 194, 353, 353,

358
psstG, 15, 65, 136, 139, 179, 194, 353, 355,

356

qqplot.ppm, 14, 77, 79, 220, 358
quad.mppm, 127
quad.object, 323, 364
quad.ppm, 129, 219, 249, 254, 260, 318, 327,

363, 385
quadrat.test, 42, 49, 53, 318, 366
quadrat.test.mppm, 365
quadrat.test.ppm, 318, 365, 366
quadrat.test.slrm (quadrat.test.ppm),

366
quadrat.test.splitppp, 368, 369
quadratcount, 365, 367–369, 396
quadratresample, 15, 369
quadrats, 369
quadscheme, 22, 134, 178, 260, 314, 321, 324,

329, 352, 354, 357, 380, 385, 386
quadscheme.logi, 321, 471

ragsAreaInter, 26
ragsMultiHard, 263
ranef, 370
ranef.lme, 370
ranef.mppm, 61, 370
rCauchy, 10, 43, 44, 46, 59, 60, 190, 413, 414
rDGS, 81
rdpp, 371, 411, 412
reach, 22, 232, 318, 372

494 INDEX

reach.detpointprocfamily (reach.dppm),
374

reach.dppm, 372, 373, 374
reach.fii, 125, 232
reach.kppm, 372, 373, 375
reach.ppm, 318
reach.rmhmodel, 373
reach.zclustermodel

(methods.zclustermodel), 241
rect, 281
relrisk, 377, 378
relrisk.ppm, 376
relrisk.ppp, 378
repul (repul.dppm), 378
repul.dppm, 378
rescale, 326, 446
residualMeasure, 379
residuals.dppm, 381
residuals.glm, 389, 390
residuals.kppm, 382
residuals.mppm, 383, 384
residuals.ppm, 11, 77–79, 103, 133, 215,

220, 254, 260, 261, 317, 360, 362,
380–383, 384, 388, 390, 422

residuals.rppm, 387
residuals.slrm, 388
residualspaper, 15
response, 102, 390
rex, 40, 391
rho2hat, 14, 18, 287, 399
rhohat, 18, 287
rhohat.ppm, 14, 393
rhohat.slrm (rhohat.ppm), 393
rlabel, 112
rLGCP, 10, 188, 413, 414
rMatClust, 10, 59, 60, 223–226, 413, 414
rmh, 26, 33, 114, 263, 318, 321, 325, 359, 360,

362, 400, 402, 404, 405
rmh.default, 359, 400–402, 416
rmh.ppm, 11, 13, 14, 275, 318, 399, 417
rmhcontrol, 360, 362, 400–403, 405, 416, 417
rmhmodel, 318, 373, 402, 404, 405
rmhmodel.default, 405
rmhmodel.list, 405
rmhmodel.ppm, 318, 403
rmhstart, 400–402, 405, 416
rmpoint, 401
rmpoispp, 401

rNeymanScott, 60
roc, 36, 37
roc.kppm (roc.ppm), 405
roc.ppm, 405
roc.slrm (roc.ppm), 405
rpart, 407
rpoint, 401
rpoispp, 401, 418, 419
rppm, 306, 341, 348, 388, 407, 455
rshift, 15
rStrauss, 373
rthin, 15
rThomas, 10, 59, 60, 413, 414, 439, 441, 442
rVarGamma, 10, 59, 60, 187, 190, 413, 414,

463–466

SatPiece, 12, 38, 275, 276, 312, 314, 322,
329, 408, 409, 410

Saturated, 12, 275, 276, 279, 312, 314, 322,
329, 373, 410

sdr, 10, 12, 13
segments, 298
set.seed, 411, 413, 418
shift, 157
simulate, 346, 411–415, 417–419
simulate.detpointprocfamily, 85, 86
simulate.detpointprocfamily

(simulate.dppm), 410
simulate.dppm, 94, 230, 410, 449
simulate.kppm, 10, 14, 44, 46, 114, 192, 235,

412, 417, 419, 452, 463, 465
simulate.mppm, 415
simulate.ppm, 11, 13, 14, 133, 215, 317, 402,

414, 415, 416, 419
simulate.slrm, 13, 239, 418
simulate.zclustermodel

(methods.zclustermodel), 241
slrm, 13, 24, 64, 102, 108, 130, 131, 175, 216,

239, 249–251, 255, 307, 342, 343,
389, 419, 419, 459, 460, 474

Smooth, 157, 199, 423
Smooth.influence.ppm

(methods.influence.ppm), 233
Smooth.leverage.ppm

(methods.leverage.ppm), 235
Smooth.msr, 260, 261, 297, 298, 422
Smooth.ppp, 297, 298
Softcore, 12, 279, 312, 314, 322, 329, 345,

