Package ‘sdtm.oak’

November 12, 2024

Type Package

Title SDTM Data Transformation Engine

Version 0.1.1

Maintainer Rammprasad Ganapathy <ganapathy.rammprasad@gene.com>

Description An Electronic Data Capture system (EDC) and Data Standard agnostic
solution that enables the pharmaceutical programming community to develop
Clinical Data Interchange Standards Consortium (CDISC)

Study Data Tabulation Model (SDTM) datasets in R. The reusable algorithms
concept in 'sdtm.oak’ provides a framework for modular programming and can
potentially automate the conversion of raw clinical data to SDTM through
standardized SDTM specifications. SDTM is one of the required standards for data
submission to the Food and Drug Administration (FDA) in the United States and
Pharmaceuticals and Medical Devices Agency (PMDA) in Japan. SDTM standards
are implemented following the SDTM Implementation Guide as defined by
CDISC <https://www.cdisc.org/standards/foundational/sdtmig>.

Language en-US

License Apache License (>=2)

Copyright F. Hoffmann-La Roche AG, Pattern Institute, Atorus Research
LLC and Transition Technologies Science sp. z 0.0.

BugReports https://github.com/pharmaverse/sdtm.oak/issues/

URL https://pharmaverse.github.io/sdtm.oak/
Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends R (>=4.2)

Imports admiraldev (>= 1.1.0), dplyr (>= 1.0.0), purrr (>= 1.0.1),
tidyr (>= 1.2.0), rlang (>= 1.0.2), tibble (>= 3.2.0), vctrs
(>=0.5.0), stringr (>= 1.4.0), assertthat, pillar, cli

Suggests knitr, htmltools, lifecycle, magrittr, rmarkdown, spelling,
testthat (>= 3.1.7), DT, readr

https://www.cdisc.org/standards/foundational/sdtmig
https://github.com/pharmaverse/sdtm.oak/issues/
https://pharmaverse.github.io/sdtm.oak/

2 Contents

VignetteBuilder knitr
Config/testthat/edition 3
Config/testthat/parallel true
NeedsCompilation no

Author Rammprasad Ganapathy [aut, cre],
Adam Forys [aut],
Edgar Manukyan [aut],
Rosemary Li [aut],
Preetesh Parikh [aut],
Lisa Houterloot [aut],
Yogesh Gupta [aut],
Omar Garcia [aut],
Ramiro Magno [aut] (<https://orcid.org/0000-0001-5226-3441>),
Kamil Sijko [aut] (<https://orcid.org/0000-0002-2203-1065>),
Shiyu Chen [aut],
Pattern Institute [cph, fnd],
F. Hoffmann-La Roche AG [cph, fnd],
Pfizer Inc [cph, fnd],
Transition Technologies Science [cph, fnd]

Repository CRAN
Date/Publication 2024-11-12 03:20:02 UTC

Contents
assign_datetime L. e e 3
aSSIGN_NO_Ct o o o e e e e e 6
condition_add e 9
create_iS08601 L L e 9
ctl_new_rowid_pillarend_df oL oo 11
CLLMAP .« v v o e e e e e e e e e e e 12
ct_spec_example e 13
derive bIfl e e e e 14
derive_Seq v v i e e e e 19
derive_study_day 20
domain_example e e 21
dtc_formats e 22
fmt_emp e e e 23
generate_oak_id_vars L. L e 24
harcode e e e e e 25
mutate.cnd_df e 27
0ak_1d_vars e 28
problems 29
read_Ct_SPec 30
read_ct_spec_example 31
read_domain_example L. 31

SOI_VAIS 32

https://orcid.org/0000-0001-5226-3441
https://orcid.org/0000-0002-2203-1065

assign_datetime 3

tbl_sum.cnd_df e 33
Do.>%0 . . . e e e e 33
Index 35
assign_datetime Derive an ISO8601 date-time variable
Description

assign_datetime() maps one or more variables with date/time components in a raw dataset to a
target SDTM variable following the ISO8601 format.

Usage

assign_datetime(
tgt_dat = NULL,
tgt_var,
raw_dat,
raw_var,
raw_fmt,
raw_unk = c("UN", "UNK"),
id_vars = oak_id_vars(),

.warn = TRUE
)
Arguments

tgt_dat Target dataset: a data frame to be merged against raw_dat by the variables
indicated in id_vars. This parameter is optional, see section Value for how the
output changes depending on this argument value.

tgt_var The target SDTM variable: a single string indicating the name of variable to be
derived.

raw_dat The raw dataset (dataframe); must include the variables passed in id_vars and
raw_var.

raw_var The raw variable(s): a character vector indicating the name(s) of the raw vari-
able(s) in raw_dat with date or time components to be parsed into a ISO8601
format variable in tgt_var.

raw_fmt A date/time parsing format. Either a character vector or a list of character vec-
tors. If a character vector is passed then each element is taken as parsing format
for each variable indicated in raw_var. If a list is provided, then each element
must be a character vector of formats. The first vector of formats is used for
parsing the first variable in raw_var, and so on.

raw_unk A character vector of string literals to be regarded as missing values during pars-
ing.

id_vars Key variables to be used in the join between the raw dataset (raw_dat) and the

target data set (tgt_dat).
.warn Whether to warn about parsing failures.

