Im function

October 27, 2025

OLS is by far the most important estimation method used in econometrics. It is implemented
in R by the 1m function. A deep understanding of the way this function is implemented, its
arguments, its results and how to use them is particularly useful as other estimation functions
(for example glm for generalized linear models) have a lot in common with 1m. Moreover, if
one is willing to implement its own estimation function, it is advisable to use at least some of
the elements of 1m.

For illustration, we use the random_group data set of the micsr package that analyzes the

effect of a training on wage.

library(micsr)
random_group |> head()

female age child migrant single temp ten edu fsize samplew
1 1 45 3 0 0 0 23 Intermediate up to 50 0.730
2 0 39 2 0 0 0 251 Intermediate more than 200 0.968
3 1 52 0 0 0 1 18 Intermediate up to 50 1.282
4 1 39 1 0 0 0 18 Low up to 50 0.692
5 0 39 0 0 1 0 68 High more than 200 1.3562
6 0 40 3 0 0 0 26 Intermediate 50 to 200 0.818
wage group
1 31.468530 2
2 32.051276 -2
3 8.571425 1
4 14.423070 1
5 37.393167 1
6 31.882587 -1

The response is hourly wage wage and the main covariate is a dummy for training. The group
variable contains integers from -2 to 3, with negative values for treated individuals and positive
values for untreated individuals. We first create a dummy for treatment, called treated:

random_group <- transform(random_group, treated = ifelse(group < 0, 1, 0))

A basic model
We then estimate the model, using as control the number of children child and the age.
mod0 <- Im(log(wage) ~ treated + age + child, data = random_group)

The result is a an object of class 1m, with the 12 following elements:

names (mod0)
[1] "coefficients" '"residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df .residual"
[9] "xlevels" "call" "terms" "model"

We won’t say much about "qr" and "effects" which are technical elements of the com-
putation of least squares. "coefficients", "residuals" and "fitted.values" don’t de-
serve further comments. The length of "residuals" and "fitted.values" is NV, the one of
"coefficients" is K +1 (if there is an intercept). "rank" is the rank of the model matrix. If
the matrix has full rank, the rank equals the number of columns of the model matrix (K + 1),
which is also the number of fitted coefficients."

modO$rank
[1] 4
length(modO$coefficients)
[1] 4

"df .residual" is then N — K —1. "terms" is a term object, which is a kind of representation
of the formula of the model:

modO$terms

log(wage) ~ treated + age + child
attr(,"variables")
list(log(wage), treated, age, child)
attr(,"factors")

treated age child

!Actually the number of not NA coefficients.

log(wage) 0
treated 1
age 0
child 0
attr(,"term.labels")
[1] "treated" "age" "child"
attr(,"order")

1] 111

attr(,"intercept")

(1] 1

attr(,"response")

(1] 1

attr(,".Environment")

<environment: R_GlobalEnv>
attr(,"predvars")

list(log(wage), treated, age, child)
attr(,"dataClasses")

log(wage) treated age child
"numeric" "numeric" "numeric" "numeric"

O = O O
= O O O

"xlevels" is for this model a useless list of length 0. We'll see latter the usefulness of this
element. assign is a numeric vector indicating the relation between the variables and the

coefficients:

modO$assign
[1] 0123

Once again, in our simple case, it is useless: the intercept is at position 0, the first covariate
at position 1 and so on. All the elements of the model can be extracted using the $ operator,
for example modO$coefficients for the coefficients. A safer method to extract elements of
the model is to use generic functions with homonym names:

coef (mod0)

(Intercept) treated age
2.69603688 0.19107776 0.01496236

df .residual (mod0)

[1] 2162
resid(mod0) |> head()
#i# 1 2

0.04954051 -0.02337931 -1.32564580

fitted(mod0) |> head()
1 2 3

child

0.01003474

4
0. 62077481

5

5 6
0.34191893 -0.05365342

6

3.399447 3.490716 3.474080 3.289604 3.279569 3.515713

terms (mod0)

