

Package ‘MetaHD’

February 5, 2026

Type Package

Title A Multivariate Meta-Analysis Model for High-Dimensional Data

Version 0.1.4

Maintainer Jayamini Liyanage <j.liyanage@latrobe.edu.au>

Author Jayamini Liyanage [aut, cre],
Alysha De Livera [aut],
Luke Prendergast [aut]

Description Performs multivariate meta-analysis for high-dimensional data to integrate and collectively analyse individual-level data from multiple studies, as well as to combine summary estimates. This approach accounts for correlation between outcomes, incorporates within- and between-study variability, handles missing values, and uses shrinkage estimation to accommodate high dimensionality. The 'MetaHD' R package provides access to our multivariate meta-analysis approach, along with a comprehensive suite of existing meta-analysis methods, including fixed-effects and random-effects models, Fisher's method, Stouffer's method, the weighted Z method, Lancaster's method, the weighted Fisher's method, and vote-counting approach. A detailed vignette with example datasets and code for data preparation and analysis is available at <https://alyshadelivera.github.io/MetaHD_vignette/>.

License GPL-3

Encoding UTF-8

Depends R (>= 3.5.0)

LazyData true

RoxygenNote 7.3.3

Imports dplyr, tidyr, metafor, corpcor, nloptr, Matrix, matrixcalc,
Rcpp (>= 1.0.0), dynamicTreeCut, future.apply, metapro, metap

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

Repository CRAN

Date/Publication 2026-02-05 08:30:16 UTC

Contents

MetaHD	2
MetaHDInput	5
MetaHDpval	6
realdata	8
simdata.1	9
simdata.2	9

Index

11

Description

The MetaHD function performs a multivariate meta-analysis for high-dimensional data, combining summary estimates obtained from multiple studies by using restricted maximum likelihood estimation. In its default settings, the function fits the fastMetaHD model, which provides a memory-efficient and computationally faster implementation of the MetaHD methodology. Assuming a meta-analysis is based on N outcomes and K studies:

Usage

```
MetaHD(
  Y,
  Slist,
  Psi = NULL,
  method = c("multi", "REM", "FEM"),
  bscov = c("unstructured", "diag", "none"),
  useDivideConquer = FALSE,
  parallel = FALSE,
  est.wscor = FALSE,
  shrinkCor = TRUE,
  impute.na = FALSE,
  optim.algorithm = c("BOBYQA", "hybrid", "L-BFGS-B"),
  optim.maxiter = 2000,
  rigls.iter = 1,
  initPsi = NULL,
  impute.var = 10^4
)
```

Arguments

Y treatment effect sizes of the outcomes. This should be in the form of a $K \times N$ matrix.

