Package ‘vigicaen’

February 6, 2026

Title 'VigiBase' Pharmacovigilance Database Toolbox
Version 1.0.0

Description Perform the analysis of the World Health Organization
(WHO) Pharmacovigilance database 'VigiBase' (Extract Case Level version),
<https://who-umc.org/>
e.g., load data, perform data management,
disproportionality analysis, and descriptive statistics. Intended for
pharmacovigilance routine use or studies.
This package is NOT supported nor reflect the opinion of the WHO, or the
Uppsala Monitoring Centre.
Disproportionality methods are described by Norén et
al (2013) <doi:10.1177/0962280211403604>.

Depends R (>=4.1.0),
License CeCILL-2.1
Encoding UTF-8
LazyData true
LazyDataCompression xz
RoxygenNote 7.3.3

URL https://github.com/pharmacologie-caen/vigicaen,

https://pharmacologie-caen.github.io/vigicaen/

BugReports https://github.com/pharmacologie-caen/vigicaen/issues
Suggests here, knitr, rmarkdown, testthat (>= 3.0.0), tzdb, vdiffr
Config/testthat/edition 3

Imports arrow, cli, dplyr, data.table, ggplot2, glue, gridExtra,
lifecycle, purrr, rlang, stringr, tidyr

VignetteBuilder knitr
NeedsCompilation no

Author Charles Dolladille [aut, cre] (ORCID:
<https://orcid.org/0000-0003-0449-6261>),
Basile Chrétien [aut] (ORCID: <https://orcid.org/0000-0002-7483-2489>),

1

https://who-umc.org/
https://doi.org/10.1177/0962280211403604
https://github.com/pharmacologie-caen/vigicaen
https://pharmacologie-caen.github.io/vigicaen/
https://github.com/pharmacologie-caen/vigicaen/issues
https://orcid.org/0000-0003-0449-6261
https://orcid.org/0000-0002-7483-2489

2 Contents
Universite de Caen Normandie [cph] (Caen, France),
Unite de pharmaco-epidemiologie [cph] (Service de pharmacologie, Centre
Hospitalier Universitaire de Caen, Caen, France)

Maintainer Charles Dolladille <cdolladille@hotmail.com>

Repository CRAN

Date/Publication 2026-02-06 15:30:02 UTC

Contents
add_adr e 3
add_dose e 4
add_drug L e e e 6
add_ind 8
cff e e e e 9
check_dm e e e 10
compute_diSpro L. e e 11
compute_interactiono e e e 14
compute_or_modl e e e e e e e e e e 16
create_example_tables L Lo 17
demo_ . . . 19
desc_cont e e e e e e e e 22
desc_dch e 24
desc_facvar e 25
desc_outCome e e e e e e e e e e e e e 27
desc_rch e s e 28
desc_tto e 30
di_parquet e e e e 31
EXITACt_tO o e e e e s 32
XL o e e e e e 34
get_atc_code e e e e e 35
get drecno. L e e 36
get llt_smq 38
get IIE_SOC L e e e 40
1c_tail . .. L e e 41
meddra_o e 42
1100 1P 45
NICE_P . v v v v e o e e e e e e e e e e e 46
screen_adr L L e e 47
screen_drug L e e e e 48
tb_meddra e 49
th_subseto e 50
tb_vigibase e 53
tb_Who . . . e e 54
VIgI_TOULING oo e e e 56

Index 59

add_adr 3

add_adr Add adverse drug reaction column(s) to a dataset

Description

[Stable]Creates adr columns in vigibase datasets (demo, link, drug, and adr).

Usage
add_adr(
.data,
a_code,
a_names = names(a_code),
adr_data,
data_type = deprecated()
)
Arguments
.data The dataset to update (demo, link, drug, adr).
a_code A named list of low level terms codes (1lt_codes).
a_names A character vector. Names for adr columns (must be the same length as adr_list),
default to names (a_code)
adr_data A data.frame containing the adr data (usually, it is adr)
data_type [Deprecated]. Data_type is now detected internally.
Details

Low-level term codes are the preferred level of requesting in Vigibase extract case level since they
capture all possible codes for a given Preferred Term. Collect low-level terms with get_11t_soc()
and get_11t_smqg(). You can add adr identification to a demo, a 1ink, drug or even an adr dataset
(in this latter case, you must provide adr twice, as .data and adr_data). Column names of
these dataset should not have been modified from the original vigibase dataset (as created with
tb_vigibase()).

Value

A dataset with the new adr columns. Each element of a_names will add a column with the same
name in .data. The value can be O (the corresponding adr is absent) or 1 (the adr is present in the
case if . data is demo or drug, or "this row correspond to this adr", if . data is adr or 1link).

See Also

add_drug(), get_11t_soc(), get_11t_smq()

4 add_dose

Examples

create adr_colitis, adr_embolism and adr_pneumonitis columns in demo

be careful, this example may overwrite your own demo dataset
demo <- demo_

a_pt_sel <- ex_$pt_sel

adr <- adr_

a_llt <-
get_11t_soc(
term_sel = a_pt_sel,
term_level = "pt”,
meddra = meddra_

)
demo <-
demo |>
add_adr(
a_code = a_llt,
adr_data = adr
)
demo |>

check_dm(names(a_pt_sel))

add_dose Add drug dose column(s) to a dataset, in milligram per day

Description

[Experimental] add_dose () creates drug dose columns in vigibase datasets (demo, link, adr, drug,
ind) for specified drugs in a dataset. It calculates daily dose values based on dose amount, frequency,
and their corresponding units. The function is compatible with demo, 1ink, adr, drug and ind
datasets.

Usage

add_dose(
.data,
d_code,
d_dose_names = names(d_code),
repbasis = "sci”,
method = c(”"DrecNo"”, "MedicinalProd_Id"),
drug_data,
verbose = TRUE

add_dose 5

Arguments
.data The dataset used to identify individual reports (usually, it is demo)
d_code A named list of drug codes (DrecNos or MPI). See Details.

d_dose_names A character vector. Names for drug dose columns (must be the same length
as d_code), default to names(d_code). Will be followed by a fixed suffix
"_dose_mg_per_day".

repbasis Suspect, interacting and/or concomitant. Type initial of those you wish to select
("s" for suspect, "c" for concomitant and "i" for interacting ; default to all, e.g.
" SCi ll) .

method A character string. The type of drug code (DrecNo or MedicinalProd_Id). See
details.

drug_data A data.frame containing the drug data (usually, it is drug)

verbose Logical, whether to display messages about added doses.

Details

Actual supported dosage regimens are any combination of:

* Kilograms, grams, milligrams, micrograms, nanograms, or picograms

 Per minute, hour, day, week, month, or year.

Note that the result will be expressed in milligrams per day, whatever the aforementioned combi-
nation is. This may lead to very small or very large amounts in drug_dose_mg_per_day columns,
depending on the actual dosage regimen. The function identifies drug doses in a dataset by cross-
referencing with a drug_data table. If either the amount unit (grams, etc.) or the frequency (days,
etc.) is missing in drug_data, the corresponding row will be omitted. Drugs may be filtered based
on reputation bases (suspect, concomitant, or interacting). Either drug record numbers (e.g., from
get_drecno()), or medicinalprod_ids (e.g., from get_atc_code()) can be used to identify drugs.
Default method is to DrecNos.

It is very important to check the results, as coding issues are common for dose data, and some
results may seem unreliable.

See Also
add_drug(), get_drecno(), get_atc_code()

Examples

Example: Adding doses for paracetamol
d_code <- list(paracetamol = c(97818920, 97409107))
demo <-
add_dose(
.data = demo_,
d_code = d_code,
d_dose_names = "paracetamol”,
drug_data = drug_
)

6 add_drug
desc_cont(demo, "paracetamol_dose_mg_per_day")
Use only drug dose where paracetamol had a "suspect” reputation base.
demo <-
add_dose(
.data = demo_,
d_code = d_code,
d_dose_names = "para_susp”,
repbasis = "s",
drug_data = drug_
)
desc_cont(demo, "para_susp_dose_mg_per_day")
add_drug Add drug column(s) to a dataset
Description
[Stable] Creates drug columns. in vigibase datasets (demo, link, adr, drug, and ind).
Usage
add_drug(
.data,
d_code,
d_names = names(d_code),
repbasis = "sci”,
method = c("DrecNo”, "MedicinalProd_Id"),
drug_data,
data_type = deprecated()
)
Arguments
.data The dataset used to identify individual reports (usually, it is demo)
d_code A named list of drug codes (DrecNos or MPI). See Details.
d_names A character vector. Names for drug columns (must be the same length as d_code),
default to names (d_code)
repbasis Suspect, interacting and/or concomitant. Type initial of those you wish to select
("s" for suspect, "c" for concomitant and "i" for interacting ; default to all, e.g.
VVSCiVV .
method A character string. The type of drug code (DrecNo or MedicinalProd_Id). See
details.
drug_data A data.frame containing the drug data (usually, it is drug)
data_type [Deprecated]. Data_type is now detected internally.

add_drug 7

Details

d_code is a named list containing drug codes. Either drug record numbers (e.g., from get_drecno()),
or medicinalprod_ids (e.g., from get_atc_code()). Default method is to DrecNos.

Value

A dataset with the new drug columns. Each element of d_names will add a column with the same
name in .data. The value can be O (the corresponding drug is absent) or 1 (the drug is present in
the case if . data is demo or adr, or "this row correspond to this drug"”, if .data is drug or 1ink).

Argument repbasis

Drugs can be reported according to one of three reputation bases:

* s for suspect

* c for concomitant

* i for interacting
in the occurrence of the adverse drug reaction. To study only one of these reputation basis, type
only the corresponding letter in repbasis, e.g. "s" for suspects, or "si" for suspect or interacting.

You can add drug identification to a demo, 1ink, adr, drug or ind dataset.(if working with drug,
you must provide drug twice, as .data and drug_data)

See Also

add_adr (), get_drecno(), get_atc_code()

Examples

create a nivolumab column in demo_
d_sel_names <- list(nivolumab = "nivolumab")

d_drecno <- get_drecno(d_sel_names,
mp = mp_)
demo_ <-
add_drug(
.data = demo_,
d_code = d_drecno,

method = "DrecNo”,
repbasis = "sci”,
drug_data = drug_

)

remember to assign the result to your actual demo dataset

do you want to work only with cases where nivolumab was a "suspected” drug?

nan

change argument repbasis to "s

demo_ <-

8 add_ind

add_drug(
.data = demo_,
d_code = d_drecno,

d_names = "nivolumab_suspected”,

method = "DrecNo”,

repbasis = "s",

drug_data = drug_

)
check_dm(demo_, cols = c("nivolumab”, "nivolumab_suspected”))
add_ind Add indication column(s) to a dataset
Description

[Experimental] Creates indication columns. in vigibase datasets (demo, link, adr, drug, or ind).

