
Package ‘simStateSpace’
February 6, 2026

Title Simulate Data from State Space Models

Version 1.2.15

Description Provides a streamlined and user-friendly framework
for simulating data in state space models,
particularly when the number of subjects/units (n) exceeds one,
a scenario commonly encountered in social and behavioral sciences.
This package was designed to generate data for the simulations
performed in Pesigan, Russell, and Chow (2025) <doi:10.1037/met0000779>.

URL https://github.com/jeksterslab/simStateSpace,

https://jeksterslab.github.io/simStateSpace/

BugReports https://github.com/jeksterslab/simStateSpace/issues

License GPL (>= 3)

Encoding UTF-8

Depends R (>= 4.1.0)

LinkingTo Rcpp (>= 1.0.12), RcppArmadillo (>= 15.0.2-2)

Imports Rcpp (>= 1.0.12), stats

Suggests knitr, rmarkdown, testthat, expm, dynr

SystemRequirements GNU GSL (>= 2.5)

RoxygenNote 7.3.3.9000

NeedsCompilation yes

Author Ivan Jacob Agaloos Pesigan [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0003-4818-8420>),

Michael A. Russell [ctb] (ORCID:
<https://orcid.org/0000-0002-3956-604X>),

Sy-Miin Chow [ctb] (ORCID: <https://orcid.org/0000-0003-1938-027X>)

Maintainer Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com>

Repository CRAN

Date/Publication 2026-02-06 06:40:06 UTC

1

https://doi.org/10.1037/met0000779
https://github.com/jeksterslab/simStateSpace
https://jeksterslab.github.io/simStateSpace/
https://github.com/jeksterslab/simStateSpace/issues
https://orcid.org/0000-0003-4818-8420
https://orcid.org/0000-0002-3956-604X
https://orcid.org/0000-0003-1938-027X

2 Contents

Contents
as.data.frame.simstatespace . 3
as.matrix.simstatespace . 5
LinSDE2SSM . 8
LinSDECovEta . 10
LinSDECovY . 11
LinSDEMeanEta . 13
LinSDEMeanY . 14
plot.simstatespace . 15
print.simstatespace . 18
ProjectToHurwitz . 20
ProjectToStability . 22
SimAlphaN . 23
SimBetaN . 24
SimBetaN2 . 26
SimBetaNCovariate . 27
SimCovDiagN . 29
SimCovN . 30
SimIotaN . 31
SimNuN . 32
SimPhiN . 33
SimPhiN2 . 35
SimPhiNCovariate . 36
SimSSMFixed . 38
SimSSMIVary . 43
SimSSMLinGrowth . 47
SimSSMLinGrowthIVary . 51
SimSSMLinSDEFixed . 55
SimSSMLinSDEIVary . 61
SimSSMOUFixed . 65
SimSSMOUIVary . 71
SimSSMVARFixed . 76
SimSSMVARIVary . 80
SpectralAbscissa . 83
SpectralRadius . 84
SSMCovEta . 85
SSMCovY . 86
SSMInterceptEta . 88
SSMInterceptY . 89
SSMMeanEta . 90
SSMMeanY . 91
TestPhi . 93
TestPhiHurwitz . 94
TestStability . 95
TestStationarity . 96

Index 98

as.data.frame.simstatespace 3

as.data.frame.simstatespace

Coerce an Object of Class simstatespace to a Data Frame

Description

Coerce an Object of Class simstatespace to a Data Frame

Usage

S3 method for class 'simstatespace'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
eta = FALSE,
long = TRUE,
burnin = 0,
reset_time = TRUE,
...

)

Arguments

x Object of class simstatespace.

row.names NULL or character vector giving the row names for the data frame. Missing values
are not allowed.

optional Logical. If TRUE, setting row names and converting column names is optional.

eta Logical. If eta = TRUE, include eta. If eta = FALSE, exclude eta.

long Logical. If long = TRUE, use long format. If long = FALSE, use wide format.

burnin Positive integer. Initial data points to discard. Default is zero.

reset_time Logical. Reset the time index after burnin.

... Additional arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

prepare parameters
set.seed(42)
number of individuals
n <- 5
time points
time <- 50

4 as.data.frame.simstatespace

dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)
sigma0 <- diag(p)
sigma0_l <- t(chol(sigma0))
alpha <- rep(x = 0, times = p)
beta <- 0.50 * diag(p)
psi <- diag(p)
psi_l <- t(chol(psi))
measurement model
k <- 3
nu <- rep(x = 0, times = k)
lambda <- diag(k)
theta <- 0.50 * diag(k)
theta_l <- t(chol(theta))
covariates
j <- 2
x <- lapply(

X = seq_len(n),
FUN = function(i) {
matrix(

data = stats::rnorm(n = time * j),
nrow = j,
ncol = time

)
}

)
gamma <- diag(x = 0.10, nrow = p, ncol = j)
kappa <- diag(x = 0.10, nrow = k, ncol = j)

Type 0
ssm <- SimSSMFixed(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0

)

head(as.data.frame(ssm))
head(as.data.frame(ssm, long = FALSE))

Type 1
ssm <- SimSSMFixed(

n = n,
time = time,
mu0 = mu0,

as.matrix.simstatespace 5

sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 1,
x = x,
gamma = gamma

)

head(as.data.frame(ssm))
head(as.data.frame(ssm, long = FALSE))

Type 2
ssm <- SimSSMFixed(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 2,
x = x,
gamma = gamma,
kappa = kappa

)

head(as.data.frame(ssm))
head(as.data.frame(ssm, long = FALSE))

as.matrix.simstatespace

Coerce an Object of Class simstatespace to a Matrix

Description

Coerce an Object of Class simstatespace to a Matrix

Usage

S3 method for class 'simstatespace'
as.matrix(x, eta = FALSE, long = TRUE, burnin = 0, reset_time = TRUE, ...)

6 as.matrix.simstatespace

Arguments

x Object of class simstatespace.

eta Logical. If eta = TRUE, include eta. If eta = FALSE, exclude eta.

long Logical. If long = TRUE, use long format. If long = FALSE, use wide format.

burnin Positive integer. Initial data points to discard. Default is zero.

reset_time Logical. Reset the time index after burnin.

... Additional arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

prepare parameters
set.seed(42)
number of individuals
n <- 5
time points
time <- 50
dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)
sigma0 <- diag(p)
sigma0_l <- t(chol(sigma0))
alpha <- rep(x = 0, times = p)
beta <- 0.50 * diag(p)
psi <- diag(p)
psi_l <- t(chol(psi))
measurement model
k <- 3
nu <- rep(x = 0, times = k)
lambda <- diag(k)
theta <- 0.50 * diag(k)
theta_l <- t(chol(theta))
covariates
j <- 2
x <- lapply(

X = seq_len(n),
FUN = function(i) {

matrix(
data = stats::rnorm(n = time * j),
nrow = j,
ncol = time

)
}

)
gamma <- diag(x = 0.10, nrow = p, ncol = j)
kappa <- diag(x = 0.10, nrow = k, ncol = j)

as.matrix.simstatespace 7

Type 0
ssm <- SimSSMFixed(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0

)

head(as.matrix(ssm))
head(as.matrix(ssm, long = FALSE))

Type 1
ssm <- SimSSMFixed(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 1,
x = x,
gamma = gamma

)

head(as.matrix(ssm))
head(as.matrix(ssm, long = FALSE))

Type 2
ssm <- SimSSMFixed(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 2,
x = x,
gamma = gamma,

8 LinSDE2SSM

kappa = kappa
)

head(as.matrix(ssm))
head(as.matrix(ssm, long = FALSE))

LinSDE2SSM Convert Parameters from the Linear Stochastic Differential Equation
Model to State Space Model Parameterization

Description

This function converts parameters from the linear stochastic differential equation model to state
space model parameterization.

Usage

LinSDE2SSM(iota, phi, sigma_l, delta_t)

Arguments

iota Numeric vector. An unobserved term that is constant over time (ι).

phi Numeric matrix. The drift matrix which represents the rate of change of the
solution in the absence of any random fluctuations (Φ).

sigma_l Numeric matrix. Cholesky factorization (t(chol(sigma))) of the covariance
matrix of volatility or randomness in the process (Σ).

delta_t Numeric. Time interval (∆t).

Details

Let the linear stochastic equation model be given by

dηi,t =
(
ι+Φηi,t

)
dt+Σ

1
2 dWi,t

for individual i and time t. The discrete-time state space model given below represents the discrete-
time solution for the linear stochastic differential equation.

ηi,tli
= α∆tli

+ β∆tli
ηi,tli−1

+ ζi,tli
, with ζi,tli

∼ N
(
0,Ψ∆tli

)
with

β∆tli
= exp (∆tΦ),

α∆tli
= Φ−1 (β − Ip) ι, and

vec
(
Ψ∆tli

)
= [(Φ⊗ Ip) + (Ip ⊗Φ)] [exp ([(Φ⊗ Ip) + (Ip ⊗Φ)]∆t)− Ip×p] vec (Σ)

LinSDE2SSM 9

where t denotes continuous-time processes that can be defined by any arbitrary time point, tli the
lth observed measurement occassion for individual i, p the number of latent variables and ∆t the
time interval.

Value

Returns a list of state space parameters:

• alpha: Numeric vector. Vector of constant values for the dynamic model (α).

• beta: Numeric matrix. Transition matrix relating the values of the latent variables from the
previous time point to the current time point (β).

• psi_l: Numeric matrix. Cholesky factorization (t(chol(psi))) of the process noise covari-
ance matrix Ψ.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter. Cambridge
University Press. doi:10.1017/cbo9781107049994

See Also

Other Simulation of State Space Models Data Functions: LinSDECovEta(), LinSDECovY(), LinSDEMeanEta(),
LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(), SSMCovY(), SSMInterceptEta(),
SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(), SimBetaN(), SimBetaN2(), SimBetaNCovariate(),
SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(),
SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(),
SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(),
SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

p <- 2
iota <- c(0.317, 0.230)
phi <- matrix(

data = c(
-0.10,
0.05,
0.05,
-0.10

),
nrow = p
)
sigma <- matrix(
data = c(

2.79,
0.06,
0.06,

https://doi.org/10.1017/cbo9781107049994

10 LinSDECovEta

3.27
),
nrow = p

)
sigma_l <- t(chol(sigma))
delta_t <- 0.10

LinSDE2SSM(
iota = iota,
phi = phi,
sigma_l = sigma_l,
delta_t = delta_t

)

LinSDECovEta Steady-State Covariance Matrix for the Latent Variables in the Linear
Stochastic Differential Equation Model

Description

The steady-state covariance matrix for the latent variables in the linear stochastic differential equa-
tion model Cov (η) is the solution to the Sylvester equation, i.e.

AX+XB+C = 0,

where X is unknown, A = Φ, B = Φ′, and C = Σ where Φ is the drift matrix and Σ is the
covariance matrix of volatility or randomness in the process.

Usage

LinSDECovEta(phi, sigma)

Arguments

phi Numeric matrix. The drift matrix which represents the rate of change of the
solution in the absence of any random fluctuations (Φ).

sigma Numeric matrix. The covariance matrix of volatility or randomness in the pro-
cess (Σ).

Author(s)

Ivan Jacob Agaloos Pesigan

LinSDECovY 11

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovY(), LinSDEMeanEta(),
LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(), SSMCovY(), SSMInterceptEta(),
SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(), SimBetaN(), SimBetaN2(), SimBetaNCovariate(),
SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(),
SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(),
SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(),
SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

phi <- matrix(
data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0.0, 0.0, -0.693

),
nrow = 3

)
sigma <- matrix(

data = c(
0.24455556, 0.02201587, -0.05004762,
0.02201587, 0.07067800, 0.01539456,
-0.05004762, 0.01539456, 0.07553061

),
nrow = 3

)
LinSDECovEta(

phi = phi,
sigma = sigma

)

LinSDECovY Steady-State Covariance Matrix for the Observed Variables in the Lin-
ear Stochastic Differential Equation Model

Description

The steady-state covariance matrix for the observed variables in the linear stochastic differential
equation model Cov (y) is given by

Cov (y) = ΛCov (η)Λ′ +Θ

where Λ is the matrix of factor loadings, Θ is the covariance matrix of the measurement error, and
Cov (η) is the steady-state covariance matrix for the latent variables.

Usage

LinSDECovY(lambda, theta, cov_eta)

12 LinSDECovY

Arguments

lambda Numeric matrix. Factor loading matrix linking the latent variables to the ob-
served variables (Λ).

theta Numeric matrix. The covariance matrix of the measurement error (Θ).
cov_eta Numeric matrix. The steady-state covariance matrix for the latent variables in

the linear stochastic differential equation model

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDEMeanEta(),
LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(), SSMCovY(), SSMInterceptEta(),
SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(), SimBetaN(), SimBetaN2(), SimBetaNCovariate(),
SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(),
SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(),
SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(),
SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

phi <- matrix(
data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0.0, 0.0, -0.693

),
nrow = 3

)
sigma <- matrix(

data = c(
0.24455556, 0.02201587, -0.05004762,
0.02201587, 0.07067800, 0.01539456,
-0.05004762, 0.01539456, 0.07553061

),
nrow = 3

)
lambda <- diag(3)
theta <- diag(3)
cov_eta <- LinSDECovEta(

phi = phi,
sigma = sigma

)
LinSDECovY(

lambda = lambda,
theta = theta,
cov_eta = cov_eta

)

LinSDEMeanEta 13

LinSDEMeanEta Steady-State Mean Vector for the Latent Variables in the Linear
Stochastic Differential Equation Model

Description

The steady-state mean vector for the latent variables in the linear stochastic differential equation
model Mean (η) is given by

Mean (η) = −Φ−1ι

where Φ is the drift matrix, and ι is an unobserved term that is constant over time.

Usage

LinSDEMeanEta(phi, iota)

Arguments

phi Numeric matrix. The drift matrix which represents the rate of change of the
solution in the absence of any random fluctuations (Φ).

iota Numeric vector. An unobserved term that is constant over time (ι).

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(), SSMCovY(), SSMInterceptEta(),
SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(), SimBetaN(), SimBetaN2(), SimBetaNCovariate(),
SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(),
SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(),
SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(),
SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

phi <- matrix(
data = c(

-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0.0, 0.0, -0.693

),
nrow = 3

)
iota <- rep(x = 1, times = 3)
LinSDEMeanEta(

phi = phi,

14 LinSDEMeanY

iota = iota
)

LinSDEMeanY Steady-State Mean Vector for the Observed Variables in the Linear
Stochastic Differential Equation Model

Description

The steady-state mean vector for the observed variables in the linear stochastic differential equation
model Mean (y) is given by

Mean (y) = ν +ΛMean (η)

where ν is the vector of intercept values for the measurement model, Λ is the matrix of factor
loadings, and Mean (η) is the steady-state mean vector for the latent variables.

