
Package ‘performance’
February 4, 2026

Type Package

Title Assessment of Regression Models Performance

Version 0.16.0

Maintainer Daniel Lüdecke <officialeasystats@gmail.com>

Description Utilities for computing measures to assess model quality,
which are not directly provided by R's 'base' or 'stats' packages.
These include e.g. measures like r-squared, intraclass correlation
coefficient (Nakagawa, Johnson & Schielzeth (2017)
<doi:10.1098/rsif.2017.0213>), root mean squared error or functions to
check models for overdispersion, singularity or zero-inflation and
more. Functions apply to a large variety of regression models,
including generalized linear models, mixed effects models and Bayesian
models. References: Lüdecke et al. (2021) <doi:10.21105/joss.03139>.

License GPL-3

URL https://easystats.github.io/performance/

BugReports https://github.com/easystats/performance/issues

Depends R (>= 4.0)

Imports bayestestR (>= 0.17.0), insight (>= 1.4.4), datawizard (>=
1.3.0), stats, methods, utils

Suggests AER, afex, BayesFactor, bayesplot, betareg, bigutilsr,
blavaan, boot, brms, car, carData, CompQuadForm, correlation
(>= 0.8.8), cplm, curl, dagitty, dbscan, DHARMa (>= 0.4.7),
discovr, estimatr, fixest, flextable, forecast, ftExtra, gamm4,
ggdag, glmmTMB (>= 1.1.12), GPArotation, graphics, Hmisc,
httr2, ICS, ICSOutlier, ISLR, ivreg, lavaan, lme4, lmtest, loo,
MASS, Matrix, mclogit, mclust, metadat, metafor, mgcv, mlogit,
modelbased (>= 0.12.0), multimode, nestedLogit, nlme, nnet,
nonnest2, ordinal, parallel, parameters (>= 0.28.0), patchwork,
pscl, psych, psychTools, quantreg, qqplotr (>= 0.0.6),
randomForest, RcppEigen, reformulas, rempsyc, rmarkdown,
rstanarm, rstantools, sandwich, see (>= 0.13.0), survey,
survival, testthat (>= 3.2.1), tweedie, VGAM, withr (>= 3.0.0)

1

https://doi.org/10.1098/rsif.2017.0213
https://doi.org/10.21105/joss.03139
https://easystats.github.io/performance/
https://github.com/easystats/performance/issues

2 Contents

Encoding UTF-8

Language en-US

RoxygenNote 7.3.3

Config/testthat/edition 3

Config/testthat/parallel true

Config/Needs/website rstudio/bslib, r-lib/pkgdown,
easystats/easystatstemplate

Config/rcmdcheck/ignore-inconsequential-notes true

NeedsCompilation no

Author Daniel Lüdecke [aut, cre] (ORCID:
<https://orcid.org/0000-0002-8895-3206>),

Dominique Makowski [aut, ctb] (ORCID:
<https://orcid.org/0000-0001-5375-9967>),

Mattan S. Ben-Shachar [aut, ctb] (ORCID:
<https://orcid.org/0000-0002-4287-4801>),

Indrajeet Patil [aut, ctb] (ORCID:
<https://orcid.org/0000-0003-1995-6531>),

Philip Waggoner [aut, ctb] (ORCID:
<https://orcid.org/0000-0002-7825-7573>),

Brenton M. Wiernik [aut, ctb] (ORCID:
<https://orcid.org/0000-0001-9560-6336>),

Rémi Thériault [aut, ctb] (ORCID:
<https://orcid.org/0000-0003-4315-6788>),

Vincent Arel-Bundock [ctb] (ORCID:
<https://orcid.org/0000-0003-2042-7063>),

Martin Jullum [rev],
gjo11 [rev],
Etienne Bacher [ctb] (ORCID: <https://orcid.org/0000-0002-9271-5075>),
Joseph Luchman [ctb] (ORCID: <https://orcid.org/0000-0002-8886-9717>)

Repository CRAN

Date/Publication 2026-02-04 12:00:02 UTC

Contents
binned_residuals . 4
check_autocorrelation . 6
check_clusterstructure . 7
check_collinearity . 8
check_convergence . 11
check_dag . 13
check_distribution . 18
check_factorstructure . 19
check_group_variation . 21
check_heterogeneity_bias . 24
check_heteroscedasticity . 25

https://orcid.org/0000-0002-8895-3206
https://orcid.org/0000-0001-5375-9967
https://orcid.org/0000-0002-4287-4801
https://orcid.org/0000-0003-1995-6531
https://orcid.org/0000-0002-7825-7573
https://orcid.org/0000-0001-9560-6336
https://orcid.org/0000-0003-4315-6788
https://orcid.org/0000-0003-2042-7063
https://orcid.org/0000-0002-9271-5075
https://orcid.org/0000-0002-8886-9717

Contents 3

check_homogeneity . 26
check_itemscale . 27
check_model . 29
check_multimodal . 34
check_normality . 35
check_outliers . 36
check_overdispersion . 43
check_predictions . 45
check_residuals . 47
check_singularity . 49
check_sphericity . 52
check_symmetry . 53
check_zeroinflation . 53
classify_distribution . 55
compare_performance . 55
cronbachs_alpha . 57
display.performance_model . 58
icc . 60
item_difficulty . 64
item_discrimination . 66
item_intercor . 67
item_omega . 68
item_reliability . 70
item_split_half . 72
looic . 73
model_performance . 73
model_performance.fa . 74
model_performance.ivreg . 75
model_performance.kmeans . 76
model_performance.lavaan . 77
model_performance.lm . 79
model_performance.merMod . 80
model_performance.rma . 81
model_performance.stanreg . 83
performance_accuracy . 85
performance_aicc . 86
performance_cv . 88
performance_hosmer . 89
performance_logloss . 90
performance_mae . 91
performance_mse . 91
performance_pcp . 92
performance_reliability . 93
performance_rmse . 96
performance_roc . 98
performance_rse . 99
performance_score . 100
r2 . 101

4 binned_residuals

r2_bayes . 103
r2_coxsnell . 105
r2_efron . 106
r2_ferrari . 107
r2_kullback . 108
r2_loo . 108
r2_mcfadden . 110
r2_mckelvey . 111
r2_mlm . 112
r2_nagelkerke . 113
r2_nakagawa . 114
r2_somers . 117
r2_tjur . 118
r2_xu . 118
r2_zeroinflated . 119
simulate_residuals . 120
test_bf . 121

Index 127

binned_residuals Binned residuals for binomial logistic regression

Description

Check model quality of binomial logistic regression models.

Usage

binned_residuals(
model,
term = NULL,
n_bins = NULL,
show_dots = NULL,
ci = 0.95,
ci_type = "exact",
residuals = "deviance",
iterations = 1000,
verbose = TRUE,
...

)

Arguments

model A glm-object with binomial-family.

term Name of independent variable from x. If not NULL, average residuals for the cate-
gories of term are plotted; else, average residuals for the estimated probabilities
of the response are plotted.

binned_residuals 5

n_bins Numeric, the number of bins to divide the data. If n_bins = NULL, the square
root of the number of observations is taken.

show_dots Logical, if TRUE, will show data points in the plot. Set to FALSE for models with
many observations, if generating the plot is too time-consuming. By default,
show_dots = NULL. In this case binned_residuals() tries to guess whether
performance will be poor due to a very large model and thus automatically shows
or hides dots.

ci Numeric, the confidence level for the error bounds.

ci_type Character, the type of error bounds to calculate. Can be "exact" (default),
"gaussian" or "boot". "exact" calculates the error bounds based on the exact
binomial distribution, using binom.test(). "gaussian" uses the Gaussian ap-
proximation, while "boot" uses a simple bootstrap method, where confidence
intervals are calculated based on the quantiles of the bootstrap distribution.

residuals Character, the type of residuals to calculate. Can be "deviance" (default),
"pearson" or "response". It is recommended to use "response" only for
those models where other residuals are not available.

iterations Integer, the number of iterations to use for the bootstrap method. Only used if
ci_type = "boot".

verbose Toggle warnings and messages.

... Currently not used.

Details

Binned residual plots are achieved by "dividing the data into categories (bins) based on their fitted
values, and then plotting the average residual versus the average fitted value for each bin." (Gelman,
Hill 2007: 97). If the model were true, one would expect about 95% of the residuals to fall inside
the error bounds.

If term is not NULL, one can compare the residuals in relation to a specific model predictor. This
may be helpful to check if a term would fit better when transformed, e.g. a rising and falling pattern
of residuals along the x-axis is a signal to consider taking the logarithm of the predictor (cf. Gelman
and Hill 2007, pp. 97-98).

Value

A data frame representing the data that is mapped in the accompanying plot. In case all residuals
are inside the error bounds, points are black. If some of the residuals are outside the error bounds
(indicated by the grey-shaded area), blue points indicate residuals that are OK, while red points
indicate model under- or over-fitting for the relevant range of estimated probabilities.

Note

binned_residuals() returns a data frame, however, the print() method only returns a short
summary of the result. The data frame itself is used for plotting. The plot() method, in turn,
creates a ggplot-object.

6 check_autocorrelation

References

Gelman, A., and Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models.
Cambridge; New York: Cambridge University Press.

Examples

model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
result <- binned_residuals(model)
result

look at the data frame
as.data.frame(result)

plot
plot(result, show_dots = TRUE)

check_autocorrelation Check model for independence of residuals.

Description

Check model for independence of residuals, i.e. for autocorrelation of error terms.

Usage

check_autocorrelation(x, ...)

Default S3 method:
check_autocorrelation(x, nsim = 1000, ...)

S3 method for class 'performance_simres'
check_autocorrelation(x, time = NULL, ...)

Arguments

x A model object, or an object returned by simulate_residuals().

... Currently not used for models. For simulated residuals, arguments are passed to
DHARMa::testTemporalAutocorrelation().

nsim Number of simulations for the Durbin-Watson-Test.

time A vector with time values to specify the temporal order of the data. Only used
if x is an object returned by simulate_residuals() or by DHARMa.

check_clusterstructure 7

Details

Performs a Durbin-Watson-Test to check for autocorrelated residuals. In case of autocorrelation,
robust standard errors return more accurate results for the estimates, or maybe a mixed model with
error term for the cluster groups should be used.

Value

Invisibly returns the p-value of the test statistics. A p-value < 0.05 indicates autocorrelated residuals.

See Also

Other functions to check model assumptions and and assess model quality: check_collinearity(),
check_convergence(), check_heteroscedasticity(), check_homogeneity(), check_model(),
check_outliers(), check_overdispersion(), check_predictions(), check_singularity(),
check_zeroinflation()

Examples

m <- lm(mpg ~ wt + cyl + gear + disp, data = mtcars)
check_autocorrelation(m)

check_clusterstructure

Check suitability of data for clustering

Description

This checks whether the data is appropriate for clustering using the Hopkins’ H statistic of given
data. If the value of Hopkins statistic is close to 0 (below 0.5), then we can reject the null hypothesis
and conclude that the dataset is significantly clusterable. A value for H lower than 0.25 indicates a
clustering tendency at the 90% confidence level. The visual assessment of cluster tendency (VAT)
approach (Bezdek and Hathaway, 2002) consists in investigating the heatmap of the ordered dis-
similarity matrix. Following this, one can potentially detect the clustering tendency by counting the
number of square shaped blocks along the diagonal.

Usage

check_clusterstructure(x, standardize = TRUE, distance = "euclidean", ...)

Arguments

x A data frame.

standardize Standardize the data frame before clustering (default).

distance Distance method used. Other methods than "euclidean" (default) are exploratory
in the context of clustering tendency. See stats::dist() for list of available
methods.

... Arguments passed to or from other methods.

8 check_collinearity

Value

The H statistic (numeric)

References

• Lawson, R. G., & Jurs, P. C. (1990). New index for clustering tendency and its application to
chemical problems. Journal of chemical information and computer sciences, 30(1), 36-41.

• Bezdek, J. C., & Hathaway, R. J. (2002, May). VAT: A tool for visual assessment of (cluster)
tendency. In Proceedings of the 2002 International Joint Conference on Neural Networks.
IJCNN02 (3), 2225-2230. IEEE.

See Also

check_kmo(), check_sphericity_bartlett() and check_factorstructure().

Examples

library(performance)
check_clusterstructure(iris[, 1:4])
plot(check_clusterstructure(iris[, 1:4]))

check_collinearity Check for multicollinearity of model terms

Description

check_collinearity() checks regression models for multicollinearity by calculating the (gener-
alized) variance inflation factor (VIF, Fox & Monette 1992). multicollinearity() is an alias for
check_collinearity(). check_concurvity() is a wrapper around mgcv::concurvity(), and
can be considered as a collinearity check for smooth terms in GAMs. Confidence intervals for VIF
and tolerance are based on Marcoulides et al. (2019, Appendix B).

Usage

check_collinearity(x, ...)

multicollinearity(x, ...)

Default S3 method:
check_collinearity(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'glmmTMB'
check_collinearity(x, component = "all", ci = 0.95, verbose = TRUE, ...)

check_concurvity(x, ...)

check_collinearity 9

Arguments

x A model object (that should at least respond to vcov(), and if possible, also to
model.matrix() - however, it also should work without model.matrix()).

... Currently not used.

ci Confidence Interval (CI) level for VIF and tolerance values.

verbose Toggle off warnings or messages.

component For models with zero-inflation component, multicollinearity can be checked
for the conditional model (count component, component = "conditional" or
component = "count"), zero-inflation component (component = "zero_inflated"
or component = "zi") or both components (component = "all"). Following
model-classes are currently supported: hurdle, zeroinfl, zerocount, MixMod
and glmmTMB.

Details

check_collinearity() calculates the generalized variance inflation factor (Fox & Monette 1992),
which also returns valid results for categorical variables. The adjusted VIF is calculated as VIF^(1/(2*<nlevels>)
(Fox & Monette 1992), which is identical to the square root of the VIF for numeric predictors, or
for categorical variables with two levels.

Value

A data frame with information about name of the model term, the (generalized) variance inflation
factor and associated confidence intervals, the adjusted VIF, which is the factor by which the stan-
dard error is increased due to possible correlation with other terms (inflation due to collinearity),
and tolerance values (including confidence intervals), where tolerance = 1/vif.

Multicollinearity

Multicollinearity should not be confused with a raw strong correlation between predictors. What
matters is the association between one or more predictor variables, conditional on the other vari-
ables in the model. In a nutshell, multicollinearity means that once you know the effect of one
predictor, the value of knowing the other predictor is rather low. Thus, one of the predictors doesn’t
help much in terms of better understanding the model or predicting the outcome. As a consequence,
if multicollinearity is a problem, the model seems to suggest that the predictors in question don’t
seems to be reliably associated with the outcome (low estimates, high standard errors), although
these predictors actually are strongly associated with the outcome, i.e. indeed might have strong
effect (McElreath 2020, chapter 6.1).

Multicollinearity might arise when a third, unobserved variable has a causal effect on each of the
two predictors that are associated with the outcome. In such cases, the actual relationship that
matters would be the association between the unobserved variable and the outcome.

Remember: "Pairwise correlations are not the problem. It is the conditional associations - not
correlations - that matter." (McElreath 2020, p. 169)

10 check_collinearity

Interpretation of the Variance Inflation Factor

The variance inflation factor is a measure to analyze the magnitude of multicollinearity of model
terms. A VIF less than 5 indicates a low correlation of that predictor with other predictors. A
value between 5 and 10 indicates a moderate correlation, while VIF values larger than 10 are a
sign for high, not tolerable correlation of model predictors (James et al. 2013). The adjusted VIF
column in the output indicates how much larger the standard error is due to the association with
other predictors conditional on the remaining variables in the model. Note that these thresholds,
although commonly used, are also criticized for being too high. Zuur et al. (2010) suggest using
lower values, e.g. a VIF of 3 or larger may already no longer be considered as "low".

Multicollinearity and Interaction Terms

If interaction terms are included in a model, high VIF values are expected. This portion of multi-
collinearity among the component terms of an interaction is also called "inessential ill-conditioning",
which leads to inflated VIF values that are typically seen for models with interaction terms (Fran-
coeur 2013). Centering interaction terms can resolve this issue (Kim and Jung 2024).

Multicollinearity and Polynomial Terms

Polynomial transformations are considered a single term and thus VIFs are not calculated between
them.

Concurvity for Smooth Terms in Generalized Additive Models

check_concurvity() is a wrapper around mgcv::concurvity(), and can be considered as a
collinearity check for smooth terms in GAMs."Concurvity occurs when some smooth term in
a model could be approximated by one or more of the other smooth terms in the model." (see
?mgcv::concurvity). check_concurvity() returns a column named VIF, which is the "worst"
measure. While mgcv::concurvity() range between 0 and 1, the VIF value is 1 / (1 - worst), to
make interpretation comparable to classical VIF values, i.e. 1 indicates no problems, while higher
values indicate increasing lack of identifiability. The VIF proportion column equals the "estimate"
column from mgcv::concurvity(), ranging from 0 (no problem) to 1 (total lack of identifiability).

Note

The code to compute the confidence intervals for the VIF and tolerance values was adapted from
the Appendix B from the Marcoulides et al. paper. Thus, credits go to these authors the original
algorithm. There is also a plot()-method implemented in the see-package.

References

• Fox, J., & Monette, G. (1992). Generalized Collinearity Diagnostics. Journal of the American
Statistical Association, 87(417), 178–183.

• Francoeur, R. B. (2013). Could Sequential Residual Centering Resolve Low Sensitivity in
Moderated Regression? Simulations and Cancer Symptom Clusters. Open Journal of Statis-
tics, 03(06), 24-44.

• James, G., Witten, D., Hastie, T., and Tibshirani, R. (eds.). (2013). An introduction to statis-
tical learning: with applications in R. New York: Springer.

https://easystats.github.io/see/articles/performance.html
https://easystats.github.io/see/

check_convergence 11

• Kim, Y., & Jung, G. (2024). Understanding linear interaction analysis with causal graphs.
British Journal of Mathematical and Statistical Psychology, 00, 1–14.

• Marcoulides, K. M., and Raykov, T. (2019). Evaluation of Variance Inflation Factors in Re-
gression Models Using Latent Variable Modeling Methods. Educational and Psychological
Measurement, 79(5), 874–882.

• McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan.
2nd edition. Chapman and Hall/CRC.

• Vanhove, J. (2021) Collinearity Isn’t a Disease That Needs Curing. Meta-Psychology, 5.
doi:10.15626/MP.2021.2548

• Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical
problems: Data exploration. Methods in Ecology and Evolution (2010) 1:3–14.

See Also

see::plot.see_check_collinearity() for options to customize the plot.

Other functions to check model assumptions and and assess model quality: check_autocorrelation(),
check_convergence(), check_heteroscedasticity(), check_homogeneity(), check_model(),
check_outliers(), check_overdispersion(), check_predictions(), check_singularity(),
check_zeroinflation()

Examples

m <- lm(mpg ~ wt + cyl + gear + disp, data = mtcars)
check_collinearity(m)

plot results
x <- check_collinearity(m)
plot(x)

check_convergence Convergence test for mixed effects models

Description

check_convergence() provides an alternative convergence test for merMod-objects.

Usage

check_convergence(model = NULL, tolerance = 0.001, x = NULL, ...)

https://doi.org/10.15626/MP.2021.2548

12 check_convergence

Arguments

model A merMod or glmmTMB-object.

tolerance Indicates up to which value the convergence result is accepted. The smaller
tolerance is, the stricter the test will be.

x Deprecated, please use model instead.

... Currently not used.

Value

TRUE if convergence is fine and FALSE if convergence is suspicious. Additionally, the convergence
value is returned as attribute.

Convergence and log-likelihood

Convergence problems typically arise when the model hasn’t converged to a solution where the
log-likelihood has a true maximum. This may result in unreliable and overly complex (or non-
estimable) estimates and standard errors.

Inspect model convergence

lme4 performs a convergence-check (see ?lme4::convergence), however, as discussed here and
suggested by one of the lme4-authors in this comment, this check can be too strict. is_converged()
(and its wrapper function, performance::check_convergence()) thus provides an alternative
convergence test for merMod-objects.

Resolving convergence issues

Convergence issues are not easy to diagnose. The help page on ?lme4::convergence provides
most of the current advice about how to resolve convergence issues. In general, convergence issues
may be addressed by one or more of the following strategies: 1. Rescale continuous predictors; 2.
try a different optimizer; 3. increase the number of iterations; or, if everything else fails, 4. sim-
plify the model. Another clue might be large parameter values, e.g. estimates (on the scale of the
linear predictor) larger than 10 in (non-identity link) generalized linear model might indicate com-
plete separation, which can be addressed by regularization, e.g. penalized regression or Bayesian
regression with appropriate priors on the fixed effects.

Convergence versus Singularity

Note the different meaning between singularity and convergence: singularity indicates an issue
with the "true" best estimate, i.e. whether the maximum likelihood estimation for the variance-
covariance matrix of the random effects is positive definite or only semi-definite. Convergence is a
question of whether we can assume that the numerical optimization has worked correctly or not. A
convergence failure means the optimizer (the algorithm) could not find a stable solution (Bates et.
al 2015).

For singular models (see ?lme4::isSingular), convergence is determined based on the optimizer’s
convergence code. If the optimizer reports successful convergence (convergence code 0) for a sin-
gular model, is_converged() returns TRUE. For non-singular models, in cases where the gradi-
ent and Hessian are not available, is_converged() returns FALSE and prints a message to in-

https://github.com/lme4/lme4/issues/120
https://github.com/lme4/lme4/issues/120#issuecomment-39920269

check_dag 13

dicate that convergence cannot be assessed through the usual gradient-based checks. Note that
performance::check_convergence() is a wrapper around insight::is_converged().

References

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting Linear Mixed-Effects Models
Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01

See Also

Other functions to check model assumptions and and assess model quality: check_autocorrelation(),
check_collinearity(), check_heteroscedasticity(), check_homogeneity(), check_model(),
check_outliers(), check_overdispersion(), check_predictions(), check_singularity(),
check_zeroinflation()

Examples

data(cbpp, package = "lme4")
set.seed(1)
cbpp$x <- rnorm(nrow(cbpp))
cbpp$x2 <- runif(nrow(cbpp))

model <- lme4::glmer(
cbind(incidence, size - incidence) ~ period + x + x2 + (1 + x | herd),
data = cbpp,
family = binomial()

)

check_convergence(model)

model <- suppressWarnings(glmmTMB::glmmTMB(
Sepal.Length ~ poly(Petal.Width, 4) * poly(Petal.Length, 4) +
(1 + poly(Petal.Width, 4) | Species),

data = iris
))
check_convergence(model)

check_dag Check correct model adjustment for identifying causal effects

Description

The purpose of check_dag() is to build, check and visualize your model based on directed acyclic
graphs (DAG). The function checks if a model is correctly adjusted for identifying specific rela-
tionships of variables, especially directed (maybe also "causal") effects for given exposures on an
outcome. In case of incorrect adjustments, the function suggests the minimal required variables that

https://doi.org/10.18637/jss.v067.i01

14 check_dag

should be adjusted for (sometimes also called "controlled for"), i.e. variables that at least need to
be included in the model. Depending on the goal of the analysis, it is still possible to add more
variables to the model than just the minimally required adjustment sets.

check_dag() is a convenient wrapper around ggdag::dagify(), dagitty::adjustmentSets()
and dagitty::adjustedNodes() to check correct adjustment sets. It returns a dagitty object that
can be visualized with plot(). as.dag() is a small convenient function to return the dagitty-string,
which can be used for the online-tool from the dagitty-website.

Usage

check_dag(
...,
outcome = NULL,
exposure = NULL,
adjusted = NULL,
latent = NULL,
effect = "all",
coords = NULL

)

as.dag(x, ...)

Arguments

... One or more formulas, which are converted into dagitty syntax. First element
may also be model object. If a model objects is provided, its formula is used
as first formula, and all independent variables will be used for the adjusted
argument. See ’Details’ and ’Examples’.

outcome Name of the dependent variable (outcome), as character string or as formula.
Must be a valid name from the formulas provided in If not set, the first
dependent variable from the formulas is used.

exposure Name of the exposure variable (as character string or formula), for which the
direct and total causal effect on the outcome should be checked. Must be a
valid name from the formulas provided in If not set, the first independent
variable from the formulas is used.

adjusted A character vector or formula with names of variables that are adjusted for in the
model, e.g. adjusted = c("x1", "x2") or adjusted = ~ x1 + x2. If a model
object is provided in ..., any values in adjusted will be overwritten by the
model’s independent variables.

latent A character vector with names of latent variables in the model.

effect Character string, indicating which effect to check. Can be "all" (default),
"total", or "direct".

coords Coordinates of the variables when plotting the DAG. The coordinates can be
provided in three different ways:

• a list with two elements, x and y, which both are named vectors of numerics.
The names correspond to the variable names in the DAG, and the values for
x and y indicate the x/y coordinates in the plot.

check_dag 15

• a list with elements that correspond to the variables in the DAG. Each ele-
ment is a numeric vector of length two with x- and y-coordinate.

• a data frame with three columns: x, y and name (which contains the variable
names).

See ’Examples’.

x An object of class check_dag, as returned by check_dag().

Value

An object of class check_dag, which can be visualized with plot(). The returned object also
inherits from class dagitty and thus can be used with all functions from the ggdag and dagitty
packages.

Specifying the DAG formulas

The formulas have following syntax:

• One-directed paths: On the left-hand-side is the name of the variables where causal effects
point to (direction of the arrows, in dagitty-language). On the right-hand-side are all variables
where causal effects are assumed to come from. For example, the formula Y ~ X1 + X2, paths
directed from both X1 and X2 to Y are assumed.

• Bi-directed paths: Use ~~ to indicate bi-directed paths. For example, Y ~~ X indicates that the
path between Y and X is bi-directed, and the arrow points in both directions. Bi-directed paths
often indicate unmeasured cause, or unmeasured confounding, of the two involved variables.

Minimally required adjustments

The function checks if the model is correctly adjusted for identifying the direct and total effects of
the exposure on the outcome. If the model is correctly specified, no adjustment is needed to estimate
the direct effect. If the model is not correctly specified, the function suggests the minimally required
variables that should be adjusted for. The function distinguishes between direct and total effects,
and checks if the model is correctly adjusted for both. If the model is cyclic, the function stops and
suggests to remove cycles from the model.

Note that it sometimes could be necessary to try out different combinations of suggested adjust-
ments, because check_dag() can not always detect whether at least one of several variables is
required, or whether adjustments should be done for all listed variables. It can be useful to copy
the dagitty-code (using as.dag(), which prints the dagitty-string into the console) into the dagitty-
website and play around with different adjustments.