Usage

add_ind(.data, i_list, i_names = names(i_list), drug_data, ind_data)

Arguments
.data The dataset used to identify individual reports (usually, it is demo)
i_list A named list of indication terms. See Details.
i_names A character vector. Names for indication columns (must be the same length as
i_list), default to names(i_list)
drug_data A data.frame containing the drug data (usually, it is drug)
ind_data A data.frame containing the indication data (usually, it is ind)
Details

Indication terms are issued from either MedDRA or International Classification of Diseases (ICD) -
you need to use both dictionaries, should you wish to capture all terms related to a specific disease.
Indication terms are not translated into codes in VigiBase ECL, unlike drug or adr terms. Therefore,
there is no get_x* step to collect such codes. The terms are passed directly to i_list, which should
still be a named list containing indication terms.

Value

A dataset with the new indication columns. Each element of i_names will add a column with the
same name in .data. The value can be
* 0 The corresponding indication is absent.

* 1 The indication is present in the case if .data is demo or adr, or "this row correspond to this
indication", if . data is drug, 1ink or ind).

* NA There is no indication data for this case / drug.

cff 9

See Also
add_adr (), add_drug()

Examples

Set up a list of indication terms

i_list <-
list(
melanoma = c("Malignant melanoma”, "Metastatic malignant melanoma”),
lung_cancer = c("Non-small cell lung cancer”, "Lung adenocarcinoma”)
)
demo <-
demo_ |>
add_ind(i_list,
drug_data = drug_,
ind_data = ind.)

demo |> desc_facvar(names(i_list))

cff Fast formatting of numbers

Description

This is a formatting function for consistent number reporting.

Usage

cff(num, low_ci, up_ci, dig = @, method = c("num_only”, "num_ci”, "ci"))
Arguments

num A numeric. The number to format.

low_ci A numeric. Lower end of a confidence interval

up_ci A numeric. Upper end of a confidence interval

dig A numeric. Number of digits

method What sort of printing do you need? (see Details)
Details

Set method according to the printing you like: a unique number with num_only (default), the num-
ber and its confidence interval with num_ci, a ci only (for example a range of time to onset) The
function properly returns NA when input is missing.

10 check dm

Value

A character vector with the formatted number(s)

Examples

num <- c(0.1, 0.02, 1.658)
cff(num)
cff(num, dig = 2)

cff(num = num[[1]],
low_ci = num[[2]],
up_ci = num[[3]],
method = "num_ci”,
dig = 2)

check_dm Check binary variables

Description

[Stable] Quick check that your data management steps through add_adr or add_drug found cases.

Usage

check_dm(.data, cols)

Arguments

.data A data.frame to be checked

cols A character vector, name of columns to look at (usually will be d_names, a_names)
Details

It is a simple wrapper around dplyr: : summarise(). Be careful not to supply factors with > 2 levels
or continuous outcome (the function does NOT have a checker for this, so that it is faster). Also,
the function WONT work with NAs. Use desc_facvar (). if you need more detailed description
of your dataset.

Value
A transposed data.frame, with row.names equal to cols, and first column is the number of lines in
.data where each col is equal to 1.

See Also
desc_facvar(), add_adr (), add_drug()

compute_dispro 11

Examples

first create some new variables
demo <- demo_

demo <-
demo |>
add_adr(
a_code = ex_%a_l11t,
adr_data = adr_

)
then check the number of reports with each feature

demo |>
check_dm(names(ex_$a_11t))

compute_dispro Compute disproportionality

Description

[Stable] Computes bivariate (reporting) Odds-Ratio and Information Component for a drug-adr
pair.

Usage

compute_dispro(
.data,
Y,
X,
alpha = 0.05,
na_format = "-",
dig = 2,
export_raw_values = FALSE,
min_n_obs = @

)
Arguments
.data The data.table to compute from.
y A character vector, one or more variable to explain (usually an adr).

A character vector, one or more explaining variable (usually a drug).
alpha Alpha risk.
na_format Character string to fill NA values in ror and ci legends.

dig Number of digits for rounding (this argument is passed to cff)

12 compute_dispro

export_raw_values
A logical. Should the raw values be exported?

min_n_obs A numeric, compute disproportionality only for pairs with at least min_n_obs
cases.

Details

Significance in pharmacovigilance analysis is only defined if the lower bound of the confidence/credibility
interval is above 1 (i.e. low_ci > 1, or ic_tail >). Actually, the function computes an Odds-
Ratio, which is not necessarily a reporting Odds-Ratio.

Value

A data.table, with ROR, IC, and their confidence/credibility interval (at 1 - alpha). Significance of
both (as signif_or and signif_ic, if export_raw_values is TRUE).

A data.table with columns

* yand X, same as input

* n_obs the number of observed cases

* n_exp the number of expected cases

¢ orl the formatted Odds-Ratio

* or_ci the formatted confidence interval

* ic the Information Component

* ic_tail the tail probability of the IC

* ci_level the confidence interval level

¢ Additional columns, if export_raw_values is TRUE:
* a, b, c, d the counts in the contingency table

* std_er the standard error of the log(OR)

* or the Odds-Ratio

* low_ci the lower bound of the confidence interval
* up_ci the upper bound of the confidence interval
* signif_or the significance of the Odds-Ratio

* signif_ic the significance of the Information Component

See Also

compute_or_mod(), add_drug(), add_adr ()

Examples

Say you want to perform a disproportionality analysis between colitis and
nivolumab among ICI cases

demo <-
demo_ |>

compute_dispro

add_drug(
d_code = ex_$d_drecno,
drug_data = drug_

) 1>

add_adr(
a_code = ex_$a_llt,
adr_data = adr_

)
demo |>
compute_dispro(
y = "a_colitis”,
x = "nivolumab”
)

You don't have to use the pipe syntax, if you're not familiar

compute_dispro(
.data = demo,
y = "a_colitis”,
X = "nivolumab”

Say you want to compute more than one univariate ror at a time.

many_drugs <-
names (ex_$d_drecno)

demo |>
compute_dispro(
y = "a_colitis”,
X = many_drugs

could do the same with adrs

many_adrs <-
names(ex_%$a_11t)

demo |>

compute_dispro(
y = many_adrs,
X = many_drugs

Export raw values if you want to built plots, or other tables.

demo |>
compute_dispro(
y = "a_colitis”,
X = "nivolumab”,

13

14 compute_interaction

export_raw_values = TRUE

)
Set a minimum number of observed cases to compute disproportionality

demo |>
compute_dispro(
y = "a_colitis”,
x = "nivolumab”,
min_n_obs = 5

)

compute_interaction Compute interaction disproportionality

Description

[Experimental] Returns the information component of interaction for a set of 3 variables, usually
2 drugs and an adr.

Usage

compute_interaction(
.data,
Y,
X)
Z!
alpha = 0.05,
na_format = "-",
dig = 2,
export_raw_values = FALSE,
min_n_obs = 0

)
Arguments
.data The data.table to compute from.
y A character vector, one or more variable to explain.
X A character vector, one or more explaining variable.
z A character vector, one or more explaining variable.
alpha Alpha risk.
na_format Character string to fill NA values in ror and ci legends.
dig Number of digits for rounding (this argument is passed to cff)

export_raw_values
A logical. Should the raw values be exported?

min_n_obs A numeric, compute disproportionality only for pairs with at least min_n_obs
cases.

compute_interaction 15

Details

Significance is similar to usual disproportionality (see compute_dispro()).

Value
A data.table, with Information Component (IC) of interaction, and its credibility interval (at 1 -
alpha). Significance as signif_ic, if export_raw_values is TRUE).

A data.table with columns

* y, x and z, same as input

* n_obs the number of observed cases

* n_exp the number of expected cases

¢ ic the Information Component

e ic_tail the tail probability of the IC

* ci_level the confidence interval level

¢ Additional columns, if export_raw_values is TRUE:

* a3, b, c, d the counts in the contingency table

* signif_ic the significance of the Information Component

¢ Additional columns, if export_raw_values is TRUE:
* n_x the counts of each setting

e signif_ic the significance of the Information Component

See Also

compute_dispro(), compute_or_mod(), add_drug(), add_adr ()

Examples

Interaction on reporting of colitis with ipilimumab and nivolumab
demo <-
demo_ |>
add_drug(
d_code = ex_$d_drecno,
drug_data = drug_
) 1>
add_adr(
a_code = ex_$a_l1t,
adr_data = adr_

)
demo |>
compute_interaction(
y = "a_colitis”,
X = "nivolumab”,
z = "ipilimumab”

16 compute_or_mod

compute_or_mod Compute (r)OR from a model summary

Description

[Stable] Compute and format Odds-Ratio from a model summary.

Usage

compute_or_mod(.coef_table, estimate, std_er, p_val = NULL, alpha = 0.05)

Arguments
.coef_table A coefficient table, see details.
estimate Quasiquoted name of estimate parameter.
std_er Quasiquoted name of standard error parameter.
p_val Quasiquoted name of p-value parameter. Optional.
alpha alpha risk.

Details

Helper to compute and format Odds-Ratio based on summary (glm)$coefficients, or any equiv-
alent in other modelling packages. (see examples). Preferably, it is transformed into a data.table or
data.frame before being evaluated in the function. Otherwise, compute_or_mod() will transform it.
Significant OR-or column means low_ci is > 1. The p_val argument is only required if you wished
to display a nice_p().

Output is a data.table. Actually, the function computes an Odds-Ratio, which is not necessarily a
reporting Odds-Ratio.

Value

A data.table with OR, confidence intervals (at 1 - alpha), significance (low_ci > 1) and (option-
ally) p-value.