Usage

LinSDEMeanY(nu, lambda, mean_eta)

Arguments

nu Numeric vector. Vector of intercept values for the measurement model (ν).

lambda Numeric matrix. Factor loading matrix linking the latent variables to the ob-
served variables (Λ).

mean_eta Numeric vector. Steady-state mean vector of the latent variables Mean (η).

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(), SSMCovY(),
SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(), SimBetaN(),
SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(),
SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

plot.simstatespace 15

Examples

phi <- matrix(
data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0.0, 0.0, -0.693

),
nrow = 3

)
iota <- rep(x = 1, times = 3)
lambda <- diag(3)
nu <- rep(x = 1, times = 3)
mean_eta <- LinSDEMeanEta(

phi = phi,
iota = iota

)
LinSDEMeanY(

nu = nu,
lambda = lambda,
mean_eta = mean_eta

)

plot.simstatespace Plot Method for an Object of Class simstatespace

Description

Plot Method for an Object of Class simstatespace

Usage

S3 method for class 'simstatespace'
plot(
x,
id = NULL,
time = NULL,
eta = FALSE,
type = "b",
burnin = 0,
reset_time = TRUE,
...

)

Arguments

x Object of class simstatespace.

16 plot.simstatespace

id Numeric vector. Optional id numbers to plot. If id = NULL, plot all available
data.

time Numeric vector. Optional time points to plot. If time = NULL, plot all available
data.

eta Logical. If eta = TRUE, plot the latent variables. If eta = FALSE, plot the ob-
served variables.

type Character indicating the type of plotting; actually any of the types as in plot.default().

burnin Positive integer. Initial data points to discard. Default is zero.

reset_time Logical. Reset the time index after burnin.

... Additional arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

prepare parameters
set.seed(42)
number of individuals
n <- 5
time points
time <- 50
dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)
sigma0 <- diag(p)
sigma0_l <- t(chol(sigma0))
alpha <- rep(x = 0, times = p)
beta <- 0.50 * diag(p)
psi <- diag(p)
psi_l <- t(chol(psi))
measurement model
k <- 3
nu <- rep(x = 0, times = k)
lambda <- diag(k)
theta <- 0.50 * diag(k)
theta_l <- t(chol(theta))
covariates
j <- 2
x <- lapply(

X = seq_len(n),
FUN = function(i) {

matrix(
data = stats::rnorm(n = time * j),
nrow = j,
ncol = time

)
}

)

plot.simstatespace 17

gamma <- diag(x = 0.10, nrow = p, ncol = j)
kappa <- diag(x = 0.10, nrow = k, ncol = j)

Type 0
ssm <- SimSSMFixed(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0

)

plot(ssm)
plot(ssm, id = 1:3, time = 0:9)

Type 1
ssm <- SimSSMFixed(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 1,
x = x,
gamma = gamma

)

plot(ssm)
plot(ssm, id = 1:3, time = 0:9)

Type 2
ssm <- SimSSMFixed(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,

18 print.simstatespace

type = 2,
x = x,
gamma = gamma,
kappa = kappa

)

plot(ssm)
plot(ssm, id = 1:3, time = 0:9)

print.simstatespace Print Method for an Object of Class simstatespace

Description

Print Method for an Object of Class simstatespace

Usage

S3 method for class 'simstatespace'
print(x, ...)

Arguments

x Object of Class simstatespace.

... Additional arguments.

Value

Prints simulated data in long format.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

prepare parameters
set.seed(42)
number of individuals
n <- 5
time points
time <- 50
dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)
sigma0 <- diag(p)
sigma0_l <- t(chol(sigma0))
alpha <- rep(x = 0, times = p)

print.simstatespace 19

beta <- 0.50 * diag(p)
psi <- diag(p)
psi_l <- t(chol(psi))
measurement model
k <- 3
nu <- rep(x = 0, times = k)
lambda <- diag(k)
theta <- 0.50 * diag(k)
theta_l <- t(chol(theta))
covariates
j <- 2
x <- lapply(

X = seq_len(n),
FUN = function(i) {
matrix(

data = stats::rnorm(n = time * j),
nrow = j,
ncol = time

)
}

)
gamma <- diag(x = 0.10, nrow = p, ncol = j)
kappa <- diag(x = 0.10, nrow = k, ncol = j)

Type 0
ssm <- SimSSMFixed(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0

)

print(ssm)

Type 1
ssm <- SimSSMFixed(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,

20 ProjectToHurwitz

type = 1,
x = x,
gamma = gamma

)

print(ssm)

Type 2
ssm <- SimSSMFixed(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 2,
x = x,
gamma = gamma,
kappa = kappa

)

print(ssm)

ProjectToHurwitz Project Matrix to Hurwitz Stability

Description

Shifts a square matrix left on the real axis so that its spectral abscissa (maximum real part of the
eigenvalues) is strictly less than -margin. This is useful for ensuring that continuous-time drift
matrices (e.g. in linear SDEs/state-space models) are Hurwitz-stable. If the matrix already satisfies
the margin, it is returned unchanged.

Usage

ProjectToHurwitz(x, margin = 0.001)

Arguments

x Numeric square matrix.

margin Positive numeric. Target buffer inside the Hurwitz region; the result satisfies
maxℜ{λi(x

⋆)} ≤ −margin (default 1e-3).

ProjectToHurwitz 21

Details

The projection is performed by subtracting a multiple of the identity:

x⋆ = x− (α+ margin)I,

where α = maxℜ{λi(x)} is the spectral abscissa.

Value

A numeric matrix of the same dimensions as x, shifted if necessary to satisfy the Hurwitz stability
constraint.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToStability(), SSMCovEta(), SSMCovY(), SSMInterceptEta(),
SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(), SimBetaN(), SimBetaN2(), SimBetaNCovariate(),
SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(),
SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(),
SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(),
SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

Unstable (spectral abscissa >= 0):
x <- matrix(

data = c(
0.10, -0.40,
0.50, 0.20

),
nrow = 2

)
SpectralAbscissa(x = x) # >= 0
SpectralAbscissa(x = ProjectToHurwitz(x = x)) # <= -1e-3 (default margin)

Already Hurwitz-stable is returned unchanged up to numerics:
x <- matrix(

data = c(
-0.50, -0.20,
1.00, -0.30

),
nrow = 2

)
SpectralAbscissa(x = x) # < 0
identical(ProjectToHurwitz(x = x), x)

22 ProjectToStability

ProjectToStability Project Matrix to Stability

Description

Scales a square matrix so that its spectral radius is strictly less than 1 by a specified stability margin.
This is useful for ensuring that transition matrices in state space or vector autoregressive (VAR)
models are stationary. If the matrix is already within the margin, it is returned unchanged.

Usage

ProjectToStability(x, margin = 0.98, tol = 1e-12)

Arguments

x Numeric square matrix.

margin Double in (0, 1). Target upper bound for the spectral radius (default = 0.98).

tol Small positive double added to the denominator in the scaling factor to avoid
division by zero (default 1e-12).

Details

The projection is performed by multiplying the matrix by a constant factor c = margin
ρ+tol , where ρ is

the spectral radius and tol is a small positive number to prevent division by zero.

Value

A numeric matrix of the same dimensions as x, scaled if necessary to satisfy the stability constraint.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), SSMCovEta(), SSMCovY(), SSMInterceptEta(),
SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(), SimBetaN(), SimBetaN2(), SimBetaNCovariate(),
SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(),
SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(),
SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(),
SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

SimAlphaN 23

Examples

Matrix with eigenvalues greater than 1
x <- matrix(

data = c(
1.2, 0.3,
0.4, 0.9

),
nrow = 2

)
SpectralRadius(x = x) # > 1
SpectralRadius(x = ProjectToStability(x = x)) # < 1

Matrix already stable is returned unchanged
x <- matrix(

data = c(
0.5, 0.3,
0.2, 0.4

),
nrow = 2

)
identical(ProjectToStability(x = x), x)

SimAlphaN Simulate Intercept Vectors in a Discrete-Time Vector Autoregressive
Model from the Multivariate Normal Distribution

Description

This function simulates random intercept vectors in a discrete-time vector autoregressive model
from the multivariate normal distribution.

Usage

SimAlphaN(n, alpha, vcov_alpha_l)

Arguments

n Positive integer. Number of replications.

alpha Numeric vector. Intercept (α).

vcov_alpha_l Numeric matrix. Cholesky factorization (t(chol(vcov_alpha))) of the sam-
pling variance-covariance matrix of α.

Value

Returns a list of random intercept vectors.

24 SimBetaN

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimBetaN(),
SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(),
SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

n <- 10
alpha <- c(0, 0, 0)
vcov_alpha_l <- t(chol(0.001 * diag(3)))
SimAlphaN(n = n, alpha = alpha, vcov_alpha_l = vcov_alpha_l)

SimBetaN Simulate Transition Matrices from the Multivariate Normal Distribu-
tion

Description

This function simulates random transition matrices from the multivariate normal distribution. The
function ensures that the generated transition matrices are stationary using TestStationarity()
with a rejection sampling approach.

Usage

SimBetaN(
n,
beta,
vcov_beta_vec_l,
margin = 1,
beta_lbound = NULL,
beta_ubound = NULL,
bound = FALSE,
max_iter = 100000L

)

SimBetaN 25

Arguments

n Positive integer. Number of replications.

beta Numeric matrix. The transition matrix (β).
vcov_beta_vec_l

Numeric matrix. Cholesky factorization (t(chol(vcov_beta_vec))) of the
sampling variance-covariance matrix of vec (β).

margin Numeric scalar specifying the stationarity threshold. Values less than 1 indicate
stricter stationarity criteria.

beta_lbound Optional numeric matrix of same dim as beta. Use NA for no lower bound.

beta_ubound Optional numeric matrix of same dim as beta. Use NA for no upper bound.

bound Logical; if TRUE, resample until all elements respect bounds (NA bounds ig-
nored).

max_iter Safety cap on resampling attempts per draw.

Value

Returns a list of random transition matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(),
SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

n <- 10
beta <- matrix(

data = c(
0.7, 0.5, -0.1,
0.0, 0.6, 0.4,
0, 0, 0.5

),
nrow = 3

)
vcov_beta_vec_l <- t(chol(0.001 * diag(9)))
SimBetaN(n = n, beta = beta, vcov_beta_vec_l = vcov_beta_vec_l)

26 SimBetaN2

SimBetaN2 Simulate Transition Matrices from the Multivariate Normal Distribu-
tion and Project to Stability

Description

This function simulates random transition matrices from the multivariate normal distribution then
projects each draw to the stability region using ProjectToStability().

Usage

SimBetaN2(n, beta, vcov_beta_vec_l, margin = 0.98, tol = 1e-12)

Arguments

n Positive integer. Number of replications.

beta Numeric matrix. The transition matrix (β).

vcov_beta_vec_l

Numeric matrix. Cholesky factorization (t(chol(vcov_beta_vec))) of the
sampling variance-covariance matrix of vec (β).

margin Double in (0, 1). Target upper bound for the spectral radius (default = 0.98).

tol Small positive double added to the denominator in the scaling factor to avoid
division by zero (default = 1e-12).

Value

Returns a list of random transition matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(),
SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

SimBetaNCovariate 27

Examples

n <- 10
beta <- matrix(

data = c(
0.7, 0.5, -0.1,
0.0, 0.6, 0.4,
0, 0, 0.5

),
nrow = 3

)
vcov_beta_vec_l <- t(chol(0.001 * diag(9)))
SimBetaN2(n = n, beta = beta, vcov_beta_vec_l = vcov_beta_vec_l)

SimBetaNCovariate Simulate Transition Matrices with a Covariate from the Multivariate
Normal Distribution

Description

This function simulates random transition matrices from a multivariate normal distribution, allow-
ing the mean transition matrix to vary as a linear function of a covariate. The function ensures
that the generated transition matrices are stationary using TestStationarity() with a rejection
sampling approach.

Usage

SimBetaNCovariate(
n,
beta0,
vcov_beta_vec_l,
beta1,
x,
margin = 1,
beta_lbound = NULL,
beta_ubound = NULL,
bound = FALSE,
max_iter = 100000L

)

Arguments

n Positive integer. Number of replications.

beta0 Numeric matrix. Baseline transition matrix β0 corresponding to x = 0.
vcov_beta_vec_l

Numeric matrix. Cholesky factorization (t(chol(vcov_beta_vec))) of the
sampling variance-covariance matrix of vec (β).

28 SimBetaNCovariate

beta1 Numeric matrix. Matrix of covariate effects mapping x to vec(β).

x List of numeric vectors. Covariate values.

margin Numeric scalar specifying the stationarity threshold. Values less than 1 indicate
stricter stationarity criteria.

beta_lbound Optional numeric matrix of same dim as beta. Use NA for no lower bound.

beta_ubound Optional numeric matrix of same dim as beta. Use NA for no upper bound.

bound Logical; if TRUE, resample until all elements respect bounds (NA bounds ig-
nored).

max_iter Safety cap on resampling attempts per draw.

Value

Returns a list of random transition matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(),
SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

n <- 5
beta0 <- matrix(

data = c(
0.7, 0.5, -0.1,
0.0, 0.6, 0.4,
0, 0, 0.5

),
nrow = 3

)
vcov_beta_vec_l <- t(chol(0.001 * diag(9)))
One scalar covariate per replication
beta1 <- matrix(data = 0, nrow = 9, ncol = 1)
beta1[1, 1] <- 0.10 # x shifts beta[1,1]
x <- list(c(0), c(1), c(-1), c(0.5), c(2))

SimBetaNCovariate(
n = n,
beta0 = beta0,
vcov_beta_vec_l = vcov_beta_vec_l,

SimCovDiagN 29

beta1 = beta1,
x = x

)

SimCovDiagN Simulate Diagonal Covariance Matrices from the Multivariate Nor-
mal Distribution

Description

This function simulates random diagonal covariance matrices from the multivariate normal distri-
bution. The function ensures that the generated covariance matrices are positive semi-definite.

Usage

SimCovDiagN(n, sigma_diag, vcov_sigma_diag_l)

Arguments

n Positive integer. Number of replications.

sigma_diag Numeric matrix. The covariance matrix (Σ).

vcov_sigma_diag_l

Numeric matrix. Cholesky factorization (t(chol(vcov_sigma_vech))) of the
sampling variance-covariance matrix of vech (Σ).

Value

Returns a list of random diagonal covariance matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(),
SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

30 SimCovN

Examples

n <- 10
sigma_diag <- c(1, 1, 1)
vcov_sigma_diag_l <- t(chol(0.001 * diag(3)))
SimCovDiagN(

n = n,
sigma_diag = sigma_diag,
vcov_sigma_diag_l = vcov_sigma_diag_l

)

SimCovN Simulate Covariance Matrices from the Multivariate Normal Distri-
bution

Description

This function simulates random covariance matrices from the multivariate normal distribution. The
function ensures that the generated covariance matrices are positive semi-definite.

Usage

SimCovN(n, sigma, vcov_sigma_vech_l)

Arguments

n Positive integer. Number of replications.
sigma Numeric matrix. The covariance matrix (Σ).
vcov_sigma_vech_l

Numeric matrix. Cholesky factorization (t(chol(vcov_sigma_vech))) of the
sampling variance-covariance matrix of vech (Σ).