Direct and total effects

The direct effect of an exposure on an outcome is the effect that is not mediated by any other variable
in the model. The total effect is the sum of the direct and indirect effects. The function checks if
the model is correctly adjusted for identifying the direct and total effects of the exposure on the
outcome.

16 check_dag

Why are DAGs important - the Table 2 fallacy

Correctly thinking about and identifying the relationships between variables is important when it
comes to reporting coefficients from regression models that mutually adjust for "confounders" or
include covariates. Different coefficients might have different interpretations, depending on their
relationship to other variables in the model. Sometimes, a regression coefficient represents the
direct effect of an exposure on an outcome, but sometimes it must be interpreted as total effect, due
to the involvement of mediating effects. This problem is also called "Table 2 fallacy" (Westreich
and Greenland 2013). DAG helps visualizing and thereby focusing the relationships of variables in
a regression model to detect missing adjustments or over-adjustment.

References

• Rohrer, J. M. (2018). Thinking clearly about correlations and causation: Graphical causal
models for observational data. Advances in Methods and Practices in Psychological Science,
1(1), 27–42. doi:10.1177/2515245917745629

• Westreich, D., & Greenland, S. (2013). The Table 2 Fallacy: Presenting and Interpreting
Confounder and Modifier Coefficients. American Journal of Epidemiology, 177(4), 292–298.
doi:10.1093/aje/kws412

Examples

no adjustment needed
check_dag(

y ~ x + b,
outcome = "y",
exposure = "x"

)

incorrect adjustment
dag <- check_dag(

y ~ x + b + c,
x ~ b,
outcome = "y",
exposure = "x"

)
dag
plot(dag)

After adjusting for `b`, the model is correctly specified
dag <- check_dag(

y ~ x + b + c,
x ~ b,
outcome = "y",
exposure = "x",
adjusted = "b"

)
dag

using formula interface for arguments "outcome", "exposure" and "adjusted"
check_dag(

y ~ x + b + c,

https://doi.org/10.1177/2515245917745629
https://doi.org/10.1093/aje/kws412

check_dag 17

x ~ b,
outcome = ~y,
exposure = ~x,
adjusted = ~ b + c

)

if not provided, "outcome" is taken from first formula, same for "exposure"
thus, we can simplify the above expression to
check_dag(

y ~ x + b + c,
x ~ b,
adjusted = ~ b + c

)

use specific layout for the DAG
dag <- check_dag(

score ~ exp + b + c,
exp ~ b,
outcome = "score",
exposure = "exp",
coords = list(

x-coordinates for all nodes
x = c(score = 5, exp = 4, b = 3, c = 3),
y-coordinates for all nodes
y = c(score = 3, exp = 3, b = 2, c = 4)

)
)
plot(dag)

alternative way of providing the coordinates
dag <- check_dag(

score ~ exp + b + c,
exp ~ b,
outcome = "score",
exposure = "exp",
coords = list(

x/y coordinates for each node
score = c(5, 3),
exp = c(4, 3),
b = c(3, 2),
c = c(3, 4)

)
)
plot(dag)

Objects returned by `check_dag()` can be used with "ggdag" or "dagitty"
ggdag::ggdag_status(dag)

Using a model object to extract information about outcome,
exposure and adjusted variables
data(mtcars)
m <- lm(mpg ~ wt + gear + disp + cyl, data = mtcars)
dag <- check_dag(

18 check_distribution

m,
wt ~ disp + cyl,
wt ~ am

)
dag
plot(dag)

check_distribution Classify the distribution of a model-family using machine learning

Description

Choosing the right distributional family for regression models is essential to get more accurate
estimates and standard errors. This function may help to check a models’ distributional family and
see if the model-family probably should be reconsidered. Since it is difficult to exactly predict the
correct model family, consider this function as somewhat experimental.

Usage

check_distribution(model)

Arguments

model Typically, a model (that should response to residuals()). May also be a nu-
meric vector.

Details

This function uses an internal random forest model to classify the distribution from a model-family.
Currently, following distributions are trained (i.e. results of check_distribution() may be one
of the following): "bernoulli", "beta", "beta-binomial", "binomial", "cauchy", "chi",
"exponential", "F", "gamma", "half-cauchy", "inverse-gamma", "lognormal", "normal",
"negative binomial", "negative binomial (zero-inflated)", "pareto", "poisson", "poisson
(zero-inflated)", "tweedie", "uniform" and "weibull".

Note the similarity between certain distributions according to shape, skewness, etc. Thus, the pre-
dicted distribution may not be perfectly representing the distributional family of the underlying
fitted model, or the response value.

There is a plot() method, which shows the probabilities of all predicted distributions, however,
only if the probability is greater than zero.

Note

This function is somewhat experimental and might be improved in future releases. The final deci-
sion on the model-family should also be based on theoretical aspects and other information about
the data and the model.

There is also a plot()-method implemented in the see-package.

https://easystats.github.io/see/articles/performance.html
https://easystats.github.io/see/

check_factorstructure 19

Examples

data(sleepstudy, package = "lme4")
model <<- lme4::lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
check_distribution(model)

plot(check_distribution(model))

check_factorstructure Check suitability of data for Factor Analysis (FA) with Bartlett’s Test
of Sphericity and KMO

Description

This checks whether the data is appropriate for Factor Analysis (FA) by running the Bartlett’s Test
of Sphericity and the Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA). See
details below for more information about the interpretation and meaning of each test.

Usage

check_factorstructure(x, n = NULL, ...)

check_kmo(x, n = NULL, ...)

check_sphericity_bartlett(x, n = NULL, ...)

Arguments

x A data frame or a correlation matrix. If the latter is passed, n must be provided.

n If a correlation matrix was passed, the number of observations must be specified.

... Arguments passed to or from other methods.

Details

Bartlett’s Test of Sphericity:
Bartlett’s (1951) test of sphericity tests whether a matrix (of correlations) is significantly different
from an identity matrix (filled with 0). It tests whether the correlation coefficients are all 0. The
test computes the probability that the correlation matrix has significant correlations among at least
some of the variables in a dataset, a prerequisite for factor analysis to work.
While it is often suggested to check whether Bartlett’s test of sphericity is significant before start-
ing with factor analysis, one needs to remember that the test is testing a pretty extreme scenario
(that all correlations are non-significant). As the sample size increases, this test tends to be always
significant, which makes it not particularly useful or informative in well-powered studies.

20 check_factorstructure

Kaiser, Meyer, Olkin (KMO):
(Measure of Sampling Adequacy (MSA) for Factor Analysis.)
Kaiser (1970) introduced a Measure of Sampling Adequacy (MSA), later modified by Kaiser and
Rice (1974). The Kaiser-Meyer-Olkin (KMO) statistic, which can vary from 0 to 1, indicates the
degree to which each variable in a set is predicted without error by the other variables.
A value of 0 indicates that the sum of partial correlations is large relative to the sum correlations,
indicating factor analysis is likely to be inappropriate. A KMO value close to 1 indicates that the
sum of partial correlations is not large relative to the sum of correlations and so factor analysis
should yield distinct and reliable factors. It means that patterns of correlations are relatively
compact, and so factor analysis should yield distinct and reliable factors. Values smaller than 0.5
suggest that you should either collect more data or rethink which variables to include.
Kaiser (1974) suggested that KMO > .9 were marvelous, in the .80s, meritorious, in the .70s,
middling, in the .60s, mediocre, in the .50s, miserable, and less than .5, unacceptable. Hair et
al. (2006) suggest accepting a value > 0.5. Values between 0.5 and 0.7 are mediocre, and values
between 0.7 and 0.8 are good.
Variables with individual KMO values below 0.5 could be considered for exclusion them from the
analysis (note that you would need to re-compute the KMO indices as they are dependent on the
whole dataset).

Value

A list of lists of indices related to sphericity and KMO.

References

This function is a wrapper around the KMO and the cortest.bartlett() functions in the psych
package (Revelle, 2016).

• Revelle, W. (2016). How To: Use the psych package for Factor Analysis and data reduction.

• Bartlett, M. S. (1951). The effect of standardization on a Chi-square approximation in factor
analysis. Biometrika, 38(3/4), 337-344.

• Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401-415.

• Kaiser, H. F., & Rice, J. (1974). Little jiffy, mark IV. Educational and psychological measure-
ment, 34(1), 111-117.

• Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36.

See Also

check_clusterstructure().

Examples

library(performance)

check_factorstructure(mtcars)

One can also pass a correlation matrix
r <- cor(mtcars)

check_group_variation 21

check_factorstructure(r, n = nrow(mtcars))

check_group_variation Check variables for within- and/or between-group variation

Description

Checks if variables vary within and/or between levels of grouping variables. This function can be
used to infer the hierarchical Design of a given dataset, or detect any predictors that might cause
heterogeneity bias (Bell and Jones, 2015). Use summary() on the output if you are mainly interested
if and which predictors are possibly affected by heterogeneity bias.

Usage

check_group_variation(x, ...)

Default S3 method:
check_group_variation(x, ...)

S3 method for class 'data.frame'
check_group_variation(
x,
select = NULL,
by = NULL,
include_by = FALSE,
numeric_as_factor = FALSE,
tolerance_numeric = 1e-04,
tolerance_factor = "crossed",
...

)

S3 method for class 'check_group_variation'
summary(object, flatten = FALSE, ...)

Arguments

x A data frame or a mixed model. See details and examples.

... Arguments passed to other methods

select Character vector (or formula) with names of variables to select that should be
checked. If NULL, selects all variables (except those in by).

by Character vector (or formula) with the name of the variable that indicates the
group- or cluster-ID. For cross-classified or nested designs, by can also identify
two or more variables as group- or cluster-IDs.

include_by When there is more than one grouping variable, should they be check against
each other?

22 check_group_variation

numeric_as_factor

Should numeric variables be tested as factors?
tolerance_numeric

The minimal percent of variation (observed icc) that is tolerated to indicate no
within- or no between-effect.

tolerance_factor

How should a non-numeric variable be identified as varying only "within" a
grouping variable? Options are:

• "crossed" - if all groups have all unique values of X.
• "balanced" - if all groups have all unique values of X, with equal fre-

quency.

object result from check_group_variation()

flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

Details

This function attempt to identify the variability of a set of variables (select) with respect to one
or more grouping variables (by). If x is a (mixed effect) model, the variability of the fixed effects
predictors are checked with respect to the random grouping variables.

Generally, a variable is considered to vary between groups if is correlated with those groups, and to
vary within groups if it not a constant within at least one group.

Numeric variables:
Numeric variables are partitioned via datawizard::demean() to their within- and between-group
components. Then, the variance for each of these two component is calculated. Variables with
within-group variance larger than tolerance_numeric are labeled as within, variables with a
between-group variance larger than tolerance_numeric are labeled as between, and variables
with both variances larger than tolerance_numeric are labeled as both.
Setting numeric_as_factor = TRUE causes numeric variables to be tested using the following
criteria.

Non-numeric variables:
These variables can have one of the following three labels:

• between - the variable is correlated with the groups, and is fixed within each group (each
group has exactly one unique, constant value)

• within - the variable is crossed with the grouping variable, such that all possible values appear
within each group. The tolerance_factor argument controls if full balance is also required.

• both - the variable is correlated with the groups, but also varies within each group but is not
fully crossed (or, when tolerance_factor = "balanced" the variable is fully crossed, but
not perfectly balanced).

Additionally, the design of non-numeric variables is also checked to see if they are nested within
the groups or is they are crossed. This is indicated by the Design column.

Heterogeneity bias:

check_group_variation 23

Variables that vary both within and between groups can cause a heterogeneity bias (Bell and
Jones, 2015). It is recommended to center (person-mean centering) those variables to avoid this
bias. See datawizard::demean() for further details. Use summary() to get a short text result
that indicates if and which predictors are possibly affected by heterogeneity bias.

Value

A data frame with Group, Variable, Variation and Design columns.

References

• Bell A, Jones K. 2015. Explaining Fixed Effects: Random Effects Modeling of Time-Series
Cross-Sectional and Panel Data. Political Science Research and Methods, 3(1), 133–153.

See Also

For further details, read the vignette https://easystats.github.io/parameters/articles/
demean.html and also see documentation for datawizard::demean().

Examples

data(npk)
check_group_variation(npk, by = "block")

data(iris)
check_group_variation(iris, by = "Species")

data(ChickWeight)
check_group_variation(ChickWeight, by = "Chick")

A subset of mlmRev::egsingle
egsingle <- data.frame(

schoolid = factor(rep(c("2020", "2820"), times = c(18, 6))),
lowinc = rep(c(TRUE, FALSE), times = c(18, 6)),
childid = factor(rep(
c("288643371", "292020281", "292020361", "295341521"),
each = 6

)),
female = rep(c(TRUE, FALSE), each = 12),
year = rep(1:6, times = 4),
math = c(

-3.068, -1.13, -0.921, 0.463, 0.021, 2.035,
-2.732, -2.097, -0.988, 0.227, 0.403, 1.623,
-2.732, -1.898, -0.921, 0.587, 1.578, 2.3,
-2.288, -2.162, -1.631, -1.555, -0.725, 0.097

)
)

result <- check_group_variation(
egsingle,
by = c("schoolid", "childid"),
include_by = TRUE

https://easystats.github.io/parameters/articles/demean.html
https://easystats.github.io/parameters/articles/demean.html

24 check_heterogeneity_bias

)
result

summary(result)

data(sleepstudy, package = "lme4")
check_group_variation(sleepstudy, select = "Days", by = "Subject")

Or
mod <- lme4::lmer(Reaction ~ Days + (Days | Subject), data = sleepstudy)
result <- check_group_variation(mod)
result

summary(result)

check_heterogeneity_bias

Check model predictor for heterogeneity bias (Deprecated)

Description

check_heterogeneity_bias() checks if model predictors or variables may cause a heterogeneity
bias, i.e. if variables have any within-group variance (Bell and Jones, 2015).

We recommend using check_group_variation() instead, for a more detailed and flexible
examination of group-wise variability.

Usage

check_heterogeneity_bias(x, select = NULL, by = NULL, nested = FALSE)

Arguments

x A data frame or a mixed model object.

select Character vector (or formula) with names of variables to select that should be
checked. If x is a mixed model object, this argument will be ignored.

by Character vector (or formula) with the name of the variable that indicates the
group- or cluster-ID. For cross-classified or nested designs, by can also identify
two or more variables as group- or cluster-IDs. If the data is nested and should
be treated as such, set nested = TRUE. Else, if by defines two or more variables
and nested = FALSE, a cross-classified design is assumed. If x is a model object,
this argument will be ignored.
For nested designs, by can be:

• a character vector with the name of the variable that indicates the levels,
ordered from highest level to lowest (e.g. by = c("L4", "L3", "L2").

check_heteroscedasticity 25

• a character vector with variable names in the format by = "L4/L3/L2",
where the levels are separated by /.

See also section De-meaning for cross-classified designs and De-meaning for
nested designs in datawizard::demean().

nested Logical, if TRUE, the data is treated as nested. If FALSE, the data is treated as
cross-classified. Only applies if by contains more than one variable.

References

• Bell A, Jones K. 2015. Explaining Fixed Effects: Random Effects Modeling of Time-Series
Cross-Sectional and Panel Data. Political Science Research and Methods, 3(1), 133–153.

See Also

For further details, read the vignette https://easystats.github.io/parameters/articles/
demean.html and also see documentation for datawizard::demean().

For a more detailed and flexible examination of group-wise variability, see check_group_variation().

Examples

data(iris)
iris$ID <- sample(1:4, nrow(iris), replace = TRUE) # fake-ID
check_heterogeneity_bias(iris, select = c("Sepal.Length", "Petal.Length"), by = "ID")

check_heteroscedasticity

Check model for (non-)constant error variance

Description

Significance testing for linear regression models assumes that the model errors (or residuals) have
constant variance. If this assumption is violated the p-values from the model are no longer reliable.

Usage

check_heteroscedasticity(x, ...)

check_heteroskedasticity(x, ...)

Arguments

x A model object.

... Currently not used.

Details

This test of the hypothesis of (non-)constant error is also called Breusch-Pagan test (1979).

https://easystats.github.io/parameters/articles/demean.html
https://easystats.github.io/parameters/articles/demean.html

26 check_homogeneity

Value

The p-value of the test statistics. A p-value < 0.05 indicates a non-constant variance (heteroskedas-
ticity).

Note

There is also a plot()-method implemented in the see-package.

References

Breusch, T. S., and Pagan, A. R. (1979) A simple test for heteroscedasticity and random coefficient
variation. Econometrica 47, 1287-1294.

See Also

Other functions to check model assumptions and and assess model quality: check_autocorrelation(),
check_collinearity(), check_convergence(), check_homogeneity(), check_model(), check_outliers(),
check_overdispersion(), check_predictions(), check_singularity(), check_zeroinflation()

Examples

m <<- lm(mpg ~ wt + cyl + gear + disp, data = mtcars)
check_heteroscedasticity(m)

plot results

x <- check_heteroscedasticity(m)
plot(x)

check_homogeneity Check model for homogeneity of variances

Description

Check model for homogeneity of variances between groups described by independent variables in
a model.

Usage

check_homogeneity(x, method = "bartlett", ...)

S3 method for class 'afex_aov'
check_homogeneity(x, method = "levene", ...)

https://easystats.github.io/see/articles/performance.html
https://easystats.github.io/see/

check_itemscale 27

Arguments

x A linear model or an ANOVA object.

method Name of the method (underlying test) that should be performed to check the
homogeneity of variances. May either be "levene" for Levene’s Test for Ho-
mogeneity of Variance, "bartlett" for the Bartlett test (assuming normal dis-
tributed samples or groups), "fligner" for the Fligner-Killeen test (rank-based,
non-parametric test), or "auto". In the latter case, Bartlett test is used if the
model response is normal distributed, else Fligner-Killeen test is used.

... Arguments passed down to car::leveneTest().

Value

Invisibly returns the p-value of the test statistics. A p-value < 0.05 indicates a significant difference
in the variance between the groups.

Note

There is also a plot()-method implemented in the see-package.

See Also

Other functions to check model assumptions and and assess model quality: check_autocorrelation(),
check_collinearity(), check_convergence(), check_heteroscedasticity(), check_model(),
check_outliers(), check_overdispersion(), check_predictions(), check_singularity(),
check_zeroinflation()

Examples

model <<- lm(len ~ supp + dose, data = ToothGrowth)
check_homogeneity(model)

plot results

result <- check_homogeneity(model)
plot(result)

check_itemscale Describe Properties of Item Scales

Description

Compute various measures of internal consistencies applied to (sub)scales, which items were ex-
tracted using parameters::principal_components() or parameters::factor_analysis().

Usage

check_itemscale(x, factor_index = NULL, verbose = TRUE)

https://easystats.github.io/see/articles/performance.html
https://easystats.github.io/see/

28 check_itemscale

Arguments

x An object of class parameters_pca, as returned by parameters::principal_components(),
of class parameters_efa, as returned by parameters::factor_analysis(),
or a data frame.

factor_index If x is a data frame, factor_index must be specified. It must be a numeric
vector of same length as number of columns in x, where each element is the
index of the factor to which the respective column in x.

verbose Toggle warnings and messages. If TRUE, messages are printed.

Details

check_itemscale() calculates various measures of internal consistencies, such as Cronbach’s al-
pha, item difficulty or discrimination etc. on subscales which were built from several items. Sub-
scales are retrieved from the results of parameters::principal_components() or parameters::factor_analysis(),
i.e. based on how many components were extracted from the PCA, respectively how many factors
were extracted from the factor analysis. check_itemscale() retrieves those variables that belong
to a component and calculates the above mentioned measures.

Value

A list of data frames, with related measures of internal consistencies of each subscale.

Note

• Item difficulty should range between 0.2 and 0.8. Ideal value is p+(1-p)/2 (which mostly is
between 0.5 and 0.8). See item_difficulty() for details.

• For item discrimination, also known as corrected item-total correlations, acceptable values are
0.20 or higher; the closer to 1.00 the better. See item_discrimination() for more details. If
an item discrimination is negative, the corresponding item probably need to be reverse-coded
(which can be done with datawizard::reverse()).

• In case the total Cronbach’s alpha value is below the acceptable cut-off of 0.7 (mostly if an
index has few items), the mean inter-item-correlation is an alternative measure to indicate
acceptability. Satisfactory range lies between 0.2 and 0.4. See also item_intercor().

References

• Briggs SR, Cheek JM (1986) The role of factor analysis in the development and evalua-
tion of personality scales. Journal of Personality, 54(1), 106-148. doi: 10.1111/j.1467-
6494.1986.tb00391.x

Examples

data generation from '?prcomp', slightly modified
C <- chol(S <- toeplitz(0.9^(0:15)))
set.seed(17)
X <- matrix(rnorm(1600), 100, 16)
Z <- X %*% C

check_model 29

pca <- parameters::principal_components(
as.data.frame(Z),
rotation = "varimax",
n = 3

)
pca
check_itemscale(pca)

as data frame
check_itemscale(

as.data.frame(Z),
factor_index = parameters::closest_component(pca)

)

check_model Visual check of model assumptions

Description

Visual check of various model assumptions (normality of residuals, normality of random effects,
linear relationship, homogeneity of variance, multicollinearity).

If check_model() doesn’t work as expected, try setting verbose = TRUE to get hints about possible
problems.

Usage

check_model(model = NULL, ...)

Default S3 method:
check_model(
model = NULL,
panel = TRUE,
check = "all",
detrend = TRUE,
bandwidth = "nrd",
type = "density",
residual_type = NULL,
show_dots = NULL,
show_ci = NULL,
maximum_dots = 2000,
size_dot = 2,
size_line = 0.8,
size_title = 12,
size_axis_title = base_size,
base_size = 10,
alpha = 0.2,
alpha_dot = 0.8,

30 check_model

colors = c("#3aaf85", "#1b6ca8", "#cd201f"),
theme = see::theme_lucid(),
verbose = FALSE,
x = NULL,
...

)

Arguments

model A model object.
... Arguments passed down to the individual check functions, especially to check_predictions()

and binned_residuals().
panel Logical, if TRUE, plots are arranged as panels; else, single plots for each diag-

nostic are returned.
check Character vector, indicating which checks for should be performed and plot-

ted. May be one or more of "all", "vif", "qq", "normality", "linearity",
"ncv", "homogeneity", "outliers", "reqq", "pp_check", "binned_residuals"
or "overdispersion". Note that not all check apply to all type of models (see
’Details’). "reqq" is a QQ-plot for random effects and only available for mixed
models. "ncv" is an alias for "linearity", and checks for non-constant vari-
ance, i.e. for heteroscedasticity, as well as the linear relationship. By default, all
possible checks are performed and plotted.

detrend Logical. Should Q-Q/P-P plots be detrended? Defaults to TRUE for linear models
or when residual_type = "normal". Defaults to FALSE for QQ plots based on
simulated residuals (i.e. when residual_type = "simulated").

bandwidth A character string indicating the smoothing bandwidth to be used. Unlike stats::density(),
which used "nrd0" as default, the default used here is "nrd" (which seems to
give more plausible results for non-Gaussian models). When problems with
plotting occur, try to change to a different value.

type Plot type for the posterior predictive checks plot. Can be "density", "discrete_dots",
"discrete_interval" or "discrete_both" (the discrete_* options are ap-
propriate for models with discrete - binary, integer or ordinal etc. - outcomes).

residual_type Character, indicating the type of residuals to be used. For non-Gaussian models,
the default is "simulated", which uses simulated residuals. These are based on
simulate_residuals() and thus uses the DHARMa package to return ran-
domized quantile residuals. For Gaussian models, the default is "normal",
which uses the default residuals from the model. Setting residual_type =
"normal" for non-Gaussian models will use a half-normal Q-Q plot of the ab-
solute value of the standardized deviance residuals.

show_dots Logical, if TRUE, will show data points in the plot. Set to FALSE for models with
many observations, if generating the plot is too time-consuming. By default,
show_dots = NULL. In this case check_model() tries to guess whether perfor-
mance will be poor due to a very large model and thus automatically shows or
hides dots.

show_ci Logical, if TRUE, confidence intervals in plots are shown. For models with only
categorical predictors, confidence intervals are not shown by default, because in
this case, these are usually on very large scales.

check_model 31

maximum_dots Limits the number of data points for models with many observations, to reduce
the time for rendering the plot. Defaults to a maximum of 2000 data points to
render

size_dot, size_line
Size of line and dot-geoms.

base_size, size_title, size_axis_title
Base font size for axis and plot titles.

alpha, alpha_dot
The alpha level of the confidence bands and dot-geoms. Scalar from 0 to 1.

colors Character vector with color codes (hex-format). Must be of length 3. First color
is usually used for reference lines, second color for dots, and third color for
outliers or extreme values.

theme A ggplot2-theme function, e.g. theme = see::theme_lucid() or theme = ggplot2::theme_dark().

verbose If FALSE (default), suppress most warning messages.

x Deprecated, please use model instead.

Details

For Bayesian models from packages rstanarm or brms, models will be "converted" to their fre-
quentist counterpart, using bayestestR::bayesian_as_frequentist. A more advanced model-
check for Bayesian models will be implemented at a later stage.

See also the related vignette.

Value

The data frame that is used for plotting.

Posterior Predictive Checks

Posterior predictive checks can be used to look for systematic discrepancies between real and simu-
lated data. It helps to see whether the type of model (distributional family) fits well to the data. See
check_predictions() for further details.

Linearity Assumption

The plot Linearity checks the assumption of linear relationship. However, the spread of dots also
indicate possible heteroscedasticity (i.e. non-constant variance, hence, the alias "ncv" for this
plot), thus it shows if residuals have non-linear patterns. This plot helps to see whether predictors
may have a non-linear relationship with the outcome, in which case the reference line may roughly
indicate that relationship. A straight and horizontal line indicates that the model specification seems
to be ok. But for instance, if the line would be U-shaped, some of the predictors probably should
better be modeled as quadratic term. See check_heteroscedasticity() for further details.

Some caution is needed when interpreting these plots. Although these plots are helpful to check
model assumptions, they do not necessarily indicate so-called "lack of fit", e.g. missed non-linear
relationships or interactions. Thus, it is always recommended to also look at effect plots, including
partial residuals.

https://easystats.github.io/bayestestR/reference/convert_bayesian_as_frequentist.html
https://easystats.github.io/performance/articles/check_model.html
https://strengejacke.github.io/ggeffects/articles/introduction_partial_residuals.html
https://strengejacke.github.io/ggeffects/articles/introduction_partial_residuals.html

32 check_model

Homogeneity of Variance

This plot checks the assumption of equal variance (homoscedasticity). The desired pattern would be
that dots spread equally above and below a straight, horizontal line and show no apparent deviation.