See Also
compute_dispro(), add_drug(), add_adr ()

Examples

Reporting Odds-Ratio of colitis with nivolumab among ICI cases.

demo <-
demo_ |>
add_drug(

d_code = ex_$d_drecno,
drug_data = drug_

create_example_tables

) 1>

add_adr(
a_code = ex_$a_llt,
adr_data = adr_

)

Compute the model
mod <- glm(a_colitis ~ nivolumab, data = demo, family = "binomial")

Extract coefficients
mod_summary <-

mod |>

summary ()

coef_table <-
mod_summary$coefficients

Transform coefficients into ORs with their CI

coef_table |>
compute_or_mod(
estimate = Estimate,
std_er = Std..Error,
p_val = Pr...z..)

Also works if you don't have a p_val column
coef_table |>
compute_or_mod(
estimate = Estimate,
std_er = Std..Error)

17

create_example_tables Example source tables for VigiBase and MedDRA

Description

[Stable] Write some example tables as source text/ascii/parquet files.

Usage

create_ex_main_txt(path)
create_ex_sub_txt(path)
create_ex_who_txt(path)
create_ex_meddra_asc(path)
create_ex_main_pq(path)

create_ex_sub_pqg(path)

18

create_example_tables

Arguments

path

Details

Character string. A folder on your computer where the tables should be written.

VigiBase tables and MedDRA tables are provided respectively as text files and ascii files. The th_x
family turns them into parquet files. These create_example_x functions are only used to produce
example source files to illustrate the tb_* family, and parquet files for the same purpose.

Value

A set of text/ascii files, as received by the Uppsala Monitoring Centre or MedDRA

For create_ex_main_txt(), DEMO.txt, DRUG.txt, LINK.txt, FOLLOWUP.txt, ADR.txt,
OUT.txt, SRCE.txt, and IND.txt

For create_ex_sub_txt (), AgeGroup_Lx.txt, Dechallenge_Lx.txt, Dechallenge2_I x.txt, Fre-
quency_Lx.txt, Gender_Lx.txt, Notifier_Lx.txt, Outcome_Lx.txt, Rechallenge_Lx.txt, Rechal-
lenge2_Lx.txt, Region_Lx.txt, RepBasis_Lx.txt, ReportType_Lx.txt, RouteOfAdm_Lx.txt, Se-
riousness_Lx.txt, and SizeUnit_Lx.txt

For create_ex_who_txt(), ATC.txt, CCODE.txt, ING.txt, MP.txt, ORG.txt, PF.txt, PP.txt,
PRT.txt, PRG.txt, SRCE.txt, STR.txt, SUN.txt, ThG.txt, and Unit-X.txt

For create_ex_meddra_asc(), llt.asc, mdhier.asc, smq_content.asc, smq_list.asc
For create_ex_main_pq(), demo.parquet, adr.parquet, drug.parquet, link.parquet, srce.parquet,
ind.parquet, out.parquet, followup.parquet, suspdup.parquet

For create_ex_sub_pq(), agegroup.parquet, dechallenge.parquet, dechallenge2.parquet, fre-
quency.parquet, gender.parquet, notifier.parquet, outcome.parquet, rechallenge.parquet, rechal-
lenge2.parquet, region.parquet, repbasis.parquet, reporttype.parquet, routeofadm.parquet, se-
riousness.parquet, and sizeunit.parquet

Functions

See Also

create_ex_sub_txt(): sub txt tables
create_ex_who_txt(): WHO txt tables
create_ex_meddra_asc(): MedDRA txt tables
create_ex_main_pq(): main parquet tables

create_ex_sub_pq(): subsidiary parquet tables

tb_vigibase(), tb_who(), tb_meddra()

Examples

path

<- paste@(tempdir(), "/crex/")

dir.create(path)

demo_ 19

You may want to use different paths for each type of tables
create_ex_main_txt(path)

create_ex_sub_txt(path)
create_ex_who_txt(path)
create_ex_meddra_asc(path)
create_ex_main_pq(path)
create_ex_sub_pqg(path)

Remove temporary folders when you're done
unlink(path, recursive = TRUE)

demo_ Data of immune checkpoint inhibitors.

Description

Demo, drug, adr, link, ind, out, srce, and followup are the main table in Vigibase Extract Case
Level data. In a regular workflow, you will work with those tables as R objects (e.g. demo, drug,
adr, link, ind, out, srce, followup). These built-in example datasets use an underscore "_"
to avoid ambiguity with your own tables (e.g. demo_, drug_, adr_, link_, ind_, out_, srce_,
followup_). This is a relational database, which means every table has a primary key variable
(e.g., UMCReportId for demo_. Keys will allow joints with other tables The full details on the
original structure can be found in "VigiBase Extract Case Level - file description.pdf" in your Vi-
giBase ECL folders. demo_ will typically be your cornerstone table, since it contains one row per
report. It is the preferred table to update for drugs and adrs identification before performing dis-
proportionality analyses. These tables are subsets of the original ones, with some of the immune
checkpoint inhibitor cases or immune-related adverse events. All data shown in these example data
are FAKE, which means you shouldn’t consider the counts and computations as accurate. Immune
checkpoint inhibitors drugs include "Ipilimumab", "Atezolizumab", "Durvalumab", "Nivolumab",
"Pembrolizumab", "Avelumab", "Cemiplimab","REGN 2810", "Tremelimumab". More details
on how to use vigibase tables can be found in the vignettes. vignette(”basic_workflow"),
vignette("descriptive”). To build your own tables, use tb_vigibase(). See vignette("getting_started”).

Usage

data(demo_)
drug_
adr_

link_

20 demo_

followup_
ind_
out_

srce_

Format

demo_ is a data.table with 7 variables and 750 rows.

* UMCReportId Integer. The unique identifier of the case report.
* AgeGroup Character. The age group of the patient. Correspondence table is path_sub/AgeGroup.parquet.
* Gender Character. Case gender. path_sub/Gender .parquet

* DateDatabase Character (not date or numeric!). The date of the latest update of the report in
the database.

* Type Character. The type of report. path_sub/ReportType.parquet
* Region Character. The world region where the report comes from path_sub/Region.parquet.

* FirstDateDatabase Character. The date the report was first submitted to the database.
drug_ is a data.table with 10 variables and 3514 rows.

* UMCReportId Integer. See demo_.

* Drug_Id Integer. The unique identifier of each drug report.

* MedicinalProd_Id Integer. The medicinalproduct identifier. See get_atc_code().
* DrecNo Integer. Drug Record Number, pivotal to identify drugs with get_drecno().
* Seq1, Seq2 Character. Seq 1 and 2 complement DrecNo, in WHODrug dictionary.

* Route Character. The route of administration of the drug.

* Basis Character. The reputation basis of the drug (suspect, concomitant, or interacting).
path_sub/RepBasis.parquet

* Amount Character. The amount of drug administered.
* AmountU Character. The unit of the amount of drug administered. path_sub/SizeUnit.parquet
* Frequency Character. The frequency of drug administration.

* FrequencyU Character. The unit of the frequency of drug administration. path_sub/Frequency.parquet
adr_ is a data.table with 4 variables and 2133 rows.

* UMCReportId Integer. See demo_.
* Adr_Id Integer. The unique identifier of each adverse event report.

* MedDRA_Id Integer. The MedDRA identifier of the adverse event. Itis usedin get_11t_soc()
and get_11t_smq().

¢ Outcome Character. The outcome of the adverse event. path_sub/Outcome.parquet

demo_ 21

link_ is a data.table with 3 variables and 3514 rows. The version built with tb_vigibase() is
slightly different than the original one.

* Drug_Id and Adr_Id . Integers. Together, they are the key variable of 1ink. See drug_ and
adr_.

* Dechallengel and 2 Characters. Dechallenge action and outcome. path_sub/Dechallenge.parquet,
path_sub/Dechallenge?2.parquet

* Rechallengel and 2 Characters. Rechallenge action and outcome. path_sub/Rechallenge.parquet,
path_sub/Rechallenge?2.parquet

e TimeToOnsetMin and Max Numerics. The minimum and maximum time to onset of the ad-
verse event.

* tto_mean Numeric. The mean time to onset of the adverse event. It is the average of
TimeToOnsetMin and Max.

¢ range Numeric. The incertitude around tto_mean. See vignette("descriptive"”).

* UMCReportId Integer. See demo_.
ind_ is a data.table with 2 variables and 2426 rows.

* Drug_Id Integer. See drug_.

* Indication Character. The indication of the drug.
out_ is a data.table with 3 variables and 747 rows.

e UMCReportId Integer. See demo_.
* Seriousness Character. The seriousness criteria of the report. path_sub/Seriousness.parquet

¢ Serious Character. Whether the case is serious or not ("N" No, "Y" Yes)
srce_ is a data.table with 2 variables and 729 rows.

* UMCReportId Integer. See demo_.
¢ Type Character. The Type of Reporter. path_sub/Notifier.parquet

followup_ is a data.table with 2 variables and 902 rows.

* UMCReportId Integer. See demo_.
* ReplacedUMCReportId Integer. Previous version of the case, which is no longer available in
demo_.
An object of class data. table (inherits from data. frame) with 3514 rows and 12 columns.
An object of class data. table (inherits from data. frame) with 2133 rows and 4 columns.
An object of class data. table (inherits from data. frame) with 5136 rows and 11 columns.
An object of class data. table (inherits from data. frame) with 902 rows and 2 columns.
An object of class data. table (inherits from data. frame) with 2426 rows and 2 columns.
An object of class data. table (inherits from data. frame) with 747 rows and 3 columns.

An object of class data. table (inherits from data. frame) with 729 rows and 2 columns.

22 desc_cont

Source

None

References

There is none

Examples

data(demo_)
demo_ |> dplyr::count(AgeGroup)

desc_cont Summarise continuous variables

Description

[Stable] Summarize continuous data and handle output format.

Usage
desc_cont(
.data,
ve,
format = "median (q1-93) [min-max]",
digits =1,
export_raw_values = FALSE
)
Arguments
.data A data.frame, where vc are column names of continuous variables
ve A character vector, list of column names. Should only contain continuous vari-
ables
format A character string. How would you like the output? See details.
digits A numeric. How many digits? This argument calls internal formatting function

export_raw_values
A logical. Should the raw values be exported?

Details

Many other packages provide tools to summarize data. This one is just the package author’s favorite.
This makes it much easier to map to nice labeling thereafter. The format argument shows the output
of the function. You can change square and round brackets, spaces, separators... Important format
inputs are

¢ median the median value

desc_cont 23

* g1 the first quartile
* @3 the third quartile
* min the minimum value

¢ max the maximum value

The analogous for categorical variables is desc_facvar ().

