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1 Introduction

In this vignette we focus on running several different analyses on several exposure-outcome pairs This can be
useful when we want to explore the sensitivity to analyses choices, include controls, or run an experiment
similar to the OMOP experiment to empirically identify the optimal analysis choices for a particular research
question.

This vignette assumes you are already familiar with the SelfControlledCaseSeries package and are able
to perform single studies. We will walk through all the steps needed to perform an exemplar set of analyses,
and we have selected the well-studied topic of the effect of nonsteroidal anti-inflammatory drugs (NSAIDs)
on gastrointestinal (GI) bleeding-related hospitalization. For simplicity, we focus on one NSAID: diclofenac.
We will execute various variations of an analysis for the primary exposure pair and a large set of negative
control exposures.

2 General approach

The general approach to running a set of analyses is that you specify all the function arguments of the
functions you would normally call, and create sets of these function arguments. The final outcome models as
well as intermediate data objects will all be saved to disk for later extraction.



An analysis will be executed by calling these functions in sequence:

1. getDbSccsData()
2. createStudyPopulation()
3. createSccsIntervalData()
4. fitSccsModel ()

When you provide several analyses to the SelfControlledCaseSeries package, it will determine whether
any of the analyses and exposure-outcome pairs have anything in common, and will take advantage of this
fact. For example, if we specify several exposure-outcome pairs with the same outcome, the data for the
outcome will be extracted only once.

The function arguments you need to define have been divided into four groups:

1. Exposures-outcome sets: arguments that are specific to a hypothesis of interest, in the case of the
self-controlled case series this is a combination of one or more exposures and an outcome.

2. Analyses: arguments that are not directly specific to a hypothesis of interest, such as the washout
window, whether to adjust for age and seasonality, etc.

3. Arguments that are the output of a previous function in the SelfControlledCaseSeries package,
such as the SccsIntervalData argument of the createSccsIntervalData function. These cannot be
specified by the user.

4. Arguments that are specific to an environment, such as the connection details for connecting to the
server, and the name of the schema holding the CDM data.

Arguments in groups 1 and 2 together fully specify the analyses, and sharing these with other sites would
allow them to fully reproduce the study. Together, they are therefore referred to as the ‘SCCS analysis
specifications’.

3 Preparation for the example

We need to tell R how to connect to the server where the data are. SelfControlledCaseSeries
uses the DatabaseConnector package, which provides the createConnectionDetails function. Type
?createConnectionDetails for the specific settings required for the various database management systems
(DBMS). For example, one might connect to a PostgreSQL database using this code:

connectionDetails <- createConnectionDetails(
dbms = "postgresql",

server = "localhost/ohdsi",
user = "joe",
password = "supersecret"

outputFolder <- "s:/temp/sccsVignette2"

cdmDatabaseSchema <- "my_cdm_data"
cohortDatabaseSchema <- "my_cohorts"
options(sqlRenderTempEmulationSchema = NULL)

The last three lines define the cdmDatabaseSchema and cohortDatabaseSchema variables, as well as the
CDM version. We’ll use these later to tell R where the data in CDM format live, where we want to store the
(outcome) cohorts, and what version CDM is used. Note that for Microsoft SQL Server, databaseschemas need
to specify both the database and the schema, so for example cdmDatabaseSchema <- "my_cdm_data.dbo".

We also need to prepare our exposures and outcomes of interest. The drug_era table in the OMOP Common
Data Model already contains pre-specified cohorts of users at the ingredient level, so we will use that for the
exposures. For the outcome we can use the OHDSI PhenotypeLibrary to retrieve a community-approved
definition of GI bleeding:



giBleed <- 77
cohortDefinitionSet <- Phenotypelibrary::getPlCohortDefinitionSet(giBleed)

We can use the CohortGenerator package to instantiate this cohort:

connection <- DatabaseConnector: :connect(connectionDetails)
cohortTableNames <- CohortGenerator::getCohortTableNames (cohortTable)
CohortGenerator: :createCohortTables(connection = connection,
cohortDatabaseSchema = cohortDatabaseSchema,
cohortTableNames = cohortTableNames)
counts <- CohortGenerator: :generateCohortSet(connection = connection,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortDatabaseSchema = cohortDatabaseSchema,
cohortTableNames = cohortTableNames,
cohortDefinitionSet = cohortDefinitionSet)
DatabaseConnector: :disconnect (connection)