Slist	A K-dimensional list of $N \times N$ matrices representing within-study variances and covariances of the treatment effects. If within-study correlations are not available, provide the associated variances of the treatment effects as a $K \times N$ matrix and set <code>est.wscor = TRUE</code> . For <code>method = "REM"</code> or <code>method = "FEM"</code> , provide the associated variances of the treatment effects as a $K \times N$ matrix.
Psi	$N \times N$ matrix representing between-study variances and covariances of the treatment effects. (optional, if not specified this will be estimated internally by "MetaHD" using "estimateBSvar" and "estimateCorMat" functions in "MetaHD" package).
method	estimation method: "multi" for multivariate meta-analysis model fitted through restricted maximum likelihood estimation where the between-study covariance structure can be selected via 'bscov', "REM" for univariate random-effects model fitted through restricted maximum likelihood estimation and "FEM" for univariate fixed-effects model.
bscov	a character vector defining the structure of the random-effects covariance matrix. Among available covariance structures, the user can select "unstructured" to obtain between-study covariance matrix with diagonal elements (variances) estimated using restricted maximum likelihood and off-diagonal elements (co-variances) reflecting the correlations estimated via shrinkage, "diag" (diagonal) for between-study variances as diagonal elements and zero co-variances, and "none" for zero between-study variances and co-variances.
useDivideConquer	a logical value indicating whether to use the divide-and-conquer implementation of the fastMetaHD model. This option is used only when <code>method = "multi"</code> . Default is FALSE.
parallel	a logical value indicating whether to enable parallel computation for the divide-and-conquer approach. Default is FALSE. See also Details.
est.wscor	a logical value indicating whether the within-study correlation matrix needs to be estimated or not. Default is FALSE.
shrinkCor	a logical value indicating whether a shrinkage estimator should be used to estimate within- or between-study correlation matrix. TRUE.
impute.na	a logical value indicating whether missing values need to be imputed or not. Default is FALSE.
optim.algorithm	specifies the algorithm used to maximize the restricted log-likelihood function for estimating between-study variances. The default algorithm is "BOBYQA", which offers derivative-free, bound-constrained optimization by iteratively constructing a quadratic approximation of the objective function. The "hybrid" option performs up to <code>rigls.iter</code> iterations of the RIGLS algorithm, followed by quasi-Newton (BFGS algorithm) iterations until convergence. If <code>rigls.iter</code> is set to zero, only the quasi-Newton method (BFGS algorithm) is used for estimation. The "L-BFGS-B" algorithm is a limited-memory version of the BFGS quasi-Newton method, which supports box constraints, allowing each variable to have specified lower and/or upper bounds.
optim.maxiter	maximum number of iterations in methods involving optimization procedures.

rigls.ITER	number of iterations of the restricted iterative generalized least square algorithm (RIGLS) when used in the initial phase of hybrid optimization procedure. Default is set to 1.
initPsi	$N \times N$ diagonal matrix representing the starting values of the between-study variances to be used in the optimization procedures. If not specified, the starting values in Psi default to a diagonal matrix with variances set to 1.
impute.var	multiplier for replacing the missing variances in Slist.(a large value, default is 10^4).

Details

If `parallel` = TRUE, the divide-and-conquer approach may be evaluated in parallel. Parallel execution is implemented using the `future` R package.

On Windows, users must set a future plan (e.g., `future::plan(future::multisession, workers = ncores)`) before calling `MetaHD()` in order to enable parallel computation.

On Linux and macOS, users may alternatively use `future::plan(future::multicore, workers = ncores)`.

If no future plan is set, or if `parallel` = FALSE, computations are performed sequentially.

Value

A list of objects containing :

- `estimate`: An N -dimensional vector of the combined estimates.
- `std.err`: An N -dimensional vector of the associated standard errors.
- `pVal`: An N -dimensional vector of the p -values.
- `I2.stat`: I^2 statistics.

References

Liyanage JC, Prendergast L, Staudte R, De Livera AM (2024). *MetaHD: a multivariate meta-analysis model for metabolomics data*. *Bioinformatics*, 40(7), btae470. [doi:10.1093/bioinformatics/btae470](https://doi.org/10.1093/bioinformatics/btae470)

Powell MJ (2009). *The BOBYQA algorithm for bound constrained optimization without derivatives*. Cambridge NA Report NA2009/06, University of Cambridge, 26, 26–46.

Sera F, Armstrong B, Blangiardo M, et al. (2019). *An extended mixed-effects framework for meta-analysis*. *Statistics in Medicine*, 38, 5429–5444.

Schäfer J, Strimmer K (2005). *A shrinkage approach to large-scale covariance estimation and implications for functional genomics*. *Statistical Applications in Genetics and Molecular Biology*, 4, 32.