Value
A data.frame with columns

* var the variable name
* level NA, it is provided to have a consistent output with desc_facvar ()

 value the formatted value with possibly the median, interquartile range, and range (see de-
tails)

e n_avail the number of cases with available data for this variable.

See Also

desc_facvar()

Examples
df <-
data.frame(
smoke_status = c("smoker"”, "non-smoker”,
"smoker"”, "smoker"”,
"smoker"”, "smoker",
"non-smoker"”
),
age = c(60, 50, 56, 49, 75, 69, 85),
bmi = c(18, 30, 25, 22, 23, 21, 22)
)

Use default formatting
desc_cont(.data = df, vc = c("age”, "bmi"))
Use custom formatting

desc_cont(.data = df,

vc = c("age"”, "bmi"),
format = "median (q1;93)"
)

You might want to export raw values, to run plotting or
other formatting functions

desc_cont(.data = df, vc = c("age"”, "bmi"),
export_raw_values = TRUE)

24

desc_dch

desc_dch Dechallenge descriptive

Description

[Stable] Computes positive dechallenge counts over a set of adr and drug pairs.

Usage

desc_dch(.data, drug_s = "drugl”, adr_s = "adr1")

Arguments

.data A link data.table.

drug_s A character vector, the drug column(s)

adr_s A character vector, the adverse drug reaction column(s).
Details

Counts are provided at the case level (not the drug-adr pair level). Positive dechallenge refers to
cases where drug was withdrawn or dose-reduced and reaction abated (in part or in full). You will
need a link data.table, see 1ink_, on which you have added drugs and adrs with add_drug() and

add_adr ().

Value
A data.table with one row per drug-adr pair.

* drug_s and adr_s, same as input

* pos_dch, number of positive dechallenge cases

See Also
link_, add_drug(), add_adr (), desc_tto(), desc_rch()

Examples

link_ <-

link_ |>

add_drug(
d_code = ex_$d_groups_drecno,
drug_data = drug_

) 1>

add_adr(
a_code = ex_$a_llt,
adr_data = adr_

)

desc_facvar 25

desc_dch(link_,
drug_s = "pd1”,
adr_s = "a_colitis")

you can vectorize over multiple adrs and drugs
desc_dch(link_,

drug_s = c("pd1"”, "pdl1"),
adr_s = c("a_colitis"”, "a_pneumonitis"))

desc_facvar Summarise categorical variables

Description

[Stable] Summarize categorical data and handle output format.

Usage
desc_facvar(
.data,
vf,
format = "n_/N_ (pc_%)",
digits = 0,

pad_width = 12,
ncat_max = 20,
export_raw_values = FALSE

)
Arguments
.data A data.frame, where vf are column names of categorical variables
vf A character vector
format A character string, formatting options.
digits A numeric. Number of digits for the percentage (passed to interval formatting
function).
pad_width A numeric. Minimum character length of value output (passed to stringr: :str_pad()).
ncat_max A numeric. How many levels should be allowed for all variables? See details.

export_raw_values
A logical. Should the raw values be exported?

26 desc_facvar

Details

Many other packages provide tools to summarize data. This one is just the package author’s favorite.
Important format inputs are

* n_number of patients with the categorical variable at said level
* N_ the first quartile number of patients with an available value for this variable

* pc_ percentage of n/ N

The format argument should contain at least the words "n_", "N_", and optionally "pc_". ncat_max
ensures that you didn’t provided a continuous variable to desc_facvar (). If you have many levels
for one of your variables, set to Inf or high value. Equivalent for continuous data is desc_cont ().

Value

A data.frame with columns

¢ var the variable name

level the level of the variable

* value the formatted value with possible number of cases n_, number of available cases N_,
and percentage pc_, depending on format argument.

e n_avail the number of cases with available data for this variable.

See Also

desc_cont()

Examples

df1 <-
data.frame(
smoke_status = c("smoker"”, "non-smoker”,
"smoker"”, "smoker",
"smoker", "smoker",
"non-smoker"”
),
hypertension = c(1, 1, 0, 1, 1, 1, 1),
age = c(60, 50, 56, 49, 75, 69, 85),
bmi = c(18, 30, 25, 22, 23, 21, 22)
)

Use default formatting
desc_facvar(.data = df1, vf = c("hypertension”, "smoke_status"))

Use custom formatting

desc_facvar(.data = df1,
vf = c("hypertension”, "smoke_status"),
format = "n_ out of N_, pc_%",

digits = 1)

You might want to export raw values, to run plotting or

desc_outcome 27

other formatting functions

desc_facvar(.data = df1,
vf = c("hypertension”, "smoke_status”),
export_raw_values = TRUE)

desc_outcome Outcome descriptive

Description

[Stable] Compute outcome description over a set of adr and drugs.

Usage

desc_outcome(.data, drug_s = "drugl”, adr_s = "adr1")
Arguments

.data An adr data.table. See adr_

drug_s A character vector, the drug column(s)

adr_s A character vector, the adverse drug reaction column(s).
Details

You need an adr data.table. Be careful that you cannot directly filter adr data.table on drugs! You
first have to add drug columns to adr, with add_drug(). The function reports the worst outcome
into consideration for a given case, if many are reported. Outcomes, from best to worst are:

* Recovered/resolved

* Recovering/resolving

* Recovered/resolved with sequelae

* Not recovered/not resolved

* Fatal

* Died- unrelated to reaction

* Died- reaction may be contributory

See vignette("descriptive”) for more details.

Value
A data.table with one row per drug-adr pair.

e drug_s and adr_s, same as input
* n_cas, number of cases for each category

* out_label, the worst outcome for this drug-adr pair

28 desc_rch

See Also
adr_, add_drug(), add_adr ()

Examples
adr_ <-
adr_ |>
add_drug(

d_code = ex_$d_groups_drecno,
drug_data = drug_
) 1>
add_adr(
a_code = ex_%a_l11t,
adr_data = adr_

)

desc_outcome(
adr_,
drug_s = "pd1",
adr_s = "a_colitis”

)

you can vectorize over multiple adrs and drugs

desc_outcome(

adr_,
drug_s = c("pd1”, "pdl1"),
adr_s = c("a_colitis"”, "a_pneumonitis”)
)
desc_rch Rechallenge descriptive
Description

[Stable] Computes counts of rechallenge cases, over a set of adr and drug pairs.

Usage

desc_rch(.data, drug_s = "drugl”, adr_s = "adr1")

Arguments
.data A link data.table. See link_.
drug_s A character string. The name of the drug column. Drug columns can be created
with add_drug.
adr_s A character string. The name of the adr column. Adr columns can be created

with add_adr.

desc_rch 29

Details

Counts are provided at the case level (not the drug-adr pair level). Description span from number of
rechallenge cases to informative rechallenge cases (those cases where the outcome is known). You
will need a 1ink data.table, see 1ink_, on which you have added drugs and adrs with add_drug()
and add_adr (). Terminology

* Overall as opposed to rch for rechallenged (rch + no_rch = overall).

* Among rch, inf (informative) as opposed to non_inf (inf + non_inf = rch)

* Among inf, rec (recurring) as opposed to non_rec (rec + non_rec = inf)

Value

A data.table with one row per drug-adr pair

* drug_s and adr_s, same as input.

¢ Counts of overall, rch, inf, and rec cases (see details).

See Also

link_, add_drug(), add_adr (), desc_dch(), desc_tto()

Examples

link_ <-

link_ |>

add_drug(
d_code = ex_$d_groups_drecno,
drug_data = drug_

) 1>

add_adr(
a_code = ex_$a_l1t,
adr_data = adr_

)
desc_rch(.data = link_,
drug_s = "pd1”,
adr_s = "a_colitis")

You can vectorize over drugs and adrs

desc_rch(.data = link_,
adr_s = c("a_colitis"”, "a_pneumonitis"”),
drug_s = c("pd1", "pdl1")
)

30

desc_tto

desc_tto Time to onset descriptive

Description

[Stable] desc_tto() provides a drug-adr pair description of time to onset.

Usage
desc_tto(.data, adr_s, drug_s, tto_time_range =1, ...)
Arguments
.data A link data.table. See link_.
adr_s A character string. The name of the adr column. (see details)
drug_s A character string. The name of the drug column. (see details)

tto_time_range Incertitude range of Time to onset, in days. Defaults to 1 as recommended by

umc

Additional parameters to be passed to desc_cont(). E.g. format, digits...

Details

Description of time (maximum available time) between drug initiation and event onset. This runs at
the drug-adr pair level. Internally, it uses extract_tto() and desc_cont(), You will need a 1link
data.table, see 1ink_, on which you have added drugs and adrs with add_drug() and add_adr ().
you can supply extra arguments to desc_cont () with Uppsala Monitoring Centre recommends
to use only cases where the incertitude on time to onset is less than 1 day. You can change this with

tto_time_range.

Value

A data.table with one row per drug-adr pair

* A descriptive of time to onsets for this combination (column tto_max).

e Itis Median (Quartile 1 - Quartile 3) and min-max by default, change with format arg (passed

to desc_cont()).

See Also

link_, extract_tto(), add_drug(), add_adr (), desc_dch(), desc_rch()

dt_parquet 31

Examples

link_ <-

link_ |>

add_drug(
d_code = ex_$d_groups_drecno,
drug_data = drug_

) 1>

add_adr(
a_code = ex_%$a_llt,
adr_data = adr_

)

desc_tto(.data = link_,
adr_s = "a_colitis”,
drug_s = "pd1")

desc_tto(.data = link_,
adr_s = c("a_colitis"”, "a_pneumonitis”),
drug_s = c("pd1", "ctlad4"))

dt_parquet Read parquet and convert to data.table

Description

[Stable] Load data IN- our OUT- of memory. File extension can be omitted.

Usage
dt_parquet(path_base, name = NULL, ext = ".parquet”, in_memory = TRUE)
Arguments
path_base A character string, providing the path to read from.
name Optional. A character string. The file name (if absent from path_base).
ext Optional. A character string. The file extension.
in_memory Logical, should data be loaded in memory?
Details

Output is a data.table. For meddra and whodrug tables, it is still a good option to load data in-

memory. This function is wrapping arrow: : read_parquet(), dplyr::collect() and data. table: :as.data.table()
altogether. If you want to load OUT of memory, set arg in_memory to FALSE. Be careful that do-

ing so will change the function output format. For this latter case, the output is not a data.table, so

there is no practical benefit as compared to using arrow: : read_parquet () directly, with as_data_frame

=FALSE.