Value

Returns a list of random covariance matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimIotaN(), SimNuN(), SimPhiN(),
SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

SimIotaN 31

Examples

n <- 10
sigma <- matrix(

data = c(
1.0, 0.5, 0.3,
0.5, 1.0, 0.4,
0.3, 0.4, 1.0

),
nrow = 3

)
vcov_sigma_vech_l <- t(

chol(
0.001 * diag(3 * (3 + 1) / 2)

)
)
SimCovN(

n = n,
sigma = sigma,
vcov_sigma_vech_l = vcov_sigma_vech_l

)

SimIotaN Simulate Intercept Vectors in a Continuous-Time Vector Autoregres-
sive Model from the Multivariate Normal Distribution

Description

This function simulates random intercept vectors in a continuous-time vector autoregressive model
from the multivariate normal distribution.

Usage

SimIotaN(n, iota, vcov_iota_l)

Arguments

n Positive integer. Number of replications.

iota Numeric vector. Intercept (ι).

vcov_iota_l Numeric matrix. Cholesky factorization (t(chol(vcov_iota))) of the sam-
pling variance-covariance matrix of ι.

Value

Returns a list of random intercept vectors.

Author(s)

Ivan Jacob Agaloos Pesigan

32 SimNuN

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimNuN(), SimPhiN(),
SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

n <- 10
iota <- c(0, 0, 0)
vcov_iota_l <- t(chol(0.001 * diag(3)))
SimIotaN(n = n, iota = iota, vcov_iota_l = vcov_iota_l)

SimNuN Simulate Intercept Vectors in a Discrete-Time Vector Autoregressive
Model from the Multivariate Normal Distribution

Description

This function simulates random intercept vectors in a discrete-time vector autoregressive model
from the multivariate normal distribution.

Usage

SimNuN(n, nu, vcov_nu_l)

Arguments

n Positive integer. Number of replications.

nu Numeric vector. Intercept (ν).

vcov_nu_l Numeric matrix. Cholesky factorization (t(chol(vcov_nu))) of the sampling
variance-covariance matrix of ν.

Value

Returns a list of random intercept vectors.

Author(s)

Ivan Jacob Agaloos Pesigan

SimPhiN 33

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(),
SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(),
TestStability(), TestStationarity()

Examples

n <- 10
nu <- c(0, 0, 0)
vcov_nu_l <- t(chol(0.001 * diag(3)))
SimNuN(n = n, nu = nu, vcov_nu_l = vcov_nu_l)

SimPhiN Simulate Random Drift Matrices from the Multivariate Normal Distri-
bution

Description

This function simulates random drift matrices from the multivariate normal distribution. The func-
tion ensures that the generated drift matrices are stable using TestPhi().

Usage

SimPhiN(
n,
phi,
vcov_phi_vec_l,
margin = 0,
auto_ubound = 0,
phi_lbound = NULL,
phi_ubound = NULL,
bound = FALSE,
max_iter = 100000L

)

Arguments

n Positive integer. Number of replications.

phi Numeric matrix. The drift matrix (Φ).

vcov_phi_vec_l Numeric matrix. Cholesky factorization (t(chol(vcov_phi_vec))) of the sam-
pling variance-covariance matrix of vec (Φ).

34 SimPhiN

margin Numeric scalar specifying the stability threshold for the real part of the eigen-
values. The default 0.0 corresponds to the imaginary axis; values less than 0.0
enforce a stricter stability margin.

auto_ubound Numeric scalar specifying the upper bound for the diagonal elements of Φ. De-
fault is 0.0, requiring all diagonal values to be ≤ 0.

phi_lbound Optional numeric matrix of same dim as phi. Use NA for no lower bound.

phi_ubound Optional numeric matrix of same dim as phi. Use NA for no upper bound.

bound Logical; if TRUE, resample until all elements respect bounds (NA bounds ig-
nored).

max_iter Safety cap on resampling attempts per draw.

Value

Returns a list of random drift matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(),
SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(),
TestStability(), TestStationarity()

Examples

n <- 10
phi <- matrix(

data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0, 0, -0.693

),
nrow = 3

)
vcov_phi_vec_l <- t(chol(0.001 * diag(9)))
SimPhiN(n = n, phi = phi, vcov_phi_vec_l = vcov_phi_vec_l)

SimPhiN2 35

SimPhiN2 Simulate Random Drift Matrices from the Multivariate Normal Distri-
bution and Project to Hurwitz

Description

This function simulates random dirft matrices from the multivariate normal distribution then projects
each draw to the Hurwitz-stable region using ProjectToHurwitz().

Usage

SimPhiN2(n, phi, vcov_phi_vec_l, margin = 0.001)

Arguments

n Positive integer. Number of replications.

phi Numeric matrix. The drift matrix (Φ).

vcov_phi_vec_l Numeric matrix. Cholesky factorization (t(chol(vcov_phi_vec))) of the sam-
pling variance-covariance matrix of vec (Φ).

margin Positive numeric. Target buffer so that the spectral abscissa is ≤ −margin (de-
fault 1e-3).

Value

Returns a list of random drift matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(),
SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(),
TestStability(), TestStationarity()

36 SimPhiNCovariate

Examples

n <- 10
phi <- matrix(

data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0, 0, -0.693

),
nrow = 3

)
vcov_phi_vec_l <- t(chol(0.001 * diag(9)))
SimPhiN2(n = n, phi = phi, vcov_phi_vec_l = vcov_phi_vec_l)

SimPhiNCovariate Simulate Random Drift Matrices with a Covariate from the Multivari-
ate Normal Distribution

Description

This function simulates random drift matrices from the multivariate normal distribution, allowing
the mean drift matrix to vary as a linear function of a covariate The function ensures that the gener-
ated drift matrices are stable using TestPhi().

Usage

SimPhiNCovariate(
n,
phi0,
vcov_phi_vec_l,
phi1,
x,
margin = 0,
auto_ubound = 0,
phi_lbound = NULL,
phi_ubound = NULL,
bound = FALSE,
max_iter = 100000L

)

Arguments

n Positive integer. Number of replications.

phi0 Numeric matrix. Baseline drift matrix (Φ0).

vcov_phi_vec_l Numeric matrix. Cholesky factorization (t(chol(vcov_phi_vec))) of the sam-
pling variance-covariance matrix of vec (Φ).

phi1 Numeric matrix. Matrix of covariate effects mapping x to vec(Φ).

SimPhiNCovariate 37

x List of numeric vectors. Covariate values.

margin Numeric scalar specifying the stability threshold for the real part of the eigen-
values. The default 0.0 corresponds to the imaginary axis; values less than 0.0
enforce a stricter stability margin.

auto_ubound Numeric scalar specifying the upper bound for the diagonal elements of Φ. De-
fault is 0.0, requiring all diagonal values to be ≤ 0.

phi_lbound Optional numeric matrix of same dim as phi. Use NA for no lower bound.

phi_ubound Optional numeric matrix of same dim as phi. Use NA for no upper bound.

bound Logical; if TRUE, resample until all elements respect bounds (NA bounds ig-
nored).

max_iter Safety cap on resampling attempts per draw.

Value

Returns a list of random drift matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiN2(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

n <- 5
phi0 <- matrix(

data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0, 0, -0.693

),
nrow = 3

)
vcov_phi_vec_l <- t(chol(0.001 * diag(9)))
One scalar covariate per replication
phi1 <- matrix(data = 0, nrow = 9, ncol = 1)
phi1[1, 1] <- 0.10 # x shifts phi[1,1]
x <- list(c(0), c(1), c(-1), c(0.5), c(2))
SimPhiNCovariate(

n = n,
phi0 = phi0,

38 SimSSMFixed

vcov_phi_vec_l = vcov_phi_vec_l,
phi1 = phi1,
x = x

)

SimSSMFixed Simulate Data from a State Space Model (Fixed Parameters)

Description

This function simulates data using a state space model. It assumes that the parameters remain
constant across individuals and over time.

Usage

SimSSMFixed(
n,
time,
delta_t = 1,
mu0,
sigma0_l,
alpha,
beta,
psi_l,
nu,
lambda,
theta_l,
type = 0,
x = NULL,
gamma = NULL,
kappa = NULL

)

Arguments

n Positive integer. Number of individuals.

time Positive integer. Number of time points.

delta_t Numeric. Time interval. The default value is 1.0 with an option to use a nu-
meric value for the discretized state space model parameterization of the linear
stochastic differential equation model.

mu0 Numeric vector. Mean of initial latent variable values (µη|0).

sigma0_l Numeric matrix. Cholesky factorization (t(chol(sigma0))) of the covariance
matrix of initial latent variable values (Ση|0).

alpha Numeric vector. Vector of constant values for the dynamic model (α).

SimSSMFixed 39

beta Numeric matrix. Transition matrix relating the values of the latent variables at
the previous to the current time point (β).

psi_l Numeric matrix. Cholesky factorization (t(chol(psi))) of the covariance ma-
trix of the process noise (Ψ).

nu Numeric vector. Vector of intercept values for the measurement model (ν).

lambda Numeric matrix. Factor loading matrix linking the latent variables to the ob-
served variables (Λ).

theta_l Numeric matrix. Cholesky factorization (t(chol(theta))) of the covariance
matrix of the measurement error (Θ).

type Integer. State space model type. See Details for more information.

x List. Each element of the list is a matrix of covariates for each individual i in n.
The number of columns in each matrix should be equal to time.

gamma Numeric matrix. Matrix linking the covariates to the latent variables at current
time point (Γ).

kappa Numeric matrix. Matrix linking the covariates to the observed variables at cur-
rent time point (κ).

Details

Type 0:
The measurement model is given by

yi,t = ν +Ληi,t + εi,t, with εi,t ∼ N (0,Θ)

where yi,t, ηi,t, and εi,t are random variables and ν, Λ, and Θ are model parameters. yi,t

represents a vector of observed random variables, ηi,t a vector of latent random variables, and
εi,t a vector of random measurement errors, at time t and individual i. ν denotes a vector of
intercepts, Λ a matrix of factor loadings, and Θ the covariance matrix of ε.
An alternative representation of the measurement error is given by

εi,t = Θ
1
2 zi,t, with zi,t ∼ N (0, I)

where zi,t is a vector of independent standard normal random variables and
(
Θ

1
2

)(
Θ

1
2

)′
= Θ.

The dynamic structure is given by

ηi,t = α+ βηi,t−1 + ζi,t, with ζi,t ∼ N (0,Ψ)

where ηi,t, ηi,t−1, and ζi,t are random variables, and α, β, and Ψ are model parameters. Here,
ηi,t is a vector of latent variables at time t and individual i, ηi,t−1 represents a vector of latent
variables at time t−1 and individual i, and ζi,t represents a vector of dynamic noise at time t and
individual i. α denotes a vector of intercepts, β a matrix of autoregression and cross regression
coefficients, and Ψ the covariance matrix of ζi,t.
An alternative representation of the dynamic noise is given by

ζi,t = Ψ
1
2 zi,t, with zi,t ∼ N (0, I)

where
(
Ψ

1
2

)(
Ψ

1
2

)′
= Ψ.

40 SimSSMFixed

Type 1:
The measurement model is given by

yi,t = ν +Ληi,t + εi,t, with εi,t ∼ N (0,Θ) .

The dynamic structure is given by

ηi,t = α+ βηi,t−1 + Γxi,t + ζi,t, with ζi,t ∼ N (0,Ψ)

where xi,t represents a vector of covariates at time t and individual i, and Γ the coefficient matrix
linking the covariates to the latent variables.

Type 2:
The measurement model is given by

yi,t = ν +Ληi,t + κxi,t + εi,t, with εi,t ∼ N (0,Θ)

where κ represents the coefficient matrix linking the covariates to the observed variables.
The dynamic structure is given by

ηi,t = α+ βηi,t−1 + Γxi,t + ζi,t, with ζi,t ∼ N (0,Ψ) .

Value

Returns an object of class simstatespace which is a list with the following elements:

• call: Function call.

• args: Function arguments.

• data: Generated data which is a list of length n. Each element of data is a list with the
following elements:

– id: A vector of ID numbers with length l, where l is the value of the function argument
time.

– time: A vector time points of length l.
– y: A l by k matrix of values for the manifest variables.
– eta: A l by p matrix of values for the latent variables.
– x: A l by j matrix of values for the covariates (when covariates are included).

• fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences
between structural equation modeling and state-space modeling techniques. Structural Equation
Modeling: A Multidisciplinary Journal, 17(2), 303-332. doi:10.1080/10705511003661553

https://doi.org/10.1080/10705511003661553

SimSSMFixed 41

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(),
SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(),
TestStability(), TestStationarity()

Examples

prepare parameters
set.seed(42)
number of individuals
n <- 5
time points
time <- 50
dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)
sigma0 <- 0.001 * diag(p)
sigma0_l <- t(chol(sigma0))
alpha <- rep(x = 0, times = p)
beta <- 0.50 * diag(p)
psi <- 0.001 * diag(p)
psi_l <- t(chol(psi))
measurement model
k <- 3
nu <- rep(x = 0, times = k)
lambda <- diag(k)
theta <- 0.001 * diag(k)
theta_l <- t(chol(theta))
covariates
j <- 2
x <- lapply(

X = seq_len(n),
FUN = function(i) {

matrix(
data = stats::rnorm(n = time * j),
nrow = j,
ncol = time

)
}

)
gamma <- diag(x = 0.10, nrow = p, ncol = j)
kappa <- diag(x = 0.10, nrow = k, ncol = j)

Type 0
ssm <- SimSSMFixed(

n = n,

42 SimSSMFixed

time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0

)

plot(ssm)

Type 1
ssm <- SimSSMFixed(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 1,
x = x,
gamma = gamma

)

plot(ssm)

Type 2
ssm <- SimSSMFixed(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 2,
x = x,
gamma = gamma,
kappa = kappa

)

plot(ssm)

SimSSMIVary 43

SimSSMIVary Simulate Data from a State Space Model (Individual-Varying Param-
eters)

Description

This function simulates data using a state space model. It assumes that the parameters can vary
across individuals.

Usage

SimSSMIVary(
n,
time,
delta_t = 1,
mu0,
sigma0_l,
alpha,
beta,
psi_l,
nu,
lambda,
theta_l,
type = 0,
x = NULL,
gamma = NULL,
kappa = NULL

)

Arguments

n Positive integer. Number of individuals.

time Positive integer. Number of time points.

delta_t Numeric. Time interval. The default value is 1.0 with an option to use a nu-
meric value for the discretized state space model parameterization of the linear
stochastic differential equation model.

mu0 List of numeric vectors. Each element of the list is the mean of initial latent
variable values (µη|0).

sigma0_l List of numeric matrices. Each element of the list is the Cholesky factorization
(t(chol(sigma0))) of the covariance matrix of initial latent variable values
(Ση|0).

alpha List of numeric vectors. Each element of the list is the vector of constant values
for the dynamic model (α).

beta List of numeric matrices. Each element of the list is the transition matrix relating
the values of the latent variables at the previous to the current time point (β).