Influential Observations

This plot is used to identify influential observations. If any points in this plot fall outside of Cook’s
distance (the dashed lines) then it is considered an influential observation. See check_outliers()
for further details.

Multicollinearity

This plot checks for potential collinearity among predictors. In a nutshell, multicollinearity means
that once you know the effect of one predictor, the value of knowing the other predictor is rather
low. Multicollinearity might arise when a third, unobserved variable has a causal effect on each
of the two predictors that are associated with the outcome. In such cases, the actual relation-
ship that matters would be the association between the unobserved variable and the outcome. See
check_collinearity() for further details.

Normality of Residuals

This plot is used to determine if the residuals of the regression model are normally distributed.
Usually, dots should fall along the line. If there is some deviation (mostly at the tails), this indicates
that the model doesn’t predict the outcome well for that range that shows larger deviations from the
line. For generalized linear models and when residual_type = "normal", a half-normal Q-Q plot
of the absolute value of the standardized deviance residuals is shown, however, the interpretation
of the plot remains the same. See check_normality() for further details. Usually, for generalized
linear (mixed) models, a test comparing simulated quantile residuals against the uniform distribution
is conducted (see next section).

Distribution of Simulated Quantile Residuals

Fore non-Gaussian models, when residual_type = "simulated" (the default for generalized lin-
ear (mixed) models), residuals are not expected to be normally distributed. In this case, we generate
simulated quantile residuals to compare whether observed response values deviate from model ex-
pectations. Simulated quantile residuals are generated by simulating a series of values from a fitted
model for each case, comparing the observed response values to these simulations, and comput-
ing the empirical quantile of the observed value in the distribution of simulated values. When
the model is correctly-specified, these quantile residuals will follow a uniform (flat) distribution.
The Q-Q plot compares the simulated quantile residuals against a uniform distribution. The plot
is interpreted in the same way as for a normal-distribution Q-Q plot in linear regression. See
simulate_residuals() and check_residuals() for further details.

Overdispersion

For count models, an overdispersion plot is shown. Overdispersion occurs when the observed
variance is higher than the variance of a theoretical model. For Poisson models, variance increases
with the mean and, therefore, variance usually (roughly) equals the mean value. If the variance is
much higher, the data are "overdispersed". See check_overdispersion() for further details.

check_model 33

Binned Residuals

For models from binomial families, a binned residuals plot is shown. Binned residual plots are
achieved by cutting the the data into bins and then plotting the average residual versus the average
fitted value for each bin. If the model were true, one would expect about 95% of the residuals to
fall inside the error bounds. See binned_residuals() for further details.

Residuals for (Generalized) Linear Models

Plots that check the homogeneity of variance use standardized Pearson’s residuals for generalized
linear models, and standardized residuals for linear models. The plots for the normality of residuals
(with overlayed normal curve) and for the linearity assumption use the default residuals for lm and
glm (which are deviance residuals for glm). The Q-Q plots use simulated quantile residuals (see
simulate_residuals()) for non-Gaussian models and standardized residuals for linear models.

Troubleshooting

For models with many observations, or for more complex models in general, generating the plot
might become very slow. One reason might be that the underlying graphic engine becomes slow
for plotting many data points. In such cases, setting the argument show_dots = FALSE might help.
Furthermore, look at the check argument and see if some of the model checks could be skipped,
which also increases performance.

If check_model() doesn’t work as expected, try setting verbose = TRUE to get hints about possible
problems.

Note

This function just prepares the data for plotting. To create the plots, see needs to be installed.
Furthermore, this function suppresses all possible warnings. In case you observe suspicious plots,
please refer to the dedicated functions (like check_collinearity(), check_normality() etc.) to
get informative messages and warnings.

See Also

Other functions to check model assumptions and and assess model quality: check_autocorrelation(),
check_collinearity(), check_convergence(), check_heteroscedasticity(), check_homogeneity(),
check_outliers(), check_overdispersion(), check_predictions(), check_singularity(),
check_zeroinflation()

Examples

m <- lm(mpg ~ wt + cyl + gear + disp, data = mtcars)
check_model(m)

data(sleepstudy, package = "lme4")
m <- lme4::lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
check_model(m, panel = FALSE)

34 check_multimodal

check_multimodal Check if a distribution is unimodal or multimodal

Description

For univariate distributions (one-dimensional vectors), this functions performs a Ameijeiras-Alonso
et al. (2018) excess mass test. For multivariate distributions (data frames), it uses mixture mod-
elling. However, it seems that it always returns a significant result (suggesting that the distribution
is multimodal). A better method might be needed here.

Usage

check_multimodal(x, ...)

Arguments

x A numeric vector or a data frame.
... Arguments passed to or from other methods.

References

• Ameijeiras-Alonso, J., Crujeiras, R. M., and Rodríguez-Casal, A. (2019). Mode testing, criti-
cal bandwidth and excess mass. Test, 28(3), 900-919.

Examples

Univariate
x <- rnorm(1000)
check_multimodal(x)

x <- c(rnorm(1000), rnorm(1000, 2))
check_multimodal(x)

Multivariate
m <- data.frame(

x = rnorm(200),
y = rbeta(200, 2, 1)

)
plot(mx, my)
check_multimodal(m)

m <- data.frame(
x = c(rnorm(100), rnorm(100, 4)),
y = c(rbeta(100, 2, 1), rbeta(100, 1, 4))

)
plot(mx, my)
check_multimodal(m)

check_normality 35

check_normality Check model for (non-)normality of residuals.

Description

Check model for (non-)normality of residuals.

Usage

check_normality(x, ...)

S3 method for class 'merMod'
check_normality(x, effects = "fixed", ...)

Arguments

x A model object.

... Currently not used.

effects Should normality for residuals ("fixed") or random effects ("random") be tested?
Only applies to mixed-effects models. May be abbreviated.

Details

check_normality() calls stats::shapiro.test and checks the standardized residuals (or stu-
dentized residuals for mixed models) for normal distribution. Note that this formal test almost
always yields significant results for the distribution of residuals and visual inspection (e.g. Q-Q
plots) are preferable. For generalized linear models, no formal statistical test is carried out. Rather,
there’s only a plot() method for GLMs. This plot shows a half-normal Q-Q plot of the absolute
value of the standardized deviance residuals is shown (in line with changes in plot.lm() for R
4.3+).

Value

The p-value of the test statistics. A p-value < 0.05 indicates a significant deviation from normal
distribution.

Note

For mixed-effects models, studentized residuals, and not standardized residuals, are used for the
test. There is also a plot()-method implemented in the see-package.

See Also

see::plot.see_check_normality() for options to customize the plot.

https://easystats.github.io/see/articles/performance.html
https://easystats.github.io/see/

36 check_outliers

Examples

m <<- lm(mpg ~ wt + cyl + gear + disp, data = mtcars)
check_normality(m)

plot results
x <- check_normality(m)
plot(x)

QQ-plot
plot(check_normality(m), type = "qq")

PP-plot
plot(check_normality(m), type = "pp")

check_outliers Outliers detection (check for influential observations)

Description

Checks for and locates influential observations (i.e., "outliers") via several distance and/or clustering
methods. If several methods are selected, the returned "Outlier" vector will be a composite outlier
score, made of the average of the binary (0 or 1) results of each method. It represents the probability
of each observation of being classified as an outlier by at least one method. The decision rule used
by default is to classify as outliers observations which composite outlier score is superior or equal
to 0.5 (i.e., that were classified as outliers by at least half of the methods). See the Details section
below for a description of the methods.

Usage

check_outliers(x, ...)

Default S3 method:
check_outliers(
x,
method = c("cook", "pareto"),
threshold = NULL,
ID = NULL,
verbose = TRUE,
...

)

S3 method for class 'numeric'
check_outliers(x, method = "zscore_robust", threshold = NULL, ...)

S3 method for class 'data.frame'

check_outliers 37

check_outliers(x, method = "mahalanobis", threshold = NULL, ID = NULL, ...)

S3 method for class 'performance_simres'
check_outliers(
x,
type = "default",
iterations = 100,
alternative = "two.sided",
...

)

Arguments

x A model, a data.frame, a performance_simres simulate_residuals() or a
DHARMa object, or an EFA/PCA/Omega object returned by the psych package,
or an object returned by parameters::factor_analysis() or item_omega().

... When method = "ics", further arguments in ... are passed down to ICSOutlier::ics.outlier().
When method = "mahalanobis", they are passed down to stats::mahalanobis().
percentage_central can be specified when method = "mcd". For objects of
class performance_simres or DHARMa, further arguments are passed down to
DHARMa::testOutliers().

method The outlier detection method(s). Can be "all" or some of "cook", "pareto",
"zscore", "zscore_robust", "iqr", "ci", "eti", "hdi", "bci", "mahalanobis",
"mahalanobis_robust", "mcd", "ics", "optics" or "lof".

threshold A list containing the threshold values for each method (e.g. list('mahalanobis'
= 7, 'cook' = 1)), above which an observation is considered as outlier. If NULL,
default values will be used (see ’Details’). If a numeric value is given, it will be
used as the threshold for any of the method run. For EFA/PCA/Omega, indicates
the threshold for correlation of residuals (by default, 0.05).

ID Optional, to report an ID column along with the row number.

verbose Toggle warnings.

type Type of method to test for outliers. Can be one of "default", "binomial" or
"bootstrap". Only applies when x is an object returned by simulate_residuals()
or of class DHARMa. See ’Details’ in ?DHARMa::testOutliers for a detailed de-
scription of the types.

iterations Number of simulations to run.

alternative A character string specifying the alternative hypothesis. Can be one of "two.sided",
"less", or "greater".

Details

Outliers can be defined as particularly influential observations. Most methods rely on the compu-
tation of some distance metric, and the observations greater than a certain threshold are considered
outliers. Importantly, outliers detection methods are meant to provide information to consider for
the researcher, rather than to be an automatized procedure which mindless application is a substitute
for thinking.

38 check_outliers

An example sentence for reporting the usage of the composite method could be:

"Based on a composite outlier score (see the ’check_outliers’ function in the ’performance’ R pack-
age; Lüdecke et al., 2021) obtained via the joint application of multiple outliers detection algorithms
(Z-scores, Iglewicz, 1993; Interquartile range (IQR); Mahalanobis distance, Cabana, 2019; Robust
Mahalanobis distance, Gnanadesikan and Kettenring, 1972; Minimum Covariance Determinant,
Leys et al., 2018; Invariant Coordinate Selection, Archimbaud et al., 2018; OPTICS, Ankerst et al.,
1999; Isolation Forest, Liu et al. 2008; and Local Outlier Factor, Breunig et al., 2000), we excluded
n participants that were classified as outliers by at least half of the methods used."

Value

A logical vector of the detected outliers with a nice printing method: a check (message) on whether
outliers were detected or not. The information on the distance measure and whether or not an
observation is considered as outlier can be recovered with the as.data.frame function. Note that
the function will (silently) return a vector of FALSE for non-supported data types such as character
strings.

Model-specific methods

• Cook’s Distance: Among outlier detection methods, Cook’s distance and leverage are less
common than the basic Mahalanobis distance, but still used. Cook’s distance estimates the
variations in regression coefficients after removing each observation, one by one (Cook, 1977).
Since Cook’s distance is in the metric of an F distribution with p and n-p degrees of freedom,
the median point of the quantile distribution can be used as a cut-off (Bollen, 1985). A com-
mon approximation or heuristic is to use 4 divided by the numbers of observations, which
usually corresponds to a lower threshold (i.e., more outliers are detected). This only works for
frequentist models. For Bayesian models, see pareto.

• Pareto: The reliability and approximate convergence of Bayesian models can be assessed
using the estimates for the shape parameter k of the generalized Pareto distribution. If the
estimated tail shape parameter k exceeds 0.5, the user should be warned, although in practice
the authors of the loo package observed good performance for values of k up to 0.7 (the default
threshold used by performance).

Univariate methods

• Z-scores ("zscore", "zscore_robust"): The Z-score, or standard score, is a way of de-
scribing a data point as deviance from a central value, in terms of standard deviations from the
mean ("zscore") or, as it is here the case ("zscore_robust") by default (Iglewicz, 1993),
in terms of Median Absolute Deviation (MAD) from the median (which are robust measures
of dispersion and centrality). The default threshold to classify outliers is 1.959 (threshold
= list("zscore" = 1.959)), corresponding to the 2.5% (qnorm(0.975)) most extreme ob-
servations (assuming the data is normally distributed). Importantly, the Z-score method is
univariate: it is computed column by column. If a data frame is passed, the Z-score is calcu-
lated for each variable separately, and the maximum (absolute) Z-score is kept for each ob-
servations. Thus, all observations that are extreme on at least one variable might be detected
as outliers. Thus, this method is not suited for high dimensional data (with many columns),
returning too liberal results (detecting many outliers).

check_outliers 39

• IQR ("iqr"): Using the IQR (interquartile range) is a robust method developed by John
Tukey, which often appears in box-and-whisker plots (e.g., in ggplot2::geom_boxplot). The
interquartile range is the range between the first and the third quartiles. Tukey considered as
outliers any data point that fell outside of either 1.5 times (the default threshold is 1.7) the IQR
below the first or above the third quartile. Similar to the Z-score method, this is a univariate
method for outliers detection, returning outliers detected for at least one column, and might
thus not be suited to high dimensional data. The distance score for the IQR is the absolute
deviation from the median of the upper and lower IQR thresholds. Then, this value is divided
by the IQR threshold, to “standardize” it and facilitate interpretation.

• CI ("ci", "eti", "hdi", "bci"): Another univariate method is to compute, for each
variable, some sort of "confidence" interval and consider as outliers values lying beyond the
edges of that interval. By default, "ci" computes the Equal-Tailed Interval ("eti"), but other
types of intervals are available, such as Highest Density Interval ("hdi") or the Bias Corrected
and Accelerated Interval ("bci"). The default threshold is 0.95, considering as outliers all
observations that are outside the 95% CI on any of the variable. See bayestestR::ci()
for more details about the intervals. The distance score for the CI methods is the absolute
deviation from the median of the upper and lower CI thresholds. Then, this value is divided
by the difference between the upper and lower CI bounds divided by two, to “standardize” it
and facilitate interpretation.

Multivariate methods

• Mahalanobis Distance: Mahalanobis distance (Mahalanobis, 1930) is often used for multi-
variate outliers detection as this distance takes into account the shape of the observations. The
default threshold is often arbitrarily set to some deviation (in terms of SD or MAD) from
the mean (or median) of the Mahalanobis distance. However, as the Mahalanobis distance can
be approximated by a Chi squared distribution (Rousseeuw and Van Zomeren, 1990), we can
use the alpha quantile of the chi-square distribution with k degrees of freedom (k being the
number of columns). By default, the alpha threshold is set to 0.025 (corresponding to the 2.5\
Cabana, 2019). This criterion is a natural extension of the median plus or minus a coefficient
times the MAD method (Leys et al., 2013).

• Robust Mahalanobis Distance: A robust version of Mahalanobis distance using an Orthog-
onalized Gnanadesikan-Kettenring pairwise estimator (Gnanadesikan and Kettenring, 1972).
Requires the bigutilsr package. See the bigutilsr::dist_ogk() function.

• Minimum Covariance Determinant (MCD): Another robust version of Mahalanobis. Leys
et al. (2018) argue that Mahalanobis Distance is not a robust way to determine outliers, as it
uses the means and covariances of all the data - including the outliers - to determine individual
difference scores. Minimum Covariance Determinant calculates the mean and covariance
matrix based on the most central subset of the data (by default, 66\ is deemed to be a more
robust method of identifying and removing outliers than regular Mahalanobis distance. This
method has a percentage_central argument that allows specifying the breakdown point
(0.75, the default, is recommended by Leys et al. 2018, but a commonly used alternative is
0.50).

• Invariant Coordinate Selection (ICS): The outlier are detected using ICS, which by default
uses an alpha threshold of 0.025 (corresponding to the 2.5\ value for outliers classification.
Refer to the help-file of ICSOutlier::ics.outlier() to get more details about this proce-
dure. Note that method = "ics" requires both ICS and ICSOutlier to be installed, and that

40 check_outliers

it takes some time to compute the results. You can speed up computation time using parallel
computing. Set the number of cores to use with options(mc.cores = 4) (for example).

• OPTICS: The Ordering Points To Identify the Clustering Structure (OPTICS) algorithm (Ankerst
et al., 1999) is using similar concepts to DBSCAN (an unsupervised clustering technique
that can be used for outliers detection). The threshold argument is passed as minPts, which
corresponds to the minimum size of a cluster. By default, this size is set at 2 times the
number of columns (Sander et al., 1998). Compared to the other techniques, that will al-
ways detect several outliers (as these are usually defined as a percentage of extreme val-
ues), this algorithm functions in a different manner and won’t always detect outliers. Note
that method = "optics" requires the dbscan package to be installed, and that it takes some
time to compute the results. Additionally, the optics_xi (default to 0.05) is passed to the
dbscan::extractXi() function to further refine the cluster selection.

• Local Outlier Factor: Based on a K nearest neighbors algorithm, LOF compares the local
density of a point to the local densities of its neighbors instead of computing a distance from
the center (Breunig et al., 2000). Points that have a substantially lower density than their
neighbors are considered outliers. A LOF score of approximately 1 indicates that density
around the point is comparable to its neighbors. Scores significantly larger than 1 indicate
outliers. The default threshold of 0.025 will classify as outliers the observations located at
qnorm(1-0.025) * SD) of the log-transformed LOF distance. Requires the dbscan package.

Methods for simulated residuals

The approach for detecting outliers based on simulated residuals differs from the traditional meth-
ods and may not be detecting outliers as expected. Literally, this approach compares observed to
simulated values. However, we do not know the deviation of the observed data to the model ex-
pectation, and thus, the term "outlier" should be taken with a grain of salt. It refers to "simulation
outliers". Basically, the comparison tests whether on observed data point is outside the simulated
range. It is strongly recommended to read the related documentations in the DHARMa package,
e.g. ?DHARMa::testOutliers.

Threshold specification

Default thresholds are currently specified as follows:

list(
zscore = stats::qnorm(p = 1 - 0.001 / 2),
zscore_robust = stats::qnorm(p = 1 - 0.001 / 2),
iqr = 1.7,
ci = 1 - 0.001,
eti = 1 - 0.001,
hdi = 1 - 0.001,
bci = 1 - 0.001,
cook = stats::qf(0.5, ncol(x), nrow(x) - ncol(x)),
pareto = 0.7,
mahalanobis = stats::qchisq(p = 1 - 0.001, df = ncol(x)),
mahalanobis_robust = stats::qchisq(p = 1 - 0.001, df = ncol(x)),
mcd = stats::qchisq(p = 1 - 0.001, df = ncol(x)),
ics = 0.001,

check_outliers 41

optics = 2 * ncol(x),
optics_xi = 0.05,
lof = 0.001

)

Meta-analysis models

For meta-analysis models (e.g. objects of class rma from the metafor package or metagen from
package meta), studies are defined as outliers when their confidence interval lies outside the confi-
dence interval of the pooled effect.

Note

There is also a plot()-method implemented in the see package. Please note that the range of the
distance-values along the y-axis is re-scaled to range from 0 to 1.

References

• Archimbaud, A., Nordhausen, K., and Ruiz-Gazen, A. (2018). ICS for multivariate outlier
detection with application to quality control. Computational Statistics and Data Analysis,
128, 184-199. doi:10.1016/j.csda.2018.06.011

• Gnanadesikan, R., and Kettenring, J. R. (1972). Robust estimates, residuals, and outlier de-
tection with multiresponse data. Biometrics, 81-124.

• Bollen, K. A., and Jackman, R. W. (1985). Regression diagnostics: An expository treatment
of outliers and influential cases. Sociological Methods and Research, 13(4), 510-542.

• Cabana, E., Lillo, R. E., and Laniado, H. (2019). Multivariate outlier detection based on a
robust Mahalanobis distance with shrinkage estimators. arXiv preprint arXiv:1904.02596.

• Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics,
19(1), 15-18.

• Iglewicz, B., and Hoaglin, D. C. (1993). How to detect and handle outliers (Vol. 16). Asq
Press.

• Leys, C., Klein, O., Dominicy, Y., and Ley, C. (2018). Detecting multivariate outliers: Use
a robust variant of Mahalanobis distance. Journal of Experimental Social Psychology, 74,
150-156.

• Liu, F. T., Ting, K. M., and Zhou, Z. H. (2008, December). Isolation forest. In 2008 Eighth
IEEE International Conference on Data Mining (pp. 413-422). IEEE.

• Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., and Makowski, D. (2021). perfor-
mance: An R package for assessment, comparison and testing of statistical models. Journal
of Open Source Software, 6(60), 3139. doi:10.21105/joss.03139

• Thériault, R., Ben-Shachar, M. S., Patil, I., Lüdecke, D., Wiernik, B. M., and Makowski,
D. (2023). Check your outliers! An introduction to identifying statistical outliers in R with
easystats. Behavior Research Methods, 1-11. doi:10.3758/s1342802402356w

• Rousseeuw, P. J., and Van Zomeren, B. C. (1990). Unmasking multivariate outliers and lever-
age points. Journal of the American Statistical association, 85(411), 633-639.

https://easystats.github.io/see/articles/performance.html
https://easystats.github.io/see/
https://doi.org/10.1016/j.csda.2018.06.011
https://doi.org/10.21105/joss.03139
https://doi.org/10.3758/s13428-024-02356-w

42 check_outliers

See Also

see::plot.see_check_outliers() for options to customize the plot.

Other functions to check model assumptions and and assess model quality: check_autocorrelation(),
check_collinearity(), check_convergence(), check_heteroscedasticity(), check_homogeneity(),
check_model(), check_overdispersion(), check_predictions(), check_singularity(), check_zeroinflation()

Examples

data <- mtcars # Size nrow(data) = 32

For single variables --
Find all observations beyond +/- 2 SD
outliers_list <- check_outliers(data$mpg, method = "zscore", threshold = 2)
outliers_list # Show the row index of the outliers
as.numeric(outliers_list) # The object is a binary vector...
filtered_data <- data[!outliers_list,] # And can be used to filter a data frame
nrow(filtered_data) # New size, 30 (2 outliers removed)

For dataframes --
check_outliers(data, threshold = 2) # It works the same way on data frames

You can also use multiple methods at once
outliers_list <- check_outliers(data, method = c(

"mahalanobis",
"iqr",
"zscore"

))
outliers_list

Using `as.data.frame()`, we can access more details!
outliers_info <- as.data.frame(outliers_list)
head(outliers_info)
outliers_info$Outlier # Including the probability of being an outlier

And we can be more stringent in our outliers removal process
filtered_data <- data[outliers_info$Outlier < 0.1,]

We can run the function stratified by groups using `{datawizard}` package:
group_iris <- datawizard::data_group(iris, "Species")
check_outliers(group_iris)
nolint start

nolint end

You can also run all the methods
check_outliers(data, method = "all", verbose = FALSE)

For statistical models ---
select only mpg and disp (continuous)
mt1 <- mtcars[, c(1, 3, 4)]

check_overdispersion 43

create some fake outliers and attach outliers to main df
mt2 <- rbind(mt1, data.frame(

mpg = c(37, 40), disp = c(300, 400),
hp = c(110, 120)

))
fit model with outliers
model <- lm(disp ~ mpg + hp, data = mt2)

outliers_list <- check_outliers(model)
plot(outliers_list)

insight::get_data(model)[outliers_list,] # Show outliers data

check_overdispersion Check overdispersion (and underdispersion) of GL(M)M’s

Description

check_overdispersion() checks generalized linear (mixed) models for overdispersion (and un-
derdispersion).

Usage

check_overdispersion(x, ...)

S3 method for class 'performance_simres'
check_overdispersion(x, alternative = "two.sided", ...)

Arguments

x Fitted model of class merMod, glmmTMB, glm, or glm.nb (package MASS), or an
object returned by simulate_residuals().

... Arguments passed down to simulate_residuals(). This only applies for mod-
els with zero-inflation component, or for models of class glmmTMB from nbinom1
or nbinom2 family.

alternative A character string specifying the alternative hypothesis. Can be one of "two.sided",
"less", or "greater".

Details

Overdispersion occurs when the observed variance is higher than the variance of a theoretical model.
For Poisson models, variance increases with the mean and, therefore, variance usually (roughly)
equals the mean value. If the variance is much higher, the data are "overdispersed". A less common
case is underdispersion, where the variance is much lower than the mean.

44 check_overdispersion

Value

A list with results from the overdispersion test, like chi-squared statistics, p-value or dispersion
ratio.

Interpretation of the Dispersion Ratio

If the dispersion ratio is close to one, a Poisson model fits well to the data. Dispersion ratios larger
than one indicate overdispersion, thus a negative binomial model or similar might fit better to the
data. Dispersion ratios much smaller than one indicate underdispersion. A p-value < .05 indicates
either overdispersion or underdispersion (the first being more common).

Overdispersion in Poisson Models

For Poisson models, the overdispersion test is based on the code from Gelman and Hill (2007), page
115.

Overdispersion in Negative Binomial or Zero-Inflated Models

For negative binomial (mixed) models or models with zero-inflation component, the overdispersion
test is based simulated residuals (see simulate_residuals()).

Overdispersion in Mixed Models

For merMod- and glmmTMB-objects, check_overdispersion() is based on the code in the GLMM
FAQ, section How can I deal with overdispersion in GLMMs?. Note that this function only re-
turns an approximate estimate of an overdispersion parameter. Using this approach would be
inaccurate for zero-inflated or negative binomial mixed models (fitted with glmmTMB), thus, in
such cases, the overdispersion test is based on simulate_residuals() (which is identical to
check_overdispersion(simulate_residuals(model))).

How to fix Overdispersion

Overdispersion can be fixed by either modeling the dispersion parameter, or by choosing a different
distributional family (like Quasi-Poisson, or negative binomial, see Gelman and Hill (2007), pages
115-116).

Tests based on simulated residuals

For certain models, resp. model from certain families, tests are based on simulated residuals (see
simulate_residuals()). These are usually more accurate for testing such models than the tra-
ditionally used Pearson residuals. However, when simulating from more complex models, such as
mixed models or models with zero-inflation, there are several important considerations. Arguments
specified in ... are passed to simulate_residuals(), which relies on DHARMa::simulateResiduals()
(and therefore, arguments in ... are passed further down to DHARMa). The defaults in DHARMa
are set on the most conservative option that works for all models. However, in many cases, the help
advises to use different settings in particular situations or for particular models. It is recommended
to read the ’Details’ in ?DHARMa::simulateResiduals closely to understand the implications of
the simulation process and which arguments should be modified to get the most accurate results.

http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html
http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html

check_predictions 45

References

• Bolker B et al. (2017): GLMM FAQ.
• Gelman, A., and Hill, J. (2007). Data analysis using regression and multilevel/hierarchical

models. Cambridge; New York: Cambridge University Press.

