
Package ‘resourcecode’
February 6, 2026

Title Access to the 'RESOURCECODE' Hindcast Database

Version 0.5.3

Description Utility functions to download data from the 'RESOURCECODE'
hindcast database of sea-states, time series of sea-state parameters
and time series of 1D and 2D wave spectra. See
<https://resourcecode.ifremer.fr> for more details about the available
data. Also provides facilities to plot and analyse downloaded data,
such as computing the sea-state parameters from both the 1D and 2D
surface elevation variance spectral density.

License GPL (>= 3)

URL https://github.com/Resourcecode-project/r-resourcecode,

https://resourcecode-project.github.io/r-resourcecode/,

https://resourcecode-project.r-universe.dev/resourcecode

BugReports https://github.com/Resourcecode-project/r-resourcecode/issues

Depends R (>= 4.1)

Imports abind, geosphere, ggplot2, grid, gridtext, httr2, lubridate,
ncdf4, patchwork, pracma, Rcpp, resourcecodedata, rlang, sf,
stats, tibble, tidyr

Suggests knitr, mockery, rmarkdown, testthat, vcr

LinkingTo Rcpp, RcppArmadillo

VignetteBuilder knitr

Config/testthat/edition 3

Config/testthat/parallel true

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.3.3

NeedsCompilation yes

Author Nicolas Raillard [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3385-5104>)

1

https://resourcecode.ifremer.fr
https://github.com/Resourcecode-project/r-resourcecode
https://resourcecode-project.github.io/r-resourcecode/
https://resourcecode-project.r-universe.dev/resourcecode
https://github.com/Resourcecode-project/r-resourcecode/issues
https://orcid.org/0000-0003-3385-5104

2 closest_point_field

Maintainer Nicolas Raillard <nicolas.raillard@ifremer.fr>

Repository CRAN

Date/Publication 2026-02-06 14:00:02 UTC

Contents
closest_point_field . 2
closest_point_spec . 3
compute_orbital_speeds . 4
compute_sea_state_1d_spectrum . 5
compute_sea_state_2d_spectrum . 6
convert_spectrum_2d1d . 7
cut_directions . 8
cut_seasons . 9
dispersion . 10
fastTrapz . 10
fractional_day_of_year . 11
get_1d_spectrum . 12
get_2d_spectrum . 13
get_parameters . 15
jonswap . 15
mean_direction . 16
metconv2zmcomp . 17
plot_1d_specta . 18
plot_2d_specta . 19
rscd_data_example . 19
rscd_dir . 20
rscd_freq . 21
rscd_mapplot . 21
weather_windows . 22
zmcomp2metconv . 23
%nin% . 23

Index 25

closest_point_field Find the closest point of the FIELD grid to the specified position

Description

Find the closest point of the FIELD grid to the specified position

Usage

closest_point_field(x, lat = NULL, closest = 1L, ...)

closest_point_spec 3

Arguments

x vector of coordinates in the form longitude/latitude data frame

lat alternatively, x and lat can be vector of the same length

closest an integer to specify the number of point to output.

... currently unused

Value

a list with two components: the closest point(s) of the grid and the distance (s).

Examples

semrev_west <- closest_point_field(c(-2.786, 47.239))
semrev_west

closest_point_spec Find the closest point of the SPEC grid to the specified position

Description

Find the closest point of the SPEC grid to the specified position

Usage

closest_point_spec(x, lat = NULL, closest = 1L, ...)

Arguments

x vector of coordinates in the form longitude/latitude data frame

lat alternatively, x and lat can be vector of the same length

closest an integer to specify the number of point to output.

... currently unused

Value

a list with two components: the closest point(s) of the grid and the distance (s).

Examples

semrev_west <- closest_point_spec(c(-2.786, 47.239))
semrev_west

4 compute_orbital_speeds

compute_orbital_speeds

Compute the orbital speed at a given depth from the wave elevation
1D spectra

Description

Compute the orbital speed at a given depth from the wave elevation 1D spectra

Usage

compute_orbital_speeds(spec, freq, z = 0, depth = Inf, output_speeds = FALSE)

Arguments

spec 1D spectral data: TxM matrix

freq the M frequencies

z distance above the floor at which we want the orbital speed (single numeric)

depth depth time series (vector length T. Recycled if a single value is given)

output_speeds TRUE if the spectral speed are needed. Otherwise, returns the RMS (default)

Value

depending on spec, a list with the spectral velocities for each component (if output_speeds==FALSE)
or a data.frame with a time series of horizontal and vertical components of (spectral) orbital speed.