4 Specifying exposures-outcome sets

The first group of arguments define the exposures and outcome. Here we demonstrate how to create an
exposures-outcome set:

diclofenac <- 1124300

negativeControls <- c(
705178, 705944, 710650, 714785, 719174, 719311, 735340, 742185,
780369, 781182, 924724, 990760, 1110942, 1111706, 1136601,
1317967, 1501309, 1505346, 1551673, 1560278, 1584910, 19010309,
40163731

)

giBleed <- 77

exposuresQutcomelList <- list()
exposuresOutcomeList[[1]] <- createExposuresQutcome(
outcomeld = giBleed,
exposures = list(createExposure(exposureld = diclofenac))
)
for (exposureld in c(negativeControls)) {
exposuresQutcome <- createExposuresOutcome (
outcomeId = giBleed,
exposures = list(createExposure(exposureld = exposureld, trueEffectSize = 1))
)
exposuresOutcomeList [[length(exposuresOutcomeList) + 1]] <- exposuresOutcome

}

We defined the outcome of interest to be the cohort with the ID stored in giBleed. The exposures include
diclofenac (concept ID 1124300) and a large number of negative control exposures. Note that for the negative
controls we specify trueEffectSize = 1 since we assume negative controls have no causal effect on the
outcome.

A convenient way to save exposuresOutcomeList to file is by using the saveExposuresOutcomeList function,
and we can load it again using the loadExposuresOutcomeList function.



5 Specifying analyses

The second group of arguments are not specific to a hypothesis of interest, and comprise the majority of
arguments. For each function that will be called during the execution of the analyses there is a companion
function that creates the core settings for that function. For example, for the fitSccsModel() function
there is the createFitSccsModelArgs() function. These companion functions can be used to create the
arguments to be used during execution:

getDbSccsDataArgs <- createGetDbSccsDataArgs(
deleteCovariatesSmallCount = 100,
exposurelds = c(),
maxCasesPerOutcome = 100000

createStudyPopulationArgs <- createCreateStudyPopulationArgs(
naivePeriod = 180,
firstOutcomeOnly = FALSE

)

covarExposure0fInt <- createEraCovariateSettings(
label = "Exposure of interest',
includeEralds = "exposureld",
start = 1,
end = 0,
endAnchor = "era end",
profilelLikelihood = TRUE,
exposureOfInterest = TRUE

createSccsIntervalDataArgsl <- createCreateSccsIntervalDataArgs(
eraCovariateSettings = covarExposureOfInt

)
fitSccsModelArgs <- createFitSccsModelArgs()

Any argument that is not explicitly specified by the user will assume the default value specified in the companion
function. Note that for several arguments for concept or cohort definition IDs we can use the exposureIdRef
(default = "exposureId") in the Exposure objects that we used in createExposuresOutcome (). In this
case, we defined the argument includeEralds to get the value of the exposureId variable, meaning it
will take the value of the diclofenac concept ID, or any of the negative control IDs. Also note that we set
exposureOf Interest = TRUE, which will cause the estimate for this covariate to be included in the result
summary later on.

Important: at least one era covariate in your analysis must have exposureOfInterest = TRUE.

We can now combine the arguments for the various functions into a single analysis:

sccsAnalysisl <- createSccsAnalysis(
analysisId = 1,
description = "Simplest model",
getDbSccsDataArgs = getDbSccsDataArgs,
createStudyPopulationArgs = createStudyPopulationArgs,
createIntervalDataArgs = createSccsIntervalDataArgsi,
fitSccsModelArgs = fitSccsModelArgs

)

Note that we have assigned an analysis ID (1) to this set of arguments. We can use this later to link the



results back to this specific set of choices. We also include a short description of the analysis.

We can easily create more analyses, for example by including adjustments for age and seasonality, or for
including other drugs in the model:

ppis <- c(911735, 929887, 923645, 904453, 948078, 19039926)

covarPreExp <- createEraCovariateSettings(

label = "Pre-exposure",
includeEralds = "exposureld",
start = -30,

end = -1,

endAnchor = "era start",
preExposure = TRUE

covarProphylactics <- createEraCovariateSettings(
label = "Prophylactics",
includeEralds = ppis,
start = 1,
end = 0,
endAnchor = "era end"

createSccsIntervalDataArgs2 <- createCreateSccsIntervalDataArgs(
eraCovariateSettings = 1list(
covarExposureOfInt,
covarPreExp,
covarProphylactics