See Also

Other functions to check model assumptions and and assess model quality: check_autocorrelation(),
check_collinearity(), check_convergence(), check_heteroscedasticity(), check_homogeneity(),
check_model(), check_outliers(), check_predictions(), check_singularity(), check_zeroinflation()

Examples

data(Salamanders, package = "glmmTMB")
m <- glm(count ~ spp + mined, family = poisson, data = Salamanders)
check_overdispersion(m)

check_predictions Posterior predictive checks

Description

Posterior predictive checks mean "simulating replicated data under the fitted model and then com-
paring these to the observed data" (Gelman and Hill, 2007, p. 158). Posterior predictive checks
can be used to "look for systematic discrepancies between real and simulated data" (Gelman et al.
2014, p. 169).

performance provides posterior predictive check methods for a variety of frequentist models (e.g.,
lm, merMod, glmmTMB, ...). For Bayesian models, the model is passed to bayesplot::pp_check().

If check_predictions() doesn’t work as expected, try setting verbose = TRUE to get hints about
possible problems.

Usage

check_predictions(model = NULL, ...)

Default S3 method:
check_predictions(
model = NULL,
iterations = 50,
check_range = FALSE,
re_formula = NULL,
bandwidth = "nrd",
type = "density",
verbose = TRUE,
object = NULL,
...

)

http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html

46 check_predictions

Arguments

model A statistical model.

... Additional arguments passed on to downstream functions. For frequentist mod-
els, these are forwarded to simulate(); for Bayesian models (e.g., stanreg,
brmsfit), they are forwarded to bayesplot::pp_check().

iterations The number of draws to simulate/bootstrap.

check_range Logical, if TRUE, includes a plot with the minimum value of the original response
against the minimum values of the replicated responses, and the same for the
maximum value. This plot helps judging whether the variation in the original
data is captured by the model or not (Gelman et al. 2020, pp.163). The minimum
and maximum values of y should be inside the range of the related minimum and
maximum values of yrep.

re_formula Formula containing group-level effects (random effects) to be considered in the
simulated data. If NULL (default), condition on all random effects. If NA or ~0,
condition on no random effects. See simulate() in lme4.

bandwidth A character string indicating the smoothing bandwidth to be used. Unlike stats::density(),
which used "nrd0" as default, the default used here is "nrd" (which seems to
give more plausible results for non-Gaussian models). When problems with
plotting occur, try to change to a different value.

type Plot type for the posterior predictive checks plot. Can be "density", "discrete_dots",
"discrete_interval" or "discrete_both" (the discrete_* options are ap-
propriate for models with discrete - binary, integer or ordinal etc. - outcomes).

verbose Toggle warnings.

object Deprecated, please use model instead.

Details

An example how posterior predictive checks can also be used for model comparison is Figure 6
from Gabry et al. 2019, Figure 6.

The model shown in the right panel (b) can simulate new data that are more similar to the observed
outcome than the model in the left panel (a). Thus, model (b) is likely to be preferred over model
(a).

Value

A data frame of simulated responses and the original response vector.

Note

Every model object that has a simulate()-method should work with check_predictions(). On
R 3.6.0 and higher, if bayesplot (or a package that imports bayesplot such as rstanarm or brms)
is loaded, pp_check() is also available as an alias for check_predictions().

If check_predictions() doesn’t work as expected, try setting verbose = TRUE to get hints about
possible problems.

check_residuals 47

References

• Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., and Gelman, A. (2019). Visualization in
Bayesian workflow. Journal of the Royal Statistical Society: Series A (Statistics in Society),
182(2), 389–402. https://doi.org/10.1111/rssa.12378

• Gelman, A., and Hill, J. (2007). Data analysis using regression and multilevel/hierarchical
models. Cambridge; New York: Cambridge University Press.

• Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2014).
Bayesian data analysis. (Third edition). CRC Press.

• Gelman, A., Hill, J., and Vehtari, A. (2020). Regression and Other Stories. Cambridge Uni-
versity Press.

See Also

simulate_residuals() and check_residuals(). See also see::print.see_performance_pp_check()
for options to customize the plot.

Other functions to check model assumptions and and assess model quality: check_autocorrelation(),
check_collinearity(), check_convergence(), check_heteroscedasticity(), check_homogeneity(),
check_model(), check_outliers(), check_overdispersion(), check_singularity(), check_zeroinflation()

Examples

linear model
model <- lm(mpg ~ disp, data = mtcars)
check_predictions(model)

discrete/integer outcome
set.seed(99)
d <- iris
d$skewed <- rpois(150, 1)
model <- glm(

skewed ~ Species + Petal.Length + Petal.Width,
family = poisson(),
data = d

)
check_predictions(model, type = "discrete_both")

check_residuals Check distribution of simulated quantile residuals

Description

check_residuals() checks generalized linear (mixed) models for uniformity of randomized quan-
tile residuals, which can be used to identify typical model misspecification problems, such as
over/underdispersion, zero-inflation, and residual spatial and temporal autocorrelation.

48 check_residuals

Usage

check_residuals(x, ...)

Default S3 method:
check_residuals(x, alternative = "two.sided", distribution = "punif", ...)

Arguments

x A supported model object or an object returned by simulate_residuals() or
DHARMa::simulateResiduals().

... Passed down to stats::ks.test().

alternative A character string specifying the alternative hypothesis. Can be one of "two.sided",
"less", or "greater". See stats::ks.test() for details.

distribution The distribution to compare the residuals against. Can be (a) a character value
giving a cumulative distribution function (for example, "punif" (default) or
"pnorm"), (b) a cumulative distribution function itself (for example, punif or
pnorm), or (c) a numeric vector of values.

Details

Simulated quantile residuals are generated by simulating a series of values from a fitted model for
each case, comparing the observed response values to these simulations, and computing the em-
pirical quantile of the observed value in the distribution of simulated values. When the model is
correctly-specified, these quantile residuals will follow a uniform (flat) distribution. check_residuals()
tests the distribution of the quantile residuals against the uniform distribution using a Kolmogorov-
Smirnov test. Essentially, comparing quantile residuals to the uniform distribution tests whether the
observed response values deviate from model expectations (i.e., simulated values). In this sense,
check_residuals() is similar to posterior predictive checks with check_predictions().

There is a plot() method to visualize the distribution of quantile residuals using a Q-Q plot. This
plot can be interpreted in the same way as a Q-Q plot for normality of residuals in linear regression.

If desired, a different theoretical distribution or a vector of numeric values can be tested against
using the distribution argument.

Value

The p-value of the test statistics.

Tests based on simulated residuals

For certain models, resp. model from certain families, tests like check_zeroinflation() or
check_overdispersion() are based on simulated residuals. These are usually more accurate for
such tests than the traditionally used Pearson residuals. However, when simulating from more com-
plex models, such as mixed models or models with zero-inflation, there are several important con-
siderations. simulate_residuals() relies on DHARMa::simulateResiduals(), and additional
arguments specified in ... are passed further down to that function. The defaults in DHARMa are
set on the most conservative option that works for all models. However, in many cases, the help
advises to use different settings in particular situations or for particular models. It is recommended

check_singularity 49

to read the ’Details’ in ?DHARMa::simulateResiduals closely to understand the implications of
the simulation process and which arguments should be modified to get the most accurate results.

See Also

simulate_residuals(), check_zeroinflation(), check_overdispersion() and check_predictions().
See also see::plot.see_performance_simres() for options to customize the plot.

Examples

dat <- DHARMa::createData(sampleSize = 100, overdispersion = 0.5, family = poisson())
m <- glm(observedResponse ~ Environment1, family = poisson(), data = dat)
res <- simulate_residuals(m)
check_residuals(res)

check_singularity Check mixed models for boundary fits

Description

Check mixed models for boundary fits.

Usage

check_singularity(x, tolerance = 1e-05, ...)

S3 method for class 'glmmTMB'
check_singularity(x, tolerance = 1e-05, check = "model", ...)

Arguments

x A mixed model.

tolerance Indicates up to which value the convergence result is accepted. The larger
tolerance is, the stricter the test will be.

... Currently not used.

check Indicates whether singularity check should be carried out for the full model
("model", the default), or per random effects term ("terms").

Details

If a model is "singular", this means that some dimensions of the variance-covariance matrix have
been estimated as exactly zero. This often occurs for mixed models with complex random effects
structures.

"While singular models are statistically well defined (it is theoretically sensible for the true max-
imum likelihood estimate to correspond to a singular fit), there are real concerns that (1) singular
fits correspond to overfitted models that may have poor power; (2) chances of numerical problems

50 check_singularity

and mis-convergence are higher for singular models (e.g. it may be computationally difficult to
compute profile confidence intervals for such models); (3) standard inferential procedures such as
Wald statistics and likelihood ratio tests may be inappropriate." (lme4 Reference Manual)

There is no gold-standard about how to deal with singularity and which random-effects specification
to choose. Beside using fully Bayesian methods (with informative priors), proposals in a frequentist
framework are:

• avoid fitting overly complex models, such that the variance-covariance matrices can be esti-
mated precisely enough (Matuschek et al. 2017)

• use some form of model selection to choose a model that balances predictive accuracy and
overfitting/type I error (Bates et al. 2015, Matuschek et al. 2017)

• "keep it maximal", i.e. fit the most complex model consistent with the experimental design,
removing only terms required to allow a non-singular fit (Barr et al. 2013)

• since version 1.1.9, the glmmTMB package allows to use priors in a frequentist framework,
too. One recommendation is to use a Gamma prior (Chung et al. 2013). The mean may vary
from 1 to very large values (like 1e8), and the shape parameter should be set to a value of 2.5.
You can then update() your model with the specified prior. In glmmTMB, the code would
look like this:

"model" is an object of class gmmmTMB
prior <- data.frame(
prior = "gamma(1, 2.5)", # mean can be 1, but even 1e8
class = "ranef" # for random effects

)
model_with_priors <- update(model, priors = prior)

Large values for the mean parameter of the Gamma prior have no large impact on the random
effects variances in terms of a "bias". Thus, if 1 doesn’t fix the singular fit, you can safely try
larger values.

Note the different meaning between singularity and convergence: singularity indicates an issue with
the "true" best estimate, i.e. whether the maximum likelihood estimation for the variance-covariance
matrix of the random effects is positive definite or only semi-definite. Convergence is a question of
whether we can assume that the numerical optimization has worked correctly or not.

Value

TRUE if the model fit is singular.

References

• Bates D, Kliegl R, Vasishth S, Baayen H. Parsimonious Mixed Models. arXiv:1506.04967,
June 2015.

• Barr DJ, Levy R, Scheepers C, Tily HJ. Random effects structure for confirmatory hypothesis
testing: Keep it maximal. Journal of Memory and Language, 68(3):255-278, April 2013.

• Chung Y, Rabe-Hesketh S, Dorie V, Gelman A, and Liu J. 2013. "A Nondegenerate Penalized
Likelihood Estimator for Variance Parameters in Multilevel Models." Psychometrika 78 (4):
685–709. doi:10.1007/s1133601393282

https://doi.org/10.1007/s11336-013-9328-2

check_singularity 51

• Matuschek H, Kliegl R, Vasishth S, Baayen H, Bates D. Balancing type I error and power in
linear mixed models. Journal of Memory and Language, 94:305-315, 2017.

• lme4 Reference Manual, https://cran.r-project.org/package=lme4

See Also

Other functions to check model assumptions and and assess model quality: check_autocorrelation(),
check_collinearity(), check_convergence(), check_heteroscedasticity(), check_homogeneity(),
check_model(), check_outliers(), check_overdispersion(), check_predictions(), check_zeroinflation()

Examples

data(sleepstudy, package = "lme4")
set.seed(123)
sleepstudy$mygrp <- sample(1:5, size = 180, replace = TRUE)
sleepstudy$mysubgrp <- NA
for (i in 1:5) {

filter_group <- sleepstudy$mygrp == i
sleepstudy$mysubgrp[filter_group] <-
sample(1:30, size = sum(filter_group), replace = TRUE)

}

model <- lme4::lmer(
Reaction ~ Days + (1 | mygrp / mysubgrp) + (1 | Subject),
data = sleepstudy

)
any singular fits?
check_singularity(model)
singular fit for which particular random effects terms?
check_singularity(model, check = "terms")

Not run:
Fixing singularity issues using priors in glmmTMB
Example taken from `vignette("priors", package = "glmmTMB")`
dat <- readRDS(system.file(

"vignette_data",
"gophertortoise.rds",
package = "glmmTMB"

))
model <- glmmTMB::glmmTMB(

shells ~ prev + offset(log(Area)) + factor(year) + (1 | Site),
family = poisson,
data = dat

)
singular fit
check_singularity(model)

impose Gamma prior on random effects parameters
prior <- data.frame(

prior = "gamma(1, 2.5)", # mean can be 1, but even 1e8
class = "ranef" # for random effects

)

https://cran.r-project.org/package=lme4

52 check_sphericity

model_with_priors <- update(model, priors = prior)
no singular fit
check_singularity(model_with_priors)

End(Not run)

check_sphericity Check model for violation of sphericity

Description

Check model for violation of sphericity. For Bartlett’s Test of Sphericity (used for correlation
matrices and factor analyses), see check_sphericity_bartlett.

Usage

check_sphericity(x, ...)

Arguments

x A model object.

... Arguments passed to car::Anova.

Value

Invisibly returns the p-values of the test statistics. A p-value < 0.05 indicates a violation of spheric-
ity.

Examples

data(Soils, package = "carData")
soils.mod <- lm(

cbind(pH, N, Dens, P, Ca, Mg, K, Na, Conduc) ~ Block + Contour * Depth,
data = Soils

)

check_sphericity(Manova(soils.mod))

check_symmetry 53

check_symmetry Check distribution symmetry

Description

Uses Hotelling and Solomons test of symmetry by testing if the standardized nonparametric skew
((Mean−Median)

SD) is different than 0.

This is an underlying assumption of Wilcoxon signed-rank test.

Usage

check_symmetry(x, ...)

Arguments

x Model or numeric vector

... Not used.

Examples

V <- suppressWarnings(wilcox.test(mtcars$mpg))
check_symmetry(V)

check_zeroinflation Check for zero-inflation in count models

Description

check_zeroinflation() checks whether count models are over- or underfitting zeros in the out-
come.

Usage

check_zeroinflation(x, ...)

Default S3 method:
check_zeroinflation(x, tolerance = 0.05, ...)

S3 method for class 'performance_simres'
check_zeroinflation(x, tolerance = 0.1, alternative = "two.sided", ...)

54 check_zeroinflation

Arguments

x Fitted model of class merMod, glmmTMB, glm, or glm.nb (package MASS).

... Arguments passed down to simulate_residuals(). This only applies for mod-
els with zero-inflation component, or for models of class glmmTMB from nbinom1
or nbinom2 family.

tolerance The tolerance for the ratio of observed and predicted zeros to considered as over-
or underfitting zeros. A ratio between 1 +/- tolerance is considered as OK,
while a ratio beyond or below this threshold would indicate over- or underfitting.

alternative A character string specifying the alternative hypothesis. Can be one of "two.sided",
"less", or "greater".

Details

If the amount of observed zeros is larger than the amount of predicted zeros, the model is under-
fitting zeros, which indicates a zero-inflation in the data. In such cases, it is recommended to use
negative binomial or zero-inflated models.

In case of negative binomial models, models with zero-inflation component, or hurdle models, the
results from check_zeroinflation() are based on simulate_residuals(), i.e. check_zeroinflation(simulate_residuals(model))
is internally called if necessary.

Value

A list with information about the amount of predicted and observed zeros in the outcome, as well
as the ratio between these two values.

Tests based on simulated residuals

For certain models, resp. model from certain families, tests are based on simulated residuals (see
simulate_residuals()). These are usually more accurate for testing such models than the tra-
ditionally used Pearson residuals. However, when simulating from more complex models, such as
mixed models or models with zero-inflation, there are several important considerations. Arguments
specified in ... are passed to simulate_residuals(), which relies on DHARMa::simulateResiduals()
(and therefore, arguments in ... are passed further down to DHARMa). The defaults in DHARMa
are set on the most conservative option that works for all models. However, in many cases, the help
advises to use different settings in particular situations or for particular models. It is recommended
to read the ’Details’ in ?DHARMa::simulateResiduals closely to understand the implications of
the simulation process and which arguments should be modified to get the most accurate results.

See Also

Other functions to check model assumptions and and assess model quality: check_autocorrelation(),
check_collinearity(), check_convergence(), check_heteroscedasticity(), check_homogeneity(),
check_model(), check_outliers(), check_overdispersion(), check_predictions(), check_singularity()

Examples

data(Salamanders, package = "glmmTMB")
m <- glm(count ~ spp + mined, family = poisson, data = Salamanders)

classify_distribution 55

check_zeroinflation(m)

for models with zero-inflation component, it's better to carry out
the check for zero-inflation using simulated residuals
m <- glmmTMB::glmmTMB(

count ~ spp + mined,
ziformula = ~ mined + spp,
family = poisson,
data = Salamanders

)
res <- simulate_residuals(m)
check_zeroinflation(res)

classify_distribution Classify the distribution of a model-family using machine learning

Description

Classify the distribution of a model-family using machine learning

Details

The trained model to classify distributions, which is used by the check_distribution() function.

compare_performance Compare performance of different models

Description

compare_performance() computes indices of model performance for different models at once and
hence allows comparison of indices across models.

Usage

compare_performance(
...,
metrics = "all",
rank = FALSE,
estimator = "ML",
verbose = TRUE

)

56 compare_performance

Arguments

... Multiple model objects (also of different classes).

metrics Can be "all", "common" or a character vector of metrics to be computed. See
related documentation() of object’s class for details.

rank Logical, if TRUE, models are ranked according to ’best’ overall model perfor-
mance. See ’Details’.

estimator Only for linear models. Corresponds to the different estimators for the standard
deviation of the errors. If estimator = "ML" (default, except for performance_aic()
when the model object is of class lmerMod), the scaling is done by n (the biased
ML estimator), which is then equivalent to using AIC(logLik()). Setting it to
"REML" will give the same results as AIC(logLik(..., REML = TRUE)).

verbose Toggle warnings.

Details

Model Weights: When information criteria (IC) are requested in metrics (i.e., any of "all",
"common", "AIC", "AICc", "BIC", "WAIC", or "LOOIC"), model weights based on these criteria are
also computed. For all IC except LOOIC, weights are computed as w = exp(-0.5 * delta_ic)
/ sum(exp(-0.5 * delta_ic)), where delta_ic is the difference between the model’s IC value
and the smallest IC value in the model set (Burnham and Anderson, 2002). For LOOIC, weights
are computed as "stacking weights" using loo::stacking_weights().

Ranking Models: When rank = TRUE, a new column Performance_Score is returned. This
score ranges from 0\ performance. Note that all score value do not necessarily sum up to 100\
Rather, calculation is based on normalizing all indices (i.e. rescaling them to a range from 0 to
1), and taking the mean value of all indices for each model. This is a rather quick heuristic, but
might be helpful as exploratory index.

In particular when models are of different types (e.g. mixed models, classical linear models,
logistic regression, ...), not all indices will be computed for each model. In case where an index
can’t be calculated for a specific model type, this model gets an NA value. All indices that have
any NAs are excluded from calculating the performance score.

There is a plot()-method for compare_performance(), which creates a "spiderweb" plot, where
the different indices are normalized and larger values indicate better model performance. Hence,
points closer to the center indicate worse fit indices (see online-documentation for more details).

REML versus ML estimator: By default, estimator = "ML", which means that values from
information criteria (AIC, AICc, BIC) for specific model classes (like models from lme4) are
based on the ML-estimator, while the default behaviour of AIC() for such classes is setting REML
= TRUE. This default is intentional, because comparing information criteria based on REML fits is
usually not valid (it might be useful, though, if all models share the same fixed effects - however,
this is usually not the case for nested models, which is a prerequisite for the LRT). Set estimator
= "REML" explicitly return the same (AIC/...) values as from the defaults in AIC.merMod().

Value

A data frame with one row per model and one column per "index" (see metrics).

https://easystats.github.io/see/articles/performance.html

cronbachs_alpha 57

Note

There is also a plot()-method implemented in the see-package.

References

Burnham, K. P., and Anderson, D. R. (2002). Model selection and multimodel inference: A practical
information-theoretic approach (2nd ed.). Springer-Verlag. doi:10.1007/b97636

Examples

data(iris)
lm1 <- lm(Sepal.Length ~ Species, data = iris)
lm2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)
lm3 <- lm(Sepal.Length ~ Species * Petal.Length, data = iris)
compare_performance(lm1, lm2, lm3)
compare_performance(lm1, lm2, lm3, rank = TRUE)

m1 <- lm(mpg ~ wt + cyl, data = mtcars)
m2 <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
m3 <- lme4::lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
compare_performance(m1, m2, m3)

cronbachs_alpha Cronbach’s Alpha for Items or Scales

Description

Compute various measures of internal consistencies for tests or item-scales of questionnaires. cronbachs_alpha()
calculates the Cronbach’s Alpha value for all variables in x. item_alpha() is an alias for cronbachs_alpha().

Usage

cronbachs_alpha(x, ...)

item_alpha(x, ...)

S3 method for class 'data.frame'
cronbachs_alpha(x, verbose = TRUE, ...)

Arguments

x A matrix or a data frame, or an object of class parameters_pca, as returned by
parameters::principal_components(), or an object of class parameters_efa,
as returned by parameters::factor_analysis().

... Currently not used.

verbose Toggle warnings and messages.

https://easystats.github.io/see/articles/performance.html
https://easystats.github.io/see/
https://doi.org/10.1007/b97636

58 display.performance_model

Details

The Cronbach’s Alpha value for x. A value closer to 1 indicates greater internal consistency, where
usually following rule of thumb is applied to interpret the results:

• α < 0.5 is unacceptable,

• 0.5 < α < 0.6 is poor,

• 0.6 < α < 0.7 is questionable,

• 0.7 < α < 0.8 is acceptable,

• and everything > 0.8 is good or excellent.

Value

The Cronbach’s Alpha value for x.

Note

item_alpha() is an alias for cronbachs_alpha().

References

Bland, J. M., and Altman, D. G. Statistics notes: Cronbach’s alpha. BMJ 1997;314:572. 10.1136/bmj.314.7080.572

Examples

data(mtcars)
x <- mtcars[, c("cyl", "gear", "carb", "hp")]
cronbachs_alpha(x)

display.performance_model

Print tables in different output formats

Description

Prints tables (i.e. data frame) in different output formats.

Usage

S3 method for class 'performance_model'
display(object, format = "markdown", digits = 2, caption = NULL, ...)

S3 method for class 'performance_model'
print(x, digits = 3, layout = "horizontal", ...)

S3 method for class 'performance_model'
print_md(
x,

display.performance_model 59

digits = 2,
caption = "Indices of model performance",
layout = "horizontal",
...

)

S3 method for class 'compare_performance'
print_md(
x,
digits = 2,
caption = "Comparison of Model Performance Indices",
layout = "horizontal",
...

)

Arguments

object, x An object returned by one of the package’s function, for example model_performance(),
compare_performance(), or check_itemscale().

format String, indicating the output format. Can be "markdown" "html", or "tt".
format = "tt" creates a tinytable object, which is either printed as markdown
or HTML table, depending on the environment. See insight::export_table()
for details.

digits Number of decimal places.

caption Table caption as string. If NULL, no table caption is printed.

... Arguments passed to other methods, e.g. format() (and thereby to insight::format_table()
or insight::export_table(). See related documentation for details on avail-
able arguments. For example, to control digits for information criteria like AIC
or BIC, use ic_digits = <value>.

layout Table layout (can be either "horizontal" or "vertical").

Details

display() is useful when the table-output from functions, which is usually printed as formatted
text-table to console, should be formatted for pretty table-rendering in markdown documents, or if
knitted from rmarkdown to PDF or Word files. See vignette for examples.

Value

A character vector. If format = "markdown", the return value will be a character vector in markdown-
table format.

Global Options to Customize Output when Printing

• easystats_display_format: options(easystats_display_format = <value>) will set
the default format for the display() methods. Can be one of "markdown", "html", or "tt".

https://easystats.github.io/parameters/articles/model_parameters_formatting.html

60 icc

Examples

model <- lm(mpg ~ wt + cyl, data = mtcars)
mp <- model_performance(model)
display(mp)
display(mp, digits = 3, ic_digits = 4)

icc Intraclass Correlation Coefficient (ICC)

Description

This function calculates the intraclass-correlation coefficient (ICC) - sometimes also called variance
partition coefficient (VPC) or repeatability - for mixed effects models. The ICC can be calculated
for all models supported by insight::get_variance(). For models fitted with the brms-package,
icc() might fail due to the large variety of models and families supported by the brms-package.
In such cases, an alternative to the ICC is the variance_decomposition(), which is based on the
posterior predictive distribution (see ’Details’).

Usage

icc(
model,
by_group = FALSE,
tolerance = 1e-05,
ci = NULL,
iterations = 100,
ci_method = NULL,
null_model = NULL,
approximation = "lognormal",
model_component = NULL,
verbose = TRUE,
...

)

variance_decomposition(model, re_formula = NULL, robust = TRUE, ci = 0.95, ...)