Several other generics enables to extract information of the model that are not elements of the
results, for example the covariance matrix of the estimates, the residual standard error and
the number of observations:

vcov(mod0)

(Intercept) treated age child
(Intercept) 2.272281e-03 -3.249881e-04 -5.020516e-05 -2.766710e-05
treated —-3.249881e-04 5.234244e-04 1.867944e-06 5.201122e-06
age -5.020516e-05 1.867944e-06 1.314397e-06 -1.994140e-06
child —-2.766710e-05 5.201122e-06 -1.994140e-06 1.015276e-04
sigma(mod0)

[1] 0.5298291

nobs (mod0)

[1] 2166

The next two sections are devoted to the last two elements of the 1m object, "model" and
"call".

Model frame
The element "model" of the 1m object is the model frame. It’s a special data frame:

head (modO$model, 3)

log(wage) treated age child

1 3.448988 0 45 3
2 3.467337 1 39 2
3 2.148434 0 52 0

Instead of using the $ operator, the model.frame function can be used to extract the model
frame:

model . frame (mod0)

For this basic model, it looks like a subset of columns of the original data frame, but note that
the first column contains the response which is log(wage) and not wage. A model frame has
several attributes:

names (attributes (mod0$model))

[1] "names" "terms'" "row.names" "

class”

The only interesting attribute is "terms", the two other being the rows and columns’ names
(like for ordinary data frames). From the model frame, the elements of the model can be
extracted. For this basic model, there are two elements, the matrix of covariates X and the
vector of response y. To extract the model matrix, we use model .matrix with two arguments,
the model terms and the model frame:

model .matrix(terms(mod0), model.frame(mod0)) |> head(3)

(Intercept) treated age child

1 1 0 45 3
1 1 39 2
3 1 0 52 0

More simply, the same model matrix can be extracted using the fitted object as the unique
argument:

model .matrix(mod0)

The model matrix looks like the model frame, except that the response has been removed and
a column of ones (called " (Intercept)") has been added. Actually there is a fundamental
difference between the model frame and the model matrix, even in this very simple example.
A model frame is a data frame, which is a list of vectors of the same length. Because all the
vectors have the same length, it has a tabular representation and therefore looks like a matrix.
A model matrix is a matrix, which is for R a vector with an attribute indicating the dimension,
ie., the number of rows and of columuns.

dim(model.matrix(mod0))

[1] 2166 4

Being a vector, a matrix contains only elements of the same mode, for example numeric. The
model response is extracted using model.response with the model frame as unique argu-
ment:

mod0 |> model.frame() |> model.response() |> head()
1 2 3 4 5 6
3.448988 3.467337 2.148434 2.668829 3.621488 3.462060

Call and update

"call" is an object of class "call", that corresponds to the call to the function that resulted
in the mod0 object:

class(mod0$call)

[1] "call"

modO$call

lm(formula = log(wage) ~ treated + age + child, data = random_group)

Note that all the arguments are named, although we didn’t name the first argument (formula)
while calling "1m". The call is very useful as it enables to update the model. The default
update function is: update(object, formula., ..., evaluate = TRUE). Its first argument
is a fitted model and the second one is a formula. For example, to update mod0 by adding
the female, single, migrant and temp covariates (dummies for females, singles, migrants and
temporary jobs), instead of rewriting the whole command:

modl <- Im(log(wage) ~ treated + age + child + female + single + migrant +
temp, data = random_group)

we can update mod0 with a new formula:

modl <- mod0 |> update(log(wage) ~ treated + age + child +
female + single + migrant + temp)

or even more simply, we can use dots in the formula, which means “as before” and enables to
add or to remove variables from the initial formula:

modl <- update(mod0, . ~ . + female + single + migrant + temp)