32 extract_tto

Value

A data.table if in_memory is set to TRUE, a parquet Table if in_memory is set to FALSE.

See Also

tb_vigibase(), tb_who(), th_meddra()

Examples

Say you have a data.frame stored in a parquet format, such as this one
demo <-
data.table: :data.table(
UMCReportId = c(1, 2, 3, 4),
AgeGroup = c(1, 7, 7, 8)
) 1>

arrow: :as_arrow_table()

tmp_folder <- paste@(tempdir(), "/dtparquetex")
dir.create(tmp_folder)
path_data <- paste@(tmp_folder, "/")

arrow: :write_parquet(demo,
sink = paste@(path_data, "demo.parquet"”)
)

Now you have a new session without demo
rm(demo)

You may import the file directly to data.table format with dt_parquet
demo <-
dt_parquet(path_data, "demo")

Clean up (required for CRAN checks)
unlink(tmp_folder, recursive = TRUE)

extract_tto Time to onset extraction

Description

[Stable] extract_tto() collects all available time to onsets for a set of drug-adr pairs.

Usage

extract_tto(.data, adr_s, drug_s, tto_time_range = 1)

extract_tto

Arguments
.data
adr_s
drug_s

tto_time_range

Details

33

A link data.table. See 1ink_.
A character string. The name of the adr column. (see details)
A character string. The name of the drug column. (see details)

Incertitude range of Time to onset, in days. Defaults to 1 as recommended by
ume

Extraction of (maximum available) time between drug initiation and event onset. This runs at
the drug-adr pair level. You will need a 1link data.table, see 1ink_, on which you have added
drugs and adrs with add_drug() and add_adr (). Uppsala Monitoring Centre recommends to use
only cases where the incertitude on time to onset is less than 1 day. You can change this with

tto_time_range.
onset, but extract

Value

A data.frame with

You might want to use desc_tto() to obtain summary statistics of time to

_tto() is useful to get the raw data and plot it, for instance with ggplot2.

¢ All available time to onsets for this combination (column tto_max).

* adr_s and drug_s, same as input.

* UMCReportId, the unique identifier of the case.

See Also

link_, desc_tto(), add_drug(), add_adr (), desc_dch(), desc_rch()

Examples

link_ <-
link_ |>
add_drug(

d_code = ex_$d_groups_drecno,

drug_data = d

) 1>
add_adr(

rug_

a_code = ex_$a_ll1t,

adr_data = ad
)

extract_tto(.data
adr_s =
drug_s =
extract_tto(.data

r_

= link_,
"a_colitis”,
"od1")

= link_,

adr_s = c("a_colitis"”, "a_pneumonitis"”),

drug_s =

c("pd1”, "ctlad"))

34

ex_

ex_ Data for the immune checkpoint inhibitors example

Description

These are a set of data to provide examples on the package.

* smq_sel is a named list of smq names

* pt_sel is a named list of pt names

e a_l1t is a named list of meddra 1t codes related to adrs from smg_sel and pt_sel

* d_drecno is a named list of drecnos for immune checkpoint inhibitors (some of them)
* d_groups is a named list of ici classes according to icis

* d_groups_drecno is a named list of drecnos for drug groups

Usage

data(ex_)

Format

An object of class 1ist.

Source

VigiBase Extract Case Level

References

There is none

Examples

data(ex_)
ex_$pt_sel

get_atc_code 35

get_atc_code Get ATC codes (DrecNos or MPlIs)

Description
[Stable] Collect Drug Record Numbers or MedicinalProd_Ids associated to one or more ATC
classes.

Usage
get_atc_code(atc_sel, mp, thg_data, vigilyze = TRUE)

Arguments
atc_sel A named list of ATC codes. See Details.
mp A modified MP data.table. See mp_
thg_data A data.table. Correspondence between ATC codes and MedicinalProd_Id (usu-
ally, it is thg)
vigilyze A logical. Should ATC classes be retrieved using the vigilyze style? See details
Details

get_atc_code() is an ID collector function. Provide atc_sel in the same way as d_sel in
add_drug(), but remember to specify its method arg as MedicinalProd_Id if vigilyze is set
to FALSE. Vigilyze style means all conditioning of drugs will be retrieved after requesting an ATC
class (i.e., drugs are identified with their DrecNos), even if a specific conditioning is not present in
the ATC class. This is the default behavior in vigilyze.

Value
A named list of integers. DrecNos if vigilyze is set to TRUE, or MedicinalProd_Ids if vigilyze
is set to FALSE.

See Also
mp_, thg_, add_drug(), get_drecno()

Examples

Find codes associated with one or more atc classes
First, define which atc you want to use

atc_sel <-
rlang::list2(penicillins_gcsf = c("L@3AA", "JO1CA"),
ace_inhibitors = c("C09AA")
)

36 get_drecno

You can get DrecNos for you ATCs (if vigilyze is TRUE)

atc_drecno <-
get_atc_code(atc_sel = atc_sel,
mp = mp_,
thg_data = thg_,
vigilyze = TRUE)

Or you can get MedicinalProd_Ids (if vigilyze is FALSE)

atc_mpi <-
get_atc_code(atc_sel = atc_sel,
mp = mp_,
thg_data = thg_,
vigilyze = FALSE)
get_drecno Get DrecNo from drug names or MedicinalProd_Id
Description

[Stable] Collect Drug Record Numbers associated to one or more drugs.

Usage
get_drecno(
d_sel,
mp)
allow_combination = TRUE,
method = c("drug_name”, "mpi_list"),

verbose = TRUE,
show_all = deprecated(),
inspect = deprecated()

)

Arguments
d_sel A named list. Selection of drug names or medicinalprod_id. See details
mp A modified MP data.table. See mp_

allow_combination

A logical. Should fixed associations including the drug of interest be retrieved?
See details.

method Should DrecNo be found from drug names or from MedicinalProd_Id?

verbose A logical. Allows you to see matching drug names in the console. Turn to
FALSE once you’ve checked the matching.

show_all [Deprecated] Use verbose instead.

inspect [Deprecated] Use verbose instead.

get_drecno 37

Details

get_drecno() is an ID collector function. Collected IDs can be used to create drug columns in
datasets like demo, 1ink, etc. (see vignette(”"basic_workflow"))

Value

A named list of integers. DrecNos.

Argument verbose

The verbose argument is here to let you check the result of get_drecno(). This is an important
step in your project setup: You must ensure that the drugs you are looking for are correctly matched.

Argument d_sel

d_sel must be a named list of character vectors. To learn why, see vignette("basic_workflow").
Names of d_sel are automatically lowered and trimed.

Matching drugs

With "drug_name" method, either exact match or perl regex match can be used. The latter is built
upon lookarounds to ensure that a string does not match to composite drug names including the
string, i.e. trastuzumab emtasine for trastuzumab, or close names like alitretinoin when
looking for tretinoin.

Exact match is used for "mpi_list" method.

Choosing a method

"drug_name" let you work with drug names. It’s likely to be the appropriate method in most of the
cases.

"mpi_list" is used when you have a list of MedicinalProd_Ids. A drug can have multiple Medicinal-
Prod_Ids, corresponding to different packagings. The MedicinalProd_Id matching is typically used
to identify DrecNo(s) contained in an ATC class (extracted from thg), since not all MPI of drugs
are present in thg (explanations in get_atc_code()).

WHO names

WHO names are attributed to drugs by... the WHO. A drug only has one WHO name, but can have
multiple international nonproprietary names (e.g. "tretinoin" and "all-trans retinoic acid").

You should use WHO names to ensure proper identification of drugs and DrecNos, especially if you
work with combinations.

Argument allow_combination

Fixed associations of drugs refers to specialty containing more than one active ingredient (for exam-
ple, acetylsalicylic acid and clopidogrel). In VigiLyze, the default is NOT to account for these fixed
associations. For example, when you call "acetylsalicylic acid" in VigiLyze, you don’t have the
cases reported with the fixed-association "acetylsalicylic acid; clopidogrel" unless the substances

38

get_lIt_smq

were distinctly coded by the reporter. Here, the default is to find a drug even if it is prescribed in
a fixed association. Importantly, when retrieving fixed-association drugs, the non-of-interest drug
alone drecno is not found, hence the cases related to this drug will not be added to those of the drug
of interest.

See Also

add_drug(), get_atc_code()

Examples

Get drecnos for a list a drugs. Check spelling and use WHO name,

in lowercase
d_sel_names <- list(
nivolumab = "nivolumab”,
ipilimumab = "ipilimumab”,
nivo_ipi = c("nivolumab”, "ipilimumab")
)
Read mp with get_drecno(), to identify drugs without combinations
Take the time to read the matching drugs. Did you forget a drug?
d_drecno <-
get_drecno(d_sel_names,
mp = mp_,
allow_combination = FALSE,
method = "drug_name")
d_drecno
And DrecNos of drugs allowing for combinations
d_drecno <-
get_drecno(d_sel = d_sel_names,
mp = mp_,
allow_combination = TRUE,
method = "drug_name")
d_drecno
get_11t_smq Get low level term codes from SMQs
Description

[Stable] Collect 1lts from smg_list and smq_content data.tables, given an SMQ.

get_lIt smq 39

Usage

get_11t_smq(
smq,
smg_scope = c("narrow”, "broad"),
smg_list,
smg_content,
smg_list_content = deprecated()

)
Arguments
smq A named list of character vector(s).
smg_scope A character vector. One of "narrow" or "broad".
smg_list A data.table. A list of SMQs.

smg_content A data.table. A list of SMQs content.
smg_list_content
[Deprecated]

Details

get_11t_smq() is an ID collector function. SMQ stands for Standardized MedDRA query. get_11t_smq()only
works with NON-algorithmic SMQs (this status is given in the smq_list table). See smq_list_ and
smg_content_. You can choose between the narrow and the broad scope of the SMQ. If you want

to work with the SOC hierarchy, use get_11t_soc().

Value

A named list of integers. Low-level term codes.

