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The original Vuong test

Vuong (1989) proposed a test for non-nested model. He considered two competing models,
Fy = {f(yl2;8); 8 € B} and G, = {g(yl|z;7);v € ['}. Denoting h(y|z) the true conditional
density, the distance of Fj; from the true model is measured by the minimum KLIC:
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where E” is the expected value using the true joint distribution of (y, X) and f, is the pseudo-
true value of 8.1 As the true model is unobserved, denoting 7 = (87,4"), we consider the
difference of the KLIC distance to the true model of model G, and model Fi:
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The null hypothesis is that the distance of the two models to the true models are equal or,
equivalently, that: A = 0. The alternative hypothesis is either A > 0, which means that Fj
is better than G, or A < 0, which means that G., is better than Fj;. Denoting, for a given

random sample of size N, B and 4 the maximum likelihood estimators of the two models and

InL,(8) and In L, (¥) the maximum value of the log-likelihood functions of respectively Flg
and G, A can be consistently estimated by:
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18, is called the pseudo-true value because f may be an incorrect model.



which is the likelihood ratio divided by the sample size. Note that the statistic of the standard
likelihood ratio test, suitable for nested models is 2 (1n Lf(B) —InL9 (:y)), which is 2NA . The
variance of A is:
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which can be consistently estimated by:
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Three different cases should be considered:

o when the two models are nested, w? is necessarily 0,
o when the two models are overlapping (which means than the two models coincide for
some values of the parameters), w? may be equal to 0 or not,

o when the two models are strictly non-nested, w? is necessarily strictly positive.

The distribution of the statistic depends on whether w? is zero or positive. If w? is positive,

the statistic is TN =vN AJI\‘; and, under the null hypothesis that the two models are equivalent,

w

follows a standard normal distribution. This is the case for two strictly non-nested models.

On the contrary, if w? = 0, the distribution is much more complicated. We need to define two
matrices: A contains the expected values of the second derivatives of A:
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and B the variance of its first derivatives:
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Denote ), the eigen values of W. When w? = 0 (which is always the case for nested models),
the statistic is the one used in the standard likelihood ratio test: 2(InL; —InL,) = 2NAy
which, under the null, follows a weighted x? distribution with weights equal to A,. The Vuong
test can be seen in this context as a more robust version of the standard likelihood ratio test,
because it doesn’t assume, under the null, that the larger model is correctly specified.

Note that, if the larger model is correctly specified, the information matrix equality implies
that B;(0,) = —A;(6,). In this case, the two matrices on the diagonal of W reduce to —I
and [/ K , the trace of W to K, — K; and the distribution of the statistic under the null reduce

to a x? with K, — K degrees of freedom.

The W matrix can be consistently estimated by computing the first and the second derivatives
of the likelihood functions of the two models for #. For example,
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For the overlapping case, the test should be performed in two steps:

o the first step consists on testing whether w} is 0 or not. This hypothesis is based on the
statistic N@? which, under the null (w? = 0) follows a weighted x? distributions with
weights equal to A2. If the null hypothesis is not rejected, the test stops at this step and
the conclusion is that the two models are equivalent,

o if the null hypothesis is reject, the second step consists on applying the test for non-nested
models previously described.

The non-degenerate Vuong test

Shi (2015) proposed a non-degenerate version of the Vuong (1989) test. She showed that the
Vuong test has size distortion, leading to subsequent over-rejection. The cause of this problem
is that the distribution of A is discontinuous in the w? parameter (namely a normal distribution
if w? > 0 and a distribution related to a weight x? distribution if w? = 0). Especially in small
samples, it may be difficult to distinguish a positive versus a zero value of w? because of
sampling error. To solve this problem, using local asymptotic theory, Shi (2015) showed that,
rewriting the Vuong statistic as:
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the asymptotic distribution of the numerator and of the square of the denominator of the
Vuong statistic is the same as:
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is a vector of length K, + K, o a positive scalar and V is the diagonal matrix containing
Px g f g p

1
the eigen values of B2 A"'Bs.

Based on this result, Shi (2015) showed:

o that the expected value of the numerator is —trace(V')/2, the classical Vuong statistic
is therefore biased and this bias can be severe in small samples and when the degree of
parametrization of the two models are very different,?

e that the denominator, being random, can take values close to zero with a significant
probability, which can generate fat tails in the distribution of the statistic.

Shi (2015) therefore proposed to modify the numerator of the Vuong statistic:
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and to add a constant to the denominator, so that:
(@mod(c>)2 — 2%+ ctr(V)2/N

The non-degenarate Vuong test is then:
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2As the trace of V is the same as the trace of A~! B, when the information matrix identity holds, it is equal to
—K;+ K. The bias of the numerator is therefore caused by the difference in the degree of parametrization
of the two models.