We have seen previously that the default update function has a ... argument. This means
that we can use in a call to update an argument of 1m which is then passed to 1lm while
updating the model. As an example, 1m has a subset argument which is a logical expression
that select a subset of the sample for which the estimation has to be performed. For example,
starting from modO, if one wishes to add the four dummies as previously and also to select the
individuals aged at least 20, we can use:

Im(log(wage) ~ treated + age + child + female + single + migrant + temp,
data = random_group, subset = age >= 20)

Or much more simply:

update(mod0, . ~ . + female + single + migrant + temp, subset = age >= 20)

Missing values

When values of some variables used in the regression are missing for some observations, one has
to indicate how to deal with this problem. The default behavior corresponds to the na.action
element of options() which is a list containing options:

options()$na.action
[1] "na.omit”

na.omit means remove from the model frame all the lines for which there is at least a missing
value. There are a couple of other possible values, one of them being na.fail which stops the

estimation and returns an error. 1m has a na.action argument where the desired action can
be indicated. For example, if we update the model with na.action set to "na.fail":

modl |> update(na.action = "na.fail")
we get exactly the same results as there are no missing values for the subset of variables we used.
Now consider adding the ten covariate which is the tenure in month and has some missing
values. Setting as previously na.action = "na.fail", we’ll then get an error message:

modl |> update(. ~ . + ten, na.action = "na.fail")

Using the default "na.omit" value, we get:

mod2 <- modl |> update(. ~ . + ten)
names (mod?2)

[1] "coefficients" '"residuals" "effects" "rank"
[6] "fitted.values" "assign" "qr" "df .residual"
[9] "na.action" "xlevels" "call" "terms"

[13] "model"

and there is now a 13" element named na.action:

unname (mod2$na.action)

[1] 61 66 87 126 131 149 182 213 291 372 390 448 b566 635 655

[16] 717 783 852 866 877 910 1008 1024 1027 1079 1252 1261 1319
attr(,"class")
[1] "omit"

This is an object of class "omit" containing a vector of integers indicating the positions of the
lines that have been removed because of missing values. We used unname because actually this
is a named vector and, as in our case, when there is no row names, the “name” is the number
(so that the name of the first element of the vector, 61, is “61”). This object is also returned
as an attribute of the model frame:

mod2$model |> attributes() |> names()

[1] "names" "terms" "row.names" "

class” "na.action”

Factors

Now we introduce two further covariates fsize (firm size) and edu (education). These covari-
ates are factors (categorical variables) and the modalities are called levels. The modalities
can be extracted using the levels function:

levels(random_group$fsize)

[1] "up to 50" "50 to 200" "more than 200"
levels(random_group$edu)
[1] "Low" "Intermediate"” "High"

We introduce these two factors in the regression and we also introduce a quadratic term for
age. This is done using the poly function inside the formula:

mod3 <- Im(log(wage) ~ treated + poly(age, 2) + child + fsize + edu +
female + single + migrant + temp + ten,

data = random_group)

There is now a supplementary element called "contrasts". But first consider the already
existing "assign" and "xlevels" elements:

mod3$assign

[1] 0 1L 2 2 3 4 4 5 5 6 7 8 910

"assign" is now a vector of length 14. The first element is 0 (for the intercept), the 13
remaining indicate the link between the position of the coefficients and the position of the
covariate in the formula:

names (coef (mod3))

[1] "(Intercept)" "treated" "poly(age, 2)1"
[4] "poly(age, 2)2" "child" "fsizeb0 to 200"
[7] "fsizemore than 200" "edulntermediate" "eduHigh"

[10] "female" "single" "migrant"

[13] "temp" "ten"

for example, the 3¢ and 4" values of "assign" are 2, which is the position of the "age"
covariate, with now two coefficients. The 8" and 9*" values of "assign" are 5, they correspond
to the two dummies introduced in the regression for the 5" covariate in the formula which
is edu. Let’s now have a look to the "xlevels" element which used to be in the previous
example a list of length O:

mod3$xlevels
$fsize
[1] "up to 50" "50 to 200" "more than 200"
$edu
(1] "Low" "Intermediate" "High"