Examples

Compute orbital speed for varying Hs
S <- t(sapply(1:10, function(h) {

jonswap(h)$spec
}))
orb_speeds <- compute_orbital_speeds(S, rscd_freq, depth = 100, z = 10)
plot(1:10, orb_speeds[, 1],

type = "l",
ylim = range(orb_speeds),
xlab = "Hs (m)",
ylab = "Orbital speed RMS (m/s)"

)
lines(1:10, orb_speeds[, 2], type = "l", col = "red")

compute_sea_state_1d_spectrum 5

compute_sea_state_1d_spectrum

Compute sea_state parameter from wave spectrum

Description

Compute sea_state parameter from wave spectrum

Usage

compute_sea_state_1d_spectrum(spec, ...)

Arguments

spec 1D spectrum data, e.g. from get_1Dspectrum

... currently unused

Value

a tibble with the sea-state parameters computed from the time series of 1D spectrum

Examples

rscd_params <- get_parameters(
node = "134865",
start = "1994-01-01",
end = "1994-01-31 23:00:00",
parameters = c("hs", "tp")

)
spec <- resourcecodedata::rscd_1d_spectra
param_calc <- compute_sea_state_1d_spectrum(spec)
oldpar <- par(mfcol = c(2, 1))
plot(param_calc$time, param_calc$hs, type = "l", xlab = "Time", ylab = "Hs (m)")
lines(rscd_params$time, rscd_params$hs, col = "red")
plot(param_calc$time, param_calc$tp, type = "l", xlab = "Time", ylab = "Tp (s)")
lines(rscd_params$time, rscd_params$tp, col = "red")
par(oldpar)

6 compute_sea_state_2d_spectrum

compute_sea_state_2d_spectrum

Compute sea_state parameter from wave directional spectrum

Description

Compute sea_state parameter from wave directional spectrum

Usage

compute_sea_state_2d_spectrum(spec, ...)

Arguments

spec 2D spectrum data, e.g. from get_2Dspectrum

... currently unused

Value

a tibble with the sea-state parameters computed from the time series of 2D spectrum

Examples

rscd_params <- get_parameters(
node = "134865",
start = "1994-01-01",
end = "1994-01-31 23:00:00",
parameters = c("hs", "tp")

)
spec <- resourcecodedata::rscd_2d_spectra
param_calc <- compute_sea_state_2d_spectrum(spec)
oldpar <- par(mfcol = c(2, 1))
plot(param_calc$time, param_calc$hs, type = "l", xlab = "Time", ylab = "Hs (m)")
lines(rscd_params$time, rscd_params$hs, col = "red")
plot(param_calc$time, param_calc$tp, type = "l", xlab = "Time", ylab = "Tp (s)")
lines(rscd_params$time, rscd_params$tp, col = "red")
par(oldpar)

convert_spectrum_2d1d 7

convert_spectrum_2d1d Converts a 2D spectrum time series to a 1D spectrum

Description

Converts a 2D spectrum time series to a 1D spectrum

Usage

convert_spectrum_2d1d(spec, ...)

Arguments

spec a structure with the needed fields, as an output from ’get_2Dspectrum’ for ex-
ample

... unused yet

Value

a structure comparable to ’get_1Dspectrum’.