Examples

```
# CREATE INPUT DATA
input_data <- MetaHDInput(realdata)
Y <- input_data$Y
Slist <- input_data$Slist
```

```

N <- ncol(Y)
K <- nrow(Y)

Smat <- matrix(0, nrow = K, ncol = N)
for (i in 1:K) {
  Smat[i, ] <- diag(Slist[[i]])
}

# MULTIVARIATE RANDOM-EFFECTS META-ANALYSIS
model <- MetaHD(Y = Y, Slist = Slist, method = "multi")
model$estimate
model$pVal

# UNIVARIATE RANDOM-EFFECTS META-ANALYSIS
model <- MetaHD(Y = Y, Slist = Smat, method = "REM")
model$estimate
model$pVal

# UNIVARIATE FIXED-EFFECTS META-ANALYSIS
model <- MetaHD(Y = Y, Slist = Smat, method = "FEM")
model$estimate
model$pVal

```

MetaHDInput

Creating Input Data for MetaHD When Individual-Level Data are Available

Description

The MetaHDInput function creates input data `Y` (treatment effects) and `Slist` (within-study covariance matrices) for MetaHD when individual-level data are available. Assuming that the individual-level data are in the following format, with 'study' in column 1, 'group' in column 2 and outcomes in rest of the columns, with samples in rows.

Usage

```
MetaHDInput(data)
```

Arguments

<code>data</code>	a dataframe consisting of individual-level data in the format, where 'study' in column 1, 'group' in column 2 and outcomes in rest of the columns and samples in rows.
-------------------	--

Value

A list of objects containing :

- Y : A $K \times N$ matrix of treatment effect sizes, where K is the number of studies and N is the number of outcomes.
- $Slist$: A list of length K containing $N \times N$ within-study variance-covariance matrices of the treatment effects.

Examples

```
# CREATE INPUT DATA
input_data <- MetaHDInput(realdata)

## treatment effect-sizes
Y <- input_data$Y
head(Y)

## within-study variance-covariance matrices
Slist <- input_data$Slist
head(Slist[[1]])
```

Description

Combines individual p -values across multiple studies for each outcome using p -value combination methods applied independently per outcome. Includes traditional and weighted p -value combination approaches and a vote counting method.

Usage

```
MetaHDpval(
  pmat,
  method = c("Fisher", "Stouffer", "wZ", "Lancaster", "wFisher", "Vote counting"),
  weight = NULL,
  is.onetail = TRUE,
  eff.sign = NULL,
  alpha = 0.5
)
```

Arguments

<code>pmat</code>	A $K \times N$ matrix of individual p -values, where K is the number of studies and N is the number of outcomes.
-------------------	--

method	Character string specifying the <i>p</i> -value combination method. One of "Fisher", "Stouffer", "wZ", "Lancaster", "wFisher", or "Vote counting". See Details for more information.
weight	An optional $K \times N$ matrix of weights or sample sizes for each outcome in each study. Not relevant for "Vote counting".
is.onetail	Logical. If TRUE, <i>p</i> -values are combined without considering effect directions. If FALSE, effect directions are used via eff.sign. Default is TRUE. Not relevant for "Vote counting".
eff.sign	An optional $K \times N$ matrix indicating the signs of effect sizes (e.g., +1 or -1). Only used when is.onetail = FALSE. Not relevant for "Vote counting".
alpha	Numeric value defining the <i>p</i> -value cutoff for the "Vote counting" method. By default, alpha = 0.5 splits <i>p</i> -values at 0.5. Values between alpha and 1 - alpha are treated as neutral. If alpha > 1, it is interpreted as a percentage.

Details

The `MetaHDpval` function offers five traditional and more recent *p*-value combination methods implemented using the `metapro` R package, as well as a vote counting method implemented using the `metap` R package:

- **Fisher's method** (Fisher, 1932), which combines logarithmically transformed *p*-values from individual studies for each outcome using Fisher's statistic.
- **Stouffer's method** (Stouffer et al., 1949), which combines inverse normal-transformed *p*-values derived from individual study test statistics for each outcome.
- **Weighted Z-method (wZ)** (Mosteller and Bush, 1954), an extension of Stouffer's method that incorporates study-specific weights, resulting in a weighted inverse normal combination.
- **Lancaster's method** (Lancaster, 1961), which generalizes Fisher's method by introducing weights and exploits the additive property of the χ^2 -distribution.
- **Weighted Fisher's method (wFisher)** (Yoon et al., 2021), which extends Fisher's method by allowing non-integer weights reflecting study-specific information (e.g., sample sizes). This approach replaces the χ^2 -distribution with the gamma distribution to accommodate non-integer degrees of freedom.
- **Vote counting method** (Becker, 1994), that classifies a study as positive if its *p*-value is less than alpha and as negative if it exceeds 1 - alpha, with studies falling in between treated as neutral and excluded. The number of positive studies is then counted, and a one-sided binomial test is applied to the non-neutral studies to obtain a combined *p*-value for each outcome.

