| Type: | Package | 
| Title: | Tukey g-&-h Distribution | 
| Version: | 0.1.4 | 
| Date: | 2025-03-15 | 
| Description: | Functions for density, cumulative density, quantile and simulation of Tukey g-and-h (1977) distributions. The quantile-based transformation (Hoaglin 1985 <doi:10.1002/9781118150702.ch11>) and its reverse transformation, as well as the letter-value based estimates (Hoaglin 1985), are also provided. | 
| License: | GPL-2 | 
| Depends: | R (≥ 4.4.0) | 
| Imports: | rstpm2, stats | 
| Suggests: | fitdistrplus | 
| Encoding: | UTF-8 | 
| Language: | en-US | 
| RoxygenNote: | 7.3.2 | 
| NeedsCompilation: | no | 
| Packaged: | 2025-03-15 18:02:15 UTC; tingtingzhan | 
| Author: | Tingting Zhan [aut, cre], Inna Chervoneva [ctb] | 
| Maintainer: | Tingting Zhan <tingtingzhan@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-03-15 22:10:15 UTC | 
Tukey g-&-h Distribution
Description
Density, cumulative density, quantile and simulation of
the 4-parameter Tukey (1977) g-&-h distributions.
The quantile-based transformation (Hoaglin 1985)
and its reverse transformation,
as well as the letter-value based estimates (Hoaglin 1985),
are also provided.
Value
Returned values of individual functions are documented separately.
Author(s)
Maintainer: Tingting Zhan tingtingzhan@gmail.com
Other contributors:
- Inna Chervoneva Inna.Chervoneva@jefferson.edu [contributor] 
References
Tukey, J.W. (1977): Modern Techniques in Data Analysis. In: NSF-sponsored Regional Research Conference at Southeastern Massachusetts University, North Dartmouth, MA.
Hoaglin, D.C. (1985): Summarizing shape numerically: The g-and-h distributions.
Exploring data tables, trends, and shapes, pp. 461–513.
John Wiley & Sons, Ltd, New York.
doi:10.1002/9781118150702.ch11
Helper Functions
Description
Helper functions to be used in downstream packages.
Usage
.GH2z(
  q,
  q0 = (q - A)/B,
  A = 0,
  B = 1,
  g = 0,
  h = 0,
  interval = c(-15, 15),
  tol = .Machine$double.eps^0.25,
  maxiter = 1000
)
.dGH(
  x,
  A,
  B,
  g,
  h,
  log,
  interval = c(-50, 50),
  tol = .Machine$double.eps^0.25,
  maxiter = 1000
)
Arguments
| q0 | .. | 
| A,B,g,h | .. | 
| interval | .. | 
| tol,maxiter | .. | 
| x,q | .. | 
| log | .. | 
Value
Returns of the helper functions are not documented, for now.
Inverse of Tukey g-&-h Transformation
Description
To transform Tukey g-&-h quantiles to standard normal quantiles.
Usage
GH2z(q, q0 = (q - A)/B, A = 0, B = 1, ...)
Arguments
| q | |
| q0 | (optional) double vector,
standardized quantiles  | 
| A,B | (optional) double scalars, location and scale parameters of
Tukey  | 
| ... | parameters of internal helper function  | 
Details
Unfortunately, function GH2z(), the inverse of Tukey g-&-h transformation,
does not have a closed form and needs to be solved numerically.
For compute intensive jobs, use internal helper function .GH2z().
Value
Function GH2z() returns a double vector of the same length as input q.
Examples
z = rnorm(1e3L)
all.equal.numeric(.GH2z(z2GH(z, g = .3, h = .1), g = .3, h = .1), z)
all.equal.numeric(.GH2z(z2GH(z, g = 0, h = .1), g = 0, h = .1), z)
all.equal.numeric(.GH2z(z2GH(z, g = .2, h = 0), g = .2, h = 0), z)
Tukey g-&-h Distribution
Description
Density, distribution function, quantile function and simulation
for Tukey g-&-h distribution with
location parameter A,
scale parameter B,
skewness g and
elongation h.
Usage
dGH(x, A = 0, B = 1, g = 0, h = 0, log = FALSE, ...)
rGH(n, A = 0, B = 1, g = 0, h = 0)
qGH(p, A = 0, B = 1, g = 0, h = 0, lower.tail = TRUE, log.p = FALSE)
pGH(q, A = 0, B = 1, g = 0, h = 0, lower.tail = TRUE, log.p = FALSE, ...)
Arguments
| x,q | |
| A | double scalar, location parameter  | 
| B | double scalar, scale parameter  | 
| g | double scalar, skewness parameter  | 
| h | double scalar, elongation parameter  | 
| log,log.p | logical scalar, if  | 
| ... | other parameters of function  | 
| n | integer scalar, number of observations | 
| p | |
| lower.tail | logical scalar, if  | 
Value
Function dGH() returns the density and accommodates vector arguments A, B, g and h.
The quantiles x can be either vector or matrix.
This function takes about 1/5 time of gk::dgh.
Function pGH() returns the distribution function, only taking scalar arguments and vector quantiles q.
This function takes about 1/10 time of function gk::pgh.
Function qGH() returns the quantile function, only taking scalar arguments and vector probabilities p.
Function rGH() generates random deviates, only taking scalar arguments.