44 SimSSMIVary

psi_l List of numeric matrices. Each element of the list is the Cholesky factorization
(t(chol(psi))) of the covariance matrix of the process noise (Ψ).

nu List of numeric vectors. Each element of the list is the vector of intercept values
for the measurement model (ν).

lambda List of numeric matrices. Each element of the list is the factor loading matrix
linking the latent variables to the observed variables (Λ).

theta_l List of numeric matrices. Each element of the list is the Cholesky factorization
(t(chol(theta))) of the covariance matrix of the measurement error (Θ).

type Integer. State space model type. See Details in SimSSMFixed() for more infor-
mation.

x List. Each element of the list is a matrix of covariates for each individual i in n.
The number of columns in each matrix should be equal to time.

gamma List of numeric matrices. Each element of the list is the matrix linking the
covariates to the latent variables at current time point (Γ).

kappa List of numeric matrices. Each element of the list is the matrix linking the
covariates to the observed variables at current time point (κ).

Details

Parameters can vary across individuals by providing a list of parameter values. If the length of any
of the parameters (mu0, sigma0_l, alpha, beta, psi_l, nu, lambda, theta_l, gamma, or kappa) is
less the n, the function will cycle through the available values.

Value

Returns an object of class simstatespace which is a list with the following elements:

• call: Function call.

• args: Function arguments.

• data: Generated data which is a list of length n. Each element of data is a list with the
following elements:

– id: A vector of ID numbers with length l, where l is the value of the function argument
time.

– time: A vector time points of length l.
– y: A l by k matrix of values for the manifest variables.
– eta: A l by p matrix of values for the latent variables.
– x: A l by j matrix of values for the covariates (when covariates are included).

• fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

SimSSMIVary 45

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences
between structural equation modeling and state-space modeling techniques. Structural Equation
Modeling: A Multidisciplinary Journal, 17(2), 303-332. doi:10.1080/10705511003661553

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMLinGrowth(),
SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(),
SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(),
TestStability(), TestStationarity()

Examples

prepare parameters
In this example, beta varies across individuals.
set.seed(42)
number of individuals
n <- 5
time points
time <- 50
dynamic structure
p <- 3
mu0 <- list(

rep(x = 0, times = p)
)
sigma0 <- 0.001 * diag(p)
sigma0_l <- list(

t(chol(sigma0))
)
alpha <- list(

rep(x = 0, times = p)
)
beta <- list(

0.1 * diag(p),
0.2 * diag(p),
0.3 * diag(p),
0.4 * diag(p),
0.5 * diag(p)

)
psi <- 0.001 * diag(p)
psi_l <- list(

t(chol(psi))
)
measurement model
k <- 3
nu <- list(

https://doi.org/10.1080/10705511003661553

46 SimSSMIVary

rep(x = 0, times = k)
)
lambda <- list(

diag(k)
)
theta <- 0.001 * diag(k)
theta_l <- list(

t(chol(theta))
)
covariates
j <- 2
x <- lapply(

X = seq_len(n),
FUN = function(i) {

matrix(
data = stats::rnorm(n = time * j),
nrow = j,
ncol = time

)
}

)
gamma <- list(

diag(x = 0.10, nrow = p, ncol = j)
)
kappa <- list(

diag(x = 0.10, nrow = k, ncol = j)
)

Type 0
ssm <- SimSSMIVary(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0

)

plot(ssm)

Type 1
ssm <- SimSSMIVary(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,

SimSSMLinGrowth 47

psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 1,
x = x,
gamma = gamma

)

plot(ssm)

Type 2
ssm <- SimSSMIVary(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 2,
x = x,
gamma = gamma,
kappa = kappa

)

plot(ssm)

SimSSMLinGrowth Simulate Data from the Linear Growth Curve Model

Description

This function simulates data from the linear growth curve model.

Usage

SimSSMLinGrowth(
n,
time,
mu0,
sigma0_l,
theta_l,
type = 0,
x = NULL,

48 SimSSMLinGrowth

gamma = NULL,
kappa = NULL

)

Arguments

n Positive integer. Number of individuals.

time Positive integer. Number of time points.

mu0 Numeric vector. A vector of length two. The first element is the mean of the
intercept, and the second element is the mean of the slope.

sigma0_l Numeric matrix. Cholesky factorization (t(chol(sigma0))) of the covariance
matrix of the intercept and the slope.

theta_l Numeric. Square root of the common measurement error variance.

type Integer. State space model type. See Details for more information.

x List. Each element of the list is a matrix of covariates for each individual i in n.
The number of columns in each matrix should be equal to time.

gamma Numeric matrix. Matrix linking the covariates to the latent variables at current
time point (Γ).

kappa Numeric matrix. Matrix linking the covariates to the observed variables at cur-
rent time point (κ).

Details

Type 0:
The measurement model is given by

Yi,t =
(
1 0

)(η0i,t
η1i,t

)
+ εi,t, with εi,t ∼ N (0, θ)

where Yi,t, η0i,t , η1i,t , and εi,t are random variables and θ is a model parameter. Yi,t is the
observed random variable at time t and individual i, η0i,t (intercept) and η1i,t (slope) form a vector
of latent random variables at time t and individual i, and εi,t a vector of random measurement
errors at time t and individual i. θ is the variance of ε.
The dynamic structure is given by(

η0i,t
η1i,t

)
=

(
1 1
0 1

)(
η0i,t−1

η1i,t−1

)
.

The mean vector and covariance matrix of the intercept and slope are captured in the mean vector
and covariance matrix of the initial condition given by

µη|0 =

(
µη0

µη1

)
and,

Ση|0 =

(
σ2
η0

ση0,η1

ση1,η0 σ2
η1

)
.

SimSSMLinGrowth 49

Type 1:
The measurement model is given by

Yi,t =
(
1 0

)(η0i,t
η1i,t

)
+ εi,t, with εi,t ∼ N (0, θ) .

The dynamic structure is given by(
η0i,t
η1i,t

)
=

(
1 1
0 1

)(
η0i,t−1

η1i,t−1

)
+ Γxi,t

where xi,t represents a vector of covariates at time t and individual i, and Γ the coefficient matrix
linking the covariates to the latent variables.

Type 2:
The measurement model is given by

Yi,t =
(
1 0

)(η0i,t
η1i,t

)
+ κxi,t + εi,t, with εi,t ∼ N (0, θ)

where κ represents the coefficient matrix linking the covariates to the observed variables.
The dynamic structure is given by(

η0i,t
η1i,t

)
=

(
1 1
0 1

)(
η0i,t−1

η1i,t−1

)
+ Γxi,t.

Value

Returns an object of class simstatespace which is a list with the following elements:

• call: Function call.

• args: Function arguments.

• data: Generated data which is a list of length n. Each element of data is a list with the
following elements:

– id: A vector of ID numbers with length l, where l is the value of the function argument
time.

– time: A vector time points of length l.
– y: A l by k matrix of values for the manifest variables.
– eta: A l by p matrix of values for the latent variables.
– x: A l by j matrix of values for the covariates (when covariates are included).

• fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences
between structural equation modeling and state-space modeling techniques. Structural Equation
Modeling: A Multidisciplinary Journal, 17(2), 303-332. doi:10.1080/10705511003661553

https://doi.org/10.1080/10705511003661553

50 SimSSMLinGrowth

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

prepare parameters
set.seed(42)
number of individuals
n <- 5
time points
time <- 5
dynamic structure
p <- 2
mu0 <- c(0.615, 1.006)
sigma0 <- matrix(

data = c(
1.932,
0.618,
0.618,
0.587

),
nrow = p

)
sigma0_l <- t(chol(sigma0))
measurement model
k <- 1
theta <- 0.50
theta_l <- sqrt(theta)
covariates
j <- 2
x <- lapply(

X = seq_len(n),
FUN = function(i) {

matrix(
data = rnorm(n = j * time),
nrow = j

)
}

)
gamma <- diag(x = 0.10, nrow = p, ncol = j)
kappa <- diag(x = 0.10, nrow = k, ncol = j)

Type 0
ssm <- SimSSMLinGrowth(

n = n,

SimSSMLinGrowthIVary 51

time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
theta_l = theta_l,
type = 0

)

plot(ssm)

Type 1
ssm <- SimSSMLinGrowth(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
theta_l = theta_l,
type = 1,
x = x,
gamma = gamma

)

plot(ssm)

Type 2
ssm <- SimSSMLinGrowth(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
theta_l = theta_l,
type = 2,
x = x,
gamma = gamma,
kappa = kappa

)

plot(ssm)

SimSSMLinGrowthIVary Simulate Data from the Linear Growth Curve Model (Individual-
Varying Parameters)

Description

This function simulates data from the linear growth curve model. It assumes that the parameters
can vary across individuals.

52 SimSSMLinGrowthIVary

Usage

SimSSMLinGrowthIVary(
n,
time,
mu0,
sigma0_l,
theta_l,
type = 0,
x = NULL,
gamma = NULL,
kappa = NULL

)

Arguments

n Positive integer. Number of individuals.

time Positive integer. Number of time points.

mu0 A list of numeric vectors. Each element of the list is a vector of length two. The
first element is the mean of the intercept, and the second element is the mean of
the slope.

sigma0_l A list of numeric matrices. Each element of the list is the Cholesky factorization
(t(chol(sigma0))) of the covariance matrix of the intercept and the slope.

theta_l A list numeric values. Each element of the list is the square root of the common
measurement error variance.

type Integer. State space model type. See Details in SimSSMLinGrowth() for more
information.

x List. Each element of the list is a matrix of covariates for each individual i in n.
The number of columns in each matrix should be equal to time.

gamma List of numeric matrices. Each element of the list is the matrix linking the
covariates to the latent variables at current time point (Γ).

kappa List of numeric matrices. Each element of the list is the matrix linking the
covariates to the observed variables at current time point (κ).

Details

Parameters can vary across individuals by providing a list of parameter values. If the length of any
of the parameters (mu0, sigma0, mu, theta_l, gamma, or kappa) is less the n, the function will cycle
through the available values.

Value

Returns an object of class simstatespace which is a list with the following elements:

• call: Function call.

• args: Function arguments.

SimSSMLinGrowthIVary 53

• data: Generated data which is a list of length n. Each element of data is a list with the
following elements:

– id: A vector of ID numbers with length l, where l is the value of the function argument
time.

– time: A vector time points of length l.
– y: A l by k matrix of values for the manifest variables.
– eta: A l by p matrix of values for the latent variables.
– x: A l by j matrix of values for the covariates (when covariates are included).

• fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences
between structural equation modeling and state-space modeling techniques. Structural Equation
Modeling: A Multidisciplinary Journal, 17(2), 303-332. doi:10.1080/10705511003661553

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

prepare parameters
In this example, the mean vector of the intercept and slope vary.
Specifically,
there are two sets of values representing two latent classes.
set.seed(42)
number of individuals
n <- 10
time points
time <- 5
dynamic structure

https://doi.org/10.1080/10705511003661553

54 SimSSMLinGrowthIVary

p <- 2
mu0_1 <- c(0.615, 1.006) # lower starting point, higher growth
mu0_2 <- c(1.000, 0.500) # higher starting point, lower growth
mu0 <- list(mu0_1, mu0_2)
sigma0 <- matrix(

data = c(
1.932,
0.618,
0.618,
0.587

),
nrow = p

)
sigma0_l <- list(t(chol(sigma0)))
measurement model
k <- 1
theta <- 0.50
theta_l <- list(sqrt(theta))
covariates
j <- 2
x <- lapply(

X = seq_len(n),
FUN = function(i) {

matrix(
data = stats::rnorm(n = time * j),
nrow = j,
ncol = time

)
}

)
gamma <- list(

diag(x = 0.10, nrow = p, ncol = j)
)
kappa <- list(

diag(x = 0.10, nrow = k, ncol = j)
)

Type 0
ssm <- SimSSMLinGrowthIVary(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
theta_l = theta_l,
type = 0

)

plot(ssm)

Type 1
ssm <- SimSSMLinGrowthIVary(

n = n,
time = time,

SimSSMLinSDEFixed 55

mu0 = mu0,
sigma0_l = sigma0_l,
theta_l = theta_l,
type = 1,
x = x,
gamma = gamma

)

plot(ssm)

Type 2
ssm <- SimSSMLinGrowthIVary(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
theta_l = theta_l,
type = 2,
x = x,
gamma = gamma,
kappa = kappa

)

plot(ssm)

SimSSMLinSDEFixed Simulate Data from the Linear Stochastic Differential Equation Model
using a State Space Model Parameterization (Fixed Parameters)

Description

This function simulates data from the linear stochastic differential equation model using a state
space model parameterization. It assumes that the parameters remain constant across individuals
and over time.

Usage

SimSSMLinSDEFixed(
n,
time,
delta_t = 1,
mu0,
sigma0_l,
iota,
phi,
sigma_l,
nu,
lambda,

56 SimSSMLinSDEFixed

theta_l,
type = 0,
x = NULL,
gamma = NULL,
kappa = NULL

)

Arguments

n Positive integer. Number of individuals.

time Positive integer. Number of time points.

delta_t Numeric. Time interval (∆t).

mu0 Numeric vector. Mean of initial latent variable values (µη|0).

sigma0_l Numeric matrix. Cholesky factorization (t(chol(sigma0))) of the covariance
matrix of initial latent variable values (Ση|0).

iota Numeric vector. An unobserved term that is constant over time (ι).

phi Numeric matrix. The drift matrix which represents the rate of change of the
solution in the absence of any random fluctuations (Φ).

sigma_l Numeric matrix. Cholesky factorization (t(chol(sigma))) of the covariance
matrix of volatility or randomness in the process (Σ).

nu Numeric vector. Vector of intercept values for the measurement model (ν).

lambda Numeric matrix. Factor loading matrix linking the latent variables to the ob-
served variables (Λ).

theta_l Numeric matrix. Cholesky factorization (t(chol(theta))) of the covariance
matrix of the measurement error (Θ).

type Integer. State space model type. See Details for more information.

x List. Each element of the list is a matrix of covariates for each individual i in n.
The number of columns in each matrix should be equal to time.

gamma Numeric matrix. Matrix linking the covariates to the latent variables at current
time point (Γ).

kappa Numeric matrix. Matrix linking the covariates to the observed variables at cur-
rent time point (κ).

Details

Type 0:
The measurement model is given by

yi,t = ν +Ληi,t + εi,t, with εi,t ∼ N (0,Θ)

where yi,t, ηi,t, and εi,t are random variables and ν, Λ, and Θ are model parameters. yi,t

represents a vector of observed random variables, ηi,t a vector of latent random variables, and
εi,t a vector of random measurement errors, at time t and individual i. ν denotes a vector of
intercepts, Λ a matrix of factor loadings, and Θ the covariance matrix of ε.