Examples

spec <- resourcecodedata::rscd_2d_spectra
spec1D_RSCD <- resourcecodedata::rscd_1d_spectra
spec1D <- convert_spectrum_2d1d(spec)
Check the differences, should be low
max(abs(spec1D_RSCD$ef - spec1D$ef))

Plot the different spectrum
plot(spec1D$freq, spec1D$ef[, 1], type = "l", log = "xy")
lines(spec1D_RSCD$freq, spec1D_RSCD$ef[, 1], col = "red")

Images
lims <- c(0, 360)
r <- as.POSIXct(round(range(spec1D$forcings$time), "hours"))
oldpar <- par(mfcol = c(2, 1))
image(spec1D$forcings$time, spec1D$freq, t(spec1D$th1m),

zlim = lims,
xlab = "Time",
ylab = "Freq (Hz)",
xaxt = "n",
main = "Directionnal spreading"

)
axis.POSIXct(1, spec1D$forcings$time,

at = seq(r[1], r[2], by = "week"),
format = "%Y-%m-%d",
las = 2

)

8 cut_directions

image(spec1D_RSCD$forcings$time, spec1D_RSCD$freq, t(spec1D_RSCD$th1m),
zlim = lims,
xlab = "Time",
ylab = "Freq (Hz)",
xaxt = "n"

)
axis.POSIXct(1, spec1D$forcings$time,

at = seq(r[1], r[2], by = "week"),
format = "%Y-%m-%d",
las = 2

)
par(oldpar)

cut_directions Directional binning

Description

Cuts direction vector into directional bins

Usage

cut_directions(directions, n_bins = 8, labels = NULL)

Arguments

directions vector of directions to be binned, in degree, 0° being the North.

n_bins number of bins, default: 8 sectors.

labels optional character vector giving the sectors names.

Value

a factor vector the same size as directions with the values binned into sectors.

Examples

Example usage and demonstration
set.seed(123)
directions <- runif(20, 0, 360)

Test with different numbers of bins
cat("Original directions:\n")
print(round(directions, 1))

cat("\n8 bins (default):\n")
bins_8 <- cut_directions(directions, n_bins = 8)
print(bins_8)

cat("\n4 bins:\n")

cut_seasons 9

bins_4 <- cut_directions(directions, n_bins = 4)
print(bins_4)

cut_seasons Get season from date time object

Description

Get season from date time object

Usage

cut_seasons(
datetime,
definition = "meteorological",
hemisphere = "northern",
labels = NULL

)

Arguments

datetime a POSIXct vector from with the season is constructed
definition the definition used to compute the season. See details section.
hemisphere in the Southern hemisphere, seasons are reversed compared to the Northern one.
labels optional, a character vector of length fours with the seasons’ names.

Details

Available Definitions:

• meteorological: Standard seasons (Dec-Feb = Winter, etc.)
• astronomical: Based on equinoxes/solstices
• djf: Dec-Jan-Feb, Mar-Apr-May, Jun-Jul-Aug, Sep-Oct-Nov
• jfm: Jan-Feb-Mar, Apr-May-Jun, Jul-Aug-Sep, Oct-Nov-Dec
• fma: Feb-Mar-Apr, May-Jun-Jul, Aug-Sep-Oct, Nov-Dec-Jan
• amj, jas, ond: Alternative starting points for quarterly seasons

Value

a Factor vector with 4 levels depending on the definitions (and labels if provided)

Examples

dates <- seq(
from = as.POSIXct("2023-01-15"),
to = as.POSIXct("2023-12-15"),
by = "month"

)
cut_seasons(dates)

10 fastTrapz

dispersion Compute the dispersion relation of waves Find k s.t. (2.pi.f)^2 =
g.k.tanh(k.d)

Description

Compute the dispersion relation of waves Find k s.t. (2.pi.f)^2 = g.k.tanh(k.d)

Usage

dispersion(frequencies, depth, iter_max = 200, tol = 1e-06)

Arguments

frequencies frequency vector

depth depth (m)

iter_max maximum number of iterations in the solver

tol tolerance for termination.

Value

the wave numbers (same size as frequencies)

Examples

freq <- seq(from = 0, to = 1, length.out = 100)
k1 <- dispersion(freq, depth = 1)
k10 <- dispersion(freq, depth = 10)
kInf <- dispersion(freq, depth = Inf)
plot(freq, k1, type = "l")
lines(freq, k10, col = "red")
lines(freq, kInf, col = "green")

fastTrapz Fast implementation of pracma::trapz from the Armadillo C++ library

Description

Compute the area of a multivariate function with (matrix) values Y at the points x.