See Also

get_11t_soc()

Examples

Finding 11t codes for Embolism (SMQ)

smg_sel <- rlang::list2(

embolism = "Embolic and thrombotic events, venous (SMQ)"
)
get_11t_smg(smq_sel,
smg_scope = "narrow”,

smgq_list = smg_list_,
smg_content = smg_content_

)

You can query multiple SMQs in one item, and query high level SMQs
smg_sel2 <-
rlang::list2(

40 get_lIt_soc

sepsis = c("Sepsis (SMQ)","Toxic-septic shock conditions (SMQ)"),
ischemic_heart_disease = c("Ischaemic heart disease (SMQ)")

)

get_11t_smq(smg_sel2,
smg_scope = "narrow”,
smg_list = smqg_list_,
smg_content = smg_content_

)

get_11t_soc Get low level term codes from soc classification

Description

[Stable] Collect 11t codes from a meddra data.table, given another term of the MedDRA SOC Hier-
archy.

Usage
get_11t_soc(
term_sel,
term_level = c("soc”, "hlgt”, "hlt", "pt", "11t"),
meddra,
verbose = TRUE
)
Arguments
term_sel A named list of character vector(s). The terms to extract llts codes from. See
details.
term_level A character string. One of "soc", "hlgt", "hlt", "pt", or "lit"
meddra A data.table. Built from meddra_builders functions
verbose Logical. Allows you to see matching reactions in the console.
Details

get_11t_soc() isan ID collector function. The function extracts low level term codes. get_11t_soc()
is case-sensitive, and MedDRA terms always begin with a capital letter, in their native version. In
term_sel, all terms should come from the same hierarchical level, e.g. all preferred terms, all high
level terms, etc.

Value

A named list of integers. Low-level term codes.

ic_tail 41

See Also

get_11t_smq()

Examples

Finding 11t codes for colitis

pt_sel <- rlang::list2(
colitis = c("Colitis”,
"Autoimmune colitis”),
pneumonitis = c(”"Pneumonitis”,
"Organising pneumonia”)

hlt_sel <- rlang::list2(
colitis = c("Gastrointestinal inflammatory disorders NEC"),
pneumonitis = c(”Pulmonary thrombotic and embolic conditions”)

)

Remember you can use more than one term to define each adverse reaction,
but they should all be at the same hierarchical level in meddra.

with preferred terms

get_11t_soc(
term_sel = pt_sel,
term_level = "pt”,
meddra = meddra_

)

with high level terms

get_11t_soc(
term_sel = hlt_sel,
term_level = "hlt",
meddra = meddra_

)

ic_tail Credibility interval limits for the information component

Description

[Stable] Compute the Information Component credibility interval, typically the lower end of the
95% ClI, also known as the 1C025.

42 meddra_

Usage

ic_tail(n_obs, n_exp, p = 0.025)

Arguments
n_obs Number of observed cases
n_exp Number of expected cases (see Details)
p End of chosen credibility interval
Details

The ends of the credibility interval of the information component are estimated with the gamma dis-
tribution. n_exp is defined as n_drug * n_event / n_total for the basic IC (formula is different for
interactions) Do not add +. 5 to n_obs and n_exp as it is automatically done in the function. By de-
fault, IC025 is computed. Change p for different ends. It may be easier to use compute_dispro(),
which internally calls this function.

Value

A numeric vector. The lower end of the credibility interval

See Also

compute_dispro()

Examples
ic_tail(n_obs = 12,
n_exp = 5)
meddra_ Sample of MedDRA

Description

Anonymized data from MedDRA, used to illustrate the package examples and vignettes. You can
find term codes related to colitis, pneumonitis, hepatitis, a SMQ of embolisms. Compounds are
meddra_, smg_list_, smg_content_ and smq_list_content_. Create dedicated .parquet files
using tb_meddra(). See examples in get_11t_soc and get_11t_smq

meddra_ 43

Usage

data(meddra_)
smg_list_content_
smg_list_

smg_content_

Format

meddra_ is a data.table with 15 variables and 677 rows.

* The *_code columns. Integers. MedDRA code for the given term.
* The *x_name columns. Characters. The name of the term.

* soc_abbrev Character. The abbreviation of the SOC.

* null_field Logical. Empty column.

* pt_soc_code Integer. The preferred term code of the SOC itself.

* primary_soc_fg Character. Whether the SOC is primary for this code. "Y" or "N", Yes or
No.

* empty_col Logical. Empty column.
smg_list_ is a data.table with 9 variables and 11 rows. It is the list of SMQ.

* smq_code Integer. The code of the SMQ.

* smg_name Character. The name of the SMQ.

* smq_level Integer. The hierarchical level of the SMQ.

* smq_description Character. The description of the SMQ.

¢ smg_source Character. The source of the SMQ.

¢ smg_note Character. Additional note on the SMQ.

* MedDRA_version Numeric. The version of MedDRA.

e status Character. The status of the SMQ (active or not)

* smq_algorithm Character. Whether the SMQ is algorithmic or not.

* empty_col Logical. Empty column.
smg_content_ is a data.table with 9 variables and 3386 rows. It is the content of each SMQ.

* smq_code Integer. The code of the SMQ.

* term_code Integer. The low-level term code.

* term_level Integer. The hierarchical level of the term.

* term_scope Integer. The scope of the term (narrow 2 or broad 1)

* term_category Character. In algorithmic SMQs, the category of the term.

* term_weight Integer. The weight of the term (algorithmic SMQs).

44 meddra_

* term_status Integer. The status of the term (active or not)
* term_addition_version Numeric. The version of the term addition.
* term_last_modified_version Numeric. The last MedDRA version the term was modified.
* empty_col Logical. Empty column.
smg_list_content_ is a data.table with 19 variables and 3386 rows. It is a fusion of smq_list and
smq_content, as created with tb_meddra().
* smg_code Integer. The code of the SMQ.
* smg_name Character. The name of the SMQ.
* smqg_level Integer. The hierarchical level of the SMQ.
* smq_description Character. The description of the SMQ.
* smg_source Character. The source of the SMQ.
¢ smg_note Character. Additional note on the SMQ.
* MedDRA_version Numeric. The version of MedDRA.
¢ status Character. The status of the SMQ (active or not)
* smqg_algorithm Character. Whether the SMQ is algorithmic or not.
* empty_col.x Logical. Empty column.
* term_code Integer. The low-level term code.
* term_level Integer. The hierarchical level of the term.
* term_scope Integer. The scope of the term (narrow 2 or broad 1)
e term_category Character. In algorithmic SMQs, the category of the term.
* term_weight Integer. The weight of the term (algorithmic SMQs).
* term_status Integer. The status of the term (active or not)
* term_addition_version Numeric. The version of the term addition.
e term_last_modified_version Numeric. The last MedDRA version the term was modified.

* empty_col.y Logical. Empty column.

An object of class data. table (inherits from data. frame) with 3386 rows and 19 columns.
An object of class data. table (inherits from data. frame) with 11 rows and 9 columns.

An object of class data. table (inherits from data. frame) with 3386 rows and 9 columns.

Source

None

References

There is none

Examples

data(meddra_)

mp_ 45

mp_ Sample of WHODrug

Description

A small part of WHODrug, used to illustrate the package examples and vignettes. You can find
DrecNo related to immune checkpoint inhibitors, paracetamol, tramadol, tretinoin, anti-thrombin
iii, and ATC classes LO3AA Colony stimulating factors, CO9AA ACE inhibitors, plain, JOICA
Penicillins with extended spectrum. Compounds are thg_ and mp_. See examples in get_drecno
and get_atc_code

Usage

data(mp_)

thg_

Format

mp_ is a data.table with 8 variables and 14146 rows.

* MedicinalProd_Id Integer. The medicinalproduct identifier.
* Sequence.number.1 and 2 Characters. Complement to DrecNo.
* DrecNo Character. Drug Record Number, pivotal to identify drugs with get_drecno().

* drug_name_t Character. The name of the drug. Compared to the original drug_name variable
in mp table, this variable is trimmed for white spaces, and names are in lowercase.

* Create.date Character. The date the record was created.
* Date.changed Character. The date the record was last changed.

* Country Character. The country where the record was created.
thg_ is a data.table with 5 variables and 4079 rows.

* Therapgroup_Id Integer. The identifier of the therapeutic group.

* ATC.code Character. The ATC code of the drug.

* Create.date Character. The date the record was created.

e Official.ATC.code Character. Whether the ATC code is official (Yes/No).

* MedicinalProd_Id Integer. The medicinalproduct identifier.

An object of class data. table (inherits from data. frame) with 4079 rows and 5 columns.

Source

None

46 nice_p
References

There is none

Examples

data(mp_)

nice_p Nice printing of p-values

Description

[Stable] Formatting function for consistent p-value reporting.

You can choose to print the leading zero (e.g. 0.01) or not (e.g. .01) with print_zero.

Usage

nice_p(p_val, print_zero = FALSE)

Arguments

p_val A numeric. The p-value to format.

print_zero A logical. Should leading zero be printed? (see Details)
Value

A character vector with the formatted p-value(s)

Examples
pvals <-
c(0.056548, 0.0002654, 0.816546, 0.0493321)

nice_p(pvals)

nice_p(pvals, print_zero = TRUE)

screen_adr 47

screen_adr Screening of adverse drug reactions

Description

[Stable] Identify and rank the most frequently reported adverse drug reaction (ADR) terms in a
dataset, based on a specified MedDRA term level. It allows users to filter terms by a frequency
threshold or extract the top n most frequently occurring terms.

Arguments
.data An adr data.table. See adr_
meddra A meddra data.table. See meddra_
term_level A character string specifying the MedDRA hierarchy level. Must be one of

”SOC“, "hlgt”, ”hlt”, "pt", or Hllt“.

freqg_threshold A numeric value indicating the minimum frequency (as a proportion) of cases
where a term must appear to be included in the results. For example, @.05 means
5%. Defaults to NULL, meaning no threshold is applied unless top_n is different
from NULL.

top_n An integer specifying the number of most frequently occurring terms to return.
Defaults to NULL. Overrides freq_threshold if both are provided.

Details

 If freg_threshold is set (e.g., @.05), the function filters ADR terms appearing in at least 5%
of unique reports in . data.

* If top_n is specified, only the most frequent n terms are returned. If both freq_threshold
and top_n are provided, only top_n is applied (a warning is issued in such cases).

