knitr::opts_chunk$set(
  collapse = TRUE, comment = "#>",
  eval = identical(tolower(Sys.getenv("LLMR_RUN_VIGNETTES", "false")), "true")
)We will show both unstructured and structured pipelines, using four model names: - gpt-5-nano (OpenAI) - claude-sonnet-4-20250514 (Anthropic) - gemini-2.5-flash (Gemini) - openai/gpt-oss-20b (Groq)
You will need environment variables OPENAI_API_KEY, ANTHROPIC_API_KEY, GEMINI_API_KEY, GROQ_API_KEY.
library(LLMR)
library(dplyr)
cfg_openai <- llm_config("openai",   "gpt-5-nano")
cfg_cld    <- llm_config("anthropic","claude-sonnet-4-20250514", max_tokens = 512)  # avoid warnings; Anthropic requires max_tokens
cfg_gemini <- llm_config("gemini",   "gemini-2.5-flash")
cfg_groq   <- llm_config("groq",     "openai/gpt-oss-20b")schema <- list(
  type = "object",
  properties = list(
    label = list(type = "string", description = "Sentiment label"),
    score = list(type = "number", description = "Confidence 0..1")
  ),
  required = list("label", "score"),
  additionalProperties = FALSE
)
out_s <- llm_fn_structured(
  x = words,
  prompt  = "Classify '{x}' as Positive, Negative, or Neutral with confidence.",
  .config = cfg_openai,
  .schema = schema,
  .fields = c("label", "score")
)
out_sThe shorthand lets you combine output column and prompt in one argument:
df |>
  llm_mutate(
    category = "Give a short category for: {text}",
    .config = cfg_cld
  )
# Equivalent to: llm_mutate(category, prompt = "Give...", .config = cfg_cld)Or with multi-turn messages:
You can now enable structured output directly in
llm_mutate() using .structured = TRUE:
schema <- list(
  type = "object",
  properties = list(
    category = list(type = "string"),
    confidence = list(type = "number")
  ),
  required = list("category", "confidence")
)
# Using .structured = TRUE (equivalent to calling llm_mutate_structured)
df |>
  llm_mutate(
    structured_result = "{text}",
    .config = cfg_openai,
    .structured = TRUE,
    .schema = schema
  )This is equivalent to calling llm_mutate_structured()
and supports all the same shorthand syntax.
schema2 <- list(
  type = "object",
  properties = list(
    category  = list(type = "string"),
    rationale = list(type = "string")
  ),
  required = list("category", "rationale"),
  additionalProperties = FALSE
)
# Traditional call
df_s <- df |>
  llm_mutate_structured(
    annot,
    prompt  = "Extract category and a one-sentence rationale for: {text}",
    .config = cfg_gemini,
    .schema = schema2
    # Because a schema is present, fields auto-hoist; you can also pass:
    # .fields = c("category", "rationale")
  )
df_s
# Or use shorthand (NEW in v0.6.2)
df |>
  llm_mutate_structured(
    annot = "Extract category and rationale for: {text}",
    .config = cfg_gemini,
    .schema = schema2
  )