The distribution of the modified Vuong statistic can be estimated by simulations: drawing
in the distribution of (z,,z, ), we compute for every draw J,, J,, and J,/\/J,. As o and
p, can’t be estimated consistently, the supremum other these parameters are taken, and Shi
(2015) indicates that p, should be in this case a vector where all the elements are zero except

for the one that coincides with the highest absolute value of V' which is set to 1.

The test is then computed as follow:

1. start with a given size for the test, say o = 0.05, @. for a given value of ¢, choose o
which maximize the simulated critical value for ¢ and «, @. adjust ¢ so that this critical
value equals the normal critical value, up to a small discrepancy (say 0.1); for example,

if the size is 5%, the target is v;_,/» = 1.96 + 0.1 = 2.06, @. compute TIIVHOd for the
given values of ¢ and o ; if jﬂ]{/nod > U1_q4/9, Teject the null hypothesis at the o level, @.
to get a p-value, if TJ{,HOd > vy_q 9 increase « and repeat the previous steps until a new

value of « is obtained so that T]{}md = V1_q+/2, & being the p-value of the test.

Simulations

Shi (2015) provides an example of simulations of non-nested linear models that shows that the
distribution of the Vuong statistic can be very different from a standard normal. The data
generating process used for the simulations is:
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where z/ is the set of K ¥ covariates that are used in the first model and z9 the set of K p

covariates used in the second model and € ~ N(0,1 — a?). z,{ ~ N(0,a/\/K;) and 2] ~
N(0,a/ \/fg), so that the explained variance explained by the two competing models is the
same (equal to a?) and the null hypothesis of the Vuong test is true. The vuong_sim enables
to simulate values of the Vuong test. As in Shi (2015), we use a very different degree of
parametrization for the two models, with K, = 15 and K, = 1.

library(micsr)

Vuong <- vuong_sim(N = 100, R = 1000, Kf = 15, Kg = 1, a = 0.5)
head (Vuong)

## [1] 1.1224045 0.8091081 0.4603820 0.2239206 0.2323941 0.9340860
mean (Vuong)

## [1] 1.041091
mean (abs (Vuong) > 1.96)
## [1] 0.18



We can see that the the mean of the statistic for the 1000 replications is far away from 0, which
means that the numerator of the Vuong statistic is seriously biased. 18% of the values of the
statistic are greater than the critical value so that the Vuong test will lead in such context
to a noticeable over-rejection. The empirical pdf is shown in Figure 1, along with the normal
pdf.
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Figure 1: Empirical distribution if the Vuong statistic

Implementation of the non-degenarate Vuong test

The micsr package provides a ndvuong function that implements the classical Vuong test. It
has a nest argument (that is FALSE by default but can be set to TRUE to get the nested version
of the Vuong test). This package also provide a 11lcont generic which returns a vector of
length N containing the contribution of every observation to the log-likelihood.

The ndvuong package provides the ndvuong function. As for the vuongtest function, the
two main arguments are two fitted models (say modell and model2). The ./AXn vector is
obtained using 1lcont(modell) - llcont(model2). The relevant matrices A, and B, are
computed from the fitted models using the estfun and the meat functions from the sand-
wich package. More precisely, A~! is bdiag(-bread(modell), bread(model2)? and B is

3bdiag if a function that construct a block-diagonal matrix from its arguments.



crossprod(estfun(modell), - estfun(model2)) / N, where N is the sample size. There-
fore, the ndvuong function can be used with any models for which a 11cont, a estfun and a
bread method is available.

Applications

Voter turnout

The first application is the example used in Shi (2015) and is used to compare our R program
with Shi’s stata’s program. Coate and Conlin (2004) used several models of electoral partici-
pation, using data concerning referenda about alcohol sales regulation in Texas. Three models
are estimated: the preferred group-utilitarian model, a “simple, but plausible, alternative: the
intensity model” and a reduced form model estimated by the seemingly unrelated residuals
method. They are provided in the micsr package as turnout, a list of three fitted models.*
The results of test are given below. We first compute the statistic for an error level of 5%.
We therefore set the size argument to 0.05 (this is actually the default value) and the pval
argument to FALSE.

test <- ndvuong(turnout$group, turnout$intens, size = 0.05, pval = FALSE)
test

Non-degenerate Vuong test for non-nested models

data: turnout$group-turnout$intens

z = 1.7759, size = 0.050000, vuong_stat = 2.084528, constant =
0.381107, crit-value = 2.059963, sum e.v. = -10.997224, vuong_p.value =
0.018556

alternative hypothesis: different models

The statistic is 1.776, which is smaller that the critical value 2.06. Therefore, based on the
test, we can’t reject the hypothesis that the two competing models are equivalent at the 5%
level. The value of the constant ¢ is also reported, as is the sum of the eigen values of the V
matrix (sum e.v.). The classical Vuong statistic is also reported (2.085) and is greater than
the 5% normal critical value (the p-value is 0.019). Therefore, the classical Vuong test and
the non-degenerate version lead to opposite conclusions at the 5% level.