373, 401, 402, 405, 423

INDEX 495

source, 453
spatstat.model

(spatstat.model-package), 8
spatstat.model-package, 8
spatstat.options, 12, 107, 108, 135, 250,

251, 301, 303, 338, 340, 355
split, 426
split.msr, 159, 227–229, 261, 425, 447, 477
split.ppp, 425, 426
step, 10, 12, 208, 210, 212, 214, 317, 421
Strauss, 12, 30, 106, 137, 138, 141, 263, 265,

266, 274, 275, 279, 308, 312, 314,
322, 329, 345, 373, 401, 402, 404,
405, 427, 458

StraussHard, 12, 124, 141, 279, 312, 314,
322, 329, 345, 373, 401, 402, 405,
428

subfits, 79, 295, 415, 430
suffstat, 431
summary, 232, 237, 239, 346, 433, 435, 436
summary.dppm, 433
summary.fii (methods.fii), 231
summary.kppm, 10, 434
summary.mppm, 259
summary.objsurf (methods.objsurf), 237
summary.ppm, 11, 133, 175, 215, 433, 434, 436
summary.slrm (methods.slrm), 238

terms, 132, 212, 230, 235, 239, 247
terms.dppm (methods.dppm), 230
terms.kppm (methods.kppm), 234
terms.mppm (logLik.mppm), 211
terms.ppm, 215, 317
terms.ppm (formula.ppm), 132
terms.slrm (methods.slrm), 238
text.rpart, 306
thomas.estK, 10, 44, 192, 204, 224, 226, 245,

246, 437, 442, 464
thomas.estpcf, 10, 46, 192, 207, 226, 440,

466
totalVariation (measureVariation), 227
traj, 240, 442
triplet.family, 176, 443, 445
Triplets, 12, 164, 312, 314, 322, 329, 405,

443, 444

uniroot, 195
unitname, 318, 445
unitname.ppm, 318

unitname<-.dppm (unitname), 445
unitname<-.kppm (unitname), 445
unitname<-.minconfit (unitname), 445
unitname<-.ppm (unitname), 445
unitname<-.slrm (unitname), 445
unstack, 447
unstack.msr, 261, 447
unstack.ppp, 447
update, 239, 258, 450, 453
update.detpointprocfamily, 448
update.dppm, 448
update.interact, 450
update.kppm, 10, 192, 235, 451
update.ppm, 11, 133, 134, 177, 215, 317, 351,

354, 356, 360, 450, 452
update.rmhcontrol, 401, 402
update.rppm, 407, 455
update.slrm (methods.slrm), 238

valid, 105, 456, 457–459
valid.detpointprocfamily, 456, 457
valid.ppm, 11, 107, 314, 326, 328, 329, 456,

458
valid.slrm, 108, 459
varblock, 14, 115
varcount, 460
vargamma.estK, 10, 44, 192, 462, 466
vargamma.estpcf, 10, 46, 192, 464, 464
vcov, 467–470, 472, 474
vcov.kppm, 10, 192, 235, 333, 452, 466
vcov.mppm, 468
vcov.ppm, 11, 19–23, 133, 215, 317, 377, 436,

467–469, 469
vcov.slrm, 13, 239, 421, 473

Window, 84, 476
Window.dppm (Window.ppm), 475
Window.influence.ppm

(methods.influence.ppm), 233
Window.kppm (Window.ppm), 475
Window.leverage.ppm

(methods.leverage.ppm), 235
Window.msr (Window.ppm), 475
Window.ppm, 475
Window.ppp, 476
Window.psp, 476
Window.slrm (Window.ppm), 475
with, 477
with.fv, 114