Examples
(x = c(NA_real_, rGH(n = 5L, g = .3, h = .1)))
dGH(x, g = c(0,.1,.2), h = c(.1,.1,.1))
p0 = seq.int(0, 1, by = .2)
(q0 = qGH(p0, g = .2, h = .1))
range(pGH(q0, g = .2, h = .1) - p0)
q = (-2):3; q[2L] = NA_real_; q
(p1 = pGH(q, g = .3, h = .1))
range(qGH(p1, g = .3, h = .1) - q, na.rm = TRUE)
(p2 = pGH(q, g = .2, h = 0))
range(qGH(p2, g = .2, h = 0) - q, na.rm = TRUE)
curve(dGH(x, g = .3, h = .1), from = -2.5, to = 3.5)
Letter-Value Estimation of Tukey g-&-h Distribution
Description
Letter-value based estimation (Hoaglin, 1985) of
Tukey g-, h- and g-&-h distribution.
All equation numbers mentioned below refer to Hoaglin (1985).
Usage
letterValue(
  x,
  g_ = seq.int(from = 0.15, to = 0.25, by = 0.005),
  h_ = seq.int(from = 0.15, to = 0.35, by = 0.005),
  halfSpread = c("both", "lower", "upper"),
  ...
)
Arguments
| x | |
| g_ | double vector, probabilities used for estimating  | 
| h_ | double vector, probabilities used for estimating  | 
| halfSpread | character scalar,
either to use  | 
| ... | additional parameters, currently not in use | 
Details
Unexported function letterV_g() estimates parameter g using equation (10) for g-distribution
and the equivalent equation (31) for g-&-h distribution.
Unexported function letterV_B() estimates parameter B for Tukey g-distribution
(i.e., g\neq 0, h=0), using equation (8a) and (8b).
Unexported function letterV_Bh_g() estimates parameters B and h when g\neq 0, using equation (33).
Unexported function letterV_Bh() estimates parameters B and h for Tukey h-distribution,
i.e., when g=0 and h\neq 0, using equation (26a), (26b) and (27).
Function letterValue() plays a similar role as fitdistrplus:::start.arg.default,
thus extends fitdistrplus::fitdist for estimating Tukey g-&-h distributions.
Value
Function letterValue() returns a 'letterValue' object,
which is double vector of estimates (\hat{A}, \hat{B}, \hat{g}, \hat{h})
for a Tukey g-&-h distribution.
Note
Parameter g_ and h_ does not have to be truly unique; i.e., all.equal elements are allowed.
References
Hoaglin, D.C. (1985). Summarizing Shape Numerically: The g-and-h Distributions.
doi:10.1002/9781118150702.ch11
Examples
set.seed(77652); x = rGH(n = 1e3L, g = -.3, h = .1)
letterValue(x, g_ = FALSE, h_ = FALSE)
letterValue(x, g_ = FALSE)
letterValue(x, h_ = FALSE)
(m3 = letterValue(x))
library(fitdistrplus)
fit = fitdist(x, distr = 'GH', start = as.list.default(m3))
plot(fit) # fitdistrplus:::plot.fitdist
Vectorised One Dimensional Root (Zero) Finding
Description
To solve a monotone function y = f(x) for a given vector of y values.
Usage
vuniroot2(
  y,
  f,
  interval = stop("must provide a length-2 `interval`"),
  tol = .Machine$double.eps^0.25,
  maxiter = 1000L
)
Arguments
| y | |
| f | monotone function  | 
| interval | |
| tol | double scalar, desired accuracy, i.e., convergence tolerance | 
| maxiter | integer scalar, maximum number of iterations | 
Details
Function vuniroot2(), different from vuniroot, does
- accept - NA_real_as element(s) of- y
- handle the case when the analytic root is at - lowerand/or- upper
- return a root of - Inf(if- abs(f(lower)) >= abs(f(upper))) or- -Inf(if- abs(f(lower)) < abs(f(upper))), when the function value- f(lower)and- f(upper)are not of opposite sign.
Value
Function vuniroot2() returns a numeric vector x as the solution of y = f(x) with given vector y.
Examples
library(rstpm2)
# ?rstpm2::vuniroot does not accept NA \eqn{y}
tryCatch(vuniroot(function(x) x^2 - c(NA, 2:9), lower = 1, upper = 3), error = identity)
# ?rstpm2::vuniroot not good when the analytic root is at `lower` or `upper`
f <- function(x) x^2 - 1:9
vuniroot(f, lower = .99, upper = 3.001) # good
tryCatch(vuniroot(f, lower = 1, upper = 3, extendInt = 'no'), warning = identity)
tryCatch(vuniroot(f, lower = 1, upper = 3, extendInt = 'yes'), warning = identity)
tryCatch(vuniroot(f, lower = 1, upper = 3, extendInt = 'downX'), error = identity)
tryCatch(vuniroot(f, lower = 1, upper = 3, extendInt = 'upX'), warning = identity)
vuniroot2(c(NA, 1:9), f = function(x) x^2, interval = c(1, 3)) # all good
Tukey g-&-h Transformation
Description
To transform standard normal quantiles to Tukey g-&-h quantiles.
Usage
z2GH(z, A = 0, B = 1, g = 0, h = 0)
Arguments
| z | |
| A,B,g,h | double scalar or vector,
parameters of Tukey  | 
Details
Function z2GH() transforms standard normal quantiles to Tukey g-&-h quantiles.
Value
Function z2GH() returns a double scalar or vector.
Note
Function gk:::z2gh is not fully vectorized,
i.e., cannot take vector z and vector A/B/g/h,
as of 2023-07-20 (package gk version 0.6.0)