Arguments

model A (Bayesian) mixed effects model.

by_group Logical, if TRUE, icc() returns the variance components for each random-effects
level (if there are multiple levels). See ’Details’.

tolerance Tolerance for singularity check of random effects, to decide whether to compute
random effect variances or not. Indicates up to which value the convergence
result is accepted. The larger tolerance is, the stricter the test will be. See
performance::check_singularity().

icc 61

ci Confidence resp. credible interval level. For icc(), r2(), and rmse(), confi-
dence intervals are based on bootstrapped samples from the ICC, R2 or RMSE
value. See iterations.

iterations Number of bootstrap-replicates when computing confidence intervals for the
ICC, R2, RMSE etc.

ci_method Character string, indicating the bootstrap-method. Should be NULL (default),
in which case lme4::bootMer() is used for bootstrapped confidence intervals.
However, if bootstrapped intervals cannot be calculated this way, try ci_method
= "boot", which falls back to boot::boot(). This may successfully return
bootstrapped confidence intervals, but bootstrapped samples may not be ap-
propriate for the multilevel structure of the model. There is also an option
ci_method = "analytical", which tries to calculate analytical confidence as-
suming a chi-squared distribution. However, these intervals are rather inaccurate
and often too narrow. It is recommended to calculate bootstrapped confidence
intervals for mixed models.

null_model Optional, a null model to compute the random effect variances, which is passed
to insight::get_variance(). Usually only required if calculation of r-squared
or ICC fails when null_model is not specified. If calculating the null model
takes longer and you already have fit the null model, you can pass it here, too,
to speed up the process.

approximation Character string, indicating the approximation method for the distribution-specific
(observation level, or residual) variance. Only applies to non-Gaussian models.
Can be "lognormal" (default), "delta" or "trigamma". For binomial models,
the default is the theoretical distribution specific variance, however, it can also
be "observation_level". See Nakagawa et al. 2017, in particular supplement
2, for details.

model_component

For models that can have a zero-inflation component, specify for which com-
ponent variances should be returned. If NULL or "full" (the default), both
the conditional and the zero-inflation component are taken into account. If
"conditional", only the conditional component is considered.

verbose Toggle warnings and messages.
... Arguments passed down to lme4::bootMer() or boot::boot() for bootstrapped

ICC, R2, RMSE etc.; for variance_decomposition(), arguments are passed
down to brms::posterior_predict().

re_formula Formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects. Else, for instance for nested mod-
els, name a specific group-level effect to calculate the variance decomposition
for this group-level. See ’Details’ and ?brms::posterior_predict.

robust Logical, if TRUE, the median instead of mean is used to calculate the central
tendency of the variances.

Details

Interpretation:
The ICC can be interpreted as "the proportion of the variance explained by the grouping structure
in the population". The grouping structure entails that measurements are organized into groups

62 icc

(e.g., test scores in a school can be grouped by classroom if there are multiple classrooms and each
classroom was administered the same test) and ICC indexes how strongly measurements in the
same group resemble each other. This index goes from 0, if the grouping conveys no information,
to 1, if all observations in a group are identical (Gelman and Hill, 2007, p. 258). In other word,
the ICC - sometimes conceptualized as the measurement repeatability - "can also be interpreted
as the expected correlation between two randomly drawn units that are in the same group" (Hox
2010: 15), although this definition might not apply to mixed models with more complex random
effects structures. The ICC can help determine whether a mixed model is even necessary: an ICC
of zero (or very close to zero) means the observations within clusters are no more similar than
observations from different clusters, and setting it as a random factor might not be necessary.

Difference with R2:
The coefficient of determination R2 (that can be computed with r2()) quantifies the proportion
of variance explained by a statistical model, but its definition in mixed model is complex (hence,
different methods to compute a proxy exist). ICC is related to R2 because they are both ratios of
variance components. More precisely, R2 is the proportion of the explained variance (of the full
model), while the ICC is the proportion of explained variance that can be attributed to the random
effects. In simple cases, the ICC corresponds to the difference between the conditional R2 and
the marginal R2 (see r2_nakagawa()).

Calculation:
The ICC is calculated by dividing the random effect variance, σ2

i , by the total variance, i.e. the
sum of the random effect variance and the residual variance, σ2

ϵ .

Adjusted and unadjusted ICC:
icc() calculates an adjusted and an unadjusted ICC, which both take all sources of uncertainty
(i.e. of all random effects) into account. While the adjusted ICC only relates to the random effects,
the unadjusted ICC also takes the fixed effects variances into account, more precisely, the fixed
effects variance is added to the denominator of the formula to calculate the ICC (see Nakagawa
et al. 2017). Typically, the adjusted ICC is of interest when the analysis of random effects is of
interest. icc() returns a meaningful ICC also for more complex random effects structures, like
models with random slopes or nested design (more than two levels) and is applicable for models
with other distributions than Gaussian. For more details on the computation of the variances, see
?insight::get_variance.

ICC for unconditional and conditional models:
Usually, the ICC is calculated for the null model ("unconditional model"). However, according to
Raudenbush and Bryk (2002) or Rabe-Hesketh and Skrondal (2012) it is also feasible to compute
the ICC for full models with covariates ("conditional models") and compare how much, e.g., a
level-2 variable explains the portion of variation in the grouping structure (random intercept).

ICC for specific group-levels:
The proportion of variance for specific levels related to the overall model can be computed by
setting by_group = TRUE. The reported ICC is the variance for each (random effect) group com-
pared to the total variance of the model. For mixed models with a simple random intercept, this is
identical to the classical (adjusted) ICC.

Variance decomposition for brms-models:

icc 63

If model is of class brmsfit, icc() might fail due to the large variety of models and families
supported by the brms package. In such cases, variance_decomposition() is an alternative
ICC measure. The function calculates a variance decomposition based on the posterior predictive
distribution. In this case, first, the draws from the posterior predictive distribution not conditioned
on group-level terms (posterior_predict(..., re_formula = NA)) are calculated as well as
draws from this distribution conditioned on all random effects (by default, unless specified else in
re_formula) are taken. Then, second, the variances for each of these draws are calculated. The
"ICC" is then the ratio between these two variances. This is the recommended way to analyse
random-effect-variances for non-Gaussian models. It is then possible to compare variances across
models, also by specifying different group-level terms via the re_formula-argument.
Sometimes, when the variance of the posterior predictive distribution is very large, the variance
ratio in the output makes no sense, e.g. because it is negative. In such cases, it might help to use
robust = TRUE.

Value

A list with two values, the adjusted ICC and the unadjusted ICC. For variance_decomposition(),
a list with two values, the decomposed ICC as well as the credible intervals for this ICC.

Supported models and model families

The single variance components that are required to calculate the marginal and conditional r-squared
values are calculated using the insight::get_variance() function. The results are validated
against the solutions provided by Nakagawa et al. (2017), in particular examples shown in the
Supplement 2 of the paper. Other model families are validated against results from the MuMIn
package. This means that the r-squared values returned by r2_nakagawa() should be accurate and
reliable for following mixed models or model families:

• Bernoulli (logistic) regression

• Binomial regression (with other than binary outcomes)

• Poisson and Quasi-Poisson regression

• Negative binomial regression (including nbinom1, nbinom2 and nbinom12 families)

• Gaussian regression (linear models)

• Gamma regression

• Tweedie regression

• Beta regression

• Ordered beta regression

Following model families are not yet validated, but should work:

• Zero-inflated and hurdle models

• Beta-binomial regression

• Compound Poisson regression

• Generalized Poisson regression

• Log-normal regression

• Skew-normal regression

64 item_difficulty

Extracting variance components for models with zero-inflation part is not straightforward, because
it is not definitely clear how the distribution-specific variance should be calculated. Therefore, it
is recommended to carefully inspect the results, and probably validate against other models, e.g.
Bayesian models (although results may be only roughly comparable).

Log-normal regressions (e.g. lognormal() family in glmmTMB or gaussian("log")) often have
a very low fixed effects variance (if they were calculated as suggested by Nakagawa et al. 2017).
This results in very low ICC or r-squared values, which may not be meaningful.

References

• Hox, J. J. (2010). Multilevel analysis: techniques and applications (2nd ed). New York:
Routledge.

• Nakagawa, S., Johnson, P. C. D., and Schielzeth, H. (2017). The coefficient of determina-
tion R2 and intra-class correlation coefficient from generalized linear mixed-effects models
revisited and expanded. Journal of The Royal Society Interface, 14(134), 20170213.

• Rabe-Hesketh, S., and Skrondal, A. (2012). Multilevel and longitudinal modeling using Stata
(3rd ed). College Station, Tex: Stata Press Publication.

• Raudenbush, S. W., and Bryk, A. S. (2002). Hierarchical linear models: applications and data
analysis methods (2nd ed). Thousand Oaks: Sage Publications.

Examples

model <- lme4::lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
icc(model)

ICC for specific group-levels
data(sleepstudy, package = "lme4")
set.seed(12345)
sleepstudy$grp <- sample(1:5, size = 180, replace = TRUE)
sleepstudy$subgrp <- NA
for (i in 1:5) {

filter_group <- sleepstudy$grp == i
sleepstudy$subgrp[filter_group] <-
sample(1:30, size = sum(filter_group), replace = TRUE)

}
model <- lme4::lmer(

Reaction ~ Days + (1 | grp / subgrp) + (1 | Subject),
data = sleepstudy

)
icc(model, by_group = TRUE)

item_difficulty Difficulty of Questionnaire Items

Description

Compute various measures of internal consistencies for tests or item-scales of questionnaires.

item_difficulty 65

Usage

item_difficulty(x, maximum_value = NULL)

Arguments

x Depending on the function, x may be a matrix as returned by the cor()-function,
or a data frame with items (e.g. from a test or questionnaire).

maximum_value Numeric value, indicating the maximum value of an item. If NULL (default),
the maximum is taken from the maximum value of all columns in x (assuming
that the maximum value at least appears once in the data). If NA, each item’s
maximum value is taken as maximum. If the required maximum value is not
present in the data, specify the theoreritcal maximum using maximum_value.

Details

Item difficutly of an item is defined as the quotient of the sum actually achieved for this item of all
and the maximum achievable score. This function calculates the item difficulty, which should range
between 0.2 and 0.8. Lower values are a signal for more difficult items, while higher values close
to one are a sign for easier items. The ideal value for item difficulty is p + (1 - p) / 2, where p = 1
/ max(x). In most cases, the ideal item difficulty lies between 0.5 and 0.8.

Value

A data frame with three columns: The name(s) of the item(s), the item difficulties for each item,
and the ideal item difficulty.

References

• Bortz, J., and Döring, N. (2006). Quantitative Methoden der Datenerhebung. In J. Bortz and
N. Döring, Forschungsmethoden und Evaluation. Springer: Berlin, Heidelberg: 137–293

• Kelava A, Moosbrugger H (2020). Deskriptivstatistische Itemanalyse und Testwertbestim-
mung. In: Moosbrugger H, Kelava A, editors. Testtheorie und Fragebogenkonstruktion.
Berlin, Heidelberg: Springer, 143–158

Examples

data(mtcars)
x <- mtcars[, c("cyl", "gear", "carb", "hp")]
item_difficulty(x)

66 item_discrimination

item_discrimination Discrimination and Item-Total Correlation of Questionnaire Items

Description

Compute various measures of internal consistencies for tests or item-scales of questionnaires. item_discrimination()
calculates the corrected item-total correlations for each item of x with the remaining items. item_totalcor()
by default calculates the item-total correlations (without correction).

Usage

item_discrimination(x, standardize = FALSE, corrected = TRUE, verbose = TRUE)

item_totalcor(x, standardize = FALSE, corrected = FALSE, verbose = TRUE)

Arguments

x A matrix or a data frame.

standardize Logical, if TRUE, the data frame’s vectors will be standardized. Recommended
when the variables have different measures / scales.

corrected Logical, if TRUE, the item-total correlations are corrected for the item itself (de-
fault). If FALSE, the item-total correlations are calculated without correction.

verbose Toggle warnings and messages.

Details

item_totalcor() calculates the item-total correlations (without correction). A positive item-total
correlation indicates that an item successfully aligns with the overall test, with higher values sig-
nifying a better fit. Conversely, a value near zero suggests the item is not measuring the intended
construct, while a negative correlation is a major red flag that the item is flawed, miskeyed, or
measures the opposite of what is intended. This means a positive correlation is desired, a zero
correlation is problematic, and a negative correlation requires immediate attention.

The standard item-total correlation has an inherent flaw: the score of the item being analyzed is
included in the total score. This inclusion can artificially inflate the correlation coefficient, as an
item will always correlate with itself. The corrected item-total correlation, or item discrimination,
addresses this issue by calculating the correlation between the score on a single item and the sum
of the scores of all other items on the scale. This is done with item_discrimination(). The
absolute value of the item discrimination indices should be above 0.2. An index between 0.2 and
0.4 is considered as "fair", while a satisfactory index ranges from 0.4 to 0.7. Items with low
discrimination indices are often ambiguously worded and should be examined. Items with negative
indices should be examined to determine why a negative value was obtained (e.g. reversed answer
categories regarding positive and negative poles - in such cases, use datawizard::reverse() to
reverse-code items in advance).

Interpretation of the Corrected Item-Total Correlation Values:

item_intercor 67

Corrected Item-Total Correlation Value Interpretation Action
Above 0.40 The item has a very good discrimination and is strongly related to the underlying construct. Retain the item.
0.30 to 0.39 The item has good discrimination and contributes positively to the scale’s internal consistency. Retain the item.
0.20 to 0.29 The item has marginal discrimination. While not ideal, it may still be acceptable, especially in shorter scales or when measuring a very broad construct. Consider revising the item for clarity or content. If other items have stronger correlations, this one might be a candidate for removal if the scale needs to be shortened.
Below 0.20 The item has poor discrimination. It does not correlate well with the rest of the scale and may be measuring something else. Its inclusion is likely to decrease the overall reliability (e.g., Cronbach’s Alpha) of the scale. Revise the item substantially or, more likely, remove it from the scale.
Negative Value The item is negatively related to the rest of the scale. This is a serious issue. The item must be revised or removed. Check for scoring errors (e.g., a reverse-keyed item that wasn’t properly recoded).

item_discrimination() and item_totalcor() only differ in the default value of the corrected
argument. The former calculates the corrected item-total correlations, while the latter calculates the
item-total correlations.

Value

A data frame with the item discrimination (corrected item-total correlations) for each item of the
scale.

References

• Kelava A, Moosbrugger H (2020). Deskriptivstatistische Itemanalyse und Testwertbestim-
mung. In: Moosbrugger H, Kelava A, editors. Testtheorie und Fragebogenkonstruktion.
Berlin, Heidelberg: Springer, 143–158

Examples

data(mtcars)
x <- mtcars[, c("cyl", "gear", "carb", "hp")]
item_discrimination(x)
item_totalcor(x)

item_intercor Mean Inter-Item-Correlation

Description

Compute various measures of internal consistencies for tests or item-scales of questionnaires.

Usage

item_intercor(x, method = "pearson")

Arguments

x A matrix as returned by the cor()-function, or a data frame with items (e.g.
from a test or questionnaire).

method Correlation computation method. May be one of "pearson" (default), "spearman"
or "kendall". You may use initial letter only.

68 item_omega

Details

This function calculates a mean inter-item-correlation, i.e. a correlation matrix of x will be com-
puted (unless x is already a matrix as returned by the cor() function) and the mean of the sum of
all items’ correlation values is returned. Requires either a data frame or a computed cor() object.

"Ideally, the average inter-item correlation for a set of items should be between 0.20 and 0.40,
suggesting that while the items are reasonably homogeneous, they do contain sufficiently unique
variance so as to not be isomorphic with each other. When values are lower than 0.20, then the
items may not be representative of the same content domain. If values are higher than 0.40, the
items may be only capturing a small bandwidth of the construct." (Piedmont 2014)

Value

The mean inter-item-correlation value for x.

References

Piedmont RL. 2014. Inter-item Correlations. In: Michalos AC (eds) Encyclopedia of Quality of Life
and Well-Being Research. Dordrecht: Springer, 3303-3304. doi:10.1007/9789400707535_1493

Examples

data(mtcars)
x <- mtcars[, c("cyl", "gear", "carb", "hp")]
item_intercor(x)

item_omega McDonald’s Omega for Items or Scales

Description

This function computes McDonald’s omega reliability coefficients alongside Cronbach’s alpha for
a set of items or a scale. It acts as a wrapper for the psych::omega() function. The aim is to
make McDonald’s omega readily available and present it with the widely-known Cronbach’s alpha,
allowing for a more complete understanding of scale reliability. The output includes various forms
of omega (e.g., total, hierarchical) depending on the factor structure specified.

Usage

item_omega(x, ...)

S3 method for class 'data.frame'
item_omega(
x,
n = "auto",
rotation = "oblimin",
factor_method = "minres",
poly_cor = FALSE,

https://doi.org/10.1007/978-94-007-0753-5_1493

item_omega 69

verbose = TRUE,
...

)

S3 method for class 'matrix'
item_omega(
x,
n = "auto",
rotation = "oblimin",
factor_method = "minres",
n_obs = NULL,
poly_cor = FALSE,
verbose = TRUE,
...

)

Arguments

x A matrix or a data frame.

... Additional arguments passed to psych::omega().

n Number of factors to extract.

rotation Rotation to be applied. Defaults to "oblimin". Further options are "simplimax",
"Promax", "cluster" and "target". See ?psych::omega for details.

factor_method The factoring method to be used. Passed to the fm argument in psych::omega().
Defaults to "minres" (minimum residual). Other options include "ml" (maxi-
mum likelihood), "pa" (principal axis), etc.

poly_cor Logical, if TRUE, polychoric correlations will be computed (by passing poly =
TRUE to psych::omega()). Defaults to FALSE.

verbose Logical, if TRUE (default), messages are printed.

n_obs Number of observations in the original data set if x is a correlation matrix. Re-
quired to compute correct fit indices.

Details

item_omega() is a simple wrapper around psych::omega(), which returns the reliability coef-
ficients. The original object returned by psych::omega() is saved as $model attribute. Further
information are accessible via the summary() and parameters::model_parameters() methods.
Use as.numeric() to return the reliability coefficients as (named) numeric vector. Detailed infor-
mation can be found in the docs of ?psych::omega.

Value

A data frames containing the reliability coefficients. Use summary() or parameters::model_parameters()
on the returned object to extract more information.

70 item_reliability

References

• Bland, J. M., & Altman, D. G. (1997). Statistics notes: Cronbach’s alpha. BMJ, 314(7080),
572. doi:10.1136/bmj.314.7080.572

• Revelle, W., & Zinbarg, R. E. (2009). Coefficients alpha, beta, omega, and the glb: Comments
on Sijtsma. Psychometrika, 74(1), 145–154. doi:10.1007/s113360089102z

• Zinbarg, R.E., Revelle, W., Yovel, I., & Li. W. (2005). Cronbach’s Alpha, Revelle’s Beta,
McDonald’s Omega: Their relations with each and two alternative conceptualizations of reli-
ability. Psychometrika. 70, 123-133

Examples

data(mtcars)
x <- mtcars[1:7]
result <- item_omega(x, n = 2)

result

as.numeric(result)

summary(result)

parameters::model_parameters(result)

item_reliability Reliability Test for Items or Scales

Description

Compute various measures of internal consistencies for tests or item-scales of questionnaires.

Usage

item_reliability(x, standardize = FALSE, digits = 3, verbose = TRUE)

Arguments

x A matrix or a data frame.

standardize Logical, if TRUE, the data frame’s vectors will be standardized. Recommended
when the variables have different measures / scales.

digits Amount of digits for returned values.

verbose Toggle warnings and messages.

https://doi.org/10.1136/bmj.314.7080.572
https://doi.org/10.1007/s11336-008-9102-z

item_reliability 71

Details

This function calculates the item-total correlations, item discriminations (corrected item-total cor-
relations for each item of x with the remaining items) and the Cronbach’s alpha for each item, if it
was deleted from the scale. The absolute value of the item discrimination indices should be above
0.2. An index between 0.2 and 0.4 is considered as "fair", while an index above 0.4 (or below -0.4)
is "good". The range of satisfactory values is from 0.4 to 0.7. Items with low discrimination indices
are often ambiguously worded and should be examined. Items with negative indices should be ex-
amined to determine why a negative value was obtained (e.g. reversed answer categories regarding
positive and negative poles).

See check_itemscale() and item_discrimination() for more details on the interpretation of
the results.

Value

A data frame with the item-total correlations (column Item_Total_Correlation), corrected item-
total correlations (item discrimination, column Discrimination) and Cronbach’s Alpha (if item
deleted, column Alpha_if_deleted) for each item of the scale, or NULL if data frame had too less
columns.

Note

• Item difficulty should range between 0.2 and 0.8. Ideal value is p+(1-p)/2 (which mostly is
between 0.5 and 0.8). See item_difficulty() for details.

• For item discrimination, also known as corrected item-total correlations, acceptable values are
0.20 or higher; the closer to 1.00 the better. See item_discrimination() for more details. If
an item discrimination is negative, the corresponding item probably need to be reverse-coded
(which can be done with datawizard::reverse()).

• In case the total Cronbach’s alpha value is below the acceptable cut-off of 0.7 (mostly if an
index has few items), the mean inter-item-correlation is an alternative measure to indicate
acceptability. Satisfactory range lies between 0.2 and 0.4. See also item_intercor().

References

• Briggs SR, Cheek JM (1986) The role of factor analysis in the development and evalua-
tion of personality scales. Journal of Personality, 54(1), 106-148. doi: 10.1111/j.1467-
6494.1986.tb00391.x

Examples

data(mtcars)
x <- mtcars[, c("cyl", "gear", "carb", "hp")]
item_reliability(x)

72 item_split_half

item_split_half Split-Half Reliability

Description

Compute various measures of internal consistencies for tests or item-scales of questionnaires.

Usage

item_split_half(x, digits = 3)

Arguments

x A matrix or a data frame.

digits Amount of digits for returned values.

Details

This function calculates the split-half reliability for items in x, including the Spearman-Brown ad-
justment. Splitting is done by selecting odd versus even columns in x. A value closer to 1 indicates
greater internal consistency.

Value

A list with two elements: the split-half reliability splithalf and the Spearman-Brown corrected
split-half reliability spearmanbrown.

References

• Spearman C. 1910. Correlation calculated from faulty data. British Journal of Psychology (3):
271-295. doi:10.1111/j.20448295.1910.tb00206.x

• Brown W. 1910. Some experimental results in the correlation of mental abilities. British
Journal of Psychology (3): 296-322. doi:10.1111/j.20448295.1910.tb00207.x

Examples

data(mtcars)
x <- mtcars[, c("cyl", "gear", "carb", "hp")]
item_split_half(x)

https://doi.org/10.1111/j.2044-8295.1910.tb00206.x
https://doi.org/10.1111/j.2044-8295.1910.tb00207.x

looic 73

looic LOO-related Indices for Bayesian regressions.

Description

Compute LOOIC (leave-one-out cross-validation (LOO) information criterion) and ELPD (ex-
pected log predictive density) for Bayesian regressions. For LOOIC and ELPD, smaller and larger
values are respectively indicative of a better fit.

Usage

looic(model, verbose = TRUE)

Arguments

model A Bayesian regression model.

verbose Toggle off warnings.

Value

A list with four elements, the ELPD, LOOIC and their standard errors.

Examples

model <- suppressWarnings(rstanarm::stan_glm(
mpg ~ wt + cyl,
data = mtcars,
chains = 1,
iter = 500,
refresh = 0

))
looic(model)

model_performance Model Performance

Description

See the documentation for your object’s class:

• Frequentist Regressions

• Instrumental Variables Regressions

• Mixed models

74 model_performance.fa

• Bayesian models

• CFA / SEM lavaan models

• Meta-analysis models

Usage

model_performance(model, ...)

performance(model, ...)

Arguments

model Statistical model.

... Arguments passed to or from other methods, resp. for compare_performance(),
one or multiple model objects (also of different classes).

Details

model_performance() correctly detects transformed response and returns the "corrected" AIC and
BIC value on the original scale. To get back to the original scale, the likelihood of the model is
multiplied by the Jacobian/derivative of the transformation.

Value

A data frame (with one row) and one column per "index" (see metrics).

See Also

compare_performance() to compare performance of many different models.

Examples

model <- lm(mpg ~ wt + cyl, data = mtcars)
model_performance(model)

model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
model_performance(model)

model_performance.fa Performance of FA / PCA models

Description

Compute indices of model performance for models from the psych package, and for parameters::factor_analysis()
and item_omega().

model_performance.ivreg 75

Usage

S3 method for class 'fa'
model_performance(model, metrics = "all", verbose = TRUE, ...)

Arguments

model A model object of class fa (e.g., from psych::fa()), principal (e.g., from
psych::principal()), or from parameters::factor_analysis() or item_omega().

metrics Can be "all" or a character vector of metrics to be computed (some of "Chi2",
"Chi2_df", "df", "p_Chi2", "RMSR", "RMSR_corrected", "TLI", "RMSEA",
and "BIC". For omega-models, can also include "R2" and "Correlation".

verbose Toggle off warnings.

... Arguments passed to or from other methods.

Details

The RMSR_corrected metric is the Root Mean Square Residual corrected for degrees of freedom
(i.e., dividing by degrees of freedom rather than the number of observations).

For omega-models, the columns R2 and Correlation are measures of factor score adequacy. R2
refers to the multiple R square of scores with factors, while Correlation indicates the correlation
of scores with factors.

Value

A data frame (with one row) and one column per "index" (see metrics).

Examples

out <- psych::fa(psychTools::bfi[, 1:25], 5)
model_performance(out)

out <- item_omega(mtcars, n = 3)
model_performance(out)

model_performance.ivreg

Performance of instrumental variable regression models

Description

Performance of instrumental variable regression models

Usage

S3 method for class 'ivreg'
model_performance(model, metrics = "all", verbose = TRUE, ...)

76 model_performance.kmeans

Arguments

model A model.

metrics Can be "all", "common" or a character vector of metrics to be computed (some
of c("AIC", "AICc", "BIC", "R2", "RMSE", "SIGMA", "Sargan", "Wu_Hausman",
"weak_instruments")). "common" will compute AIC, BIC, R2 and RMSE.

verbose Toggle off warnings.

... Arguments passed to or from other methods.

Details

model_performance() correctly detects transformed response and returns the "corrected" AIC and
BIC value on the original scale. To get back to the original scale, the likelihood of the model is
multiplied by the Jacobian/derivative of the transformation.

model_performance.kmeans

Model summary for k-means clustering

Description

Model summary for k-means clustering

Usage

S3 method for class 'kmeans'
model_performance(model, verbose = TRUE, ...)

Arguments

model Object of type kmeans.

verbose Toggle off warnings.

... Arguments passed to or from other methods.

Examples

a 2-dimensional example
x <- rbind(

matrix(rnorm(100, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2)

)
colnames(x) <- c("x", "y")
model <- kmeans(x, 2)
model_performance(model)

model_performance.lavaan 77

model_performance.lavaan

Performance of lavaan SEM / CFA Models

Description

Compute indices of model performance for SEM or CFA models from the lavaan package.

Usage

S3 method for class 'lavaan'
model_performance(model, metrics = "all", verbose = TRUE, ...)