SimSSMLinSDEFixed 57

An alternative representation of the measurement error is given by

εi,t = Θ
1
2 zi,t, with zi,t ∼ N (0, I)

where zi,t is a vector of independent standard normal random variables and
(
Θ

1
2

)(
Θ

1
2

)′
= Θ.

The dynamic structure is given by

dηi,t =
(
ι+Φηi,t

)
dt+Σ

1
2 dWi,t

where ι is a term which is unobserved and constant over time, Φ is the drift matrix which repre-
sents the rate of change of the solution in the absence of any random fluctuations, Σ is the matrix
of volatility or randomness in the process, and dW is a Wiener process or Brownian motion,
which represents random fluctuations.

Type 1:
The measurement model is given by

yi,t = ν +Ληi,t + εi,t, with εi,t ∼ N (0,Θ) .

The dynamic structure is given by

dηi,t =
(
ι+Φηi,t

)
dt+ Γxi,t +Σ

1
2 dWi,t

where xi,t represents a vector of covariates at time t and individual i, and Γ the coefficient matrix
linking the covariates to the latent variables.

Type 2:
The measurement model is given by

yi,t = ν +Ληi,t + κxi,t + εi,t, with εi,t ∼ N (0,Θ)

where κ represents the coefficient matrix linking the covariates to the observed variables.
The dynamic structure is given by

dηi,t =
(
ι+Φηi,t

)
dt+ Γxi,t +Σ

1
2 dWi,t.

State Space Parameterization:
The state space parameters as a function of the linear stochastic differential equation model pa-
rameters are given by

β∆tli
= exp (∆tΦ)

α∆tli
= Φ−1 (β − Ip) ι

vec
(
Ψ∆tli

)
= [(Φ⊗ Ip) + (Ip ⊗Φ)] [exp ([(Φ⊗ Ip) + (Ip ⊗Φ)]∆t)− Ip×p] vec (Σ)

where p is the number of latent variables and ∆t is the time interval.

58 SimSSMLinSDEFixed

Value

Returns an object of class simstatespace which is a list with the following elements:

• call: Function call.

• args: Function arguments.

• data: Generated data which is a list of length n. Each element of data is a list with the
following elements:

– id: A vector of ID numbers with length l, where l is the value of the function argument
time.

– time: A vector time points of length l.
– y: A l by k matrix of values for the manifest variables.
– eta: A l by p matrix of values for the latent variables.
– x: A l by j matrix of values for the covariates (when covariates are included).

• fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences
between structural equation modeling and state-space modeling techniques. Structural Equation
Modeling: A Multidisciplinary Journal, 17(2), 303-332. doi:10.1080/10705511003661553

Chow, S.-M., Losardo, D., Park, J., & Molenaar, P. C. M. (2023). Continuous-time dynamic models:
Connections to structural equation models and other discrete-time models. In R. H. Hoyle (Ed.),
Handbook of structural equation modeling (2nd ed.). The Guilford Press.

Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter. Cambridge
University Press. doi:10.1017/cbo9781107049994

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinGrowthIVary(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

prepare parameters
set.seed(42)
number of individuals
n <- 5
time points

https://doi.org/10.1080/10705511003661553
https://doi.org/10.1017/cbo9781107049994

SimSSMLinSDEFixed 59

time <- 50
delta_t <- 0.10
dynamic structure
p <- 2
mu0 <- c(-3.0, 1.5)
sigma0 <- 0.001 * diag(p)
sigma0_l <- t(chol(sigma0))
iota <- c(0.317, 0.230)
phi <- matrix(

data = c(
-0.10,
0.05,
0.05,
-0.10

),
nrow = p

)
sigma <- matrix(

data = c(
2.79,
0.06,
0.06,
3.27

),
nrow = p

)
sigma_l <- t(chol(sigma))
measurement model
k <- 2
nu <- rep(x = 0, times = k)
lambda <- diag(k)
theta <- 0.001 * diag(k)
theta_l <- t(chol(theta))
covariates
j <- 2
x <- lapply(

X = seq_len(n),
FUN = function(i) {

matrix(
data = stats::rnorm(n = time * j),
nrow = j,
ncol = time

)
}

)
gamma <- diag(x = 0.10, nrow = p, ncol = j)
kappa <- diag(x = 0.10, nrow = k, ncol = j)

Type 0
ssm <- SimSSMLinSDEFixed(

n = n,
time = time,
delta_t = delta_t,

60 SimSSMLinSDEFixed

mu0 = mu0,
sigma0_l = sigma0_l,
iota = iota,
phi = phi,
sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0

)

plot(ssm)

Type 1
ssm <- SimSSMLinSDEFixed(

n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
iota = iota,
phi = phi,
sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 1,
x = x,
gamma = gamma

)

plot(ssm)

Type 2
ssm <- SimSSMLinSDEFixed(

n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
iota = iota,
phi = phi,
sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 2,
x = x,
gamma = gamma,
kappa = kappa

)

plot(ssm)

SimSSMLinSDEIVary 61

SimSSMLinSDEIVary Simulate Data from the Linear Stochastic Differential Equation Model
using a State Space Model Parameterization (Individual-Varying Pa-
rameters)

Description

This function simulates data from the linear stochastic differential equation model using a state
space model parameterization. It assumes that the parameters can vary across individuals.

Usage

SimSSMLinSDEIVary(
n,
time,
delta_t = 1,
mu0,
sigma0_l,
iota,
phi,
sigma_l,
nu,
lambda,
theta_l,
type = 0,
x = NULL,
gamma = NULL,
kappa = NULL

)

Arguments

n Positive integer. Number of individuals.

time Positive integer. Number of time points.

delta_t Numeric. Time interval. The default value is 1.0 with an option to use a nu-
meric value for the discretized state space model parameterization of the linear
stochastic differential equation model.

mu0 List of numeric vectors. Each element of the list is the mean of initial latent
variable values (µη|0).

sigma0_l List of numeric matrices. Each element of the list is the Cholesky factorization
(t(chol(sigma0))) of the covariance matrix of initial latent variable values
(Ση|0).

iota List of numeric vectors. Each element of the list is an unobserved term that is
constant over time (ι).

62 SimSSMLinSDEIVary

phi List of numeric matrix. Each element of the list is the drift matrix which repre-
sents the rate of change of the solution in the absence of any random fluctuations
(Φ).

sigma_l List of numeric matrix. Each element of the list is the Cholesky factorization
(t(chol(sigma))) of the covariance matrix of volatility or randomness in the
process Σ.

nu List of numeric vectors. Each element of the list is the vector of intercept values
for the measurement model (ν).

lambda List of numeric matrices. Each element of the list is the factor loading matrix
linking the latent variables to the observed variables (Λ).

theta_l List of numeric matrices. Each element of the list is the Cholesky factorization
(t(chol(theta))) of the covariance matrix of the measurement error (Θ).

type Integer. State space model type. See Details in SimSSMLinSDEFixed() for more
information.

x List. Each element of the list is a matrix of covariates for each individual i in n.
The number of columns in each matrix should be equal to time.

gamma List of numeric matrices. Each element of the list is the matrix linking the
covariates to the latent variables at current time point (Γ).

kappa List of numeric matrices. Each element of the list is the matrix linking the
covariates to the observed variables at current time point (κ).

Details

Parameters can vary across individuals by providing a list of parameter values. If the length of any
of the parameters (mu0, sigma0_l, iota, phi, sigma_l, nu, lambda, theta_l, gamma, or kappa) is
less the n, the function will cycle through the available values.

Value

Returns an object of class simstatespace which is a list with the following elements:

• call: Function call.

• args: Function arguments.

• data: Generated data which is a list of length n. Each element of data is a list with the
following elements:

– id: A vector of ID numbers with length l, where l is the value of the function argument
time.

– time: A vector time points of length l.
– y: A l by k matrix of values for the manifest variables.
– eta: A l by p matrix of values for the latent variables.
– x: A l by j matrix of values for the covariates (when covariates are included).

• fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

SimSSMLinSDEIVary 63

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences
between structural equation modeling and state-space modeling techniques. Structural Equation
Modeling: A Multidisciplinary Journal, 17(2), 303-332. doi:10.1080/10705511003661553

Chow, S.-M., Losardo, D., Park, J., & Molenaar, P. C. M. (2023). Continuous-time dynamic models:
Connections to structural equation models and other discrete-time models. In R. H. Hoyle (Ed.),
Handbook of structural equation modeling (2nd ed.). The Guilford Press.

Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter. Cambridge
University Press. doi:10.1017/cbo9781107049994

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

prepare parameters
In this example, phi varies across individuals.
set.seed(42)
number of individuals
n <- 5
time points
time <- 50
delta_t <- 0.10
dynamic structure
p <- 2
mu0 <- list(

c(-3.0, 1.5)
)
sigma0 <- 0.001 * diag(p)
sigma0_l <- list(

t(chol(sigma0))
)
iota <- list(

c(0.317, 0.230)
)
phi <- list(

-0.1 * diag(p),
-0.2 * diag(p),
-0.3 * diag(p),
-0.4 * diag(p),
-0.5 * diag(p)

)
sigma <- matrix(

https://doi.org/10.1080/10705511003661553
https://doi.org/10.1017/cbo9781107049994

64 SimSSMLinSDEIVary

data = c(
2.79,
0.06,
0.06,
3.27

),
nrow = p

)
sigma_l <- list(

t(chol(sigma))
)
measurement model
k <- 2
nu <- list(

rep(x = 0, times = k)
)
lambda <- list(

diag(k)
)
theta <- 0.001 * diag(k)
theta_l <- list(

t(chol(theta))
)
covariates
j <- 2
x <- lapply(

X = seq_len(n),
FUN = function(i) {

matrix(
data = stats::rnorm(n = time * j),
nrow = j,
ncol = time

)
}

)
gamma <- list(

diag(x = 0.10, nrow = p, ncol = j)
)
kappa <- list(

diag(x = 0.10, nrow = k, ncol = j)
)

Type 0
ssm <- SimSSMLinSDEIVary(

n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
iota = iota,
phi = phi,
sigma_l = sigma_l,
nu = nu,

SimSSMOUFixed 65

lambda = lambda,
theta_l = theta_l,
type = 0

)

plot(ssm)

Type 1
ssm <- SimSSMLinSDEIVary(

n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
iota = iota,
phi = phi,
sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 1,
x = x,
gamma = gamma

)

plot(ssm)

Type 2
ssm <- SimSSMLinSDEIVary(

n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
iota = iota,
phi = phi,
sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 2,
x = x,
gamma = gamma,
kappa = kappa

)

plot(ssm)

66 SimSSMOUFixed

SimSSMOUFixed Simulate Data from the Ornstein-Uhlenbeck Model using a State
Space Model Parameterization (Fixed Parameters)

Description

This function simulates data from the Ornstein-Uhlenbeck (OU) model using a state space model
parameterization. It assumes that the parameters remain constant across individuals and over time.

Usage

SimSSMOUFixed(
n,
time,
delta_t = 1,
mu0,
sigma0_l,
mu,
phi,
sigma_l,
nu,
lambda,
theta_l,
type = 0,
x = NULL,
gamma = NULL,
kappa = NULL

)

Arguments

n Positive integer. Number of individuals.

time Positive integer. Number of time points.

delta_t Numeric. Time interval (∆t).

mu0 Numeric vector. Mean of initial latent variable values (µη|0).

sigma0_l Numeric matrix. Cholesky factorization (t(chol(sigma0))) of the covariance
matrix of initial latent variable values (Ση|0).

mu Numeric vector. The long-term mean or equilibrium level (µ).

phi Numeric matrix. The drift matrix which represents the rate of change of the
solution in the absence of any random fluctuations (Φ). It also represents the
rate of mean reversion, determining how quickly the variable returns to its mean.

sigma_l Numeric matrix. Cholesky factorization (t(chol(sigma))) of the covariance
matrix of volatility or randomness in the process (Σ).

nu Numeric vector. Vector of intercept values for the measurement model (ν).

lambda Numeric matrix. Factor loading matrix linking the latent variables to the ob-
served variables (Λ).

SimSSMOUFixed 67

theta_l Numeric matrix. Cholesky factorization (t(chol(theta))) of the covariance
matrix of the measurement error (Θ).

type Integer. State space model type. See Details for more information.

x List. Each element of the list is a matrix of covariates for each individual i in n.
The number of columns in each matrix should be equal to time.

gamma Numeric matrix. Matrix linking the covariates to the latent variables at current
time point (Γ).

kappa Numeric matrix. Matrix linking the covariates to the observed variables at cur-
rent time point (κ).

Details

Type 0:
The measurement model is given by

yi,t = ν +Ληi,t + εi,t, with εi,t ∼ N (0,Θ)

where yi,t, ηi,t, and εi,t are random variables and ν, Λ, and Θ are model parameters. yi,t

represents a vector of observed random variables, ηi,t a vector of latent random variables, and
εi,t a vector of random measurement errors, at time t and individual i. ν denotes a vector of
intercepts, Λ a matrix of factor loadings, and Θ the covariance matrix of ε.
An alternative representation of the measurement error is given by

εi,t = Θ
1
2 zi,t, with zi,t ∼ N (0, I)

where zi,t is a vector of independent standard normal random variables and
(
Θ

1
2

)(
Θ

1
2

)′
= Θ.

The dynamic structure is given by

dηi,t = Φ
(
ηi,t − µ

)
dt+Σ

1
2 dWi,t

where µ is the long-term mean or equilibrium level, Φ is the rate of mean reversion, determining
how quickly the variable returns to its mean, Σ is the matrix of volatility or randomness in the
process, and dW is a Wiener process or Brownian motion, which represents random fluctuations.

Type 1:
The measurement model is given by

yi,t = ν +Ληi,t + εi,t, with εi,t ∼ N (0,Θ) .

The dynamic structure is given by

dηi,t = Φ
(
ηi,t − µ

)
dt+ Γxi,t +Σ

1
2 dWi,t

where xi,t represents a vector of covariates at time t and individual i, and Γ the coefficient matrix
linking the covariates to the latent variables.

68 SimSSMOUFixed

Type 2:
The measurement model is given by

yi,t = ν +Ληi,t + κxi,t + εi,t, with εi,t ∼ N (0,Θ)

where κ represents the coefficient matrix linking the covariates to the observed variables.
The dynamic structure is given by

dηi,t = Φ
(
ηi,t − µ

)
dt+ Γxi,t +Σ

1
2 dWi,t.

The OU model as a linear stochastic differential equation model:
The OU model is a first-order linear stochastic differential equation model in the form of

dηi,t =
(
ι+Φηi,t

)
dt+Σ

1
2 dWi,t

where µ = −Φ−1ι and, equivalently ι = −Φµ.

Value

Returns an object of class simstatespace which is a list with the following elements:

• call: Function call.

• args: Function arguments.

• data: Generated data which is a list of length n. Each element of data is a list with the
following elements:

– id: A vector of ID numbers with length l, where l is the value of the function argument
time.

– time: A vector time points of length l.
– y: A l by k matrix of values for the manifest variables.
– eta: A l by p matrix of values for the latent variables.
– x: A l by j matrix of values for the covariates (when covariates are included).

• fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences
between structural equation modeling and state-space modeling techniques. Structural Equation
Modeling: A Multidisciplinary Journal, 17(2), 303-332. doi:10.1080/10705511003661553

Chow, S.-M., Losardo, D., Park, J., & Molenaar, P. C. M. (2023). Continuous-time dynamic models:
Connections to structural equation models and other discrete-time models. In R. H. Hoyle (Ed.),
Handbook of structural equation modeling (2nd ed.). The Guilford Press.

Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter. Cambridge
University Press. doi:10.1017/cbo9781107049994

https://doi.org/10.1080/10705511003661553
https://doi.org/10.1017/cbo9781107049994

SimSSMOUFixed 69

Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2011). A hierarchical latent stochastic differen-
tial equation model for affective dynamics. Psychological Methods, 16 (4), 468-490. doi:10.1037/
a0024375

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. Physical
Review, 36 (5), 823-841. doi:10.1103/physrev.36.823

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUIVary(),
SimSSMVARFixed(), SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(),
TestStability(), TestStationarity()

Examples

prepare parameters
set.seed(42)
number of individuals
n <- 5
time points
time <- 50
delta_t <- 0.10
dynamic structure
p <- 2
mu0 <- c(-3.0, 1.5)
sigma0 <- 0.001 * diag(p)
sigma0_l <- t(chol(sigma0))
mu <- c(5.76, 5.18)
phi <- matrix(

data = c(
-0.10,
0.05,
0.05,
-0.10

),
nrow = p

)
sigma <- matrix(

data = c(
2.79,
0.06,
0.06,
3.27

),
nrow = p

)
sigma_l <- t(chol(sigma))

https://doi.org/10.1037/a0024375
https://doi.org/10.1037/a0024375
https://doi.org/10.1103/physrev.36.823

70 SimSSMOUFixed

measurement model
k <- 2
nu <- rep(x = 0, times = k)
lambda <- diag(k)
theta <- 0.001 * diag(k)
theta_l <- t(chol(theta))
covariates
j <- 2
x <- lapply(

X = seq_len(n),
FUN = function(i) {
matrix(

data = stats::rnorm(n = time * j),
nrow = j,
ncol = time

)
}

)
gamma <- diag(x = 0.10, nrow = p, ncol = j)
kappa <- diag(x = 0.10, nrow = k, ncol = j)

Type 0
ssm <- SimSSMOUFixed(

n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
mu = mu,
phi = phi,
sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0

)

plot(ssm)

Type 1
ssm <- SimSSMOUFixed(

n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
mu = mu,
phi = phi,
sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 1,

SimSSMOUIVary 71

x = x,
gamma = gamma

)

plot(ssm)

Type 2
ssm <- SimSSMOUFixed(

n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
mu = mu,
phi = phi,
sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 2,
x = x,
gamma = gamma,
kappa = kappa

)

plot(ssm)

SimSSMOUIVary Simulate Data from the Ornstein-Uhlenbeck Model using a State
Space Model Parameterization (Individual-Varying Parameters)

Description

This function simulates data from the Ornstein-Uhlenbeck model using a state space model param-
eterization. It assumes that the parameters can vary across individuals.

Usage

SimSSMOUIVary(
n,
time,
delta_t = 1,
mu0,
sigma0_l,
mu,
phi,
sigma_l,
nu,

72 SimSSMOUIVary

lambda,
theta_l,
type = 0,
x = NULL,
gamma = NULL,
kappa = NULL

)

Arguments

n Positive integer. Number of individuals.

time Positive integer. Number of time points.

delta_t Numeric. Time interval. The default value is 1.0 with an option to use a nu-
meric value for the discretized state space model parameterization of the linear
stochastic differential equation model.

mu0 List of numeric vectors. Each element of the list is the mean of initial latent
variable values (µη|0).

sigma0_l List of numeric matrices. Each element of the list is the Cholesky factorization
(t(chol(sigma0))) of the covariance matrix of initial latent variable values
(Ση|0).

mu List of numeric vectors. Each element of the list is the long-term mean or equi-
librium level (µ).

phi List of numeric matrix. Each element of the list is the drift matrix which repre-
sents the rate of change of the solution in the absence of any random fluctuations
(Φ). It also represents the rate of mean reversion, determining how quickly the
variable returns to its mean.

sigma_l List of numeric matrix. Each element of the list is the Cholesky factorization
(t(chol(sigma))) of the covariance matrix of volatility or randomness in the
process Σ.

nu List of numeric vectors. Each element of the list is the vector of intercept values
for the measurement model (ν).

lambda List of numeric matrices. Each element of the list is the factor loading matrix
linking the latent variables to the observed variables (Λ).

theta_l List of numeric matrices. Each element of the list is the Cholesky factorization
(t(chol(theta))) of the covariance matrix of the measurement error (Θ).

type Integer. State space model type. See Details in SimSSMOUFixed() for more
information.

x List. Each element of the list is a matrix of covariates for each individual i in n.
The number of columns in each matrix should be equal to time.

gamma List of numeric matrices. Each element of the list is the matrix linking the
covariates to the latent variables at current time point (Γ).

kappa List of numeric matrices. Each element of the list is the matrix linking the
covariates to the observed variables at current time point (κ).

SimSSMOUIVary 73

Details

Parameters can vary across individuals by providing a list of parameter values. If the length of any
of the parameters (mu0, sigma0_l, mu, phi, sigma_l, nu, lambda, theta_l, gamma, or kappa) is
less the n, the function will cycle through the available values.

Value

Returns an object of class simstatespace which is a list with the following elements:

• call: Function call.

• args: Function arguments.

• data: Generated data which is a list of length n. Each element of data is a list with the
following elements:

– id: A vector of ID numbers with length l, where l is the value of the function argument
time.

– time: A vector time points of length l.
– y: A l by k matrix of values for the manifest variables.
– eta: A l by p matrix of values for the latent variables.
– x: A l by j matrix of values for the covariates (when covariates are included).

• fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences
between structural equation modeling and state-space modeling techniques. Structural Equation
Modeling: A Multidisciplinary Journal, 17(2), 303-332. doi:10.1080/10705511003661553

Chow, S.-M., Losardo, D., Park, J., & Molenaar, P. C. M. (2023). Continuous-time dynamic models:
Connections to structural equation models and other discrete-time models. In R. H. Hoyle (Ed.),
Handbook of structural equation modeling (2nd ed.). The Guilford Press.

Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter. Cambridge
University Press. doi:10.1017/cbo9781107049994

Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2011). A hierarchical latent stochastic differen-
tial equation model for affective dynamics. Psychological Methods, 16 (4), 468-490. doi:10.1037/
a0024375

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. Physical
Review, 36 (5), 823-841. doi:10.1103/physrev.36.823

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),

https://doi.org/10.1080/10705511003661553
https://doi.org/10.1017/cbo9781107049994
https://doi.org/10.1037/a0024375
https://doi.org/10.1037/a0024375
https://doi.org/10.1103/physrev.36.823

74 SimSSMOUIVary

SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(),
SimSSMVARFixed(), SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(),
TestStability(), TestStationarity()

Examples

prepare parameters
In this example, phi varies across individuals.
set.seed(42)
number of individuals
n <- 5
time points
time <- 50
delta_t <- 0.10
dynamic structure
p <- 2
mu0 <- list(

c(-3.0, 1.5)
)
sigma0 <- 0.001 * diag(p)
sigma0_l <- list(

t(chol(sigma0))
)
mu <- list(

c(5.76, 5.18)
)
phi <- list(

-0.1 * diag(p),
-0.2 * diag(p),
-0.3 * diag(p),
-0.4 * diag(p),
-0.5 * diag(p)

)
sigma <- matrix(

data = c(
2.79,
0.06,
0.06,
3.27

),
nrow = p

)
sigma_l <- list(

t(chol(sigma))
)
measurement model
k <- 2
nu <- list(

rep(x = 0, times = k)
)

SimSSMOUIVary 75

lambda <- list(
diag(k)

)
theta <- 0.001 * diag(k)
theta_l <- list(

t(chol(theta))
)
covariates
j <- 2
x <- lapply(

X = seq_len(n),
FUN = function(i) {
matrix(

data = stats::rnorm(n = time * j),
nrow = j,
ncol = time

)
}

)
gamma <- list(

diag(x = 0.10, nrow = p, ncol = j)
)
kappa <- list(

diag(x = 0.10, nrow = k, ncol = j)
)

Type 0
ssm <- SimSSMOUIVary(

n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
mu = mu,
phi = phi,
sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0

)

plot(ssm)

Type 1
ssm <- SimSSMOUIVary(

n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
mu = mu,
phi = phi,

76 SimSSMVARFixed

sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 1,
x = x,
gamma = gamma

)

plot(ssm)

Type 2
ssm <- SimSSMOUIVary(

n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
mu = mu,
phi = phi,
sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 2,
x = x,
gamma = gamma,
kappa = kappa

)

plot(ssm)

SimSSMVARFixed Simulate Data from the Vector Autoregressive Model (Fixed Parame-
ters)

Description

This function simulates data from the vector autoregressive model using a state space model param-
eterization. It assumes that the parameters remain constant across individuals and over time.

Usage

SimSSMVARFixed(
n,
time,
mu0,
sigma0_l,
alpha,

SimSSMVARFixed 77

beta,
psi_l,
type = 0,
x = NULL,
gamma = NULL

)

Arguments

n Positive integer. Number of individuals.

time Positive integer. Number of time points.

mu0 Numeric vector. Mean of initial latent variable values (µη|0).

sigma0_l Numeric matrix. Cholesky factorization (t(chol(sigma0))) of the covariance
matrix of initial latent variable values (Ση|0).

alpha Numeric vector. Vector of constant values for the dynamic model (α).

beta Numeric matrix. Transition matrix relating the values of the latent variables at
the previous to the current time point (β).

psi_l Numeric matrix. Cholesky factorization (t(chol(psi))) of the covariance ma-
trix of the process noise (Ψ).

type Integer. State space model type. See Details for more information.

x List. Each element of the list is a matrix of covariates for each individual i in n.
The number of columns in each matrix should be equal to time.

gamma Numeric matrix. Matrix linking the covariates to the latent variables at current
time point (Γ).

Details

Type 0:
The measurement model is given by

yi,t = ηi,t

where yi,t represents a vector of observed variables and ηi,t a vector of latent variables for indi-
vidual i and time t. Since the observed and latent variables are equal, we only generate data from
the dynamic structure.
The dynamic structure is given by

ηi,t = α+ βηi,t−1 + ζi,t, with ζi,t ∼ N (0,Ψ)

where ηi,t, ηi,t−1, and ζi,t are random variables, and α, β, and Ψ are model parameters. Here,
ηi,t is a vector of latent variables at time t and individual i, ηi,t−1 represents a vector of latent
variables at time t−1 and individual i, and ζi,t represents a vector of dynamic noise at time t and
individual i. α denotes a vector of intercepts, β a matrix of autoregression and cross regression
coefficients, and Ψ the covariance matrix of ζi,t.
An alternative representation of the dynamic noise is given by

ζi,t = Ψ
1
2 zi,t, with zi,t ∼ N (0, I)

where
(
Ψ

1
2

)(
Ψ

1
2

)′
= Ψ.

78 SimSSMVARFixed

Type 1:
The measurement model is given by

yi,t = ηi,t.

The dynamic structure is given by

ηi,t = α+ βηi,t−1 + Γxi,t + ζi,t, with ζi,t ∼ N (0,Ψ)

where xi,t represents a vector of covariates at time t and individual i, and Γ the coefficient matrix
linking the covariates to the latent variables.

Value

Returns an object of class simstatespace which is a list with the following elements:

• call: Function call.

• args: Function arguments.

• data: Generated data which is a list of length n. Each element of data is a list with the
following elements:

– id: A vector of ID numbers with length l, where l is the value of the function argument
time.

– time: A vector time points of length l.
– y: A l by k matrix of values for the manifest variables.
– eta: A l by p matrix of values for the latent variables.
– x: A l by j matrix of values for the covariates (when covariates are included).

• fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences
between structural equation modeling and state-space modeling techniques. Structural Equation
Modeling: A Multidisciplinary Journal, 17(2), 303-332. doi:10.1080/10705511003661553

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(),
SimSSMOUIVary(), SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(),
TestStationarity()

https://doi.org/10.1080/10705511003661553

SimSSMVARFixed 79

Examples

prepare parameters
set.seed(42)
number of individuals
n <- 5
time points
time <- 50
dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)
sigma0 <- 0.001 * diag(p)
sigma0_l <- t(chol(sigma0))
alpha <- rep(x = 0, times = p)
beta <- 0.50 * diag(p)
psi <- 0.001 * diag(p)
psi_l <- t(chol(psi))
covariates
j <- 2
x <- lapply(

X = seq_len(n),
FUN = function(i) {
matrix(

data = stats::rnorm(n = time * j),
nrow = j,
ncol = time

)
}

)
gamma <- diag(x = 0.10, nrow = p, ncol = j)

Type 0
ssm <- SimSSMVARFixed(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
type = 0

)

plot(ssm)

Type 1
ssm <- SimSSMVARFixed(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,

80 SimSSMVARIVary

psi_l = psi_l,
type = 1,
x = x,
gamma = gamma

)

plot(ssm)

SimSSMVARIVary Simulate Data from the Vector Autoregressive Model (Individual-
Varying Parameters)

Description

This function simulates data from the vector autoregressive model using a state space model param-
eterization. It assumes that the parameters can vary across individuals.

Usage

SimSSMVARIVary(
n,
time,
mu0,
sigma0_l,
alpha,
beta,
psi_l,
type = 0,
x = NULL,
gamma = NULL

)

Arguments

n Positive integer. Number of individuals.

time Positive integer. Number of time points.

mu0 List of numeric vectors. Each element of the list is the mean of initial latent
variable values (µη|0).

sigma0_l List of numeric matrices. Each element of the list is the Cholesky factorization
(t(chol(sigma0))) of the covariance matrix of initial latent variable values
(Ση|0).

alpha List of numeric vectors. Each element of the list is the vector of constant values
for the dynamic model (α).

beta List of numeric matrices. Each element of the list is the transition matrix relating
the values of the latent variables at the previous to the current time point (β).

SimSSMVARIVary 81

psi_l List of numeric matrices. Each element of the list is the Cholesky factorization
(t(chol(psi))) of the covariance matrix of the process noise (Ψ).

type Integer. State space model type. See Details in SimSSMVARFixed() for more
information.

x List. Each element of the list is a matrix of covariates for each individual i in n.
The number of columns in each matrix should be equal to time.

gamma List of numeric matrices. Each element of the list is the matrix linking the
covariates to the latent variables at current time point (Γ).

Details

Parameters can vary across individuals by providing a list of parameter values. If the length of any
of the parameters (mu0, sigma0_l, alpha, beta, psi_l, gamma, or kappa) is less the n, the function
will cycle through the available values.

Value

Returns an object of class simstatespace which is a list with the following elements:

• call: Function call.

• args: Function arguments.

