| Title: | Simultaneous Goodness-of-Fits Tests | 
| Version: | 1.0.2 | 
| Description: | Routine that allows the user to run several goodness-of-fit tests. It also combines the tests and returns a properly adjusted family-wise p value. Details can be found in <doi:10.48550/arXiv.2007.04727>. | 
| Depends: | R (≥ 3.1.0) | 
| Imports: | ddst, stats, graphics | 
| License: | GPL-2 | 
| Encoding: | UTF-8 | 
| NeedsCompilation: | no | 
| LazyData: | true | 
| RoxygenNote: | 7.1.1 | 
| Packaged: | 2021-01-23 18:21:35 UTC; Wolfgang | 
| Author: | Wolfgang Rolke | 
| Maintainer: | Wolfgang Rolke <wolfgang.rolke@upr.edu> | 
| Repository: | CRAN | 
| Date/Publication: | 2021-01-27 09:00:02 UTC | 
TS
Description
This function finds various gof statistics
Usage
TS(x, case)
Arguments
| x | data | 
| case | setup info | 
Value
A numeric vector with the values of various test statistics.
Examples
case <- list(B=1000, param = NULL, n = 1000, pnull = function(x, param) 
         punif(x), rnull = function(n, param) runif(n), qnull = function(x, param) 
        qunif(x), est.mle = function(x) NA, nbins = 10)
case$methods=c("KS", "AD", "CdM", "W", "ZA", "ZK", "ZC")
x <- runif(1000)
TS(x, case)
chisquare.test
Description
This function does the chisquare test
Usage
chisquare.test(x, case, which = "RGd")
Arguments
| x | data set | 
| case | setup info | 
| which | type of binning (either RGd, Equal Size or Equal Prob) | 
Value
A numeric vector of length 1 with the value of the chi-square statistic.
Examples
case <- list(B=1000, param = NULL, n = 1000, pnull = function(x, param) punif(x), 
        rnull = function(n, param) runif(n), qnull = function(x, param) qunif(x), 
        est.mle = function(x) NA, nbins = 10)
x <- runif(1000)
chisquare.test(x, case)               
simgof.test
Description
This function performs a number of gof tests and rejects the null if any of the tests does so. Then it finds the adjusted p-value.
Usage
simgof.test(
  x,
  pnull,
  rnull,
  qnull = function(x) NULL,
  do.estimation = TRUE,
  estimate = function(x) NULL,
  include.methods = c(rep(TRUE, 7), rep(FALSE, 9)),
  B = 10000,
  lambda,
  nbins = NULL
)
Arguments
| x | data set | 
| pnull | distribution function under the null hypothesis | 
| rnull | routine to generate data under the null hypothesis | 
| qnull | quantile function under the null hypothesis | 
| do.estimation | TRUE if parameters are to be estimated | 
| estimate | routine for parameter estimation | 
| include.methods | which methods should be used, a vector of length 16 of T/F | 
| B | =10000 number of simulation runs | 
| lambda | rate of Poisson if sample size is random | 
| nbins | number of bins for chisquare test | 
Value
A numeric vector of p values
Examples
 x <- runif(1000)
 pnull <- function(x) x 
 rnull <- function(n) runif(n) 
 qnull <- function(x) x 
 simgof.test(x, pnull, rnull, qnull, FALSE, B=500)
 x <- rnorm(1000, 100, 20)
 pnull <- function(x, param) pnorm(x, param[1], param[2])
 rnull <- function(n, param) rnorm(x, param[1], param[2])
 qnull <- function(x, param) qnorm(x, param[1], param[2])
 estimate <- function(x) c(mean(x), sd(x))
 simgof.test(x, pnull, rnull, qnull, TRUE, estimate, B=500) 
spreadout
Description
This function unbins data. If qnull is given it uses quantiles, otherwise uniform
Usage
spreadout(x, case)
Arguments
| x | data set | 
| case | setup info | 
Value
A numeric vector of observations without ties.
Examples
case <- list(B=1000, param = NULL, n = 1000, pnull = function(x, param) punif(x), 
    rnull = function(n, param) runif(n), qnull = function(x, param) qunif(x), 
    est.mle = function(x) NA, nbins = 10)
y=runif(1000)
bins=seq(0, 1, length=11)
counts=hist(y, bins, plot=FALSE)$counts
x=list(bins=bins,counts=counts)
spreadout(x, case)