Arguments

model A lavaan model.

metrics Can be "all" or a character vector of metrics to be computed (some of "Chi2",
"Chi2_df", "p_Chi2", "Baseline", "Baseline_df", "p_Baseline", "GFI",
"AGFI", "NFI", "NNFI", "CFI", "RMSEA", "RMSEA_CI_low", "RMSEA_CI_high",
"p_RMSEA", "RMR", "SRMR", "RFI", "PNFI", "IFI", "RNI", "Loglikelihood",
"AIC", "BIC", and "BIC_adjusted".

verbose Toggle off warnings.

... Arguments passed to or from other methods.

Details

Indices of fit:

• Chisq: The model Chi-squared assesses overall fit and the discrepancy between the sample
and fitted covariance matrices. Its p-value should be > .05 (i.e., the hypothesis of a perfect fit
cannot be rejected). However, it is quite sensitive to sample size.

• GFI/AGFI: The (Adjusted) Goodness of Fit is the proportion of variance accounted for by
the estimated population covariance. Analogous to R2. The GFI and the AGFI should be >
.95 and > .90, respectively.

• NFI/NNFI/TLI: The (Non) Normed Fit Index. An NFI of 0.95, indicates the model of inter-
est improves the fit by 95\ null model. The NNFI (also called the Tucker Lewis index; TLI)
is preferable for smaller samples. They should be > .90 (Byrne, 1994) or > .95 (Schumacker
and Lomax, 2004).

• CFI: The Comparative Fit Index is a revised form of NFI. Not very sensitive to sample
size (Fan, Thompson, and Wang, 1999). Compares the fit of a target model to the fit of an
independent, or null, model. It should be > .90.

• RMSEA: The Root Mean Square Error of Approximation is a parsimony-adjusted index.
Values closer to 0 represent a good fit. It should be < .08 or < .05. The p-value printed with
it tests the hypothesis that RMSEA is less than or equal to .05 (a cutoff sometimes used for
good fit), and thus should be not significant.

78 model_performance.lavaan

• RMR/SRMR: the (Standardized) Root Mean Square Residual represents the square-root of
the difference between the residuals of the sample covariance matrix and the hypothesized
model. As the RMR can be sometimes hard to interpret, better to use SRMR. Should be <
.08.

• RFI: the Relative Fit Index, also known as RHO1, is not guaranteed to vary from 0 to 1.
However, RFI close to 1 indicates a good fit.

• IFI: the Incremental Fit Index (IFI) adjusts the Normed Fit Index (NFI) for sample size and
degrees of freedom (Bollen’s, 1989). Over 0.90 is a good fit, but the index can exceed 1.

• PNFI: the Parsimony-Adjusted Measures Index. There is no commonly agreed-upon cutoff
value for an acceptable model for this index. Should be > 0.50.

See the documentation for ?lavaan::fitmeasures.

What to report: Kline (2015) suggests that at a minimum the following indices should be
reported: The model chi-square, the RMSEA, the CFI and the SRMR.

Value

A data frame (with one row) and one column per "index" (see metrics).

References

• Byrne, B. M. (1994). Structural equation modeling with EQS and EQS/Windows. Thousand
Oaks, CA: Sage Publications.

• Tucker, L. R., and Lewis, C. (1973). The reliability coefficient for maximum likelihood factor
analysis. Psychometrika, 38, 1-10.

• Schumacker, R. E., and Lomax, R. G. (2004). A beginner’s guide to structural equation mod-
eling, Second edition. Mahwah, NJ: Lawrence Erlbaum Associates.

• Fan, X., B. Thompson, and L. Wang (1999). Effects of sample size, estimation method, and
model specification on structural equation modeling fit indexes. Structural Equation Model-
ing, 6, 56-83.

• Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford publi-
cations.

Examples

Confirmatory Factor Analysis (CFA) ---------
data(HolzingerSwineford1939, package = "lavaan")
structure <- " visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 "

model <- lavaan::cfa(structure, data = HolzingerSwineford1939)
model_performance(model)

model_performance.lm 79

model_performance.lm Performance of Regression Models

Description

Compute indices of model performance for regression models.

Usage

S3 method for class 'lm'
model_performance(model, metrics = "all", verbose = TRUE, ...)

Arguments

model A model.

metrics Can be "all", "common" or a character vector of metrics to be computed (one or
more of "AIC", "AICc", "BIC", "R2", "R2_adj", "RMSE", "SIGMA", "LOGLOSS",
"PCP", "SCORE"). "common" will compute AIC, BIC, R2 and RMSE.

verbose Toggle off warnings.

... Arguments passed to or from other methods.

Details

Depending on model, following indices are computed:

• AIC: Akaike’s Information Criterion, see ?stats::AIC

• AICc: Second-order (or small sample) AIC with a correction for small sample sizes

• BIC: Bayesian Information Criterion, see ?stats::BIC

• R2: r-squared value, see r2()

• R2_adj: adjusted r-squared, see r2()

• RMSE: root mean squared error, see performance_rmse()

• SIGMA: residual standard deviation, see insight::get_sigma()

• LOGLOSS: Log-loss, see performance_logloss()

• SCORE_LOG: score of logarithmic proper scoring rule, see performance_score()

• SCORE_SPHERICAL: score of spherical proper scoring rule, see performance_score()

• PCP: percentage of correct predictions, see performance_pcp()

model_performance() correctly detects transformed response and returns the "corrected" AIC and
BIC value on the original scale. To get back to the original scale, the likelihood of the model is
multiplied by the Jacobian/derivative of the transformation.

Value

A data frame (with one row) and one column per "index" (see metrics).

80 model_performance.merMod

Examples

model <- lm(mpg ~ wt + cyl, data = mtcars)
model_performance(model)

model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
model_performance(model)

model_performance.merMod

Performance of Mixed Models

Description

Compute indices of model performance for mixed models.

Usage

S3 method for class 'merMod'
model_performance(
model,
metrics = "all",
estimator = "REML",
verbose = TRUE,
...

)

Arguments

model A mixed effects model.

metrics Can be "all", "common" or a character vector of metrics to be computed (some
of c("AIC", "AICc", "BIC", "R2", "ICC", "RMSE", "SIGMA", "LOGLOSS", "SCORE")).
"common" will compute AIC, BIC, R2, ICC and RMSE.

estimator Only for linear models. Corresponds to the different estimators for the standard
deviation of the errors. If estimator = "ML" (default, except for performance_aic()
when the model object is of class lmerMod), the scaling is done by n (the biased
ML estimator), which is then equivalent to using AIC(logLik()). Setting it to
"REML" will give the same results as AIC(logLik(..., REML = TRUE)).

verbose Toggle warnings and messages.

... Arguments passed to or from other methods.

Details

Intraclass Correlation Coefficient (ICC): This method returns the adjusted ICC only, as this is
typically of interest when judging the variance attributed to the random effects part of the model
(see also icc()).

model_performance.rma 81

REML versus ML estimator: The default behaviour of model_performance() when com-
puting AIC or BIC of linear mixed model from package lme4 is the same as for AIC() or BIC()
(i.e. estimator = "REML"). However, for model comparison using compare_performance() sets
estimator = "ML" by default, because comparing information criteria based on REML fits is usu-
ally not valid (unless all models have the same fixed effects). Thus, make sure to set the correct
estimator-value when looking at fit-indices or comparing model fits.

Other performance indices: Furthermore, see ’Details’ in model_performance.lm() for more
details on returned indices.

Value

A data frame (with one row) and one column per "index" (see metrics).

Examples

model <- lme4::lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
model_performance(model)

model_performance.rma Performance of Meta-Analysis Models

Description

Compute indices of model performance for meta-analysis model from the metafor package.

Usage

S3 method for class 'rma'
model_performance(
model,
metrics = "all",
estimator = "ML",
verbose = TRUE,
...

)

Arguments

model A rma object as returned by metafor::rma().

metrics Can be "all" or a character vector of metrics to be computed (some of c("AIC",
"BIC", "I2", "H2", "TAU2", "R2", "CochransQ", "QE", "Omnibus", "QM")).

estimator Only for linear models. Corresponds to the different estimators for the standard
deviation of the errors. If estimator = "ML" (default, except for performance_aic()
when the model object is of class lmerMod), the scaling is done by n (the biased
ML estimator), which is then equivalent to using AIC(logLik()). Setting it to
"REML" will give the same results as AIC(logLik(..., REML = TRUE)).

82 model_performance.rma

verbose Toggle off warnings.

... Arguments passed to or from other methods.

Details

Indices of fit:

• AIC Akaike’s Information Criterion, see ?stats::AIC

• BIC Bayesian Information Criterion, see ?stats::BIC

• I2: For a random effects model, I2 estimates (in percent) how much of the total variability
in the effect size estimates can be attributed to heterogeneity among the true effects. For a
mixed-effects model, I2 estimates how much of the unaccounted variability can be attributed
to residual heterogeneity.

• H2: For a random-effects model, H2 estimates the ratio of the total amount of variability in
the effect size estimates to the amount of sampling variability. For a mixed-effects model, H2
estimates the ratio of the unaccounted variability in the effect size estimates to the amount of
sampling variability.

• TAU2: The amount of (residual) heterogeneity in the random or mixed effects model.

• CochransQ (QE): Test for (residual) Heterogeneity. Without moderators in the model, this
is simply Cochran’s Q-test.

• Omnibus (QM): Omnibus test of parameters.

• R2: Pseudo-R2-statistic, which indicates the amount of heterogeneity accounted for by the
moderators included in a fixed-effects model.

See the documentation for ?metafor::fitstats.

Value

A data frame (with one row) and one column per "index" (see metrics).

Examples

data(dat.bcg, package = "metadat")
dat <- metafor::escalc(

measure = "RR",
ai = tpos,
bi = tneg,
ci = cpos,
di = cneg,
data = dat.bcg

)
model <- metafor::rma(yi, vi, data = dat, method = "REML")
model_performance(model)

model_performance.stanreg 83

model_performance.stanreg

Performance of Bayesian Models

Description

Compute indices of model performance for (general) linear models.

Usage

S3 method for class 'stanreg'
model_performance(model, metrics = "all", verbose = TRUE, ...)

S3 method for class 'BFBayesFactor'
model_performance(
model,
metrics = "all",
verbose = TRUE,
average = FALSE,
prior_odds = NULL,
...

)

Arguments

model Object of class stanreg or brmsfit.

metrics Can be "all", "common" or a character vector of metrics to be computed (some
of c("LOOIC", "WAIC", "R2", "R2_adj", "RMSE", "SIGMA", "LOGLOSS", "SCORE")).
"common" will compute LOOIC, WAIC, R2 and RMSE.

verbose Toggle off warnings.

... Arguments passed to or from other methods.

average Compute model-averaged index? See bayestestR::weighted_posteriors().

prior_odds Optional vector of prior odds for the models compared to the first model (or the
denominator, for BFBayesFactor objects). For data.frames, this will be used
as the basis of weighting.

Details

Depending on model, the following indices are computed:

• ELPD: expected log predictive density. Larger ELPD values mean better fit. See looic().

• LOOIC: leave-one-out cross-validation (LOO) information criterion. Lower LOOIC values
mean better fit. See looic().

• WAIC: widely applicable information criterion. Lower WAIC values mean better fit. See
?loo::waic.

84 model_performance.stanreg

• R2: r-squared value, see r2_bayes().

• R2_adjusted: LOO-adjusted r-squared, see r2_loo().

• RMSE: root mean squared error, see performance_rmse().

• SIGMA: residual standard deviation, see insight::get_sigma().

• LOGLOSS: Log-loss, see performance_logloss().

• SCORE_LOG: score of logarithmic proper scoring rule, see performance_score().

• SCORE_SPHERICAL: score of spherical proper scoring rule, see performance_score().

• PCP: percentage of correct predictions, see performance_pcp().

Value

A data frame (with one row) and one column per "index" (see metrics).

References

Gelman, A., Goodrich, B., Gabry, J., and Vehtari, A. (2018). R-squared for Bayesian regression
models. The American Statistician, The American Statistician, 1-6.

See Also

r2_bayes

Examples

model <- suppressWarnings(rstanarm::stan_glm(
mpg ~ wt + cyl,
data = mtcars,
chains = 1,
iter = 500,
refresh = 0

))
model_performance(model)

model <- suppressWarnings(rstanarm::stan_glmer(
mpg ~ wt + cyl + (1 | gear),
data = mtcars,
chains = 1,
iter = 500,
refresh = 0

))
model_performance(model)

performance_accuracy 85

performance_accuracy Accuracy of predictions from model fit

Description

This function calculates the predictive accuracy of linear or logistic regression models.

Usage

performance_accuracy(
model,
method = "cv",
k = 5,
n = 1000,
ci = 0.95,
verbose = TRUE

)

Arguments

model A linear or logistic regression model. A mixed-effects model is also accepted.

method Character string, indicating whether cross-validation (method = "cv") or boot-
strapping (method = "boot") is used to compute the accuracy values.

k The number of folds for the k-fold cross-validation.

n Number of bootstrap-samples.

ci The level of the confidence interval.

verbose Toggle warnings.

Details

For linear models, the accuracy is the correlation coefficient between the actual and the predicted
value of the outcome. For logistic regression models, the accuracy corresponds to the AUC-value,
calculated with the bayestestR::auc()-function.

The accuracy is the mean value of multiple correlation resp. AUC-values, which are either com-
puted with cross-validation or non-parametric bootstrapping (see argument method). The standard
error is the standard deviation of the computed correlation resp. AUC-values.

Value

A list with three values: The Accuracy of the model predictions, i.e. the proportion of accurately
predicted values from the model, its standard error, SE, and the Method used to compute the accu-
racy.

86 performance_aicc

Examples

model <- lm(mpg ~ wt + cyl, data = mtcars)
performance_accuracy(model)

model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
performance_accuracy(model)

performance_aicc Compute the AIC or second-order AIC

Description

Compute the AIC or the second-order Akaike’s information criterion (AICc). performance_aic()
is a small wrapper that returns the AIC, however, for models with a transformed response variable,
performance_aic() returns the corrected AIC value (see ’Examples’). It is a generic function that
also works for some models that don’t have a AIC method (like Tweedie models). performance_aicc()
returns the second-order (or "small sample") AIC that incorporates a correction for small sample
sizes.

Usage

performance_aicc(x, ...)

performance_aic(x, ...)

Default S3 method:
performance_aic(x, estimator = "ML", verbose = TRUE, ...)

S3 method for class 'lmerMod'
performance_aic(x, estimator = "REML", verbose = TRUE, ...)

Arguments

x A model object.

... Currently not used.

estimator Only for linear models. Corresponds to the different estimators for the standard
deviation of the errors. If estimator = "ML" (default, except for performance_aic()
when the model object is of class lmerMod), the scaling is done by n (the biased
ML estimator), which is then equivalent to using AIC(logLik()). Setting it to
"REML" will give the same results as AIC(logLik(..., REML = TRUE)).

verbose Toggle warnings.

performance_aicc 87

Details

performance_aic() correctly detects transformed response and, unlike stats::AIC(), returns the
"corrected" AIC value on the original scale. To get back to the original scale, the likelihood of the
model is multiplied by the Jacobian/derivative of the transformation.

In case it is not possible to return the corrected AIC value, a warning is given that the corrected
log-likelihood value could not be computed.

Value

Numeric, the AIC or AICc value.

References

• Akaike, H. (1973) Information theory as an extension of the maximum likelihood principle.
In: Second International Symposium on Information Theory, pp. 267-281. Petrov, B.N.,
Csaki, F., Eds, Akademiai Kiado, Budapest.

• Hurvich, C. M., Tsai, C.-L. (1991) Bias of the corrected AIC criterion for underfitted regres-
sion and time series models. Biometrika 78, 499–509.

Examples

m <- lm(mpg ~ wt + cyl + gear + disp, data = mtcars)
AIC(m)
performance_aicc(m)

correct AIC for models with transformed response variable
data("mtcars")
mtcars$mpg <- floor(mtcars$mpg)
model <- lm(log(mpg) ~ factor(cyl), mtcars)

wrong AIC, not corrected for log-transformation
AIC(model)

performance_aic() correctly detects transformed response and
returns corrected AIC
performance_aic(model)

Not run:
there are a few exceptions where the corrected log-likelihood values
cannot be returned. The following exampe gives a warning.
model <- lm(1 / mpg ~ factor(cyl), mtcars)
performance_aic(model)

End(Not run)

88 performance_cv

performance_cv Cross-validated model performance

Description

This function cross-validates regression models in a user-supplied new sample or by using holdout
(train-test), k-fold, or leave-one-out cross-validation.

Usage

performance_cv(
model,
data = NULL,
method = "holdout",
metrics = "all",
prop = 0.3,
k = 5,
stack = TRUE,
verbose = TRUE,
...

)

Arguments

model A regression model.

data Optional. A data frame containing the same variables as model that will be used
as the cross-validation sample.

method Character string, indicating the cross-validation method to use: whether holdout
("holdout", aka train-test), k-fold ("k_fold"), or leave-one-out ("loo"). If
data is supplied, this argument is ignored.

metrics Can be "all", "common" or a character vector of metrics to be computed (some
of c("ELPD", "Deviance", "MSE", "RMSE", "R2")). "common" will compute
R2 and RMSE.

prop If method = "holdout", what proportion of the sample to hold out as the test
sample?

k If method = "k_fold", the number of folds to use.

stack Logical. If method = "k_fold", should performance be computed by stacking
residuals from each holdout fold and calculating each metric on the stacked
data (TRUE, default) or should performance be computed by calculating metrics
within each holdout fold and averaging performance across each fold (FALSE)?

verbose Toggle warnings.

... Not used.

performance_hosmer 89

Value

A data frame with columns for each metric requested, as well as k if method = "holdout" and
the Method used for cross-validation. If method = "holdout" and stack = TRUE, the standard error
(standard deviation across holdout folds) for each metric is also included.

Examples

model <- lm(mpg ~ wt + cyl, data = mtcars)
performance_cv(model)

performance_hosmer Hosmer-Lemeshow goodness-of-fit test

Description

Check model quality of logistic regression models.

Usage

performance_hosmer(model, n_bins = 10)

Arguments

model A glm-object with binomial-family.

n_bins Numeric, the number of bins to divide the data.

Details

A well-fitting model shows no significant difference between the model and the observed data, i.e.
the reported p-value should be greater than 0.05.

Value

An object of class hoslem_test with following values: chisq, the Hosmer-Lemeshow chi-squared
statistic; df, degrees of freedom and p.value the p-value for the goodness-of-fit test.

References

Hosmer, D. W., and Lemeshow, S. (2000). Applied Logistic Regression. Hoboken, NJ, USA: John
Wiley and Sons, Inc. doi:10.1002/0471722146

Examples

model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
performance_hosmer(model)

https://doi.org/10.1002/0471722146

90 performance_logloss

performance_logloss Log Loss

Description

Compute the log loss for models with binary outcome.

Usage

performance_logloss(model, verbose = TRUE, ...)

Arguments

model Model with binary outcome.

verbose Toggle off warnings.

... Currently not used.

Details

Logistic regression models predict the probability of an outcome of being a "success" or "failure"
(or 1 and 0 etc.). performance_logloss() evaluates how good or bad the predicted probabilities
are. High values indicate bad predictions, while low values indicate good predictions. The lower
the log-loss, the better the model predicts the outcome.

Value

Numeric, the log loss of model.

See Also

performance_score()

Examples

data(mtcars)
m <- glm(formula = vs ~ hp + wt, family = binomial, data = mtcars)
performance_logloss(m)

performance_mae 91

performance_mae Mean Absolute Error of Models

Description

Compute mean absolute error of models.

Usage

performance_mae(model, ...)

mae(model, ...)

Arguments

model A model.

... Arguments passed down to lme4::bootMer() or boot::boot() for bootstrapped
ICC, R2, RMSE etc.; for variance_decomposition(), arguments are passed
down to brms::posterior_predict().

Value

Numeric, the mean absolute error of model.

Examples

data(mtcars)
m <- lm(mpg ~ hp + gear, data = mtcars)
performance_mae(m)

performance_mse Mean Square Error of Linear Models

Description

Compute mean square error of linear models.

Usage

performance_mse(model, ...)

mse(model, ...)

92 performance_pcp

Arguments

model A model.

... Arguments passed down to lme4::bootMer() or boot::boot() for bootstrapped
ICC, R2, RMSE etc.; for variance_decomposition(), arguments are passed
down to brms::posterior_predict().

Details

The mean square error is the mean of the sum of squared residuals, i.e. it measures the average of
the squares of the errors. Less technically speaking, the mean square error can be considered as the
variance of the residuals, i.e. the variation in the outcome the model doesn’t explain. Lower values
(closer to zero) indicate better fit.

Value

Numeric, the mean square error of model.

Examples

data(mtcars)
m <- lm(mpg ~ hp + gear, data = mtcars)
performance_mse(m)

performance_pcp Percentage of Correct Predictions

Description

Percentage of correct predictions (PCP) for models with binary outcome.

Usage

performance_pcp(model, ci = 0.95, method = "Herron", verbose = TRUE)

Arguments

model Model with binary outcome.

ci The level of the confidence interval.

method Name of the method to calculate the PCP (see ’Details’). Default is "Herron".
May be abbreviated.

verbose Toggle off warnings.

performance_reliability 93

Details

method = "Gelman-Hill" (or "gelman_hill") computes the PCP based on the proposal from Gel-
man and Hill 2017, 99, which is defined as the proportion of cases for which the deterministic
prediction is wrong, i.e. the proportion where the predicted probability is above 0.5, although y=0
(and vice versa) (see also Herron 1999, 90).

method = "Herron" (or "herron") computes a modified version of the PCP (Herron 1999, 90-92),
which is the sum of predicted probabilities, where y=1, plus the sum of 1 - predicted probabilities,
where y=0, divided by the number of observations. This approach is said to be more accurate.

The PCP ranges from 0 to 1, where values closer to 1 mean that the model predicts the outcome
better than models with an PCP closer to 0. In general, the PCP should be above 0.5 (i.e. 50\
Furthermore, the PCP of the full model should be considerably above the null model’s PCP.

The likelihood-ratio test indicates whether the model has a significantly better fit than the null-model
(in such cases, p < 0.05).

Value

A list with several elements: the percentage of correct predictions of the full and the null model,
their confidence intervals, as well as the chi-squared and p-value from the Likelihood-Ratio-Test
between the full and null model.

References

• Herron, M. (1999). Postestimation Uncertainty in Limited Dependent Variable Models. Polit-
ical Analysis, 8, 83–98.

• Gelman, A., and Hill, J. (2007). Data analysis using regression and multilevel/hierarchical
models. Cambridge; New York: Cambridge University Press, 99.

Examples

data(mtcars)
m <- glm(formula = vs ~ hp + wt, family = binomial, data = mtcars)
performance_pcp(m)
performance_pcp(m, method = "Gelman-Hill")

performance_reliability

Random Effects Reliability

Description

These functions provide information about the reliability of group-level estimates (i.e., random
effects) in mixed models. They are useful to assess whether the predictors yield consistent group-
level variability. "Group-level" can refer, for instance, to different participants in a study, and the
predictors to the effect of some experimental condition.

The conceptually related functions are implemented, performance_reliability(), based on Rouder
& Mehrvarz (2024) that uses estimated model variances, and performance_dvour() (d-vour),

94 performance_reliability

which corresponds to the Variability-Over-Uncertainty Ratio ("vour") between random effects co-
efficient variability and their associated uncertainty.

Note: performance_reliability() requires to recompute the model to estimate some of the
variances of interest, which does not make it very usable with Bayesian models. Please get in touch
if you have would like to help addressing this.

Usage

performance_reliability(x, ...)

performance_dvour(x, ...)

Arguments

x A model object.

... Currently not used.

Details

Reliability (Signal-to-Noise Ratio):
performance_reliability() estimates the reliability of random effects (intercepts and slopes)
in mixed-effects models using variance decomposition. This method follows the hierarchical
modeling framework of Rouder & Mehrvarz (2024), defining reliability as the signal-to-noise
variance ratio:

γ2 =
σ2
B

σ2
B + σ2

W

where:

• σ2
B is the between-subject variance (i.e., variability across groups).

• σ2
W is the within-subject variance (i.e., trial-level measurement noise).

This metric quantifies how much observed variability is due to actual differences between
groups, rather than measurement error or within-group fluctuations.
To account for trial count (L), reliability is adjusted following:

E(r) =
γ2

γ2 + 1/L

where L is the number of observations per random effect level (note that Rouder (2024) recom-
mends 2/L to adjust for contrast effects).

Variability-Over-Uncertainty Ratio (d-vour):
performance_dvour() computes an alternative reliability measure corresponding to the normal-
ized ratio of observed variability to uncertainty in random effect estimates. This is defined
as:

D-vour =
σ2
B

σ2
B + µ2

SE

where:

performance_reliability 95

• σ2
B is the between-group variability (computed as the SD of the random effect estimates).

• µ2
SE is the mean squared uncertainty in random effect estimates (i.e., the average uncer-

tainty).

Interpretation::
• D-vour > 0.75: Strong group-level effects (between-group variance is at least 3 times

greater than uncertainty).
• D-vour ~ 0.5: Within-group and between-group variability are similar; random effect esti-

mates should be used with caution.
• D-vour < 0.5: Measurement noise dominates; random effect estimates are probably unreli-

able.
While d-vour shares some similarity to Rouder’s Reliability, it does not explicitly model within-
group trial-level noise and is only based on the random effect estimates, and can thus be not
accurate when there is not a lot of random factor groups (the reliability of this index - the meta-
reliability - depends on the number of groups).

References

• Rouder, J. N., Pena, A. L., Mehrvarz, M., & Vandekerckhove, J. (2024). On Cronbach’s
merger: Why experiments may not be suitable for measuring individual differences.

• Rouder, J. N., & Mehrvarz, M. (2024). Hierarchical-model insights for planning and interpret-
ing individual-difference studies of cognitive abilities. Current Directions in Psychological
Science, 33(2), 128-135.

• Williams, D. R., Mulder, J., Rouder, J. N., & Rast, P. (2021). Beneath the surface: Unearthing
within-person variability and mean relations with Bayesian mixed models. Psychological
methods, 26(1), 74.

• Williams, D. R., Martin, S. R., DeBolt, M., Oakes, L., & Rast, P. (2020). A fine-tooth comb
for measurement reliability: Predicting true score and error variance in hierarchical models.

