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The linear conditional mean model

The linear model 𝑦𝑛 = 𝛽⊤𝑥𝑛 +𝜖𝑛, with E(𝜖 ∣ 𝑥) = 0 implies a linear conditional mean function:
E(𝑦 ∣ 𝑥) = 𝛽⊤𝑥. It implies the following moment conditions:

E (𝑦 − 𝛽⊤𝑥) = 0

which can be estimated on a given sample by:

1
𝑁

𝑁
∑
𝑛=1

(𝑦𝑛 − 𝛽⊤𝑥𝑛) = 𝑋⊤(𝑦𝑛 − 𝑋𝛽)/𝑁

Solving this vector of 𝐾 empirical moments for 𝛽 leads to the OLS estimator.

If some of the covariates are endogenous, a consistent estimator can be obtained if there is a
set of 𝐿 ≥ 𝐾 exogenous series exogenous 𝑍, some of them being potentially elements of 𝑋.
Then, the 𝐿 moment conditions can be estimated by:

𝑚̄ = 1
𝑁

𝑁
∑
𝑛=1

(𝑦𝑛 − 𝛽⊤𝑥𝑛)𝑧𝑛 = 𝑍⊤𝜖/𝑁

The variance of
√

𝑁𝑚̄ is Ω = 𝑁E (𝑚̄𝑚̄⊤) = 1
𝑁 E (𝑍⊤𝜖𝜖⊤𝑍), which reduces to 𝜎2

𝜖 𝑍⊤𝑍 if the
errors are iid and, more generally, can be consistently estimated by 1

𝑁 ∑𝑁
𝑛=1 ̂𝜖2

𝑛𝑧𝑛𝑧⊤
𝑛 where ̂𝜖

are the residuals of a consistent estimation. The IV estimator minimizes the quadratic form
of the moments with the inverse of its variance assuming that the errors are iid:
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𝜖⊤𝑍 (𝜎2𝑍⊤𝑍)−1 𝑍⊤𝜖 = 𝜖⊤𝑃𝑍𝜖/𝜎2

which is the IV estimator. As 𝑃𝑍𝑋 is the projection of the column of X on the subspace
generated by the columns of 𝑍, this estimator can be performed by first regressing every
covariates on the set of instruments and then regressing the response on these fitted values
(two-stage least squares or 2SLS estimator).

The IV estimator is consistent but inefficient if the errors are not iid. In this case, a more
efficient estimator can be obtained by minimizing 𝑚̄⊤Ω̂−1𝑚̄ with:

Ω̂ = 1
𝑁

𝑁
∑
𝑛=1

̂𝜖2
𝑛𝑧𝑛𝑧⊤

𝑛

where ̂𝜖 can be the residuals of the IV estimator. This is the GMM estimator.

The exponential linear conditional mean model

The linear model is often inappropriate if the conditional distribution of 𝑦 is asymmetric. In
this case, a common solution is to use ln 𝑦 instead of 𝑦 as the response.

ln 𝑦𝑛 = 𝛽⊤𝑥𝑛 + 𝜖

This is of course possible only if 𝑦𝑛 > 0∀𝑛. An alternative is to use an exponential linear
conditional mean model, with additive:

𝑦𝑛 = 𝑒𝛽⊤𝑥𝑛 + 𝜖𝑛

or with multiplicative errors:

𝑦𝑛 = 𝑒𝛽⊤𝑥𝑛𝜈𝑛

If all the covariates are exogenous, E (𝑦 − 𝑒𝛽⊤𝑥 ∣ 𝑥) = 0 which corresponds to the following
empirical moments:

𝑋⊤ (𝑦 − 𝑒𝛽⊤𝑥) /𝑁 = 0

This defines a non-linear system of 𝐾 equations with 𝐾 unknown parameters (𝛽) that is in
particular used when fitting a Poisson model with a log link for count data. It can also be
used with any non-negative response.
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If some of the covariates are endogenous, as previously an IV estimator can be defined. For
additive errors, the empirical moments are:

1
𝑁

𝑁
∑
𝑛=1

(𝑦𝑛 − 𝑒𝛽⊤𝑥𝑛)𝑧𝑛 = 𝑍⊤(𝑦𝑛 − 𝑒𝛽⊤𝑥𝑛)/𝑁

and the IV estimator minimize:

𝜖⊤𝑍 (𝜎2𝑍⊤𝑍)−1 𝑍⊤𝜖 = 𝜖⊤𝑃𝑍𝜖/𝜎2

Denoting ̂𝜖 the residuals of this regression, the same 𝜔̂ matrix can be constructed and used
in a second step to get the more efficient GMM estimator. With additive errors, the only
difference with the linear case is that the minimization process results in a set of non linear
equations, so that some numerical methods should be used. With multiplicative errors, we
have: 𝜈𝑛 = 𝑦𝑛/𝑒𝛽⊤𝑥𝑛 , with E(𝑛𝑢𝑛 ∣ 𝑥𝑛) = 1 if all the covariates are exogenous. Defining
𝜏𝑛 = 𝜈𝑛 − 1, the moment conditions are then:

E ((𝑦/𝑒𝛽⊤𝑥 − 1)𝑥𝑛) = 0

If some covariates are endogenous, this should be replaced by:

E ((𝑦/𝑒𝛽⊤𝑥 − 1)𝑧𝑛) = 0

which leads to the following empirical moments:

1
𝑁

𝑁
∑
𝑛=1

(𝑦𝑛/𝑒𝛽⊤𝑥𝑛 − 1)𝑧𝑛 = 𝑍⊤(𝑦/𝑒𝑋⊤𝛽 − 1)/𝑁 = 𝑍⊤𝜏𝑛

Minimizing the quadratic form of these empirical moments with (𝑍⊤𝑍)−1 or (∑𝑁
𝑛=1 ̂𝜏2

𝑛𝑧𝑛𝑧⊤
𝑛 )

−1

leads respectively to the IV and the GMM estimators.

Sargan test

When the number of external instruments is greater that the number of endogenous variables,
the empirical moments can’t be simultaneously set to 0 and a quadratic form of the empirical
moments is minimized. The value of the objective function at convergence time the size of the
sample is, under the null hypothesis that all the instruments are exogenous a chi square with a
number of degrees of freedom equal to the difference between the number of instruments and
the number of covariates.
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Cigarette smoking behavior

Mullahy (1997) estimates a demand function for cigarettes which depends on the stock of
smoking habits. This variable is quite similar to a lagged dependent variable and is likely
to be endogenous as the unobserved determinants of current smoking behavior should be
correlated with the unobserved determinants of past smoking behavior. The data set, called
cigmales contains observations of 6160 males in 1979 and 1980 from the smoking supplement
to the 1979 National Health Interview Survey. The response cigarettes is the number of
cigarettes smoked daily. The covariates are the habit “stock” habit, the current state-level
average per-pack price of cigarettes price, a dummy indicating whether there is in the State
of residence a restriction on smoking in restaurants restaurant, the age age and the number
of years of schooling educ and their squares, the number of family members famsize, and a
dummy race which indicates whether the individual is white or not. The external instruments
are cubic terms in age and educ and their interaction, the one-year lagged price of a pack of
cigarettes lagprice and the number of years the State’s restaurant smoking restrictions had
been in place.

The starting point is a basic count model, ie., a Poisson model with a log link:

library(micsr)
cigmales <- cigmales |>

transform(age2 = age ^ 2, educ2 = educ ^ 2,
age3 = age ^ 3, educ3 = educ ^ 3,
educage = educ * age)

pois_cig <- glm(cigarettes ~ habit + price + restaurant + income + age +
age2 + educ + educ2 + famsize + race, data = cigmales,

family = quasipoisson)

The IV and the GMM estimators are provided by the expreg function. Its main argument
is a two-part formula, where the first part indicates the covariates and the second part the
instruments. The instrument set can be constructed from the covariate set by indicating
which series should be omitted (the endogenous variables) and which series should be added
(the external instruments).

iv_cig <- expreg(cigarettes ~ habit + price + restaurant + income +
age + age2 + educ + educ2 + famsize + race |
. - habit + age3 + educ3 + educage + lagprice +
reslgth, data = cigmales, method = "iv")

gmm_cig <- update(iv_cig, method = "gmm")

The method argument enables to estimate either the instrumental variables or the general
method of moments estimator. The Sargan test gives:
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sargan(iv_cig) |> gaze()
## chisq = 32.018, df: 4, pval = 0.000
sargan(gmm_cig) |> gaze()
## chisq = 7.469, df: 4, pval = 0.113

Birth weight

The second data set, called birthwt is used by Mullahy (1997) and consists on 1388 observa-
tions on birth weight from the Child Health Supplement to the 1988 National Health Interview
Survey. The response is birth weight birthwt in pounds and the covariates are the number of
cigarettes smoked daily during the pregnancy cigarettes, the birth order parity, a dummy
for white women race and child’s sex sex. Smoking behavior during the pregnancy is sus-
pected to be correlated with some other unobserved “bad habits” that may be have a negative
effect on birth weight. Therefore, performing a pseudo-Poisson regression should result in a
upward bias in the estimation of the effect of smoking on birth weight. The external instru-
ments are the number of years of education of the father edfather and the mother edmother,
the family income faminc and the per-pack state excise tax on cigarettes.

ml_bwt <- glm(birthwt ~ cigarettes + parity + race + sex, data = birthwt,
family = quasipoisson)

iv_bwt <- expreg(birthwt ~ cigarettes + parity + race + sex |
. - cigarettes + edmother + edfather + faminc +
cigtax, data = birthwt, method = "iv")

gmm_bwt <- update(iv_bwt, method = "gmm")

sargan(gmm_bwt) |> gaze()
## chisq = 3.874, df: 3, pval = 0.275

The Sargan test doesn’t reject the hypothesis of exogeneity of the instruments.
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