)

sccsAnalysis2 <- createSccsAnalysis(
analysisId = 2,
description = "Including prophylactics and pre-exposure",
getDbSccsDataArgs = getDbSccsDataArgs,
createStudyPopulationArgs = createStudyPopulationArgs,
createIntervalDataArgs = createSccsIntervalDataArgs2,
fitSccsModelArgs = fitSccsModelArgs

seasonalitySettings <- createSeasonalityCovariateSettings(seasonKnots = 5)
calendarTimeSettings <- createCalendarTimeCovariateSettings(calendarTimeKnots = 5)

createSccsIntervalDataArgs3 <- createCreateSccsIntervalDataArgs(
eraCovariateSettings = list(
covarExposureOfInt,
covarPreExp,
covarProphylactics
),
seasonalityCovariateSettings = seasonalitySettings,
calendarTimeCovariateSettings = calendarTimeSettings



sccsAnalysis3 <- createSccsAnalysis(
analysisId = 3,
description = "Including prophylactics, season, calendar time, and pre-exposure",
getDbSccsDataArgs = getDbSccsDataArgs,
createStudyPopulationArgs = createStudyPopulationArgs,
createIntervalDataArgs = createSccsIntervalDataArgs3,
fitSccsModelArgs = fitSccsModelArgs

)
covarAllDrugs <- createEraCovariateSettings(
label = "Other exposures",
includeEralds = c(),
excludeEralds = "exposureld",
stratifyById = TRUE,
start = 1,
end = 0,
endAnchor = "era end",
allowRegularization = TRUE

createSccsIntervalDataArgs4 <- createCreateSccsIntervalDataArgs(
eraCovariateSettings = list(
covarExposureOfInt,
covarPreExp,
covarAllDrugs
),
seasonalityCovariateSettings = seasonalitySettings,
calendarTimeCovariateSettings = calendarTimeSettings

sccsAnalysis4 <- createSccsAnalysis(
analysisId = 4,
description = "Including all other drugs",
getDbSccsDataArgs = getDbSccsDataArgs,
createStudyPopulationArgs = createStudyPopulationArgs,
createIntervalDataArgs = createSccsIntervalDataArgs4,
fitSccsModelArgs = fitSccsModelArgs

createSccsIntervalDataArgsb <- createCreateSccsIntervalDataArgs(
eraCovariateSettings = 1list(
covarExposureOfInt,
covarPreExp,
covarProphylactics
)’
eventDependentObservation = TRUE

)

sccsAnalysisb <- createSccsAnalysis(
analysisId = 5,
description = "Adjusting for event-dependent obs. end",
getDbSccsDataArgs = getDbSccsDataArgs,
createStudyPopulationArgs = createStudyPopulationArgs,



createIntervalDataArgs = createSccsIntervalDataArgs5,
fitSccsModelArgs = fitSccsModelArgs
)

These analyses can be combined in a list:

sccsAnalysisList <- list(
sccsAnalysisi,
sccsAnalysis?2,
sccsAnalysis3,
sccsAnalysis4,
sccsAnalysisb

)

A convenient way to save sccsAnalysisList to file is by using the saveSccsAnalysisList function, and
we can load it again using the loadSccsAnalysisList function

We combine the exposures-outcomes and analysis lists into the full sccsAnalysisSpecifications:

sccsAnalysesSpecifications <- createSccsAnalysesSpecifications(
sccsAnalysisList = sccsAnalysisList,
exposuresOutcomelist = exposuresOutcomelist,
controlType = "exposure"

)

This specifies we will run all analyses against all hypotheses of interest, meaning that the to-
tal number of outcome models is length(sccsAnalysisList) * length(exposuresOutcomeList).
(If we want, we can skip some of these combinations using the analysesToExclude argument of
createSccsAnalysesSpecifications().)

6 Executing multiple analyses

We can now run the specified analyses using the runSccsAnalyses() function:

multiThreadingSettings <- createDefaultSccsMultiThreadingSettings(
parallel: :detectCores() - 1

)

referenceTable <- runSccsAnalyses(
connectionDetails = connectionDetails,
cdmDatabaseSchema = cdmDatabaseSchema,
exposureDatabaseSchema = cdmDatabaseSchema,
exposureTable = "drug_era",
outcomeDatabaseSchema = cohortDatabaseSchema,
outcomeTable = cohortTable,
outputFolder = outputFolder,
sccsMultiThreadingSettings = multiThreadingSettings,
sccsAnalysesSpecifications = sccsAnalysesSpecifications

)

In the code above, we first specify how many parallel threads SelfControlledCaseSeries can use. Many of
the computations can be computed in parallel, and providing more than one CPU core can greatly speed
up the computation. Here we specify SelfControlledCaseSeries can use all but one of the CPU cores
detected in the system (using the parallel::detectCores() function).