Examples

url <- "https://raw.githubusercontent.com/easystats/circus/refs/heads/main/data/illusiongame.csv"
df <- read.csv(url)

m <- lme4::lmer(RT ~ (1 | Participant), data = df)
performance_reliability(m)
performance_dvour(m)

m <- glmmTMB::glmmTMB(RT ~ (1 | Participant), data = df)
performance_reliability(m)
performance_dvour(m)

m <- lme4::lmer(RT ~ (1 | Participant) + (1 | Trial), data = df)
performance_reliability(m)
performance_dvour(m)

m <- glmmTMB::glmmTMB(RT ~ (1 | Participant) + (1 | Trial), data = df)
performance_reliability(m)
performance_dvour(m)

96 performance_rmse

m <- lme4::lmer(
RT ~ Illusion_Difference + (Illusion_Difference | Participant) + (1 | Trial),
data = df

)
performance_reliability(m)
performance_dvour(m)

m <- glmmTMB::glmmTMB(
RT ~ Illusion_Difference + (Illusion_Difference | Participant) + (1 | Trial),
data = df

)
performance_reliability(m)
performance_dvour(m)

performance_rmse Root Mean Squared Error

Description

Compute root mean squared error for (mixed effects) models, including Bayesian regression mod-
els.

Usage

performance_rmse(
model,
normalized = FALSE,
ci = NULL,
iterations = 100,
ci_method = NULL,
verbose = TRUE,
...

)

rmse(
model,
normalized = FALSE,
ci = NULL,
iterations = 100,
ci_method = NULL,
verbose = TRUE,
...

)

performance_rmse 97

Arguments

model A model.

normalized Logical, use TRUE if normalized rmse should be returned.

ci Confidence resp. credible interval level. For icc(), r2(), and rmse(), confi-
dence intervals are based on bootstrapped samples from the ICC, R2 or RMSE
value. See iterations.

iterations Number of bootstrap-replicates when computing confidence intervals for the
ICC, R2, RMSE etc.

ci_method Character string, indicating the bootstrap-method. Should be NULL (default),
in which case lme4::bootMer() is used for bootstrapped confidence intervals.
However, if bootstrapped intervals cannot be calculated this way, try ci_method
= "boot", which falls back to boot::boot(). This may successfully return
bootstrapped confidence intervals, but bootstrapped samples may not be ap-
propriate for the multilevel structure of the model. There is also an option
ci_method = "analytical", which tries to calculate analytical confidence as-
suming a chi-squared distribution. However, these intervals are rather inaccurate
and often too narrow. It is recommended to calculate bootstrapped confidence
intervals for mixed models.

verbose Toggle warnings and messages.

... Arguments passed down to lme4::bootMer() or boot::boot() for bootstrapped
ICC, R2, RMSE etc.; for variance_decomposition(), arguments are passed
down to brms::posterior_predict().

Details

The RMSE is the square root of the variance of the residuals and indicates the absolute fit of the
model to the data (difference between observed data to model’s predicted values). It can be inter-
preted as the standard deviation of the unexplained variance, and is in the same units as the response
variable. Lower values indicate better model fit.

The normalized RMSE is the proportion of the RMSE related to the range of the response variable.
Hence, lower values indicate less residual variance.

Value

Numeric, the root mean squared error.

Examples

data(Orthodont, package = "nlme")
m <- nlme::lme(distance ~ age, data = Orthodont)

RMSE
performance_rmse(m, normalized = FALSE)

normalized RMSE
performance_rmse(m, normalized = TRUE)

98 performance_roc

performance_roc Simple ROC curve

Description

This function calculates a simple ROC curves of x/y coordinates based on response and predictions
of a binomial model.

It returns the area under the curve (AUC) as a percentage, which corresponds to the probability that
a randomly chosen observation of "condition 1" is correctly classified by the model as having a
higher probability of being "condition 1" than a randomly chosen "condition 2" observation.

Applying as.data.frame() to the output returns a data frame containing the following:

• Sensitivity (that actually corresponds to 1 - Specificity): It is the False Positive Rate.

• Sensitivity: It is the True Positive Rate, which is the proportion of correctly classified
"condition 1" observations.

Usage

performance_roc(x, ..., predictions, new_data)

Arguments

x A numeric vector, representing the outcome (0/1), or a model with binomial
outcome.

... One or more models with binomial outcome. In this case, new_data is ignored.

predictions If x is numeric, a numeric vector of same length as x, representing the actual
predicted values.

new_data If x is a model, a data frame that is passed to predict() as newdata-argument.
If NULL, the ROC for the full model is calculated.

Value

A data frame with three columns, the x/y-coordinate pairs for the ROC curve (Sensitivity and
Specificity), and a column with the model name.

Note

There is also a plot()-method implemented in the see-package.

Examples

library(bayestestR)
data(iris)

set.seed(123)
iris$y <- rbinom(nrow(iris), size = 1, .3)

https://easystats.github.io/see/articles/performance.html
https://easystats.github.io/see/

performance_rse 99

folds <- sample(nrow(iris), size = nrow(iris) / 8, replace = FALSE)
test_data <- iris[folds,]
train_data <- iris[-folds,]

model <- glm(y ~ Sepal.Length + Sepal.Width, data = train_data, family = "binomial")
as.data.frame(performance_roc(model, new_data = test_data))
as.numeric(performance_roc(model))

roc <- performance_roc(model, new_data = test_data)
area_under_curve(roc$Specificity, roc$Sensitivity)

if (interactive()) {
m1 <- glm(y ~ Sepal.Length + Sepal.Width, data = iris, family = "binomial")
m2 <- glm(y ~ Sepal.Length + Petal.Width, data = iris, family = "binomial")
m3 <- glm(y ~ Sepal.Length + Species, data = iris, family = "binomial")
performance_roc(m1, m2, m3)

if you have `see` package installed, you can also plot comparison of
ROC curves for different models
if (require("see")) plot(performance_roc(m1, m2, m3))

}

performance_rse Residual Standard Error for Linear Models

Description

Compute residual standard error of linear models.

Usage

performance_rse(model)

Arguments

model A model.

Details

The residual standard error is the square root of the residual sum of squares divided by the residual
degrees of freedom.

Value

Numeric, the residual standard error of model.

Examples

data(mtcars)
m <- lm(mpg ~ hp + gear, data = mtcars)
performance_rse(m)

100 performance_score

performance_score Proper Scoring Rules

Description

Calculates the logarithmic, quadratic/Brier and spherical score from a model with binary or count
outcome.

Usage

performance_score(model, verbose = TRUE, ...)

Arguments

model Model with binary or count outcome.

verbose Toggle off warnings.

... Arguments from other functions, usually only used internally.

Details

Proper scoring rules can be used to evaluate the quality of model predictions and model fit. performance_score()
calculates the logarithmic, quadratic/Brier and spherical scoring rules. The spherical rule takes val-
ues in the interval [0, 1], with values closer to 1 indicating a more accurate model, and the loga-
rithmic rule in the interval [-Inf, 0], with values closer to 0 indicating a more accurate model.

For stan_lmer() and stan_glmer() models, the predicted values are based on posterior_predict(),
instead of predict(). Thus, results may differ more than expected from their non-Bayesian coun-
terparts in lme4.

Value

A list with three elements, the logarithmic, quadratic/Brier and spherical score.

Note

Code is partially based on GLMMadaptive::scoring_rules().

References

Carvalho, A. (2016). An overview of applications of proper scoring rules. Decision Analysis 13,
223–242. doi:10.1287/deca.2016.0337

See Also

performance_logloss()

https://drizopoulos.github.io/GLMMadaptive/reference/scoring_rules.html
https://doi.org/10.1287/deca.2016.0337

r2 101

Examples

Dobson (1990) Page 93: Randomized Controlled Trial :
counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)
outcome <- gl(3, 1, 9)
treatment <- gl(3, 3)
model <- glm(counts ~ outcome + treatment, family = poisson())

performance_score(model)

data(Salamanders, package = "glmmTMB")
model <- glmmTMB::glmmTMB(

count ~ spp + mined + (1 | site),
zi = ~ spp + mined,
family = nbinom2(),
data = Salamanders

)

performance_score(model)

r2 Compute the model’s R2

Description

Calculate the R2, also known as the coefficient of determination, value for different model objects.
Depending on the model, R2, pseudo-R2, or marginal / adjusted R2 values are returned.

Usage

r2(model, ...)

Default S3 method:
r2(model, ci = NULL, verbose = TRUE, ...)

S3 method for class 'mlm'
r2(model, multivariate = TRUE, ...)

S3 method for class 'merMod'
r2(model, ci = NULL, tolerance = 1e-05, ...)

Arguments

model A statistical model.

... Arguments passed down to the related r2-methods.

ci Confidence interval level, as scalar. If NULL (default), no confidence intervals
for R2 are calculated.

102 r2

verbose Logical. Should details about R2 and CI methods be given (TRUE) or not (FALSE)?

multivariate Logical. Should multiple R2 values be reported as separated by response (FALSE)
or should a single R2 be reported as combined across responses computed by
r2_mlm (TRUE).

tolerance Tolerance for singularity check of random effects, to decide whether to com-
pute random effect variances for the conditional r-squared or not. Indicates up
to which value the convergence result is accepted. When r2_nakagawa() re-
turns a warning, stating that random effect variances can’t be computed (and
thus, the conditional r-squared is NA), decrease the tolerance-level. See also
check_singularity().

Value

Returns a list containing values related to the most appropriate R2 for the given model (or NULL if
no R2 could be extracted). See the list below:

• Logistic models: Tjur’s R2

• General linear models: Nagelkerke’s R2

• Multinomial Logit: McFadden’s R2

• Models with zero-inflation: R2 for zero-inflated models

• Mixed models: Nakagawa’s R2

• Bayesian models: R2 bayes

Note

If there is no r2()-method defined for the given model class, r2() tries to return a "generic" r-
quared value, calculated as following: 1-sum((y-y_hat)^2)/sum((y-y_bar)^2)

See Also

r2_bayes(), r2_coxsnell(), r2_kullback(), r2_loo(), r2_mcfadden(), r2_nagelkerke(),
r2_nakagawa(), r2_tjur(), r2_xu(), r2_zeroinflated(), and r2_mlm().

Examples

Pseudo r-quared for GLM
model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
r2(model)

r-squared including confidence intervals
model <- lm(mpg ~ wt + hp, data = mtcars)
r2(model, ci = 0.95)

model <- lme4::lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
r2(model)

r2_bayes 103

r2_bayes Bayesian R2

Description

Compute R2 for Bayesian models. For mixed models (including a random part), it additionally
computes the R2 related to the fixed effects only (marginal R2). While r2_bayes() returns a single
R2 value, r2_posterior() returns a posterior sample of Bayesian R2 values.

Usage

r2_bayes(model, robust = TRUE, ci = 0.95, verbose = TRUE, ...)

r2_posterior(model, ...)

S3 method for class 'brmsfit'
r2_posterior(model, verbose = TRUE, ...)

S3 method for class 'stanreg'
r2_posterior(model, verbose = TRUE, ...)

S3 method for class 'BFBayesFactor'
r2_posterior(model, average = FALSE, prior_odds = NULL, verbose = TRUE, ...)

Arguments

model A Bayesian regression model (from brms, rstanarm, BayesFactor, etc).

robust Logical, if TRUE, the median instead of mean is used to calculate the central
tendency of the variances.

ci Value or vector of probability of the CI (between 0 and 1) to be estimated.

verbose Toggle off warnings.

... Arguments passed to r2_posterior().

average Compute model-averaged index? See bayestestR::weighted_posteriors().

prior_odds Optional vector of prior odds for the models compared to the first model (or the
denominator, for BFBayesFactor objects). For data.frames, this will be used
as the basis of weighting.

Details

r2_bayes() returns an "unadjusted" R2 value. See r2_loo() to calculate a LOO-adjusted R2,
which comes conceptually closer to an adjusted R2 measure.

For mixed models, the conditional and marginal R2 are returned. The marginal R2 considers only
the variance of the fixed effects, while the conditional R2 takes both the fixed and random effects
into account. Technically, since r2_bayes() relies on rstantools::bayes_R2(), the "marginal"
R2 calls bayes_R2(re.form = NA), while the "conditional" R2 calls bayes_R2(re.form = NULL).

104 r2_bayes

The re.form argument is passed to rstantools::posterior_epred(), which is internally called
in bayes_R2().

Note that for "marginal" and "conditional", we refer to the wording suggested by Nakagawa et al.
2017. Thus, we don’t use the term "marginal" in the sense that the random effects are integrated
out, but are "ignored".

r2_posterior() is the actual workhorse for r2_bayes() and returns a posterior sample of Bayesian
R2 values.

Value

A list with the Bayesian R2 value. For mixed models, a list with the Bayesian R2 value and the
marginal Bayesian R2 value. The standard errors and credible intervals for the R2 values are saved
as attributes.

References

• Gelman, A., Goodrich, B., Gabry, J., and Vehtari, A. (2018). R-squared for Bayesian regres-
sion models. The American Statistician, 1–6. doi:10.1080/00031305.2018.1549100

• Nakagawa, S., Johnson, P. C. D., and Schielzeth, H. (2017). The coefficient of determina-
tion R2 and intra-class correlation coefficient from generalized linear mixed-effects models
revisited and expanded. Journal of The Royal Society Interface, 14(134), 20170213.

Examples

library(performance)

model <- suppressWarnings(rstanarm::stan_glm(
mpg ~ wt + cyl,
data = mtcars,
chains = 1,
iter = 500,
refresh = 0,
show_messages = FALSE

))
r2_bayes(model)

model <- suppressWarnings(rstanarm::stan_lmer(
Petal.Length ~ Petal.Width + (1 | Species),
data = iris,
chains = 1,
iter = 500,
refresh = 0

))
r2_bayes(model)

model <- suppressWarnings(brms::brm(
mpg ~ wt + cyl,
data = mtcars,

https://doi.org/10.1080/00031305.2018.1549100

r2_coxsnell 105

silent = 2,
refresh = 0

))
r2_bayes(model)

model <- suppressWarnings(brms::brm(
Petal.Length ~ Petal.Width + (1 | Species),
data = iris,
silent = 2,
refresh = 0

))
r2_bayes(model)

r2_coxsnell Cox & Snell’s R2

Description

Calculates the pseudo-R2 value based on the proposal from Cox & Snell (1989).

Usage

r2_coxsnell(model, ...)

Arguments

model Model with binary outcome.

... Currently not used.

Details

This index was proposed by Cox and Snell (1989, pp. 208-9) and, apparently independently, by
Magee (1990); but had been suggested earlier for binary response models by Maddala (1983).
However, this index achieves a maximum of less than 1 for discrete models (i.e. models whose
likelihood is a product of probabilities) which have a maximum of 1, instead of densities, which
can become infinite (Nagelkerke, 1991).

Value

A named vector with the R2 value.

106 r2_efron

References

• Cox, D. R., Snell, E. J. (1989). Analysis of binary data (Vol. 32). Monographs on Statistics
and Applied Probability.

• Magee, L. (1990). R 2 measures based on Wald and likelihood ratio joint significance tests.
The American Statistician, 44(3), 250-253.

• Maddala, G. S. (1986). Limited-dependent and qualitative variables in econometrics (No. 3).
Cambridge university press.

• Nagelkerke, N. J. (1991). A note on a general definition of the coefficient of determination.
Biometrika, 78(3), 691-692.

Examples

model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
r2_coxsnell(model)

r2_efron Efron’s R2

Description

Calculates Efron’s pseudo R2.

Usage

r2_efron(model)

Arguments

model Generalized linear model.

Details

Efron’s R2 is calculated by taking the sum of the squared model residuals, divided by the total
variability in the dependent variable. This R2 equals the squared correlation between the predicted
values and actual values, however, note that model residuals from generalized linear models are not
generally comparable to those of OLS.

Value

The R2 value.

References

Efron, B. (1978). Regression and ANOVA with zero-one data: Measures of residual variation.
Journal of the American Statistical Association, 73, 113-121.

r2_ferrari 107

Examples

Dobson (1990) Page 93: Randomized Controlled Trial:
counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12) #
outcome <- gl(3, 1, 9)
treatment <- gl(3, 3)
model <- glm(counts ~ outcome + treatment, family = poisson())

r2_efron(model)

r2_ferrari Ferrari’s and Cribari-Neto’s R2

Description

Calculates Ferrari’s and Cribari-Neto’s pseudo R2 (for beta-regression models).

Usage

r2_ferrari(model, ...)

Default S3 method:
r2_ferrari(model, correct_bounds = FALSE, ...)

Arguments

model Generalized linear, in particular beta-regression model.

... Currently not used.

correct_bounds Logical, whether to correct the bounds of the response variable to avoid 0 and
1. If TRUE, the response variable is normalized and "compressed", i.e. zeros and
ones are excluded.

Value

A list with the pseudo R2 value.

References

• Ferrari, S., and Cribari-Neto, F. (2004). Beta Regression for Modelling Rates and Proportions.
Journal of Applied Statistics, 31(7), 799–815. doi:10.1080/0266476042000214501

Examples

data("GasolineYield", package = "betareg")
model <- betareg::betareg(yield ~ batch + temp, data = GasolineYield)
r2_ferrari(model)

https://doi.org/10.1080/0266476042000214501

108 r2_loo

r2_kullback Kullback-Leibler R2

Description

Calculates the Kullback-Leibler-divergence-based R2 for generalized linear models.

Usage

r2_kullback(model, ...)

S3 method for class 'glm'
r2_kullback(model, adjust = TRUE, ...)

Arguments

model A generalized linear model.

... Additional arguments. Currently not used.

adjust Logical, if TRUE (the default), the adjusted R2 value is returned.

Value

A named vector with the R2 value.

References

Cameron, A. C. and Windmeijer, A. G. (1997) An R-squared measure of goodness of fit for some
common nonlinear regression models. Journal of Econometrics, 77: 329-342.

Examples

model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
r2_kullback(model)

r2_loo LOO-adjusted R2

Description

Compute LOO-adjusted R2.

r2_loo 109

Usage

r2_loo(model, robust = TRUE, ci = 0.95, verbose = TRUE, ...)

r2_loo_posterior(model, ...)

S3 method for class 'brmsfit'
r2_loo_posterior(model, verbose = TRUE, ...)

S3 method for class 'stanreg'
r2_loo_posterior(model, verbose = TRUE, ...)

Arguments

model A Bayesian regression model (from brms, rstanarm, BayesFactor, etc).

robust Logical, if TRUE, the median instead of mean is used to calculate the central
tendency of the variances.

ci Value or vector of probability of the CI (between 0 and 1) to be estimated.

verbose Toggle off warnings.

... Arguments passed to r2_posterior().

Details

r2_loo() returns an "adjusted" R2 value computed using a leave-one-out-adjusted posterior dis-
tribution. This is conceptually similar to an adjusted/unbiased R2 estimate in classical regression
modeling. See r2_bayes() for an "unadjusted" R2.

Mixed models are not currently fully supported.

r2_loo_posterior() is the actual workhorse for r2_loo() and returns a posterior sample of LOO-
adjusted Bayesian R2 values.

Value

A list with the Bayesian R2 value. For mixed models, a list with the Bayesian R2 value and the
marginal Bayesian R2 value. The standard errors and credible intervals for the R2 values are saved
as attributes.

A list with the LOO-adjusted R2 value. The standard errors and credible intervals for the R2 values
are saved as attributes.

Examples

model <- suppressWarnings(rstanarm::stan_glm(
mpg ~ wt + cyl,
data = mtcars,
chains = 1,
iter = 500,
refresh = 0,
show_messages = FALSE

))

110 r2_mcfadden

r2_loo(model)

r2_mcfadden McFadden’s R2

Description

Calculates McFadden’s pseudo R2.

Usage

r2_mcfadden(model, ...)

Arguments

model Generalized linear or multinomial logit (mlogit) model.

... Currently not used.

Value

For most models, a list with McFadden’s R2 and adjusted McFadden’s R2 value. For some models,
only McFadden’s R2 is available.

References

• McFadden, D. (1987). Regression-based specification tests for the multinomial logit model.
Journal of econometrics, 34(1-2), 63-82.

• McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior.

Examples

if (require("mlogit")) {
data("Fishing", package = "mlogit")
Fish <- mlogit.data(Fishing, varying = c(2:9), shape = "wide", choice = "mode")

model <- mlogit(mode ~ price + catch, data = Fish)
r2_mcfadden(model)

}

r2_mckelvey 111

r2_mckelvey McKelvey & Zavoinas R2

Description

Calculates McKelvey and Zavoinas pseudo R2.

Usage

r2_mckelvey(model)

Arguments

model Generalized linear model.

Details

McKelvey and Zavoinas R2 is based on the explained variance, where the variance of the predicted
response is divided by the sum of the variance of the predicted response and residual variance.
For binomial models, the residual variance is either pi^2/3 for logit-link and 1 for probit-link.
For poisson-models, the residual variance is based on log-normal approximation, similar to the
distribution-specific variance as described in ?insight::get_variance.

Value

The R2 value.

References

McKelvey, R., Zavoina, W. (1975), "A Statistical Model for the Analysis of Ordinal Level Depen-
dent Variables", Journal of Mathematical Sociology 4, S. 103–120.

Examples

Dobson (1990) Page 93: Randomized Controlled Trial:
counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12) #
outcome <- gl(3, 1, 9)
treatment <- gl(3, 3)
model <- glm(counts ~ outcome + treatment, family = poisson())

r2_mckelvey(model)

112 r2_mlm

r2_mlm Multivariate R2

Description

Calculates two multivariate R2 values for multivariate linear regression.

Usage

r2_mlm(model, ...)

Arguments

model Multivariate linear regression model.

... Currently not used.

Details

The two indexes returned summarize model fit for the set of predictors given the system of re-
sponses. As compared to the default r2 index for multivariate linear models, the indexes returned
by this function provide a single fit value collapsed across all responses.

The two returned indexes were proposed by Van den Burg and Lewis (1988) as an extension of the
metrics proposed by Cramer and Nicewander (1979). Of the numerous indexes proposed across
these two papers, only two metrics, the Rxy and Pxy , are recommended for use by Azen and Bude-
scu (2006).

For a multivariate linear regression with p predictors and q responses where p > q, the Rxy index
is computed as:

Rxy = 1−
p∏

i=1

(1− ρ2i)

Where ρ is a canonical variate from a canonical correlation between the predictors and responses.
This metric is symmetric and its value does not change when the roles of the variables as predictors
or responses are swapped.

The Pxy is computed as:

Pxy =
q − trace(S−1

YYSYY|X)

q

Where SYY is the matrix of response covariances and SYY|X is the matrix of residual covariances
given the predictors. This metric is asymmetric and can change depending on which variables are
considered predictors versus responses.

Value

A named vector with the R2 values.

r2_nagelkerke 113

Author(s)

Joseph Luchman

References

• Azen, R., & Budescu, D. V. (2006). Comparing predictors in multivariate regression models:
An extension of dominance analysis. Journal of Educational and Behavioral Statistics, 31(2),
157-180.

• Cramer, E. M., & Nicewander, W. A. (1979). Some symmetric, invariant measures of multi-
variate association. Psychometrika, 44, 43-54.

• Van den Burg, W., & Lewis, C. (1988). Some properties of two measures of multivariate
association. Psychometrika, 53, 109-122.

Examples

model <- lm(cbind(qsec, drat) ~ wt + mpg + cyl, data = mtcars)
r2_mlm(model)

model_swap <- lm(cbind(wt, mpg, cyl) ~ qsec + drat, data = mtcars)
r2_mlm(model_swap)

r2_nagelkerke Nagelkerke’s R2

Description

Calculate Nagelkerke’s pseudo-R2.

Usage

r2_nagelkerke(model, ...)

Arguments

model A generalized linear model, including cumulative links resp. multinomial mod-
els.

... Currently not used.

Value

A named vector with the R2 value.

References

Nagelkerke, N. J. (1991). A note on a general definition of the coefficient of determination.
Biometrika, 78(3), 691-692.

114 r2_nakagawa

Examples

model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
r2_nagelkerke(model)

r2_nakagawa Nakagawa’s R2 for mixed models

Description

Compute the marginal and conditional r-squared value for mixed effects models with complex
random effects structures.

Usage

r2_nakagawa(
model,
by_group = FALSE,
tolerance = 1e-08,
ci = NULL,
iterations = 100,
ci_method = NULL,
null_model = NULL,
approximation = "lognormal",
model_component = NULL,
verbose = TRUE,
...

)

Arguments

model A mixed effects model.

by_group Logical, if TRUE, returns the explained variance at different levels (if there are
multiple levels). This is essentially similar to the variance reduction approach
by Hox (2010), pp. 69-78.

tolerance Tolerance for singularity check of random effects, to decide whether to com-
pute random effect variances for the conditional r-squared or not. Indicates up
to which value the convergence result is accepted. When r2_nakagawa() re-
turns a warning, stating that random effect variances can’t be computed (and
thus, the conditional r-squared is NA), decrease the tolerance-level. See also
check_singularity().

ci Confidence resp. credible interval level. For icc(), r2(), and rmse(), confi-
dence intervals are based on bootstrapped samples from the ICC, R2 or RMSE
value. See iterations.

iterations Number of bootstrap-replicates when computing confidence intervals for the
ICC, R2, RMSE etc.

r2_nakagawa 115

ci_method Character string, indicating the bootstrap-method. Should be NULL (default),
in which case lme4::bootMer() is used for bootstrapped confidence intervals.
However, if bootstrapped intervals cannot be calculated this way, try ci_method
= "boot", which falls back to boot::boot(). This may successfully return
bootstrapped confidence intervals, but bootstrapped samples may not be ap-
propriate for the multilevel structure of the model. There is also an option
ci_method = "analytical", which tries to calculate analytical confidence as-
suming a chi-squared distribution. However, these intervals are rather inaccurate
and often too narrow. It is recommended to calculate bootstrapped confidence
intervals for mixed models.

null_model Optional, a null model to compute the random effect variances, which is passed
to insight::get_variance(). Usually only required if calculation of r-squared
or ICC fails when null_model is not specified. If calculating the null model
takes longer and you already have fit the null model, you can pass it here, too,
to speed up the process.

approximation Character string, indicating the approximation method for the distribution-specific
(observation level, or residual) variance. Only applies to non-Gaussian models.
Can be "lognormal" (default), "delta" or "trigamma". For binomial models,
the default is the theoretical distribution specific variance, however, it can also
be "observation_level". See Nakagawa et al. 2017, in particular supplement
2, for details.

model_component

For models that can have a zero-inflation component, specify for which com-
ponent variances should be returned. If NULL or "full" (the default), both
the conditional and the zero-inflation component are taken into account. If
"conditional", only the conditional component is considered.

verbose Toggle warnings and messages.

... Arguments passed down to lme4::bootMer() or boot::boot() for bootstrapped
ICC, R2, RMSE etc.; for variance_decomposition(), arguments are passed
down to brms::posterior_predict().