Usage

fastTrapz(x, Y, dim = 1L)

fractional_day_of_year 11

Arguments

x x-coordinates of points on the x-axis (vector)

Y y-coordinates of function values (matrix)

dim an integer giving the subscripts which the function will be applied over. 1 indi-
cates rows, 2 indicates columns

Value

a vector with one dimension less than Y

Examples

x = 1:10
Y = sin(pi/10*matrix(1:10,ncol=10,nrow=10))
fastTrapz(x*pi/10,Y,2)

fractional_day_of_year

Compute Fractional Day of Year from POSIXct

Description

Calculates the fractional day of year from a POSIXct datetime object. The fractional day is zero-
indexed, starting at 0 for January 1st at midnight and ending at approximately 365.958 for December
31st at 23:00 in a non-leap year (or 366.958 in a leap year).

Usage

fractional_day_of_year(datetime)

Arguments

datetime A POSIXct object or vector of POSIXct objects representing date-time values.
Must have a timezone attribute.

Details

The function computes the time difference in hours between the input datetime and midnight on
January 1st of the same year, then divides by 24 to obtain fractional days. The calculation accounts
for leap years automatically.

Value

A numeric vector of the same length as datetime, containing fractional day of year values. January
1st at midnight corresponds to 0, and each hour adds approximately 0.04167 (1/24) to the value.

12 get_1d_spectrum

Examples

dates <- seq(
from = as.POSIXct("2024-01-01 00:00:00", tz = "UTC"),
to = as.POSIXct("2024-01-02 00:00:00", tz = "UTC"),
by = "6 hours"

)
fractional_day_of_year(dates) # Returns 0.00, 0.25, 0.50, 0.75, 1.00

End of year
dt_end <- as.POSIXct("2024-12-31 23:00:00", tz = "UTC")
fractional_day_of_year(dt_end) # Returns ~365.958

get_1d_spectrum Download the 1D spectrum data from IFREMER ftp

Description

Download the 1D spectrum data from IFREMER ftp

Usage

get_1d_spectrum(point, start = "1994-01-01", end = "1994-02-28")

Arguments

point the location name (string) requested. Alternatively, the node number. The con-
sistency is checked internally.

start the starting date (as a string). The consistency is checked internally.

end the ending date as a string

Value

A list with 12 elements:

longitude Longitude

latitude Latitude

frequency1 Lower frequency

frequency2 Upper frequency

ef Surface elevation variance spectral density

th1m Mean direction from first spectral moment

th2m Mean direction from second spectral moment

sth1m Mean directional spreading from first spectral moment

sth2m Mean directional spreading from second spectral moment

freq Central frequency

get_2d_spectrum 13

forcings A data.frame with 14 variables:

time Time
dpt Depth, positive downward
wnd Wind intensity, at 10m above sea level
wnddir Wind direction, comes from
cur Current intensity, at the surface
curdir Current direction, going to
hs Significant wave height
fp Peak wave frequency
f02 Mean wave frequency
f0m1 Mean wave frequency at spectral moment minus one
th1p Mean wave direction at spectral peak
sth1p Directional spreading at spectral peak
dir Mean wave direction
spr Mean directional spreading

station Station name

Examples

spec1D <- get_1d_spectrum("SEMREVO", start = "1994-01-01", end = "1994-02-28")
if(!is.null(spec1D)){

r <- as.POSIXct(round(range(spec1D$forcings$time), "month"))
image(spec1D$forcings$time, spec1D$freq, t(spec1D$ef),
xaxt = "n", xlab = "Time",
ylab = "Frequency (Hz)"

)
axis.POSIXct(1, spec1D$forcings$time,

at = seq(r[1], r[2], by = "week"),
format = "%Y-%m-%d", las = 2

)
}

get_2d_spectrum Download the 2D spectrum data from IFREMER ftp

Description

Download the 2D spectrum data from IFREMER ftp

Usage

get_2d_spectrum(point, start = "1994-01-01", end = "1994-02-28")

14 get_2d_spectrum

Arguments

point the location name (string) requested. Alternatively, the node number. The con-
sistency is checked internally.

start the starting date (as a string). The consistency is checked internally.