This is now a named list containing character vectors indicating the different levels of the
factors. Note that for a factor with J levels, only J — 1 dummies are introduced in the
regression, the one corresponding to the first level being omitted. The contrasts element
is:

mod3$contrasts

$fsize
[1] "contr.treatment"

$edu
[1] "contr.treatment"

It’s a named list indicating how the contrasts are computed from the factors. The default
value is "contr.treatment" and consist, as we seen previously, to create J — 1 dummies for
all the levels of the factor but the first. Other values are possible and can be set individually
for every factor using the contrasts argument of 1m:

mod4 <- update(mod3, contrasts = list(edu = "contr.sum",
fsize = "contr.helmert"))
mod4$contrasts
$fsize

[1] "contr.helmert"

$edu
[1] "contr.sum"

The model frame now looks like:

head (mod4$model, 3)

log(wage) treated poly(age, 2).1 poly(age, 2).2 child fsize
1 3.448988 0 0.0126077067 -0.0120734877 3 up to 50
2 3.467337 1 -0.0001432471 -0.0180851447 2 more than 200
3 2.148434 0 0.0274838194 0.0110421946 0 up to 50
edu female single migrant temp ten
1 Intermediate 1 0 0 0 23
2 Intermediate 0 0 0 0 251
3 Intermediate 1 0 0 1 18

The age column has been replaced by a IV X2 matrix containing the two terms of the polynomial.
The two factors are in their own column. The model matrix X is now:

head (model .matrix(mod3), 3)

(Intercept) treated poly(age, 2)1 poly(age, 2)2 child fsize50 to 200

1 1 0 0.0126077067 -0.01207349 3 0
1 1 -0.0001432471 -0.01808514 2 0
3 1 0 0.0274838194 0.01104219 0 0
fsizemore than 200 edulntermediate eduHigh female single migrant temp ten
1 0 1 0 1 0 0 0 23
1 1 0 0 0 0 0 251
3 0 1 0 1 0 0 1 18

10

head(model .matrix(mod4), 3)

(Intercept) treated poly(age, 2)1 poly(age, 2)2 child fsizel fsize2 edul edu?2

1 1 0 0.0126077067 -0.01207349 3 -1 -1 0 1

1 1 -0.0001432471 -0.01808514 2 0 2 0 1

3 1 0 0.0274838194 0.01104219 0 -1 -1 0 1
female single migrant temp ten
1 1 0 0 0 23
2 0 0 0 0 251
3 1 0 0 1 18

The fundamental difference between the model frame (a list) and the model matrix (a vector
with a dimension) is even clearer than in the previous simple example. The model frame
contains a column called "edu" which is a factor. In the model matrix, this column is replaced
by J —1 = 2 columns that contain numeric and we can see that the numerical coding of the
variable depends on the contrast used.

Weights and offset

Instead of minimizing the sum of squares residuals) (y,,— BTz,)?, weights w,, can be used so
that the objective function becomes) w,, (v, — BTz,)?%, leading to the weighted least squares
estimator. Weights can be indicating in 1m using the weights argument, which is the unquoted
name of the column of the data frame that contains the weights. For the random_group data
set, the variable that contains the sample weights is samplew:

mod4 <- update(mod3, weights = samplew)

The 1m object now has a 15" element called "weights" which contains the vector of weights
of length N. The model frame is now:

model.frame(mod4) |> head(3)

log(wage) treated poly(age, 2).1 poly(age, 2).2 child fsize
1 3.448988 0 0.0126077067 -0.0120734877 3 up to 50
2 3.467337 1 -0.0001432471 -0.0180851447 2 more than 200
3 2.148434 0] 0.0274838194 0.0110421946 0 up to 50
edu female single migrant temp ten (weights)
1 Intermediate 1 0 0 0 23 0.730
2 Intermediate 0 0 0 0 251 0.968
3 Intermediate 1 0 0 1 18 1.282

