hdMTD 0.1.2
New
- Accessor functions for “MTD”: pj(),p0(),lambdas(),lags(),Lambda(),states(), andtransitP(). See?MTD-accessors.
- Accessor functions for “MTDest”: pj(),p0(),lambdas(),lags(),S()andstates(). See?MTD-accessors.
- Accessor functions for “hdMTD”: S()andlags(). See?MTD-accessors.
- Methods for “MTD” and “MTDest” objects: added print(),summary(),coef(),logLik()andprobs(). For compact inspection of lag sets, state space,
mixture weights and more. See?MTD-methodsand?MTDest-methods.
- Methods for “hdMTD” objects: added print()andsummary()for compact inspection of lag selection results.
See?hdMTD-methods.
- Coercion: new as.MTD()to rebuild an “MTD” object from
an “MTDest” fit.
Changes
- probs()is now a S3 generic with methods for “MTD” and
“MTDest”. Returns one-step-ahead predictive probabilities either for
specific contexts (- context=) or from sample rows
(- newdata=). If neither is supplied, it returns the full
global transition matrix (- transitP(object)for- MTD;- transitP(as.MTD(object))for- MTDest).
- Renamed the sample-based estimator probs(X, S, ...)toempirical_probs(X, S, ...)to avoid ambiguity:empirical_probs()estimates transition probabilities from
data, whileprobs()returns predictive probabilities from
model/fit objects.
Fixes
- Replaced any(is.na(X))withanyNA(X)incheckSample()for efficiency and clarity.
Package cleanup
- Removed unused datasets (raindata,sleepscoring,testChains).
- Updated examples to use simulated data (via
perfectSample()) instead of the removedtestChainsdataset.
- Internal helpers marked @keywords internalso they no
longer appear inhelp(package="hdMTD").
hdMTD 0.1.1
- Relicensed the package from MIT to GPL-3.
- Removed an unintended README.mdfile from the package
source.