496 INDEX

with.msr, 227–229, 261, 270, 426, 476

zclustermodel, 173, 242, 478
zgibbsmodel, 243, 479

	spatstat.model-package
	addvar
	anova.mppm
	anova.ppm
	anova.slrm
	AreaInter
	as.function.leverage.ppm
	as.fv.kppm
	as.interact
	as.layered.msr
	as.owin.ppm
	as.ppm
	auc.ppm
	BadGey
	bc.ppm
	berman.test.ppm
	cauchy.estK
	cauchy.estpcf
	cdf.test.mppm
	cdf.test.ppm
	closepaircounts
	clusterfield.kppm
	clusterfit
	clusterkernel.kppm
	clusterradius.kppm
	coef.mppm
	coef.ppm
	coef.slrm
	compareFit
	Concom
	data.ppm
	detpointprocfamilyfun
	dfbetas.ppm
	dffit.ppm
	diagnose.ppm
	DiggleGatesStibbard
	DiggleGratton
	dim.detpointprocfamily
	domain.ppm
	dppapproxkernel
	dppapproxpcf
	dppBessel
	dppCauchy
	dppeigen
	dppGauss
	dppkernel
	dppm
	dppMatern
	dppparbounds
	dppPowerExp
	dppspecden
	dppspecdenrange
	dummify
	dummy.ppm
	eem
	effectfun
	emend
	emend.ppm
	emend.slrm
	envelope.ppm
	exactMPLEstrauss
	Extract.influence.ppm
	Extract.leverage.ppm
	Extract.msr
	Fiksel
	fitin.ppm
	fitted.mppm
	fitted.ppm
	fitted.slrm
	fixef.mppm
	formula.ppm
	Gcom
	Geyer
	Gres
	Hardcore
	hardcoredist
	harmonic
	harmonise.msr
	HierHard
	hierpair.family
	HierStrauss
	HierStraussHard
	Hybrid
	hybrid.family
	ic.kppm
	improve.kppm
	influence.ppm
	inforder.family
	integral.msr
	intensity.dppm
	intensity.ppm
	intensity.slrm
	interactionorder
	ippm
	is.dppm
	is.hybrid
	is.marked.ppm
	is.multitype.ppm
	is.poissonclusterprocess
	is.ppm
	is.stationary.ppm
	isf.object
	Kcom
	Kmodel
	Kmodel.dppm
	Kmodel.kppm
	Kmodel.ppm
	kppm
	Kres
	LambertW
	LennardJones
	leverage.ppm
	leverage.slrm
	lgcp.estK
	lgcp.estpcf
	logLik.dppm
	logLik.kppm
	logLik.mppm
	logLik.ppm
	logLik.slrm
	lurking
	lurking.mppm
	matclust.estK
	matclust.estpcf
	measureContinuous
	measureVariation
	measureWeighted
	methods.dppm
	methods.fii
	methods.influence.ppm
	methods.kppm
	methods.leverage.ppm
	methods.objsurf
	methods.slrm
	methods.traj
	methods.zclustermodel
	methods.zgibbsmodel
	mincontrast
	model.depends
	model.frame.ppm
	model.images
	model.matrix.mppm
	model.matrix.ppm
	model.matrix.slrm
	mppm
	msr
	MultiHard
	MultiStrauss
	MultiStraussHard
	npfun
	objsurf
	Ops.msr
	Ord
	ord.family
	OrdThresh
	PairPiece
	pairsat.family
	Pairwise
	pairwise.family
	palmdiagnose
	panel.contour
	panysib
	parameters
	parres
	Penttinen
	plot.dppm
	plot.influence.ppm
	plot.kppm
	plot.leverage.ppm
	plot.mppm
	plot.msr
	plot.palmdiag
	plot.plotppm
	plot.ppm
	plot.profilepl
	plot.rppm
	plot.slrm
	Poisson
	polynom
	ppm
	ppm.object
	ppm.ppp
	ppmInfluence
	predict.dppm
	predict.kppm
	predict.mppm
	predict.ppm
	predict.rppm
	predict.slrm
	print.ppm
	profilepl
	prune.rppm
	pseudoR2
	psib
	psst
	psstA
	psstG
	qqplot.ppm
	quad.ppm
	quadrat.test.mppm
	quadrat.test.ppm
	ranef.mppm
	rdpp
	reach
	reach.dppm
	reach.kppm
	relrisk.ppm
	repul.dppm
	residualMeasure
	residuals.dppm
	residuals.kppm
	residuals.mppm
	residuals.ppm
	residuals.rppm
	residuals.slrm
	response
	rex
	rhohat.ppm
	rmh.ppm
	rmhmodel.ppm
	roc.ppm
	rppm
	SatPiece
	Saturated
	simulate.dppm
	simulate.kppm
	simulate.mppm
	simulate.ppm
	simulate.slrm
	slrm
	Smooth.msr
	Softcore
	split.msr
	Strauss
	StraussHard
	subfits
	suffstat
	summary.dppm
	summary.kppm
	summary.ppm
	thomas.estK
	thomas.estpcf
	traj
	triplet.family
	Triplets
	unitname
	unstack.msr
	update.detpointprocfamily
	update.dppm
	update.interact
	update.kppm
	update.ppm
	update.rppm
	valid
	valid.detpointprocfamily
	valid.ppm
	valid.slrm
	varcount
	vargamma.estK
	vargamma.estpcf
	vcov.kppm
	vcov.mppm
	vcov.ppm
	vcov.slrm
	Window.ppm
	with.msr
	zclustermodel
	zgibbsmodel
	Index