11

Note the last column called "(weights)" that contains the weights. The weights can be
extracted from the model frame using model.weights:

model.weights (model.frame(mod4)) |> head(3)

[1] 0.730 0.968 1.282

An offset is a variable added to the regression equation, but with no associated coefficients (or
with a coefficient set to 1). For example, in the equation: y,, = a+ 512, + fa%,s + T3 + €,,,
x,3 is an offset. Note also that the same equation can be rewritten as: vy, — x,3 = o +
B, + Byx,9 + €, and that in this case, the new response is y,, — z,,3 and there is no offset
anymore. We have seen in mod3 that the coefficients for the "Intermediate" and "High"
education values are respectively 0.23 and 0.50, which means approximately 25 and 50% more
wage compared to the reference level of this factor which is "Low". Coercing the three levels
of the factor to z = 1,2,3 (which is actually the internal representation of the factor) and
denoting v = 3/4 4+ 1/4z, we get the values of 1, 1.25 and 1.50. Therefore, we could get
approximately the same results as mod3 by removing "edu" and adding v as an offset. There
are two equivalent ways to introduce an offset: in the formula, using offset (v) or by setting
the offset argument of 1m to v:

random_group <- transform(random_group, v = 3/4 + 1/4 * as.numeric(edu))
mod5 <- update(mod4, . ~ . + offset(v) - edu)

mod6 <- update(mod4, . ~ . - edu, offset = v)

The two fitted models are identical, they contain a supplementary element called "offset".
The offset can be extract from the model frame using model.offset:

model.offset (model.frame(mod5)) |> head(3)

[1] 1.25 1.25 1.25

The internal

To conclude the presentation of the 1m function, we’ll describe the internal of the function. We
first create a simple mylm function with the same argument as 1m, but which returns only the
call, obtained using the function match.call:

mylm <- function (formula, data, subset, weights, na.action, method = "qr",
model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset, ...){

12

mf <- match.call()
mf

}

We then use this function with our most advanced example:

mf <- mylm(log(wage) ~ treated + poly(age, 2) + child + fsize + female +
single + migrant + temp + ten,
random_group,
subset = age > 20,
weights = samplew,
contrasts = list(fsize = "contr.helmert"),
offset = v
)
mf

mylm(formula = log(wage) ~ treated + poly(age, 2) + child + fsize +
female + single + migrant + temp + ten, data = random_group,

subset = age > 20, weights = samplew, contrasts = list(fsize = "contr.helmert"),
offset = v)
cl <- mf

We saved a copy of the result as we’ll need it latter on. The next lines of 1m work on the call
(the mf object returned by our mylm function). The call being a list, the idea is first to keep
only the arguments in the call that are useful to compute the model frame. This is done using
the match function on the names of the call:

names (mf)
(1] n» "formula" "data" "subset" "weights" "contrasts"
[7] "offset"
m <- match(c("formula", "data", "subset", "weights", "na.action",
"offset"), names(mf), OL)
m

[1] 234507

13

m is an integer vector indicating the position of the arguments we wish to keep in the call; note
that the position of na.action is 0 because we didn’t use this argument in our call to mylm.
The first element of mf is unnamed, this is the name of the function (mylm). We then extract
from mf its first element and those given by vector m:

mf <- mf[c(1L, m)]
mf

mylm(formula = log(wage) ~ treated + poly(age, 2) + child + fsize +
female + single + migrant + temp + ten, data = random_group,
subset = age > 20, weights = samplew, offset = v)

Then, we change the first argument (the name of the function) from mylm to model.frame,
using the quote function:

mf [[1L]] <- quote(stats::model.frame)
mf

stats::model.frame(formula = log(wage) ~ treated + poly(age,
2) + child + fsize + female + single + migrant + temp + ten,
data = random_group, subset = age > 20, weights = samplew,
offset = v)