» Counts are computed at the case level, not the ADR level. This means frequencies reflect the
proportion of unique reports (cases) where a term is mentioned, rather than the total mentions
across all reports.

The function processes an ADR dataset (adr_) and a MedDRA dataset (meddra_) to generate results
that are linked to a specific MedDRA hierarchy level (soc, hlgt, hlt, pt, or 11t).
Value

A data. frame with the following columns:

* term: The MedDRA term at the specified hierarchy level.
* n: The number of unique reports (cases) where the term appears.

* percentage: The percentage of total unique reports where the term appears.

The results are sorted in descending order of percentage.

48

Examples

Example 1: Filter terms appearing in at least 5% of reports

screen_adr(
.data = adr_,
meddra = meddra_,
term_level = "pt”,
freg_threshold = 0.05
)

Example 2: Get the top 5 most frequent terms
screen_adr(

.data = adr_,

meddra = meddra_,

term_level = "hlt",

screen_drug

top_n = 5
)
screen_drug Screening of drugs
Description

[Stable] The screen_drug() function identifies and ranks the most frequently reported drugs (by

active ingredient) in a dataset.

Usage

screen_drug(.data, mp_data, freq_threshold = NULL, top_n = NULL)

Arguments
.data An drug data.table. See drug_
mp_data An MP data.table. See mp_

freqg_threshold A numeric value indicating the minimum frequency (as a proportion) of cases
where a drug must appear to be included in the results. Defaults to NULL.

top_n An integer specifying the number of most frequently occurring drugs to return.

Defaults to NULL.

Details

* If freq_threshold is set (e.g., @.05), the function filters drugs appearing in at least 5% of

unique reports in .data.

* If top_n is specified, only the most frequent n drugs are returned. If both freq_threshold
and top_n are provided, only top_n is applied (a warning is raised in such cases).

* Counts are computed at the case level, not the drug mention level. This means frequencies
reflect the proportion of unique reports (cases) where a drug is mentioned, rather than the total

mentions across all reports.

tb_meddra 49

Value

A data. frame with the following columns:

* Drug name: The drug name.
* DrecNo: The drug record number
* N: The number of unique reports (cases) where the drug appears.

* percentage: The percentage of total unique reports where the drug appears.

The results are sorted in descending order of percentage.

Examples

Set up start
data.table::setDTthreads(1)

Filter drugs appearing in at least 10% of reports
screen_drug(

.data = drug_,

mp_data = mp_,

freq_threshold = 0.10
)

Get the top 5 most reported drugs
screen_drug(

.data = drug_,
mp_data = mp_,
top_n =5

)

nb: in the example datasets, not all drugs are recorded in mp_,
leading to NAs in screen_drug output.

Set up end
data.table::setDTthreads(0)

tb_meddra Create MedDRA tables

Description

[Stable] Transform MedDRA .ascii files to .parquet files

MedDRA is delivered as ascii files, that you should transform to a more efficient format. Par-
quet format from arrow has many advantages: It works with out-of-memory data, which makes
it possible to process tables on a computer with not-so-much RAM. It is also lightweighted and
standard across different langages. The function also creates variables in each table. You should
note that NOT all MedDRA tables are processed with this function. Three tables are created:
meddra_hierarchy, that respects the System Organ Class hierarchic classification. smq_list and
smg_content for Standardized MedDRA Queries. Caution There tends to be small variations in
the MedDRA ascii files structure. Last verified version on which this function is working is 26.1.
Use dt_parquet () to load the tables afterward.

50 tb_subset

Usage

tb_meddra(path_meddra)

Arguments
path_meddra Character string, a directory containing MedDRA ascii tables. It is also the
output directory.
Value

.parquet files into the path_meddra directory. Three tables: meddra_hierarchy, smq_list, and
smg_content. Some columns are returned as integer (all *_code columns). All other columns
are character.

See Also

tb_vigibase(), tb_who(), th_subset(), dt_parquet()

Examples

Use the examples from tb_main if you want to see these functions in action.
path_meddra <- paste@(tempdir(), "/meddra_directory/")
dir.create(path_meddra)

create_ex_meddra_asc(path_meddra)

tb_meddra(path_meddra = path_meddra)

Clear temporary files when you're done
unlink(path_meddra, recursive = TRUE)

tb_subset Extract of subset of Vigibase

Description

[Stable] Create a subset of the VigiBase ECL datasets

Usage

tb_subset(
wd_in,
wd_out,
subset_var = c("drecno”, "medprod_id"”, "meddra_id"”, "age"),
sv_selection,
rm_suspdup = TRUE

tb_subset 51

Arguments
wd_in Source directory pathway (character)
wd_out Output directory pathway (character)
subset_var One of "drecno”, "medprod_id", "meddra_id", "age"

sv_selection A named list or a vector containing the appropriate ids (according to the method,
see details)

rm_suspdup A logical. Should suspected duplicates be removed? TRUE by default

Details

You must select a subset variable with subset_var and provide an appropriate list according to this
variable in sv_selection. Available subset_var :

* drecno will use Drug Record Number (DrecNo), from WHO Drug, and will subset from drug
(see get_drecno()).

* medprod_id will use MedicinalProd_Id, also from drug. May be useful if requesting from
ATC classes. (see get_atc_code()).

e meddra_id will use MedDRA_Id, subset from adr. (see get_11t_soc() or See get_11t_smq()).

* age will use AgeGroup from demo. See below.
Age groups ids are as follows:

* 10-27 days

» 2 28 days to 23 months

* 32-11years

* 412 -17 years

* 518 - 44 years

* 645 - 64 years

* 765 -74 years

e 8>=75 years

¢ 9 Unknown

Example: To work with patients aged 18 to 74, provide c(5, 6, 7) as sv_selection.

Use dt_parquet () to load the tables afterward.

Value
Parquet files in the output directory. All files from a vigibase ECL main folder are returned subsetted
(including suspectedduplicates).

See Also

get_drecno(), get_atc_code(), get_11t_soc(), get_l1t_smq(), dt_parquet()

52 tb_subset

Examples

--- technical steps ----

wd_in <- paste@(tempdir(), "/", "tbsubsetex")
dir.create(wd_in)
create_ex_main_pqg(wd_in)

Select a subset_var and corresponding data
Subset on adr colitis codes
adr_11t <-
list(
colitis = "Colitis”
) 1>
get_l1t_soc(term_level = "pt"”, meddra_, verbose = FALSE)
wd_out <- paste@(wd_in, "/", "colitis_subset”, "/")
tb_subset(wd_in, wd_out,
subset_var = "meddra_id",
sv_selection = adr_11t)
Subset on drug codes
d_drecno <-
list(
ipi = "ipilimumab") |>
get_drecno(mp = mp_, verbose = FALSE)
wd_out <- paste@(wd_in, "/", "nivolumab_subset”, "/")
tb_subset(wd_in, wd_out,
subset_var = "drecno”,
sv_selection = d_drecno)

Subset on age > 65 year-old

sv_selection <-
c(7, 8

wd_out <- paste@(wd_in, "/", "more_than_65_subset”, "/")
tb_subset(wd_in, wd_out,
subset_var = "age",

sv_selection = sv_selection)

unlink(wd_in, recursive = TRUE)

tb_vigibase 53

tb_vigibase Create VigiBase ECL tables

Description

[Stable] Transform VigiBase .txt files to .parquet files.

Usage

tb_vigibase(
path_base,
path_sub,
force = FALSE,
rm_suspdup = TRUE,
overwrite_existing_tables = FALSE

)
Arguments

path_base Character string, a directory containing vigibase txt tables. It is also the output
directory.

path_sub Character string, a directory containing subsidiary tables.

force Logical, to be passed to cli::cli_progress_update(). Used for internal pur-
poses.

rm_suspdup Logical, should suspected duplicates (from SUSPECTEDDUPLICATES.txt) be

removed from main tables? Default is TRUE. Set to FALSE to keep all cases,
including suspected duplicates.

overwrite_existing_tables
Logical, should existing parquet tables be overwritten? Default is FALSE.

Details

Vigibase Extract Case Level is delivered as zipped text files, that you should transform to a more ef-
ficient format. Parquet format from arrow has many advantages: It works with out-of-memory data,
which makes it possible to process Vigibase tables on a computer with not-so-much RAM. It is also
lightweighted and standard across different langages. The function also creates variables in each
table. The suspectedduplicates table will be added to the base directory. Use dt_parquet() to
load the tables afterward.

The argument overwrite_existing_tables is especially useful if the function crashes or is inter-
rupted: it allows you to resume the process without rebuilding tables that were already successfully
created. If set to FALSE (the default), the function will skip the construction of any .parquet tables
that already exist, so you do not have to start from scratch after a failure. Set to TRUE to force
rebuilding all tables.

54 tb_who

Value

 .parquet files of all main tables into the path_base directory: demo, adr, drug, link, ind,
out, srce, followup, and the suspdup (suspected duplicates) table. Check ?demo_ for more
information on the tables.

* The link table is augmented with tto_mean and range, to analyze time to onset according to
WHo’s recommendations (see vignette("descriptive”).

» .parquet files of all other subsidiary tables into the path_sub directory: AgeGroup, Dechal-
lenge, Dechallenge2, Frequency, Gender, Notifier, Outcome, Rechallenge, Rechallenge2, Re-
gion, RepBasis, ReportType, RouteOfAdm, Seriousness, and SizeUnit.

.parquet files into the path_base directory (including suspected duplicates tables). Some columns
are returned as integer (UMCReportld, Drug_Id, MedicinalProd_Id, Adr_Id, MedDRA_Id), and
some columns as numeric (TimeToOnsetMin, TimeToOnsetMax) All other columns are character.

See Also

tb_who(), tb_meddra(), tb_subset(), dt_parquet()

Examples

--- Set up example source files ---- #it#i#
path_base <- paste@(tempdir(), "/", "main", "/")
path_sub <- paste@(tempdir(), "/", "sub", "/")

dir.create(path_base)
dir.create(path_sub)

create_ex_main_txt(path_base)
create_ex_sub_txt(path_sub)

---- Running tb_vigibase

tb_vigibase(path_base = path_base,
path_sub = path_sub)

Clear temporary files when you're done
unlink(path_base, recursive = TRUE)
unlink(path_sub, recursive = TRUE)

tb_who Create WHO tables

tb_who 55

Description

[Stable] Transform Vigibase WHO .txt files to .parquet files

WHODrug is delivered as zipped text files folder, that you should transform to a more efficient for-
mat. Parquet format from arrow has many advantages: It can work with out-of-memory data, which
makes it possible to process tables on a computer with not-so-much RAM. It is also lightweighted
and standard across different languages. The function also creates variables in each table. See
tb_vigibase() for some running examples, and try ?mp_ or ?thg_ for more details. Use dt_parquet()
to load the tables afterward.