To get only the classical Vuong test, the nd argument can be set to FALSE:

4The estimation is rather complicated because some linear constraints are used to compute the maximum
likelihood estimator in Coate and Conlin (2004)’s stata script. This is the reason why we provide only the
results of the estimations, performed using the maxLik package.



ndvuong (turnout$group, turnout$intens, nd = FALSE) [> gaze()
## z = 2.085, pval = 0.019

To get the p-value of the non-degenerate Vuong test, the pval argument should be set to
TRUE.

test <- ndvuong(turnout$group, turnout$intens, pval = TRUE)
test

Non-degenerate Vuong test for non-nested models

data: turnout$group-turnout$intens

z = 1.8125, vuong_stat = 2.084528, constant = 0.000000, sum e.v. =
-10.997224, vuong_p.value = 0.018556, p-value = 0.0864

alternative hypothesis: different models

The results indicate that the p-value is 0.086, which confirms that the non-degenerate Vuong
test concludes that the two model are equivalent at the 5% level.

Transport mode choice (nested models)

The second example concerns transport mode choice in Canada. The data set, provided by the
mlogit package is called ModeCanada and has been used extensively in the transport demand
literature (see in particular Bhat 1995; Koppelman and Wen 2000; and Wen and Koppelman
2001). The following example is from Croissant (2020). The raw data set is first transformed
to make it suitable for the estimation of discrete choice models. The sample is restricted to
the individuals for which 4 transport modes are available (bus, air, train and car).

if (requireNamespace("mlogit")){

library(mlogit)

data("ModeCanada", package = "mlogit")

MC <- dfidx(ModeCanada, subset = noalt == 4)
}

We first estimate the simplest discrete choice model, which is the multinomial logit model.
The bus share being negligible, the choice set is restricted to the three other modes and the
reference mode is set to car.



if (requireNamespace("mlogit")){
ml <- mlogit(choice ~ freq + cost + ivt + ovt | urban + income, MC,
reflevel = 'car', alt.subset = c("car", "train", "air"))

}

This model relies on the hypothesis that the unobserved component of the utility functions for
the different modes are independent and identical Gumbell variables. Bhat (1995) proposed
the heteroscedastic logit for which the errors follow a general Gumbell distributions with a
supplementary scale parameter to be estimated. As the overall scale of utility is not identified,
the scale parameter of the reference alternative (car) is set to one.

if (requireNamespace("mlogit")){

hl <- mlogit(choice ~ freq + cost + ivt + ovt | urban + income, MC,

reflevel = 'car', alt.subset = c("car", "train", "air"),
heterosc = TRUE)
coef (summary (hl))
}
Estimate Std. Error z-value Pr(>lzl)
(Intercept) :train 0.678393435 0.332762598 2.038671 4.148288e-02
(Intercept) :air .656754399 0.468163091 1.402832 1.606668e-01
freq .063924677 0.004916769 13.001360 0.000000e+00
cost .026961457 0.004283139 -6.294789 3.078178e-10
ivt .009680773 0.001053874 -9.185892 0.000000e+00
ovt .032165526 0.003593007 -8.952258 0.000000e+00
urban:train .797131578 0.120739176 6.602096 4.053868e-11
urban:air .445472634 0.082160945 5.421951 5.895197e-08
income:train .012597857 0.003994180 -3.154053 1.610196e-03
income:air 0.018859983 0.003215926 5.864558 4.503294e-09
sp.train 1.237182865 0.110460959 11.200182 0.000000e+00
sp.air 0.540323852 0.111835294 4.831425 1.355592e-06

The two supplementary coefficients are sp.train and sp.air. The student statistics reported
are irrelevant because they test the hypothesis that these parameters are 0, as the relevant
hypothesis of homoscedasticity is that both of them equal one. The heteroscedastic logit being
nested in the multinomial logit model, we can first use the three classical tests: the Wald test
(based on the unconstrained model hl), the score test (based on the constrained model ml)
and the likelihood ratio model (based on the comparison of both models).