• data: Generated data which is a list of length n. Each element of data is a list with the
following elements:

– id: A vector of ID numbers with length l, where l is the value of the function argument
time.

– time: A vector time points of length l.
– y: A l by k matrix of values for the manifest variables.
– eta: A l by p matrix of values for the latent variables.
– x: A l by j matrix of values for the covariates (when covariates are included).

• fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences
between structural equation modeling and state-space modeling techniques. Structural Equation
Modeling: A Multidisciplinary Journal, 17(2), 303-332. doi:10.1080/10705511003661553

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),

https://doi.org/10.1080/10705511003661553

82 SimSSMVARIVary

SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(),
SimSSMOUIVary(), SimSSMVARFixed(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(),
TestStationarity()

Examples

prepare parameters
In this example, beta varies across individuals.
set.seed(42)
number of individuals
n <- 5
time points
time <- 50
dynamic structure
p <- 3
mu0 <- list(

rep(x = 0, times = p)
)
sigma0 <- 0.001 * diag(p)
sigma0_l <- list(

t(chol(sigma0))
)
alpha <- list(

rep(x = 0, times = p)
)
beta <- list(

0.1 * diag(p),
0.2 * diag(p),
0.3 * diag(p),
0.4 * diag(p),
0.5 * diag(p)

)
psi <- 0.001 * diag(p)
psi_l <- list(

t(chol(psi))
)
covariates
j <- 2
x <- lapply(

X = seq_len(n),
FUN = function(i) {
matrix(

data = stats::rnorm(n = time * j),
nrow = j,
ncol = time

)
}

)
gamma <- list(

diag(x = 0.10, nrow = p, ncol = j)
)

SpectralAbscissa 83

Type 0
ssm <- SimSSMVARIVary(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
type = 0

)

plot(ssm)

Type 1
ssm <- SimSSMVARIVary(

n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
type = 1,
x = x,
gamma = gamma

)

plot(ssm)

SpectralAbscissa Spectral Abscissa

Description

Returns the maximum real part of the eigenvalues of a square matrix. For continuous-time stability
(Hurwitz), a matrix is stable if the spectral abscissa is strictly less than 0.

Usage

SpectralAbscissa(x)

Arguments

x Numeric square matrix.

Value

Numeric value α(x) = maxℜ(λi(x)).

84 SpectralRadius

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

Hurwitz-stable (spectral abscissa < 0):
x <- matrix(

data = c(
-0.5, -0.2,
1.0, -0.3

),
nrow = 2

)
SpectralAbscissa(x = x) # < 0

Unstable (spectral abscissa > 0):
x <- matrix(

data = c(
0.10, 0.50,
-0.40, 0.20

),
nrow = 2

)
SpectralAbscissa(x = x) # > 0

SpectralRadius Spectral Radius

Description

Computes the spectral radius of a square matrix, defined as the maximum modulus (absolute value)
of its eigenvalues. The spectral radius is often used to assess the stability of systems such as vector
autoregressive (VAR) models: a system is considered stationary if the spectral radius of its transition
matrix is strictly less than 1.

Usage

SpectralRadius(x)

Arguments

x Numeric square matrix.

Value

Numeric value representing the spectral radius of x.

SSMCovEta 85

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(),
SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(), TestPhi(), TestPhiHurwitz(), TestStability(),
TestStationarity()

Examples

Matrix with eigenvalues less than 1
x <- matrix(

data = c(
0.5, 0.3,
0.2, 0.4

),
nrow = 2

)
SpectralRadius(x)

Matrix with eigenvalues greater than 1
y <- matrix(

data = c(
1.2, 0.3,
0.4, 0.9

),
nrow = 2

)
SpectralRadius(y)

SSMCovEta Steady-State Covariance Matrix for the Latent Variables in the State
Space Model

Description

The steady-state covariance matrix for the latent variables in the state space model Cov (η) is given
by

vec (Cov (η)) = (I− β ⊗ β)
−1

vec (Ψ)

where β is the transition matrix relating the values of the latent variables at the previous to the
current time point and Ψ is the covariance matrix of volatility or randomness in the process.

86 SSMCovY

Usage

SSMCovEta(beta, psi)

Arguments

beta Numeric matrix. Transition matrix relating the values of the latent variables at
the previous to the current time point (β).

psi Numeric matrix. The covariance matrix of the process noise (Ψ).

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovY(),
SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(), SimBetaN(),
SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(),
SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

beta <- matrix(
data = c(
0.7, 0.5, -0.1,
0.0, 0.6, 0.4,
0.0, 0.0, 0.5

),
nrow = 3

)
psi <- 0.1 * diag(3)
SSMCovEta(

beta = beta,
psi = psi

)

SSMCovY Steady-State Covariance Matrix for the Observed Variables in the
State Space Model

SSMCovY 87

Description

The steady-state covariance matrix for the observed variables in the state space model Cov (y) is
given by

Cov (y) = ΛCov (η)Λ′ +Θ

where Λ is the matrix of factor loadings, Θ is the covariance matrix of the measurement error, and
Cov (η) is the steady-state covariance matrix for the latent variables.

Usage

SSMCovY(lambda, theta, cov_eta)

Arguments

lambda Numeric matrix. Factor loading matrix linking the latent variables to the ob-
served variables (Λ).

theta Numeric matrix. The covariance matrix of the measurement error (Θ).

cov_eta Numeric matrix. The steady-state covariance matrix for the latent variables in
the state space model

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(), SimBetaN(),
SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(),
SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

beta <- matrix(
data = c(

0.7, 0.5, -0.1,
0.0, 0.6, 0.4,
0.0, 0.0, 0.5

),
nrow = 3

)
psi <- 0.1 * diag(3)
lambda <- diag(3)
theta <- diag(3)
cov_eta <- SSMCovEta(

beta = beta,
psi = psi

88 SSMInterceptEta

)
SSMCovY(

lambda = lambda,
theta = theta,
cov_eta = cov_eta

)

SSMInterceptEta Intercept from Steady-State Mean Vector for the Latent Variables in
the State Space Model

Description

The intercept vector for the latent variables in the state space model α is given by

α = Mean (η)− βMean (η)

where β is the transition matrix relating the values of the latent variables at the previous to the
current time point, Mean (η) is the steady-state mean vector for the latent variables.

Usage

SSMInterceptEta(beta, mean_eta)

Arguments

beta Numeric matrix. Transition matrix relating the values of the latent variables at
the previous to the current time point (β).

mean_eta Numeric vector. Steady-state mean vector of the latent variables Mean (η).

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(), SimBetaN(), SimBetaN2(),
SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(), SimPhiN2(),
SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

SSMInterceptY 89

Examples

beta <- matrix(
data = c(
0.7, 0.5, -0.1,
0.0, 0.6, 0.4,
0.0, 0.0, 0.5

),
nrow = 3

)
alpha <- rep(x = 1, times = 3)
mean_eta <- SSMMeanEta(

beta = beta,
alpha = alpha

)
SSMInterceptEta(

beta = beta,
mean_eta = mean_eta

)

SSMInterceptY Intercept from Steady-State Mean Vector for the Observed Variables
in the State Space Model

Description

The intercept vector for the observed variables in the state space model ν is given by

ν = Mean (y)−ΛMean (η)

where Λ is the matrix of factor loadings, Mean (y) is the steady-state mean vector for the observed
variables, and Mean (η) is the steady-state mean vector for the latent variables.

Usage

SSMInterceptY(mean_y, mean_eta, lambda)

Arguments

mean_y Numeric vector. Steady-state mean vector of the observed variables Mean (y).

mean_eta Numeric vector. Steady-state mean vector of the latent variables Mean (η).

lambda Numeric matrix. Factor loading matrix linking the latent variables to the ob-
served variables (Λ).

Author(s)

Ivan Jacob Agaloos Pesigan

90 SSMMeanEta

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMMeanEta(), SSMMeanY(), SimAlphaN(), SimBetaN(), SimBetaN2(),
SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(), SimPhiN2(),
SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

beta <- matrix(
data = c(
0.7, 0.5, -0.1,
0.0, 0.6, 0.4,
0.0, 0.0, 0.5

),
nrow = 3

)
alpha <- rep(x = 1, times = 3)
lambda <- diag(3)
nu <- rep(x = 1, times = 3)
mean_eta <- SSMMeanEta(

beta = beta,
alpha = alpha

)
mean_y <- SSMMeanY(

nu = nu,
lambda = lambda,
mean_eta = mean_eta

)
SSMInterceptY(

mean_y = mean_y,
mean_eta = mean_eta,
lambda = lambda

)

SSMMeanEta Steady-State Mean Vector for the Latent Variables in the State Space
Model

Description

The steady-state mean vector for the latent variables in the state space model Mean (η) is given by

Mean (η) = (I− β)
−1

α

where β is the transition matrix relating the values of the latent variables at the previous to the
current time point, α is a vector of constant values for the dynamic model, and I is an identity
matrix.

SSMMeanY 91

Usage

SSMMeanEta(beta, alpha)

Arguments

beta Numeric matrix. Transition matrix relating the values of the latent variables at
the previous to the current time point (β).

alpha Numeric vector. Vector of constant values for the dynamic model (α).

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanY(), SimAlphaN(), SimBetaN(),
SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(),
SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

beta <- matrix(
data = c(

0.7, 0.5, -0.1,
0.0, 0.6, 0.4,
0.0, 0.0, 0.5

),
nrow = 3

)
alpha <- rep(x = 1, times = 3)
SSMMeanEta(

beta = beta,
alpha = alpha

)

SSMMeanY Steady-State Mean Vector for the Observed Variables in the State
Space Model

92 SSMMeanY

Description

The steady-state mean vector for the observed variables in the state space model Mean (y) is given
by

Mean (y) = ν +ΛMean (η)

where ν is the vector of intercept values for the measurement model, Λ is the matrix of factor
loadings, and Mean (η) is the steady-state mean vector for the latent variables.

Usage

SSMMeanY(nu, lambda, mean_eta)

Arguments

nu Numeric vector. Vector of intercept values for the measurement model (ν).

lambda Numeric matrix. Factor loading matrix linking the latent variables to the ob-
served variables (Λ).

mean_eta Numeric vector. Steady-state mean vector of the latent variables Mean (η).

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SimAlphaN(), SimBetaN(),
SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(), SimNuN(), SimPhiN(),
SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(),
SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(), TestStability(), TestStationarity()

Examples

beta <- matrix(
data = c(

0.7, 0.5, -0.1,
0.0, 0.6, 0.4,
0.0, 0.0, 0.5

),
nrow = 3

)
alpha <- rep(x = 1, times = 3)
lambda <- diag(3)
nu <- rep(x = 1, times = 3)
mean_eta <- SSMMeanEta(

beta = beta,
alpha = alpha

)

TestPhi 93

SSMMeanY(
nu = nu,
lambda = lambda,
mean_eta = mean_eta

)

TestPhi Test the Drift Matrix

Description

Both have to be true for the function to return TRUE.

• Test that the real part of all eigenvalues of Φ are less than zero.

• Test that the diagonal values of Φ are between 0 to negative inifinity.

Usage

TestPhi(phi, margin = 0, auto_ubound = 0)

Arguments

phi Numeric matrix. The drift matrix (Φ).

margin Numeric scalar specifying the stability threshold for the real part of the eigen-
values. The default 0.0 corresponds to the imaginary axis; values less than 0.0
enforce a stricter stability margin.

auto_ubound Numeric scalar specifying the upper bound for the diagonal elements of Φ. De-
fault is 0.0, requiring all diagonal values to be ≤ 0.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(),
SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(), SpectralRadius(), TestPhiHurwitz(),
TestStability(), TestStationarity()

94 TestPhiHurwitz

Examples

phi <- matrix(
data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0, 0, -0.693

),
nrow = 3

)
TestPhi(phi = phi)

TestPhiHurwitz Test Hurwitz Stability of a Drift Matrix

Description

Returns TRUE iff the drift matrix Φ is Hurwitz-stable, i.e., all eigenvalues have real parts strictly less
than -eps. Setting eps = 0 enforces the usual strict condition maxℜ{λi(Φ)} < 0. A small positive
eps (e.g., 1e-12) can be used to guard against floating-point round-off.

Usage

TestPhiHurwitz(phi, eps = 0)

Arguments

phi Numeric matrix. The drift matrix (Φ).

eps Nonnegative numeric tolerance (default 0.0). The test checks ℜ(λi) < −eps
for all eigenvalues.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(),
SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestStability(),
TestStationarity()

TestStability 95

Examples

Unstable example (spectral abscissa >= 0):
phi <- matrix(

data = c(
0.10, -0.40,
0.50, 0.20

),
nrow = 2

)
TestPhiHurwitz(phi = phi) # FALSE

Stable example (all real parts < 0):
phi <- matrix(

data = c(
-0.50, -0.20,
1.00, -0.30

),
nrow = 2

)
TestPhiHurwitz(phi = phi) # TRUE
TestPhiHurwitz(phi = phi, eps = 1e-12) # also TRUE with tolerance

TestStability Test Stability

Description

The function computes the eigenvalues of the input matrix x. It checks if the real part of all eigen-
values is negative. If all eigenvalues have negative real parts, the system is considered stable.

Usage

TestStability(x, margin = 0)

Arguments

x Numeric matrix.

margin Numeric scalar specifying the stability threshold for the real part of the eigen-
values. The default 0.0 corresponds to the imaginary axis; values less than 0.0
enforce a stricter stability margin.

Author(s)

Ivan Jacob Agaloos Pesigan

96 TestStationarity

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(),
SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(),
TestStationarity()

Examples

x <- matrix(
data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0, 0, -0.693

),
nrow = 3

)
TestStability(x)

TestStationarity Test Stationarity

Description

The function computes the eigenvalues of the input matrix x. It checks if all eigenvalues have
moduli less than 1. If all eigenvalues have moduli less than 1, the system is considered stationary.

Usage

TestStationarity(x, margin = 1)

Arguments

x Numeric matrix.

margin Numeric scalar specifying the stationarity threshold. Values less than 1 indicate
stricter stationarity criteria.