The call is then evaluated using the eval function and the result is the model frame:

mf <- eval (mf)

head(mf, 3)
log(wage) treated poly(age, 2).1 poly(age, 2).2 child fsize female
1 3.448988 0 0.0126077067 -0.0120734877 3 up to 50 1
2 3.467337 1 -0.0001432471 -0.0180851447 2 more than 200 0
3 2.148434 0 0.0274838194 0.0110421946 0 up to 50 1
single migrant temp ten (weights) (offset)
1 0 0 0 23 0.730 1.25
2 0 0 0 251 0.968 1.25
3 0 0 1 18 1.282 1.25

names (attributes (mf))

14

[1] "names" "terms" "row.names" "class" "na.action"

We then extract the terms, and the different components of the model:

mt <- attr(mf, "terms")

y <- model.response (mf)

w <- model.weights(mf)

offset <- model.offset (mf)

x <- model.matrix(mt, mf, list(fsize = "contr.helmert"))

Note that the model matrix is constructed using as third argument the contrasts argument

of 1m. The estimation is then performed by 1m.wfit (if there were no weights, Im.fit would
have been used), that take as arguments the components of the model previously extracted:

z <= Im.wfit(x, y, w, offset = offset)

names (z)
[1] "coefficients" '"residuals" "fitted.values" "effects"
[5] "weights" "rank" "assign" "gr"

[9] "df.residual"

We can see that the resulting object contains a subset of the elements returned by 1m. We
then assign to the object the "1m" class:

class(z) <- "1m"

And we add to z the elements that are not returned by 1m.wfit:

z$na.action <- attr(mf, "na.action")
zfoffset <- offset

z$contrasts <- attr(x, "contrasts")
z$xlevels <- .getXlevels(mt, mf)
z$call <- cl

z$terms <- mt

z$model <- mf

na.action is an attribute of the model frame, contrasts an attribute of the model matrix
and xlevels is obtained using the .getXlevels function with the terms and the model frame
as arguments. We then get our 1m object that contains the fitted model:

z

15

Call:
mylm(formula = log(wage) ~ treated + poly(age, 2) + child + fsize +
female + single + migrant + temp + ten, data = random_group,

subset = age > 20, weights = samplew, contrasts = list(fsize = "contr.helmert"),
offset = v)
Coefficients:
(Intercept) treated poly(age, 2)1 poly(age, 2)2 child
2.1459138 0.0912960 3.2498758 -1.8725685 0.0053146
fsizel fsize2 female single migrant
0.0289841 0.0321877 -0.2337914 -0.0990943 -0.1255097
temp ten
0.0019268 0.0004435

Finally, we include in our mylm function all the lines we just have described:

mylm <- function (formula, data, subset, weights, na.action, method = "qr",
model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset, ...){

mf <- match.call(expand.dots = FALSE)

m <- match(c("formula", "data", "subset", "weights", "na.action",
"offset"), names(mf), OL)

mf <- mf[c(1L, m)]

mf [[1L]] <- quote(stats::model.frame)

mf <- eval(mf, parent.frame())

mt <- attr(mf, "terms")

y <- model.response(mf, "numeric")

w <- as.vector(model.weights(mf))

offset <- model.offset (mf)

x <- model.matrix(mt, mf, contrasts)

z <= lm.wfit(x, y, w, offset = offset)

class(z) <- "Im"

z$na.action <- attr(mf, "na.action")

z$offset <- offset

z$contrasts <- attr(x, "contrasts")

z$xlevels <- .getXlevels(mt, mf)

z$call <- cl

z$terms <- mt

z$model <- mf

z

16

to get a simplified clone of 1m:

mod6 <- mylm(log(wage) ~ treated + poly(age, 2) + child + fsize + female +
single + migrant + temp + ten,
random_group,
subset = age > 20,
weights = samplew,
contrasts = list(fsize = "contr.helmert"),
offset = v)

17

	A basic model
	Model frame
	Call and update
	Missing values
	Factors
	Weights and offset
	The internal