Value

A numeric vector of length N containing the combined *p*-values for each outcome.

References

Yoon, S., Baik, B., Park, T., et al. (2021). *Powerful p-value combination methods to detect incomplete association*. *Scientific Reports*, 11, 6980. doi:10.1038/s4159802186465y

Yoon, S. (2023). *metapro: Robust P-Value Combination Methods* (R package version 1.5.11). Comprehensive R Archive Network (CRAN). doi:10.32614/CRAN.package.metapro

Becker, B.J. (1994). *Combining significance levels*. In Cooper H, Hedges LV (eds.), *A handbook of research synthesis*, 215–230. Russell Sage, New York.

Dewey, M. (2025). *metap: Meta-Analysis of Significance Values* (R package version 1.13). Comprehensive R Archive Network (CRAN). [doi:10.32614/CRAN.package.metap](https://doi.org/10.32614/CRAN.package.metap)

Examples

```
## Example with 5 studies and 12 outcomes
set.seed(123)
pmat <- matrix(runif(15), nrow = 5, ncol = 12)
eff.sign <- matrix(sample(c(-1, 1), 60, replace = TRUE), nrow = 5, ncol = 12)
wmat <- matrix(sample(50:200, 60, replace = TRUE), nrow = 5, ncol = 12)

## Fisher's method
MetaHDpval(pmat, method = "Fisher", is.onetail = FALSE, eff.sign = eff.sign)

## Weighted Z method
MetaHDpval(pmat, method = "wZ", weight = wmat, is.onetail = FALSE, eff.sign = eff.sign)

## Vote counting
MetaHDpval(pmat, method = "Vote counting", alpha = 0.4)
```

realdata

An Individual-Level Metabolomics Dataset

Description

This is a subset of data, publicly available on MetaboAnalyst example datasets.

Usage

realdata

Format

A data frame with 172 observations on 14 metabolites.

Examples

```
head(realdata)
```

`simdata.1`

Simulated Dataset 1 : With Complete Data

Description

This dataset consists of a list of two data frames containing treatment effect-sizes and within-study covariance matrices

Usage

`simdata.1`

Format

A list of data frames as follows:

`Y` treatment effect sizes of the metabolites in the form of a 12 x 30 matrix, where 12 is the number of studies and 30 is the number of metabolites.

`Slist` 12-dimensional list of 30 x 30 matrices representing within-study variances and covariances of the treatment effects

Examples

```
Y <- simdata.1$Y
Slist <- simdata.1$Slist

head(Y)
head(Slist[[1]])
head(Slist[[12]])
```

`simdata.2`

Simulated Dataset 2 : With Data Missing-At-Random

Description

This dataset consists of a list of two data frames containing treatment effect-sizes and within-study covariance matrices with missing values

Usage

`simdata.2`

Format

A list of data frames as follows:

Y treatment effect sizes of the metabolites in the form of a 12 x 30 matrix, where 12 is the number of studies and 30 is the number of metabolites.

Slist 12-dimensional list of 30 x 30 matrices representing within-study variances and covariances of the treatment effects

Examples

```
Y <- simdata.2$Y
Slist <- simdata.2$Slist

head(Y)
head(Slist[[1]])
head(Slist[[12]])
```

Index

* datasets

realdata, [8](#)
simdata.1, [9](#)
simdata.2, [9](#)

MetaHD, [2](#)

MetaHDIinput, [5](#)

MetaHDpval, [6](#)

realdata, [8](#)

simdata.1, [9](#)

simdata.2, [9](#)