Details

Marginal and conditional r-squared values for mixed models are calculated based on Nakagawa et
al. (2017). For more details on the computation of the variances, see insight::get_variance().
The random effect variances are actually the mean random effect variances, thus the r-squared value
is also appropriate for mixed models with random slopes or nested random effects (see Johnson,
2014).

• Conditional R2: takes both the fixed and random effects into account.

• Marginal R2: considers only the variance of the fixed effects.

The contribution of random effects can be deduced by subtracting the marginal R2 from the condi-
tional R2 or by computing the icc().

Value

A list with the conditional and marginal R2 values.

116 r2_nakagawa

Supported models and model families

The single variance components that are required to calculate the marginal and conditional r-squared
values are calculated using the insight::get_variance() function. The results are validated
against the solutions provided by Nakagawa et al. (2017), in particular examples shown in the
Supplement 2 of the paper. Other model families are validated against results from the MuMIn
package. This means that the r-squared values returned by r2_nakagawa() should be accurate and
reliable for following mixed models or model families:

• Bernoulli (logistic) regression
• Binomial regression (with other than binary outcomes)
• Poisson and Quasi-Poisson regression
• Negative binomial regression (including nbinom1, nbinom2 and nbinom12 families)
• Gaussian regression (linear models)
• Gamma regression
• Tweedie regression
• Beta regression
• Ordered beta regression

Following model families are not yet validated, but should work:

• Zero-inflated and hurdle models
• Beta-binomial regression
• Compound Poisson regression
• Generalized Poisson regression
• Log-normal regression
• Skew-normal regression

Extracting variance components for models with zero-inflation part is not straightforward, because
it is not definitely clear how the distribution-specific variance should be calculated. Therefore, it
is recommended to carefully inspect the results, and probably validate against other models, e.g.
Bayesian models (although results may be only roughly comparable).

Log-normal regressions (e.g. lognormal() family in glmmTMB or gaussian("log")) often have
a very low fixed effects variance (if they were calculated as suggested by Nakagawa et al. 2017).
This results in very low ICC or r-squared values, which may not be meaningful.

References

• Hox, J. J. (2010). Multilevel analysis: techniques and applications (2nd ed). New York:
Routledge.

• Johnson, P. C. D. (2014). Extension of Nakagawa and Schielzeth’s R2 GLMM to random
slopes models. Methods in Ecology and Evolution, 5(9), 944–946. doi:10.1111/2041210X.12225

• Nakagawa, S., and Schielzeth, H. (2013). A general and simple method for obtaining R2 from
generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133–142.
doi:10.1111/j.2041210x.2012.00261.x

• Nakagawa, S., Johnson, P. C. D., and Schielzeth, H. (2017). The coefficient of determina-
tion R2 and intra-class correlation coefficient from generalized linear mixed-effects models
revisited and expanded. Journal of The Royal Society Interface, 14(134), 20170213.

https://doi.org/10.1111/2041-210X.12225
https://doi.org/10.1111/j.2041-210x.2012.00261.x

r2_somers 117

Examples

model <- lme4::lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
r2_nakagawa(model)
r2_nakagawa(model, by_group = TRUE)

r2_somers Somers’ Dxy rank correlation for binary outcomes

Description

Calculates the Somers’ Dxy rank correlation for logistic regression models.

Usage

r2_somers(model)

Arguments

model A logistic regression model.

Value

A named vector with the R2 value.

References

Somers, R. H. (1962). A new asymmetric measure of association for ordinal variables. American
Sociological Review. 27 (6).

Examples

if (require("correlation") && require("Hmisc")) {
model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
r2_somers(model)

}

118 r2_xu

r2_tjur Tjur’s R2 - coefficient of determination (D)

Description

This method calculates the Coefficient of Discrimination D (also known as Tjur’s R2; Tjur, 2009)
for generalized linear (mixed) models for binary outcomes. It is an alternative to other pseudo-R2
values like Nagelkerke’s R2 or Cox-Snell R2. The Coefficient of Discrimination D can be read like
any other (pseudo-)R2 value.

Usage

r2_tjur(model, ...)

Arguments

model Binomial Model.

... Arguments from other functions, usually only used internally.

Value

A named vector with the R2 value.

References

Tjur, T. (2009). Coefficients of determination in logistic regression models - A new proposal: The
coefficient of discrimination. The American Statistician, 63(4), 366-372.

Examples

model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
r2_tjur(model)

r2_xu Xu’ R2 (Omega-squared)

Description

Calculates Xu’ Omega-squared value, a simple R2 equivalent for linear mixed models.

Usage

r2_xu(model)

r2_zeroinflated 119

Arguments

model A linear (mixed) model.

Details

r2_xu() is a crude measure for the explained variance from linear (mixed) effects models, which is
originally denoted as Ω2.

Value

The R2 value.

References

Xu, R. (2003). Measuring explained variation in linear mixed effects models. Statistics in Medicine,
22(22), 3527–3541. doi:10.1002/sim.1572

Examples

model <- lm(Sepal.Length ~ Petal.Length + Species, data = iris)
r2_xu(model)

r2_zeroinflated R2 for models with zero-inflation

Description

Calculates R2 for models with zero-inflation component, including mixed effects models.

Usage

r2_zeroinflated(model, method = "default")

Arguments

model A model.
method Indicates the method to calculate R2. Can be "default" or "correlation".

See ’Details’. May be abbreviated.

Details

The default-method calculates an R2 value based on the residual variance divided by the total vari-
ance. For method = "correlation", R2 is a correlation-based measure, which is rather crude. It
simply computes the squared correlation between the model’s actual and predicted response.

Value

For the default-method, a list with the R2 and adjusted R2 values. For method = "correlation", a
named numeric vector with the correlation-based R2 value.

https://doi.org/10.1002/sim.1572

120 simulate_residuals

Examples

if (require("pscl")) {
data(bioChemists)
model <- zeroinfl(
art ~ fem + mar + kid5 + ment | kid5 + phd,
data = bioChemists

)

r2_zeroinflated(model)
}

simulate_residuals Simulate randomized quantile residuals from a model

Description

Returns simulated residuals from a model. This is useful for checking the uniformity of residuals, in
particular for non-Gaussian models, where the residuals are not expected to be normally distributed.

Usage

simulate_residuals(x, iterations = 250, ...)

S3 method for class 'performance_simres'
residuals(object, quantile_function = NULL, outlier_values = NULL, ...)

Arguments

x A model object.

iterations Number of simulations to run.

... Arguments passed on to DHARMa::simulateResiduals().

object A performance_simres object, as returned by simulate_residuals().
quantile_function

A function to apply to the residuals. If NULL, the residuals are returned as is. If
not NULL, the residuals are passed to this function. This is useful for returning
normally distributed residuals, for example: residuals(x, quantile_function
= qnorm).

outlier_values A vector of length 2, specifying the values to replace -Inf and Inf with, respec-
tively.

Details

This function is a small wrapper around DHARMa::simulateResiduals(). It basically only sets
plot = FALSE and adds an additional class attribute ("performance_sim_res"), which allows using
the DHARMa object in own plotting functions from the see package. See also vignette("DHARMa").
There is a plot() method to visualize the distribution of the residuals.

test_bf 121

Value

Simulated residuals, which can be further processed with check_residuals(). The returned object
is of class DHARMa and performance_simres.

Tests based on simulated residuals

For certain models, resp. model from certain families, tests like check_zeroinflation() or
check_overdispersion() are based on simulated residuals. These are usually more accurate for
such tests than the traditionally used Pearson residuals. However, when simulating from more com-
plex models, such as mixed models or models with zero-inflation, there are several important con-
siderations. simulate_residuals() relies on DHARMa::simulateResiduals(), and additional
arguments specified in ... are passed further down to that function. The defaults in DHARMa are
set on the most conservative option that works for all models. However, in many cases, the help
advises to use different settings in particular situations or for particular models. It is recommended
to read the ’Details’ in ?DHARMa::simulateResiduals closely to understand the implications of
the simulation process and which arguments should be modified to get the most accurate results.

References

• Hartig, F., & Lohse, L. (2022). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level
/ Mixed) Regression Models (Version 0.4.5). Retrieved from https://CRAN.R-project.org/package=DHARMa

• Dunn, P. K., & Smyth, G. K. (1996). Randomized Quantile Residuals. Journal of Computa-
tional and Graphical Statistics, 5(3), 236. doi:10.2307/1390802

See Also

check_residuals(), check_zeroinflation(), check_overdispersion() and check_predictions().
See also see::plot.see_performance_simres() for options to customize the plot.

Examples

m <- lm(mpg ~ wt + cyl + gear + disp, data = mtcars)
simulate_residuals(m)

extract residuals
head(residuals(simulate_residuals(m)))

test_bf Test if models are different

Description

Testing whether models are "different" in terms of accuracy or explanatory power is a delicate and
often complex procedure, with many limitations and prerequisites. Moreover, many tests exist, each
coming with its own interpretation, and set of strengths and weaknesses.

https://doi.org/10.2307/1390802

122 test_bf

The test_performance() function runs the most relevant and appropriate tests based on the type
of input (for instance, whether the models are nested or not). However, it still requires the user to
understand what the tests are and what they do in order to prevent their misinterpretation. See the
Details section for more information regarding the different tests and their interpretation.

Usage

test_bf(...)

Default S3 method:
test_bf(..., reference = 1, text_length = NULL)

test_likelihoodratio(..., estimator = "ML", verbose = TRUE)

test_lrt(..., estimator = "ML", verbose = TRUE)

test_performance(..., reference = 1, verbose = TRUE)

test_vuong(..., verbose = TRUE)

test_wald(..., verbose = TRUE)

Arguments

... Multiple model objects.

reference This only applies when models are non-nested, and determines which model
should be taken as a reference, against which all the other models are tested.

text_length Numeric, length (number of chars) of output lines. test_bf() describes models
by their formulas, which can lead to overly long lines in the output. text_length
fixes the length of lines to a specified limit.

estimator Applied when comparing regression models using test_likelihoodratio().
Corresponds to the different estimators for the standard deviation of the errors.
Defaults to "OLS" for linear models, "ML" for all other models (including mixed
models), or "REML" for linear mixed models when these have the same fixed
effects. See ’Details’.

verbose Toggle warning and messages.

Details

Nested vs. Non-nested Models:
Model’s "nesting" is an important concept of models comparison. Indeed, many tests only make
sense when the models are "nested", i.e., when their predictors are nested. This means that all
the fixed effects predictors of a model are contained within the fixed effects predictors of a larger
model (sometimes referred to as the encompassing model). For instance, model1 (y ~ x1 + x2)
is "nested" within model2 (y ~ x1 + x2 + x3). Usually, people have a list of nested models, for
instance m1 (y ~ 1), m2 (y ~ x1), m3 (y ~ x1 + x2), m4 (y ~ x1 + x2 + x3), and it is conventional
that they are "ordered" from the smallest to largest, but it is up to the user to reverse the order from
largest to smallest. The test then shows whether a more parsimonious model, or whether adding

test_bf 123

a predictor, results in a significant difference in the model’s performance. In this case, models are
usually compared sequentially: m2 is tested against m1, m3 against m2, m4 against m3, etc.
Two models are considered as "non-nested" if their predictors are different. For instance, model1
(y ~ x1 + x2) and model2 (y ~ x3 + x4). In the case of non-nested models, all models are usually
compared against the same reference model (by default, the first of the list).
Nesting is detected via the insight::is_nested_models() function. Note that, apart from the
nesting, in order for the tests to be valid, other requirements have often to be the fulfilled. For in-
stance, outcome variables (the response) must be the same. You cannot meaningfully test whether
apples are significantly different from oranges!

Estimator of the standard deviation:
The estimator is relevant when comparing regression models using test_likelihoodratio().
If estimator = "OLS", then it uses the same method as anova(..., test = "LRT") implemented
in base R, i.e., scaling by n-k (the unbiased OLS estimator) and using this estimator under the
alternative hypothesis. If estimator = "ML", which is for instance used by lrtest(...) in pack-
age lmtest, the scaling is done by n (the biased ML estimator) and the estimator under the null
hypothesis. In moderately large samples, the differences should be negligible, but it is possible
that OLS would perform slightly better in small samples with Gaussian errors. For estimator =
"REML", the LRT is based on the REML-fit log-likelihoods of the models. Note that not all types
of estimators are available for all model classes.

REML versus ML estimator:
When estimator = "ML", which is the default for linear mixed models (unless they share the
same fixed effects), values from information criteria (AIC, AICc) are based on the ML-estimator,
while the default behaviour of AIC() may be different (in particular for linear mixed models from
lme4, which sets REML = TRUE). This default in test_likelihoodratio() intentional, because
comparing information criteria based on REML fits requires the same fixed effects for all models,
which is often not the case. Thus, while anova.merMod() automatically refits all models to REML
when performing a LRT, test_likelihoodratio() checks if a comparison based on REML fits
is indeed valid, and if so, uses REML as default (else, ML is the default). Set the estimator
argument explicitely to override the default behaviour.

Tests Description:
• Bayes factor for Model Comparison - test_bf(): If all models were fit from the same

data, the returned BF shows the Bayes Factor (see bayestestR::bayesfactor_models())
for each model against the reference model (which depends on whether the models are nested
or not). Check out this vignette for more details.

• Wald’s F-Test - test_wald(): The Wald test is a rough approximation of the Likelihood
Ratio Test. However, it is more applicable than the LRT: you can often run a Wald test in
situations where no other test can be run. Importantly, this test only makes statistical sense if
the models are nested.
Note: this test is also available in base R through the anova() function. It returns an F-value
column as a statistic and its associated p-value.

• Likelihood Ratio Test (LRT) - test_likelihoodratio(): The LRT tests which model
is a better (more likely) explanation of the data. Likelihood-Ratio-Test (LRT) gives usually
somewhat close results (if not equivalent) to the Wald test and, similarly, only makes sense for
nested models. However, maximum likelihood tests make stronger assumptions than method
of moments tests like the F-test, and in turn are more efficient. Agresti (1990) suggests that

https://easystats.github.io/bayestestR/articles/bayes_factors.html#bayesfactor_models

124 test_bf

you should use the LRT instead of the Wald test for small sample sizes (under or about 30)
or if the parameters are large.
Note: for regression models, this is similar to anova(..., test="LRT") (on models) or
lmtest::lrtest(...), depending on the estimator argument. For lavaan models (SEM,
CFA), the function calls lavaan::lavTestLRT().
For models with transformed response variables (like log(x) or sqrt(x)), logLik() returns
a wrong log-likelihood. However, test_likelihoodratio() calls insight::get_loglikelihood()
with check_response=TRUE, which returns a corrected log-likelihood value for models with
transformed response variables. Furthermore, since the LRT only accepts nested models (i.e.
models that differ in their fixed effects), the computed log-likelihood is always based on the
ML estimator, not on the REML fits.

• Vuong’s Test - test_vuong(): Vuong’s (1989) test can be used both for nested and non-
nested models, and actually consists of two tests.

– The Test of Distinguishability (the Omega2 column and its associated p-value) indicates
whether or not the models can possibly be distinguished on the basis of the observed
data. If its p-value is significant, it means the models are distinguishable.

– The Robust Likelihood Test (the LR column and its associated p-value) indicates whether
each model fits better than the reference model. If the models are nested, then the test
works as a robust LRT. The code for this function is adapted from the nonnest2 package,
and all credit go to their authors.

Value

A data frame containing the relevant indices.

References

• Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses.
Econometrica, 57, 307-333.

• Merkle, E. C., You, D., & Preacher, K. (2016). Testing non-nested structural equation models.
Psychological Methods, 21, 151-163.

See Also

compare_performance() to compare the performance indices of many different models.

Examples

Nested Models

m1 <- lm(Sepal.Length ~ Petal.Width, data = iris)
m2 <- lm(Sepal.Length ~ Petal.Width + Species, data = iris)
m3 <- lm(Sepal.Length ~ Petal.Width * Species, data = iris)

test_performance(m1, m2, m3)

test_bf(m1, m2, m3)
test_wald(m1, m2, m3) # Equivalent to anova(m1, m2, m3)

Equivalent to lmtest::lrtest(m1, m2, m3)

test_bf 125

test_likelihoodratio(m1, m2, m3, estimator = "ML")

Equivalent to anova(m1, m2, m3, test='LRT')
test_likelihoodratio(m1, m2, m3, estimator = "OLS")

if (require("CompQuadForm")) {
test_vuong(m1, m2, m3) # nonnest2::vuongtest(m1, m2, nested=TRUE)

Non-nested Models

m1 <- lm(Sepal.Length ~ Petal.Width, data = iris)
m2 <- lm(Sepal.Length ~ Petal.Length, data = iris)
m3 <- lm(Sepal.Length ~ Species, data = iris)

test_performance(m1, m2, m3)
test_bf(m1, m2, m3)
test_vuong(m1, m2, m3) # nonnest2::vuongtest(m1, m2)

}

Tweak the output

test_performance(m1, m2, m3, include_formula = TRUE)

SEM / CFA (lavaan objects)

Lavaan Models
if (require("lavaan")) {

structure <- " visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

visual ~~ textual + speed "
m1 <- lavaan::cfa(structure, data = HolzingerSwineford1939)

structure <- " visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

visual ~~ 0 * textual + speed "
m2 <- lavaan::cfa(structure, data = HolzingerSwineford1939)

structure <- " visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

visual ~~ 0 * textual + 0 * speed "
m3 <- lavaan::cfa(structure, data = HolzingerSwineford1939)

test_likelihoodratio(m1, m2, m3)

Different Model Types

126 test_bf

if (require("lme4") && require("mgcv")) {
m1 <- lm(Sepal.Length ~ Petal.Length + Species, data = iris)
m2 <- lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
m3 <- gam(Sepal.Length ~ s(Petal.Length, by = Species) + Species, data = iris)

test_performance(m1, m2, m3)
}

}

Index

∗ data
classify_distribution, 55

∗ functions to check model assumptions and
and assess model quality

check_autocorrelation, 6
check_collinearity, 8
check_convergence, 11
check_heteroscedasticity, 25
check_homogeneity, 26
check_model, 29
check_outliers, 36
check_overdispersion, 43
check_predictions, 45
check_singularity, 49
check_zeroinflation, 53

anova(), 123
as.dag (check_dag), 13
as.data.frame, 38

Bartlett’s Test of Sphericity, 52
Bayesian models, 74
bayesplot::pp_check(), 45
bayestestR::auc(), 85
bayestestR::ci(), 39
bayestestR::weighted_posteriors(), 83,

103
bigutilsr::dist_ogk(), 39
binned_residuals, 4
binned_residuals(), 33
binom.test(), 5

canonical correlation, 112
CFA / SEM lavaan models, 74
check_autocorrelation, 6, 11, 13, 26, 27,

33, 42, 45, 47, 51, 54
check_clusterstructure, 7
check_clusterstructure(), 20
check_collinearity, 7, 8, 13, 26, 27, 33, 42,

45, 47, 51, 54

check_collinearity(), 32
check_concurvity (check_collinearity), 8
check_convergence, 7, 11, 11, 26, 27, 33, 42,

45, 47, 51, 54
check_dag, 13
check_distribution, 18
check_factorstructure, 19
check_factorstructure(), 8
check_group_variation, 21
check_group_variation(), 24, 25
check_heterogeneity_bias, 24
check_heteroscedasticity, 7, 11, 13, 25,

27, 33, 42, 45, 47, 51, 54
check_heteroscedasticity(), 31
check_heteroskedasticity

(check_heteroscedasticity), 25
check_homogeneity, 7, 11, 13, 26, 26, 33, 42,

45, 47, 51, 54
check_itemscale, 27
check_itemscale(), 59, 71
check_kmo (check_factorstructure), 19
check_kmo(), 8
check_model, 7, 11, 13, 26, 27, 29, 42, 45, 47,

51, 54
check_multimodal, 34
check_normality, 35
check_normality(), 32
check_outliers, 7, 11, 13, 26, 27, 33, 36, 45,

47, 51, 54
check_outliers(), 32
check_overdispersion, 7, 11, 13, 26, 27, 33,

42, 43, 47, 51, 54
check_overdispersion(), 32, 48, 49, 121
check_predictions, 7, 11, 13, 26, 27, 33, 42,

45, 45, 51, 54
check_predictions(), 31, 48, 49, 121
check_residuals, 47
check_residuals(), 32, 47, 121
check_singularity, 7, 11, 13, 26, 27, 33, 42,

127

128 INDEX

45, 47, 49, 54
check_singularity(), 102, 114
check_sphericity, 52
check_sphericity_bartlett, 52
check_sphericity_bartlett

(check_factorstructure), 19
check_sphericity_bartlett(), 8
check_symmetry, 53
check_zeroinflation, 7, 11, 13, 26, 27, 33,

42, 45, 47, 51, 53
check_zeroinflation(), 48, 49, 121
classify_distribution, 55
compare_performance, 55
compare_performance(), 59, 74, 124
cronbachs_alpha, 57

datawizard::demean(), 22, 23, 25
datawizard::reverse(), 28, 66, 71
dbscan::extractXi(), 40
DHARMa::simulateResiduals(), 44, 48, 54,

120, 121
display.performance_model, 58
documentation(), 56

Frequentist Regressions, 73

ggplot2::geom_boxplot, 39

icc, 22, 60
icc(), 80, 115
ICSOutlier::ics.outlier(), 37, 39
insight::export_table(), 59
insight::format_table(), 59
insight::get_sigma(), 79, 84
insight::get_variance(), 60, 61, 63, 115,

116
Instrumental Variables Regressions, 73
item_alpha (cronbachs_alpha), 57
item_difficulty, 64
item_difficulty(), 28, 71
item_discrimination, 66
item_discrimination(), 28, 71
item_intercor, 67
item_intercor(), 28, 71
item_omega, 68
item_reliability, 70
item_split_half, 72
item_totalcor (item_discrimination), 66

loo::stacking_weights(), 56

looic, 73
looic(), 83

mae (performance_mae), 91
McFadden’s R2, 102
Meta-analysis models, 74
Mixed models, 73
model_performance, 73
model_performance(), 59
model_performance.BFBayesFactor

(model_performance.stanreg), 83
model_performance.fa, 74
model_performance.ivreg, 75
model_performance.kmeans, 76
model_performance.lavaan, 77
model_performance.lm, 79
model_performance.lm(), 81
model_performance.merMod, 80
model_performance.rma, 81
model_performance.stanreg, 83
mse (performance_mse), 91
multicollinearity (check_collinearity),

8

Nagelkerke’s R2, 102
Nakagawa’s R2, 102

parameters::principal_components(), 28,
57

performance (model_performance), 73
performance::check_singularity(), 60
performance_accuracy, 85
performance_aic (performance_aicc), 86
performance_aicc, 86
performance_cv, 88
performance_dvour

(performance_reliability), 93
performance_hosmer, 89
performance_logloss, 90
performance_logloss(), 79, 84, 100
performance_mae, 91
performance_mse, 91
performance_pcp, 92
performance_pcp(), 79, 84
performance_reliability, 93
performance_rmse, 96
performance_rmse(), 79, 84
performance_roc, 98
performance_rse, 99

INDEX 129

performance_score, 100
performance_score(), 79, 84, 90
print.performance_model

(display.performance_model), 58
print_md.compare_performance

(display.performance_model), 58
print_md.performance_model

(display.performance_model), 58
psych::omega(), 68, 69

r2, 101, 112
R2 bayes, 102
R2 for zero-inflated models, 102
r2(), 62, 79
r2_bayes, 84, 103
r2_bayes(), 84, 102, 109
r2_coxsnell, 105
r2_coxsnell(), 102
r2_efron, 106
r2_ferrari, 107
r2_kullback, 108
r2_kullback(), 102
r2_loo, 108
r2_loo(), 84, 102, 103
r2_loo_posterior (r2_loo), 108
r2_mcfadden, 110
r2_mcfadden(), 102
r2_mckelvey, 111
r2_mlm, 102, 112
r2_mlm(), 102
r2_nagelkerke, 113
r2_nagelkerke(), 102
r2_nakagawa, 114
r2_nakagawa(), 62, 102
r2_posterior (r2_bayes), 103
r2_somers, 117
r2_tjur, 118
r2_tjur(), 102
r2_xu, 118
r2_xu(), 102
r2_zeroinflated, 119
r2_zeroinflated(), 102
residuals.performance_simres

(simulate_residuals), 120
rmse (performance_rmse), 96
rstantools::bayes_R2(), 103
rstantools::posterior_epred(), 104

see::plot.see_check_collinearity(), 11

see::plot.see_check_normality(), 35
see::plot.see_check_outliers(), 42
see::plot.see_performance_simres(), 49,

121
see::print.see_performance_pp_check(),

47
simulate_residuals, 120
simulate_residuals(), 30, 32, 33, 37, 43,

44, 47–49, 54
stats::dist(), 7
stats::ks.test(), 48
stats::mahalanobis(), 37
summary.check_group_variation

(check_group_variation), 21

test_bf, 121
test_likelihoodratio (test_bf), 121
test_lrt (test_bf), 121
test_performance (test_bf), 121
test_vuong (test_bf), 121
test_wald (test_bf), 121
Tjur’s R2, 102

variance_decomposition (icc), 60

	binned_residuals
	check_autocorrelation
	check_clusterstructure
	check_collinearity
	check_convergence
	check_dag
	check_distribution
	check_factorstructure
	check_group_variation
	check_heterogeneity_bias
	check_heteroscedasticity
	check_homogeneity
	check_itemscale
	check_model
	check_multimodal
	check_normality
	check_outliers
	check_overdispersion
	check_predictions
	check_residuals
	check_singularity
	check_sphericity
	check_symmetry
	check_zeroinflation
	classify_distribution
	compare_performance
	cronbachs_alpha
	display.performance_model
	icc
	item_difficulty
	item_discrimination
	item_intercor
	item_omega
	item_reliability
	item_split_half
	looic
	model_performance
	model_performance.fa
	model_performance.ivreg
	model_performance.kmeans
	model_performance.lavaan
	model_performance.lm
	model_performance.merMod
	model_performance.rma
	model_performance.stanreg
	performance_accuracy
	performance_aicc
	performance_cv
	performance_hosmer
	performance_logloss
	performance_mae
	performance_mse
	performance_pcp
	performance_reliability
	performance_rmse
	performance_roc
	performance_rse
	performance_score
	r2
	r2_bayes
	r2_coxsnell
	r2_efron
	r2_ferrari
	r2_kullback
	r2_loo
	r2_mcfadden
	r2_mckelvey
	r2_mlm
	r2_nagelkerke
	r2_nakagawa
	r2_somers
	r2_tjur
	r2_xu
	r2_zeroinflated
	simulate_residuals
	test_bf
	Index