end the ending date as a string

Value

A list with 9 elements:

longitude Longitude

latitude Latitude

frequency1 Lower frequency

frequency2 Upper frequency

ef Surface elevation variance spectral density

th1m Mean direction from first spectral moment

th2m Mean direction from second spectral moment

sth1m Mean directional spreading from first spectral moment

sth2m Mean directional spreading from second spectral moment

freq Central frequency

dir Directionnal bins

forcings A data.frame with 6 variables:

time Time
dpt Depth, positive downward
wnd Wind intensity, at 10m above sea level
wnddir Wind direction, comes from
cur Current intensity, at the surface
curdir Current direction, going to

station Station name

Examples

spec2D <- get_2d_spectrum("SEMREVO", start = "1994-01-01", end = "1994-02-28")
if(!is.null(spec2D)){

image(spec2D$dir, spec2D$freq, spec2D$efth[, , 1],
xlab = "Direction (°)",
ylab = "Frequency (Hz"

)
}

get_parameters 15

get_parameters Download time series of sea-state parameters from RESOURCE-
CODE database

Description

If the remote resource is unavailable or returns an error, the function returns NULL and emits an
informative message.

Usage

get_parameters(
parameters = "hs",
node = 42,
start = as.POSIXct("1994-01-01 00:00:00", tz = "UTC"),
end = as.POSIXct("1994-12-31 23:00:00", tz = "UTC")

)

Arguments

parameters character vector of sea-state parameters

node single integer with the node to get

start starting date (as integer, character or posixct)

end ending date (as integer, character or posixct)

Value

a tibble with N-rows and length(parameters) columns.

Examples

rscd_data <- get_parameters(parameters = c("hs", "tp"), node = 42)
if(!is.null(rscd_data)) plot(rscd_data$time, rscd_data$hs, type = "l")

jonswap JONWSAP spectrum

Description

Creates a JONWSAP density spectrum (one-sided), defined by its integral parameters.

Usage

jonswap(hs = 5, tp = 15, fmax = rscd_freq, df = NULL, gam = 3.3)

16 mean_direction

Arguments

hs Hs (default: 5m)

tp Period (default: 10s)

fmax higher frequency of the spectrum or vector of frequencies (default to resource-
code frequency vector)

df frequency step (unused if fmax=vector of frequencies)

gam peak enhancement factor (default: 3.3)

Details

Reference :

• O.G.Houmb and T.Overvik, "Parametrization of Wave Spectra and Long Term Joint Distribu-
tion of Wave Height and Period," in Proceedings, First International Conference on Behaviour
of Offshore Structures (BOSS), Trondheim 1976. 23rd International Towing Tank Conference,
vol. II, pp. 544-551

• ITTC Committee, 2002, "The Specialist Committee on Waves - Final Report and Recommen-
dations to the 23rd ITTC", Proc. ITTC, vol. II, pp. 505-736.

Value

Density spectrum with corresponding parameters

Examples

S1 <- jonswap(tp = 15)
S2 <- jonswap(tp = 15, fmax = 0.95, df = 0.003)
plot(S1, type = "l", ylim = c(0, 72))
lines(S2, col = "red")
abline(v = 1 / 15)

mean_direction Mean Direction

Description

Function for computing the (weighted) arithmetic mean of directional data in meteorological con-
vention.

Usage

mean_direction(directions, weights = NULL)

Arguments

directions numeric vector of directions, in degree, 0° being the North

weights numeric vector, usually wind speed of wave height.

metconv2zmcomp 17

Value

The (weighted) mean of the values in directions is computed.

Examples

Test with some wind directions (unweighted)
wind_directions <- c(10, 20, 350, 5, 15) # Directions mostly around North
mean_dir <- mean_direction(wind_directions)
cat("Mean wind direction (unweighted):", round(mean_dir, 1), "degrees\n")
wind_directions <- c(350, 10, 20, 340, 30) # Directions around North
wind_speeds <- c(15, 5, 2, 12, 3) # Higher speeds for directions closer to North
mean_dir_weighted <- mean_direction(wind_directions, wind_speeds)
cat("Mean wind direction (weighted):", round(mean_dir_weighted, 1), "degrees\n")

Compare weighted vs unweighted for the same data
mean_dir_unweighted <- mean_direction(wind_directions)
cat("Same data unweighted:", round(mean_dir_unweighted, 1), "degrees\n")

metconv2zmcomp Convert meteorological wind speed and direction to u/v components

Description

Converts wind speed (magnitude) and direction (in degrees, meteorological convention: direction
from which the wind blows, measured clockwise from north) into zonal (u) and meridional (v)
components.