Usage

tb_who(path_who, force = FALSE)

Arguments
path_who Character string, a directory containing whodrug txt tables. It is also the output
directory.
force Logical, to be passed to cli: :cli_progress_update(). Used for internal pur-
poses.
Value

.parquet files into the path_who directory. Some columns are returned as integer (all Id columns,
including MedicinalProd_Id, with notable exception of DrecNo), and some columns as numeric
(Quantity from ingredient table) All other columns are character.

See Also

tb_vigibase(), tb_meddra(), tb_subset(), dt_parquet()

Examples

Use the examples from tb_main if you want to see these functions in action.
path_who <- paste@(tempdir(), "/whodrug_directory/")

dir.create(path_who)

create_ex_who_txt(path_who)

tb_who(path_who = path_who)

Clear temporary files when you're done
unlink(path_who, recursive = TRUE)

56 vigi_routine

vigi_routine Display routine pharmacovigilance summary

Description

[Maturing] vigi_routine() draws an Information Component plot and a Time to Onset plot for
a given drug-adr pair.

Usage

vigi_routine(
demo_data,
drug_data,
adr_data,
link_data,
d_code,
a_code,
case_tto = NULL,
vigibase_version,
analysis_setting = "All reports”,
d_label = NULL,
a_label = NULL,
export_to = NULL,
suspect_only = FALSE,

d_code_2
)
Arguments

demo_data A demo data.table.

drug_data A drug data.table.

adr_data An adr data.table.

link_data A link data.table.

d_code A named list. The drug code(s) to be used. There must be only one item in
d_code.

a_code A named list. The adr code(s) to be used. There must be only one item in
a_code.

case_tto A numeric. The time to onset of the studied case. See details.

vigibase_version
A character. The version of VigiBase used (e.g. "September 2024"). This is
passed to the plot legend.

analysis_setting
A character. The setting of the analysis. See details.

d_label A character. The name of the drug, as passed to the plot legend. Defaults to
names(d_code).

vigi_routine 57

a_label A character. The name of the adr, as passed to the plot legend. Defaults to
names(a_code).

export_to A character. The path to export the plot. If NULL, the plot is not exported.
Should end by ".eps", ".ps", ".tex" (pictex), ".pdf", " jpeg", ".tiff", ".png", ".bmp",
".svg" or ".wmf" (windows only).

suspect_only Logical. If TRUE, only cases where the drug is suspected are used for IC anal-
ysis. If FALSE (default), all cases are used.

d_code_2 Optional named list. A second drug code for dual drug analysis. If provided, a
single analysis is performed on cases exposed to both drugs.

Details

See vignette("routine_pharmacovigilance") for examples. The output can be exported. Time
to onset data are bounded between 1 day and 10 years. Data outside this range are reassigned a 1
day and 10 years value, respectively. The function only works if there is one item in d_code and
a_code. If you are working on a specific case, you can provide a case_tto value. This value will
be displayed on the Time to Onset plot. If your demo table was filtered on specific cases (e.g. older
adults, a subset of all drugs), then you may want to indicate this setting on the plot legend, with arg
analysis_setting.

Value

A ggplot2 graph, with two panels. The first panel, on top, is the Information Component (IC) plot.
The arrow and "IC025 label" indicate the IC value for the selected drug-adr pair. The second panel,
on the bottom, is the Time to Onset (TTO) density plot. It is derived only of cases where the drug
was suspected to be responsible of the adr (irrespective of the suspect_only argument). If you
provide a case_tto value, it is represented by the red line, and the label.

Examples

Say you want to perform a disproportionality analysis between colitis and
nivolumab among ICI cases

identify drug DrecNo, and adr LLT code

d_drecno <-
ex_$d_drecno["nivolumab”]

a_llt <-
ex_%$a_l1lt["a_colitis"]

But you could also use get_drecno() and get_llt_soc()

load tables demo, drug, adr, and link (real tables with
open_dataset() or dt_parquet(”x", in_memory = FALSE))

demo <- demo_
adr <- adr_
drug <- drug_
link <- link_

58

run routine

vigi_routine(

demo_data = demo,

drug_data = drug,

adr_data = adr,

link_data = link,

d_code = d_drecno,

a_code = a_l1t,

vigibase_version = "September 2024"

if you're working on a case, you can provide his/her time to onset
with arg “case_tto”

vigi_routine(

case_tto = 150,

demo_data = demo,

drug_data = drug,

adr_data = adr,

link_data = link,

d_code = d_drecno,

a_code = a_l1t,

vigibase_version = "September 2024"

Customize with d_name and a_name, export the plot with export_to

vigi_routine(
case_tto = 150,
demo_data = demo,
drug_data = drug,
adr_data = adr,
link_data = link,
d_code = d_drecno,
a_code = a_l1t,
vigibase_version = "September 2024",
d_label = "Nivolumab”,
a_label = "Colitis”,
export_to = paste@(tempdir(), "/", "vigicaen_graph.png")

vigi_routine

Index

* adr
add_adr, 3
screen_adr, 47

* atc
get_atc_code, 35
get_drecno, 36

* custom
tb_subset, 50

* data_management
add_adr, 3
add_dose, 4
add_drug, 6
check_dm, 10
get_atc_code, 35
get_drecno, 36
get_11t_smq, 38
get_11t_soc, 40

+ datasets
demo_, 19
ex_, 34
meddra_, 42
mp_, 45

+ dataset
tb_subset, 50

* descriptive
desc_dch, 24
desc_outcome, 27
desc_rch, 28
desc_tto, 30
extract_tto, 32
screen_adr, 47

x disproportionality

desc_dch, 24
desc_outcome, 27
desc_rch, 28
desc_tto, 30
extract_tto, 32
* drug
add_dose, 4
add_drug, 6
get_atc_code, 35
get_drecno, 36
* ic
ic_tail, 41
* import
dt_parquet, 31
tb_meddra, 49
tb_vigibase, 53
* 11t
get_11t_smq, 38
get_11t_soc, 40
+ meddra
get_11t_smq, 38
get_l1t_soc, 40
meddra_, 42
tb_meddra, 49
+* number
cff,9
* pvalue
nice_p, 46
* smq
get_l1t_smq, 38
* SOC
get_11t_soc, 40
* subset

compute_dispro, 11 th_subset, 50

compute_interaction, 14 * whodrug

compute_or_mod, 16 mp_, 45

ic_tail, 41
* doses add_adr, 3, 10, 28

add_dose, 4 add_adr(), 7,9, 10, 12, 15, 16, 24, 28-30, 33
* drug-adr-pair add_dose, 4

59

60 INDEX

add_drug, 6, 10, 28 dt_parquet(), 49-51, 53-55
add_drug(), 3, 5,9, 10, 12, 15, 16, 24, 27-30,
33,35, 38 ex_, 34
add_ind, 8 extract_tto, 32
adr_, 27, 28,47 extract_tto(), 30

adr_ (demo_), 19 fFollowup_ (demo_), 19

cff,9 get_atc_code, 35, 45
check_dm, 10 get_atc_code(), 5, 7, 20, 37, 38, 51
compute_dispro, 11 get_drecno, 36, 45
compute_dispro(}, 13, 16, 42 get_drecno(), 5, 7, 20, 35, 45, 51
compute_interaction, 14 get_11t_smgq, 38, 42
compute_or_mod, 16 get_11t_smq(), 3, 20, 41, 51
compute_or_mod(), 12, 15 get_11t_soc, 40, 42
create_ex_main_pq get_11t_soc(), 3, 20, 39, 51
(create_example_tables), 17
create_ex_main_pq(), I8 ic_tail, 41
create_ex_main_txt ind_ (demo_), 19

(create_example_tables), 17
create_ex_main_txt(), I8
create_ex_meddra_asc

link_, 24, 28-30, 33
link_ (demo_), 19

(create_example_tables), 17 meddra_, 42, 47
create_ex_meddra_asc(), I8 mp_, 35, 36, 45, 48
create_ex_sub_pq

(create_example_tables), 17 nice_p, 46
create_ex_sub_pq(), I8 nice_p(), 16
create_ex_sub_txt

(create_example_tables), 17 out_ (demo_), 19

create_ex_sub_txt(), I8
create_ex_who_txt
(create_example_tables), 17
create_ex_who_txt(), I8
create_example_tables, 17

screen_adr, 47
screen_drug, 48
smg_content_, 39
smg_content_ (meddra_), 42
smg_list_, 39

smg_list_ (meddra_), 42

demo_, 19 .

desc_cont, 22 smg_list_content_ (meddra_), 42
desc_cont(), 26, 30 srce._ (demo_), 19

desc_dch, 24 tb_meddra, 49

desc_dch(), 29, 30, 33 tb_meddra(), 18, 32, 42, 44, 54, 55
desc_facvar, 25 tb_subset. 50

desc_facvar(), 10, 23, 26 tb_subset(), 50, 54, 55
desc_outcome, 27 tb_vigibase, 53

desc_rch, 28 tb_vigibase(), 3, 18, 19, 21, 32, 50, 55
desc_rch(), 24, 30, 33 tb_who. 54

desc_tto, 30 tb_who(), 18, 32, 50, 54
desc_tto(), 24, 29, 33 thg_, 35

drug_, 48 thg_ (mp_), 45

drug_ (demo_), 19
dt_parquet, 31 vigi_routine, 56

	add_adr
	add_dose
	add_drug
	add_ind
	cff
	check_dm
	compute_dispro
	compute_interaction
	compute_or_mod
	create_example_tables
	demo_
	desc_cont
	desc_dch
	desc_facvar
	desc_outcome
	desc_rch
	desc_tto
	dt_parquet
	extract_tto
	ex_
	get_atc_code
	get_drecno
	get_llt_smq
	get_llt_soc
	ic_tail
	meddra_
	mp_
	nice_p
	screen_adr
	screen_drug
	tb_meddra
	tb_subset
	tb_vigibase
	tb_who
	vigi_routine
	Index