We call runSccsAnalyses, providing the arguments for connecting to the database, which schemas and
tables to use, as well as the analyses and hypotheses of interest. The outputFolder specifies where the



outcome models and intermediate files will be written. Because in this example we use negative control
exposures, we must explicitly specify controlType = "exposure". This will cause the different negative
control exposure-outcome pairs to be used for the same outcome.

6.1 Restarting

If for some reason the execution was interrupted, you can restart by re-issuing the runSccsAnalyses()
command. Any intermediate and final products that have already been completed and written to disk will be
skipped.

7 Retrieving the results

The result of the runSccsAnalyses() is a data frame with one row per exposures-outcome-analysis combina-
tion, so one row per fitted SCCS model. It provides the file names of the intermediate and end-result files
that were constructed. For example, we can retrieve the fitted model for the combination of our drug of
interest, outcome, and first analysis:

sccsModelFile <- referenceTable$sccsModelFile[result$exposureld == diclofenac &
referenceTable$outcomeld == giBleed &
referenceTable$analysisId == 1]

sccsModel <- readRDS(file.path(outputFolder, sccsModelFile))

sccsModel

Note that some of the file names will appear several times in the table. In our example all analysis share the
same sccsData object.

We can always retrieve the file reference table again using the getFileReference() function:

referenceTable <- getFileReference(outputFolder)

We can get a summary of the results using getResultsSummary():

resultsSum <- getResultsSummary(outputFolder)
head (resultsSum)

This tells us, per exposure-outcome-analysis combination (so possible multiple rows per SCCS model) the
estimated relative risk and 95% confidence interval, as well as the number of subjects (cases) and the number
of events observed for those subjects. The only covariates included in this summary are those we marked
with exposureOfInterest = TRUE when calling createEraCovariateSettings() earlier.

7.1 Diagnostics summary

The runSccsAnalyses () function automatically executes diagnostics for the major assumptions of the SCCS
design. You can view a summary of the diagnostics results:

diagnosticsSum <- getDiagnosticsSummary(outputFolder)
head(diagnosticsSum)

For each of the diagnostics, this summary reports whether an analysis failed or passed the diagnostic. The
thresholds used can be specified in the createSccsAnalysesSpecifications() function.

7.2 Negative control distribution

Now that we have produced estimates for all outcomes including our negative controls, we can look at the
distribution of negative controls. In each plot, the blue dots represent our negative control exposures, and
the yellow diamond represents our exposure of interest: diclofenac. An unbiased, well-calibrated analysis
should have 95% of the negative controls between the dashed lines (ie. 95% should have p > .05). Note that



empirical calibration was already automatically performed, and calibrated confidence intervals and p-values
are included separately in the analyses summary.

Before viewing the estimates, we should remove those that fail one of our diagnostics. For the first analysis,
that means none of the estimates remain:

install.packages("EmpiricalCalibration")
library (EmpiricalCalibration)

# Analysts 1: Simplest model

analysislEstimates <- resultsSum |>
inner_join(diagnosticsSum) |>
filter(analysisId == 1 & unblind == 1)

nrow(analysislEstimates)

The same is true for analysis 2:

# Analysts 2: Including prophylactics and pre-exposure
analysis2Estimates <- resultsSum |>
inner_join(diagnosticsSum) |>
filter(analysisId == 2 & unblind == 1)

nrow(analysis2Estimates)

)

Only when we start to include corrections for season and calendar time do we pass diagnostics:

# Analysis 3: Including prophylactics, season, calendar time, and pre-exposure
analysis3Estimates <- resultsSum |>
inner_join(diagnosticsSum) |>
filter(analysisId == 3 & unblind == 1)

negCons <- analysis3Estimates |>

filter(erald != diclofenac)
ei <- negCons <- analysis3Estimates |>
filter(erald == diclofenac)

plotCalibrationEffect(
logRrNegatives = negCons$logRr,
seLogRrNegatives = negCons$seLogRr,
logRrPositives = ei$logRr,
seLogRrPositives = ei$seLogRr

)

# Analysts 4: Including all other drugs
negCons <- resultsSum[resultsSum$analysisId == 4 & resultsSum$erald != diclofenac, ]
ei <- resultsSum[resultsSum$analysisId == 4 & resultsSum$erald == diclofenac, ]
null <- fitNull(

negCons$logRr,

negCons$seLogRr
)
plotCalibrationEffect(

logRrNegatives = negCons$logRr,

seLogRrNegatives = negCons$selLogRr,

logRrPositives = ei$logRr,

seLogRrPositives = ei$selogRr,

null



)

When using the adjustment for event-dependent observation end we do not pass diagnostics for any exposure-
outcome pair:

# Analysis 5: Adjusting for event-dependent obs. end
nrow(analysisbEstimates)
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