Usage

metconv2zmcomp(speed, direction, names = c("uwnd", "vwnd"))

Arguments

speed Numeric vector of wind speeds.

direction Numeric vector of wind directions in degrees (0° = from north, 90° = from east,
180° = from south, 270° = from west).

names (optional) ames to construct the resulting data.frame.

Value

A data.frame with two columns:

u Zonal wind component (m/s), positive eastward.

v Meridional wind component (m/s), positive northward.

18 plot_1d_specta

Examples

Example 1: North wind of 10 m/s (blowing southward)
metconv2zmcomp(10, 0)

Example 2: East wind of 5 m/s (blowing westward)
metconv2zmcomp(5, 90)

Example 3: South wind of 8 m/s (blowing northward)
metconv2zmcomp(8, 180)

plot_1d_specta Plot a wave density 1D spectrum at a given time

Description

Plot a wave density 1D spectrum at a given time

Usage

plot_1d_specta(spec, time = 1L, print_sea_state = TRUE, ...)

Arguments

spec the spectral data, as an output from get_2Dspectrum

time the time to plot. Either an integer or the date.

print_sea_state

should the sea_states parameters being plot ? Default to TRUE.

... currently unused

Value

a ggplot object

Examples

plot_1d_specta(resourcecodedata::rscd_1d_spectra, 1)

plot_2d_specta 19

plot_2d_specta Plot a wave density 2D spectrum

Description

Plot a wave density 2D spectrum

Usage

plot_2d_specta(
spec,
time = 1L,
normalize = TRUE,
trim = 0.01,
cut_off = 0.4,
...

)

Arguments

spec the spectral data, as an output from get_2Dspectrum

time the time to plot. Either an integer or the date.

normalize Should the spectrum be normalized to have maximum 1 before plotting

trim removes the values of the spectral density lower than this value

cut_off cut-off frequency above which the spectrum is not plotted

... currently unused

Value

a ggplot object

Examples

plot_2d_specta(resourcecodedata::rscd_2d_spectra, 1)

rscd_data_example Resourcecode data extract

Description

An extract of the Resourcecode Hindcast database, at node 123456, spanning from 1994-01-01
00:00:00 to 1999-12-31 23:00:00.

20 rscd_dir

Usage

rscd_data_example

Format

A data frame with 87,648 rows and 7 variables::

time POSIXct. Timestamp in UTC (hourly resolution).
hs numeric. Significant wave height (m).
tp numeric. Peak wave period (s).
dp numeric. Mean wave direction (degrees, coming from true North, clockwise).
uwnd numeric. Zonal (east–west) component of the 10-m wind (m/s). Positive eastward.
vwnd numeric. Meridional (north–south) component of the 10-m wind (m/s). Positive north-

ward.
dpt numeric.Depth (m).

Source

User Manual of the RESOURCECODE database https://archimer.ifremer.fr/doc/00751/
86306/

rscd_dir Resourcecode directional bins

Description

(equivalent to a directional resolution of 10°;

Usage

rscd_dir

Format

rscd_dir:
An array of length 36 with the directionnal bins

Source

User Manual of the RESOURCECODE database https://archimer.ifremer.fr/doc/00751/
86306/

https://archimer.ifremer.fr/doc/00751/86306/
https://archimer.ifremer.fr/doc/00751/86306/
https://archimer.ifremer.fr/doc/00751/86306/
https://archimer.ifremer.fr/doc/00751/86306/

rscd_freq 21

rscd_freq Resourcecode frequency vector of 1D and 2D spectra

Description

The wave spectrum discretization considers 36 frequencies, starting from 0.0339 Hz up to 0.9526
Hz with a frequency increment factor of 1.1

Usage

rscd_freq

Format

rscd_freq:
An array 36 elements with the frequencies values

Source

User Manual of the RESOURCECODE database https://archimer.ifremer.fr/doc/00751/
86306/

rscd_mapplot Create a map of the provided variable on the RESOURCECODE field
grid