To perform the Wald test, we use lmtest: :waldtest, for which a special method is provided
by the mlogit package. The arguments are the unconstrained model (hl) and the update
that should be used in order to get the constrained model (heterosc = FALSE). To compute



the scoretest, we use mlogit: :scoretest, for which the arguments are the constrained model
(ml) and the update that should be used in order to get the unconstrained model (heterosc
= TRUE). Finally, the likelihood ratio test is performed using lmtest: :1rtest.

if (requireNamespace("lmtest")){
lmtest::waldtest(hl, heterosc = FALSE) |> gaze()
scoretest(ml, heterosc = TRUE) |> gaze()
lmtest::1rtest(hl, ml) [> gaze()

}
chisq = 25.196, df: 2, pval = 0.000
chisq = 9.488, df: 2, pval = 0.009
Chisq = 6.888, df: 2, pval = 0.032

The three statistics are x? with two degrees of freedom under the null hypothesis of ho-
moskedascticity. The three tests reject the null hypothesis at the 5% level, and even at the 1%
level for the Wald and for the score test. These three tests rely on the hypothesis that, under
the null, the constrained model is the true model. We can get rid of this hypothesis using a
Vuong test. Note the use of the nested argument that is set to TRUE:

ndvuong(hl, ml, nested = TRUE)

Non-degenerate Vuong test for nested models

data: hl-ml

z = 0.4554, vuong_stat = 6.888241, vuong_p.value = 0.047927, p-value =
0.211

alternative hypothesis: different models

The homoskedasticity hypothesis is still rejected at the 5% level for the classical Vuong test
(the p-value is 0.048), but it is not using the non-degenerate Vuong test (p-value of 0.211).

Transport mode choice (overlapping models)

We consider finally another data set from mlogit called RiskyTransport, that has been used
by Leén and Miguel (2017) and concerns the choice of one mode (among water-taxi, ferry.
hovercraft and helicopter) for trips from Sierra Leone’s international airport to downtown
Freetown.
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if (requireNamespace("mlogit")){
library(mlogit)
data("RiskyTransport", package = "mlogit")
RT <- dfidx(RiskyTransport, idx = c(id = "chid", "mode"),
choice = "choice")

}

We estimate models with only one covariate, the generalized cost of the mode. We estimate
four models: the basic multinomial logit model, the heteroskedastic model, a nested model
where alternatives are grouped in two nests according to the fact that they are fast or slow
modes and a mixed logit model where the distribution of the cost parameter is assumed (as
in the original article) to follow a triangular distribution bounded on 0.

if (requireNamespace("mlogit")){

ml <- mlogit(choice ~ cost, data = RT)

hl <- mlogit(choice ~ cost , data = RT, heterosc = TRUE)

nl <- mlogit(formula = choice ~ cost, data = RT,
nests = list(fast = c("Helicopter", "Hovercraft"),

slow = c("WaterTaxi", "Ferry")),

un.nest.el = TRUE)

xl <- mlogit(choice ~ cost, data = RT, rpar = c(cost = "zbt"))

}

Compared to the multinomial model, the heteroskedastic model has 3 supplementary coeffi-
cients (the scale parameters for 3 modes, the one for the reference mode being set to 1) and
the nested logit model has one supplementary parameter which is the nest elasticity (iv in the
table). Both models reduce to the multinomial logit model if:

e sp.WaterTaxi = sp.Ferry = sp.Hovercraft = 1 for the heteroskedastic model,
e iv = 1 for the nested logit model.

Therefore, the two models are over-lapping, as they reduce to the same model (the multinomial
logit model) for some values of the parameters.

The first step of the test is the variance test. It can be performed using ndvuong by setting
the argument vartest to TRUE:

ndvuong(nl, hl, vartest = TRUE) [|> gaze()
## w2 = 0.047, pval = 0.000

The null hypothesis that w? = 0 is rejected. We can then proceed to the second step, which is
the test for non-nested models.
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ndvuong(hl, nl)

Non-degenerate Vuong test for non-nested models

data: hl-nl

z = 1.7298, vuong_stat = 1.829208, constant = 0.000000, sum e.v. =
-1.832021, vuong_p.value = 0.033684, p-value = 0.0975

alternative hypothesis: different models

The classical Vuong test concludes that the heteroskedastic model is better than the nested
logit model at the 5% level, although the non-degenerate version of the Vuong test share this
same conclusion only at the 10% level.

The relevance mixed model can be evaluated by comparing it with the multinomial logit model
using a strictly non-nested Vuong test:

ndvuong(xl, ml)

Non-degenerate Vuong test for non-nested models

data: x1-ml

z = 1.8281, vuong_stat = 2.3880752, constant = 1.8062866, sum e.v. =
0.8630360, vuong_p.value = 0.0084684, p-value = 0.0838

alternative hypothesis: different models

Once again, the equivalence of the two models is rejected at the 5% level using the classical
Vuong test but is not using the non-degenerate version of the test.
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