Author(s)

Ivan Jacob Agaloos Pesigan

TestStationarity 97

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), LinSDECovEta(), LinSDECovY(),
LinSDEMeanEta(), LinSDEMeanY(), ProjectToHurwitz(), ProjectToStability(), SSMCovEta(),
SSMCovY(), SSMInterceptEta(), SSMInterceptY(), SSMMeanEta(), SSMMeanY(), SimAlphaN(),
SimBetaN(), SimBetaN2(), SimBetaNCovariate(), SimCovDiagN(), SimCovN(), SimIotaN(),
SimNuN(), SimPhiN(), SimPhiN2(), SimPhiNCovariate(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(),
SimSSMLinGrowthIVary(), SimSSMLinSDEFixed(), SimSSMLinSDEIVary(), SimSSMOUFixed(),
SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary(), SpectralRadius(), TestPhi(), TestPhiHurwitz(),
TestStability()

Examples

x <- matrix(
data = c(0.5, 0.3, 0.2, 0.4),
nrow = 2

)
TestStationarity(x)

x <- matrix(
data = c(0.9, -0.5, 0.8, 0.7),
nrow = 2

)
TestStationarity(x)

Index

∗ Simulation of State Space Models Data
Functions

LinSDE2SSM, 8
LinSDECovEta, 10
LinSDECovY, 11
LinSDEMeanEta, 13
LinSDEMeanY, 14
ProjectToHurwitz, 20
ProjectToStability, 22
SimAlphaN, 23
SimBetaN, 24
SimBetaN2, 26
SimBetaNCovariate, 27
SimCovDiagN, 29
SimCovN, 30
SimIotaN, 31
SimNuN, 32
SimPhiN, 33
SimPhiN2, 35
SimPhiNCovariate, 36
SimSSMFixed, 38
SimSSMIVary, 43
SimSSMLinGrowth, 47
SimSSMLinGrowthIVary, 51
SimSSMLinSDEFixed, 55
SimSSMLinSDEIVary, 61
SimSSMOUFixed, 66
SimSSMOUIVary, 71
SimSSMVARFixed, 76
SimSSMVARIVary, 80
SpectralRadius, 84
SSMCovEta, 85
SSMCovY, 86
SSMInterceptEta, 88
SSMInterceptY, 89
SSMMeanEta, 90
SSMMeanY, 91
TestPhi, 93
TestPhiHurwitz, 94

TestStability, 95
TestStationarity, 96

∗ growth
SimSSMLinGrowth, 47
SimSSMLinGrowthIVary, 51

∗ linsde
LinSDE2SSM, 8
LinSDECovEta, 10
LinSDECovY, 11
LinSDEMeanEta, 13
LinSDEMeanY, 14
ProjectToHurwitz, 20
SimPhiN, 33
SimPhiN2, 35
SimPhiNCovariate, 36
SimSSMLinSDEFixed, 55
SimSSMLinSDEIVary, 61
SpectralAbscissa, 83
TestPhi, 93
TestPhiHurwitz, 94
TestStability, 95

∗ methods
as.data.frame.simstatespace, 3
as.matrix.simstatespace, 5
plot.simstatespace, 15
print.simstatespace, 18

∗ ou
SimSSMOUFixed, 66
SimSSMOUIVary, 71

∗ simStateSpace
LinSDE2SSM, 8
LinSDECovEta, 10
LinSDECovY, 11
LinSDEMeanEta, 13
LinSDEMeanY, 14
ProjectToHurwitz, 20
ProjectToStability, 22
SimAlphaN, 23
SimBetaN, 24

98

INDEX 99

SimBetaN2, 26
SimBetaNCovariate, 27
SimCovDiagN, 29
SimCovN, 30
SimIotaN, 31
SimNuN, 32
SimPhiN, 33
SimPhiN2, 35
SimPhiNCovariate, 36
SimSSMFixed, 38
SimSSMIVary, 43
SimSSMLinGrowth, 47
SimSSMLinGrowthIVary, 51
SimSSMLinSDEFixed, 55
SimSSMLinSDEIVary, 61
SimSSMOUFixed, 66
SimSSMOUIVary, 71
SimSSMVARFixed, 76
SimSSMVARIVary, 80
SpectralAbscissa, 83
SpectralRadius, 84
SSMCovEta, 85
SSMCovY, 86
SSMInterceptEta, 88
SSMInterceptY, 89
SSMMeanEta, 90
SSMMeanY, 91
TestPhi, 93
TestPhiHurwitz, 94
TestStability, 95
TestStationarity, 96

∗ sim
SimSSMFixed, 38
SimSSMIVary, 43
SimSSMLinGrowth, 47
SimSSMLinGrowthIVary, 51
SimSSMLinSDEFixed, 55
SimSSMLinSDEIVary, 61
SimSSMOUFixed, 66
SimSSMOUIVary, 71
SimSSMVARFixed, 76
SimSSMVARIVary, 80

∗ ssm
ProjectToStability, 22
SimAlphaN, 23
SimBetaN, 24
SimBetaN2, 26
SimBetaNCovariate, 27

SimCovDiagN, 29
SimCovN, 30
SimIotaN, 31
SimNuN, 32
SimSSMFixed, 38
SimSSMIVary, 43
SpectralRadius, 84
SSMCovEta, 85
SSMCovY, 86
SSMInterceptEta, 88
SSMInterceptY, 89
SSMMeanEta, 90
SSMMeanY, 91
TestStationarity, 96

∗ stability
ProjectToHurwitz, 20
ProjectToStability, 22
SpectralAbscissa, 83
SpectralRadius, 84

∗ test
TestPhi, 93
TestPhiHurwitz, 94
TestStability, 95
TestStationarity, 96

∗ transformation
LinSDE2SSM, 8

∗ var
SimSSMVARFixed, 76
SimSSMVARIVary, 80

as.data.frame.simstatespace, 3
as.matrix.simstatespace, 5

LinSDE2SSM, 8, 11–14, 21, 22, 24–26, 28–30,
32–35, 37, 41, 45, 50, 53, 58, 63, 69,
73, 78, 81, 85–88, 90–94, 96, 97

LinSDECovEta, 9, 10, 12–14, 21, 22, 24–26,
28–30, 32–35, 37, 41, 45, 50, 53, 58,
63, 69, 73, 78, 81, 85–88, 90–94, 96,
97

LinSDECovY, 9, 11, 11, 13, 14, 21, 22, 24–26,
28–30, 32–35, 37, 41, 45, 50, 53, 58,
63, 69, 73, 78, 81, 85–88, 90–94, 96,
97

LinSDEMeanEta, 9, 11, 12, 13, 14, 21, 22,
24–26, 28–30, 32–35, 37, 41, 45, 50,
53, 58, 63, 69, 73, 78, 81, 85–88,
90–94, 96, 97

100 INDEX

LinSDEMeanY, 9, 11–13, 14, 21, 22, 24–26,
28–30, 32–35, 37, 41, 45, 50, 53, 58,
63, 69, 73, 78, 81, 85–88, 90–94, 96,
97

plot.default(), 16
plot.simstatespace, 15
print.simstatespace, 18
ProjectToHurwitz, 9, 11–14, 20, 22, 24–26,

28–30, 32–35, 37, 41, 45, 50, 53, 58,
63, 69, 73, 78, 81, 85–88, 90–94, 96,
97

ProjectToHurwitz(), 35
ProjectToStability, 9, 11–14, 21, 22,

24–26, 28–30, 32–35, 37, 41, 45, 50,
53, 58, 63, 69, 73, 78, 81, 85–88,
90–94, 96, 97

ProjectToStability(), 26

SimAlphaN, 9, 11–14, 21, 22, 23, 25, 26,
28–30, 32–35, 37, 41, 45, 50, 53, 58,
63, 69, 73, 78, 81, 85–88, 90–94, 96,
97

SimBetaN, 9, 11–14, 21, 22, 24, 24, 26, 28–30,
32–35, 37, 41, 45, 50, 53, 58, 63, 69,
74, 78, 81, 85–88, 90–94, 96, 97

SimBetaN2, 9, 11–14, 21, 22, 24, 25, 26,
28–30, 32–35, 37, 41, 45, 50, 53, 58,
63, 69, 74, 78, 81, 85–88, 90–94, 96,
97

SimBetaNCovariate, 9, 11–14, 21, 22, 24–26,
27, 29, 30, 32–35, 37, 41, 45, 50, 53,
58, 63, 69, 74, 78, 81, 85–88, 90–94,
96, 97

SimCovDiagN, 9, 11–14, 21, 22, 24–26, 28, 29,
30, 32–35, 37, 41, 45, 50, 53, 58, 63,
69, 74, 78, 81, 85–88, 90–94, 96, 97

SimCovN, 9, 11–14, 21, 22, 24–26, 28, 29, 30,
32–35, 37, 41, 45, 50, 53, 58, 63, 69,
74, 78, 81, 85–88, 90–94, 96, 97

SimIotaN, 9, 11–14, 21, 22, 24–26, 28–30, 31,
33–35, 37, 41, 45, 50, 53, 58, 63, 69,
74, 78, 81, 85–88, 90–94, 96, 97

SimNuN, 9, 11–14, 21, 22, 24–26, 28–30, 32,
32, 34, 35, 37, 41, 45, 50, 53, 58, 63,
69, 74, 78, 82, 85–88, 90–94, 96, 97

SimPhiN, 9, 11–14, 21, 22, 24–26, 28–30, 32,
33, 33, 35, 37, 41, 45, 50, 53, 58, 63,
69, 74, 78, 82, 85–88, 90–94, 96, 97

SimPhiN2, 9, 11–14, 21, 22, 24–26, 28–30,
32–34, 35, 37, 41, 45, 50, 53, 58, 63,
69, 74, 78, 82, 85–88, 90–94, 96, 97

SimPhiNCovariate, 9, 11–14, 21, 22, 24–26,
28–30, 32–35, 36, 41, 45, 50, 53, 58,
63, 69, 74, 78, 82, 85–88, 90–94, 96,
97

SimSSMFixed, 9, 11–14, 21, 22, 24–26, 28–30,
32–35, 37, 38, 45, 50, 53, 58, 63, 69,
74, 78, 82, 85–88, 90–94, 96, 97

SimSSMFixed(), 44
SimSSMIVary, 9, 11–14, 21, 22, 24–26, 28–30,

32–35, 37, 41, 43, 50, 53, 58, 63, 69,
74, 78, 82, 85–88, 90–94, 96, 97

SimSSMLinGrowth, 9, 11–14, 21, 22, 24–26,
28–30, 32–35, 37, 41, 45, 47, 53, 58,
63, 69, 74, 78, 82, 85–88, 90–94, 96,
97

SimSSMLinGrowth(), 52
SimSSMLinGrowthIVary, 9, 11–14, 21, 22,

24–26, 28–30, 32–35, 37, 41, 45, 50,
51, 58, 63, 69, 74, 78, 82, 85–88,
90–94, 96, 97

SimSSMLinSDEFixed, 9, 11–14, 21, 22, 24–26,
28–30, 32–35, 37, 41, 45, 50, 53, 55,
63, 69, 74, 78, 82, 85–88, 90–94, 96,
97

SimSSMLinSDEFixed(), 62
SimSSMLinSDEIVary, 9, 11–14, 21, 22, 24–26,

28–30, 32–35, 37, 41, 45, 50, 53, 58,
61, 69, 74, 78, 82, 85–88, 90–94, 96,
97

SimSSMOUFixed, 9, 11–14, 21, 22, 24–26,
28–30, 32–35, 37, 41, 45, 50, 53, 58,
63, 65, 74, 78, 82, 85–88, 90–94, 96,
97

SimSSMOUFixed(), 72
SimSSMOUIVary, 9, 11–14, 21, 22, 24–26,

28–30, 32–35, 37, 41, 45, 50, 53, 58,
63, 69, 71, 78, 82, 85–88, 90–94, 96,
97

SimSSMVARFixed, 9, 11–14, 21, 22, 24–26,
28–30, 32–35, 37, 41, 45, 50, 53, 58,
63, 69, 74, 76, 82, 85–88, 90–94, 96,
97

SimSSMVARFixed(), 81
SimSSMVARIVary, 9, 11–14, 21, 22, 24–26,

28–30, 32–35, 37, 41, 45, 50, 53, 58,

INDEX 101

63, 69, 74, 78, 80, 85–88, 90–94, 96,
97

SpectralAbscissa, 83
SpectralRadius, 9, 11–14, 21, 22, 24–26,

28–30, 32–35, 37, 41, 45, 50, 53, 58,
63, 69, 74, 78, 82, 84, 86–88, 90–94,
96, 97

SSMCovEta, 9, 11–14, 21, 22, 24–26, 28–30,
32–35, 37, 41, 45, 50, 53, 58, 63, 69,
73, 78, 81, 85, 85, 87, 88, 90–94, 96,
97

SSMCovY, 9, 11–14, 21, 22, 24–26, 28–30,
32–35, 37, 41, 45, 50, 53, 58, 63, 69,
73, 78, 81, 85, 86, 86, 88, 90–94, 96,
97

SSMInterceptEta, 9, 11–14, 21, 22, 24–26,
28–30, 32–35, 37, 41, 45, 50, 53, 58,
63, 69, 73, 78, 81, 85–87, 88, 90–94,
96, 97

SSMInterceptY, 9, 11–14, 21, 22, 24–26,
28–30, 32–35, 37, 41, 45, 50, 53, 58,
63, 69, 73, 78, 81, 85–88, 89, 91–94,
96, 97

SSMMeanEta, 9, 11–14, 21, 22, 24–26, 28–30,
32–35, 37, 41, 45, 50, 53, 58, 63, 69,
73, 78, 81, 85–88, 90, 90, 92–94, 96,
97

SSMMeanY, 9, 11–14, 21, 22, 24–26, 28–30,
32–35, 37, 41, 45, 50, 53, 58, 63, 69,
73, 78, 81, 85–88, 90, 91, 91, 93, 94,
96, 97

TestPhi, 9, 11–14, 21, 22, 24–26, 28–30,
32–35, 37, 41, 45, 50, 53, 58, 63, 69,
74, 78, 82, 85–88, 90–92, 93, 94, 96,
97

TestPhi(), 33, 36
TestPhiHurwitz, 9, 11–14, 21, 22, 24–26,

28–30, 32–35, 37, 41, 45, 50, 53, 58,
63, 69, 74, 78, 82, 85–88, 90–93, 94,
96, 97

TestStability, 9, 11–14, 21, 22, 24–26,
28–30, 32–35, 37, 41, 45, 50, 53, 58,
63, 69, 74, 78, 82, 85–88, 90–94, 95,
97

TestStationarity, 9, 11–14, 21, 22, 24–26,
28–30, 32–35, 37, 41, 45, 50, 53, 58,
63, 69, 74, 78, 82, 85–88, 90–94, 96,
96

TestStationarity(), 24, 27

	as.data.frame.simstatespace
	as.matrix.simstatespace
	LinSDE2SSM
	LinSDECovEta
	LinSDECovY
	LinSDEMeanEta
	LinSDEMeanY
	plot.simstatespace
	print.simstatespace
	ProjectToHurwitz
	ProjectToStability
	SimAlphaN
	SimBetaN
	SimBetaN2
	SimBetaNCovariate
	SimCovDiagN
	SimCovN
	SimIotaN
	SimNuN
	SimPhiN
	SimPhiN2
	SimPhiNCovariate
	SimSSMFixed
	SimSSMIVary
	SimSSMLinGrowth
	SimSSMLinGrowthIVary
	SimSSMLinSDEFixed
	SimSSMLinSDEIVary
	SimSSMOUFixed
	SimSSMOUIVary
	SimSSMVARFixed
	SimSSMVARIVary
	SpectralAbscissa
	SpectralRadius
	SSMCovEta
	SSMCovY
	SSMInterceptEta
	SSMInterceptY
	SSMMeanEta
	SSMMeanY
	TestPhi
	TestPhiHurwitz
	TestStability
	TestStationarity
	Index