Description

Create a map of the provided variable on the RESOURCECODE field grid

Usage

rscd_mapplot(
z,
name = "Depth (m)",
zlim = NULL,
palette = "YlOrRd",
direction = 1,
transform = "identity"

)

https://archimer.ifremer.fr/doc/00751/86306/
https://archimer.ifremer.fr/doc/00751/86306/

22 weather_windows

Arguments

z the data ro plot: a vector of the same size as the grid (328,030 rows).
name name of the variable plored, to be included in the legend.
zlim limits of the scale. See continuous_scale for details.
palette If a string, will use that named palette. See scale_colour_brewer for other

options.
direction Sets the order of colours in the scale. See scale_colour_brewer for details.
transform Transformation to apply to the color scale. See continuous_scale for details.

Value

a ggplot2 object

Examples

rscd_mapplot(resourcecodedata::rscd_field$depth)

weather_windows Compute Weather Windows

Description

Computes and returns start date of each weather window, implemented in C++ for speed.

Usage

weather_windows(
valid_periods,
window_length,
allow_overlap = TRUE,
time_step = 3600

)

Arguments

valid_periods A data frame with a ’time’ column (POSIXct).
window_length Minimum window duration (hours).
allow_overlap Logical; If TRUE, the algorithm searches for window, if a window is found,

search of next window will start from the end of the previous window. If FALSE,
it uses continuous window search: The algorithm searches for window starting
from every time step that meets the criteria.

time_step Expected time step between consecutive timestamps (seconds).

Value

POSIXct vector of detected window start times.

zmcomp2metconv 23

zmcomp2metconv Convert u/v to meteorological wind speed and direction

Description

Converts wind or current zonal and meridional velocity components to magnitude and direction
according to meteorological convention.

Usage

zmcomp2metconv(u, v = NULL, names = c("wspd", "wdir"))

Arguments

u zonal velocity (1D vector) or matrix with zonal and meridional velocity (Nx2
matrix)

v meridional velocity (1D vector)

names names to construct the resulting data.frame

Value

a Nx2 data.frame with the norm and direction (meteorological convention)

Examples

u <- matrix(rnorm(200), nrow = 100, ncol = 2)
vdir <- zmcomp2metconv(u)

%nin% Value Matching

Description

Value Matching

Usage

x %nin% table

Arguments

x value to search

table table of values

24 %nin%

Value

the opposite of x %in% table

Examples

1:10 %in% c(1, 3, 5, 9)
1:10 %nin% c(1, 3, 5, 9)

Index

∗ datasets
rscd_data_example, 19
rscd_dir, 20
rscd_freq, 21

%nin%, 23

closest_point_field, 2
closest_point_spec, 3
compute_orbital_speeds, 4
compute_sea_state_1d_spectrum, 5
compute_sea_state_2d_spectrum, 6
continuous_scale, 22
convert_spectrum_2d1d, 7
cut_directions, 8
cut_seasons, 9

dispersion, 10

fastTrapz, 10
fractional_day_of_year, 11

get_1d_spectrum, 12
get_2d_spectrum, 13
get_parameters, 15

jonswap, 15

mean_direction, 16
metconv2zmcomp, 17

plot_1d_specta, 18
plot_2d_specta, 19

rscd_data_example, 19
rscd_dir, 20
rscd_freq, 21
rscd_mapplot, 21

scale_colour_brewer, 22

weather_windows, 22

zmcomp2metconv, 23

25

	closest_point_field
	closest_point_spec
	compute_orbital_speeds
	compute_sea_state_1d_spectrum
	compute_sea_state_2d_spectrum
	convert_spectrum_2d1d
	cut_directions
	cut_seasons
	dispersion
	fastTrapz
	fractional_day_of_year
	get_1d_spectrum
	get_2d_spectrum
	get_parameters
	jonswap
	mean_direction
	metconv2zmcomp
	plot_1d_specta
	plot_2d_specta
	rscd_data_example
	rscd_dir
	rscd_freq
	rscd_mapplot
	weather_windows
	zmcomp2metconv
	nin
	Index