4 assign_datetime

Value
The returned data set depends on the value of tgt_dat:

* If no target dataset is supplied, meaning that tgt_dat defaults to NULL, then the returned data
set is raw_dat, selected for the variables indicated in id_vars, and a new extra column: the
derived variable, as indicated in tgt_var.

* If the target dataset is provided, then it is merged with the raw data set raw_dat by the variables
indicated in id_vars, with a new column: the derived variable, as indicated in tgt_var.

Examples

“md1°: an example raw data set.

md1 <-

tibble::tribble(
~oak_id, ~raw_source, ~patient_number, ~MDBDR, ~MDEDR, ~MDETM,
1L, "MD1", 375, NA, NA, NA,
2L, "MD1", 375, "15-Sep-20", NA, NA,
3L, "MD1", 376, "17-Feb-21", "17-Feb-21", NA,
4L, "MD1", 377, "4-0ct-20", NA, NA,
5L, "MD1", 377, "20-Jan-20", "20-Jan-20", "10:00:00",
6L, "MD1", 377, "UN-UNK-2019", "UN-UNK-2019", NA,
7L, "MD1", 377, "20-UNK-2019", "20-UNK-2019", NA,
8L, "MD1", 378, "UN-UNK-2020", "UN-UNK-2020", NA,
aL, "MD1", 378, "26-Jan-20", "26-Jan-20", "07:00:00",
1oL, "MD1", 378, "28-Jan-20", "1-Feb-20", NA,
11L, "MD1", 378, "12-Feb-20", "18-Feb-20", NA,
12L, "MD1", 379, "10-UNK-2020", "20-UNK-2020", NA,
13L, "MD1", 379, NA, NA, NA,
14L, "MD1", 379, NA, "17-Feb-20", NA

)

Using the raw data set “md1°, derive the variable CMSTDTC from MDBDR using
the parsing format (“raw_fmt>) ~"d-m-y"> (day-month-year), while allowing
for the presence of special date component values (e.g. “"UN"" or “"UNK"™),
indicating that these values are missing/unknown (unk).
cml <-
assign_datetime(

tgt_var = "CMSTDTC",

raw_dat = md1,

raw_var = "MDBDR",

raw_fmt = "d-m-y",

raw_unk = c("UN", "UNK")

cml

Inspect parsing failures associated with derivation of CMSTDTC.
problems(cm1$CMSTDTC)

“cm_inter™: an example target data set.
cm_inter <-
tibble::tibble(

assign_datetime

oak_id = 1L:14L,
raw_source = "MD1",
patient_number = c(
375, 375, 376, 377, 377, 377, 377, 378,
378, 378, 378, 379, 379, 379
),
CMTRT = c(
"BABY ASPIRIN",
"CORTISPORIN",
"ASPIRIN",
"DIPHENHYDRAMINE HCL",
"PARCETEMOL",
"VOMIKIND",
"ZENFLOX 0Z",
"AMITRYPTYLINE",
"BENADRYL",
"DIPHENHYDRAMINE HYDROCHLORIDE",
"TETRACYCLINE",
"BENADRYL",
"SOMINEX",
"ZQUILL"
),
CMINDC = c(
"NA",
"NAUSEA",
"ANEMIA",
"NAUSEA",
"PYREXIA",
"VOMITINGS",
"DIARHHEA",
"coLb",
"FEVER",
"LEG PAIN",
"FEVER",
"coLD",
"CoLD",
"PAIN"
)
)

Same derivation as above but now involving the merging with the target
data set “cm_inter”.
cm2 <-
assign_datetime(

tgt_dat = cm_inter,

tgt_var = "CMSTDTC",

raw_dat = md1,

raw_var = "MDBDR",

raw_fmt = "d-m-y"

cm2

6 assign_no_ct

Inspect parsing failures associated with derivation of CMSTDTC.
problems(cm2$CMSTDTC)

Derive CMSTDTC using both MDEDR and MDETM variables.
Note that the format ~"d-m-y"" is used for parsing MDEDR and ~"H:M:S"~ for
MDETM (correspondence is by positional matching).
cm3 <-
assign_datetime(

tgt_var = "CMSTDTC",

raw_dat = md1,

raw_var = c("MDEDR", "MDETM"),

raw_fmt = c("d-m-y", "H:M:S"),

raw_unk = c("UN", "UNK")

cm3

Inspect parsing failures associated with derivation of CMSTDTC.
problems(cm3$CMSTDTC)

assign_no_ct Derive an SDTM variable

Description

* assign_no_ct() maps a variable in a raw dataset to a target SDTM variable that has no
terminology restrictions.

* assign_ct() maps a variable in a raw dataset to a target SDTM variable following controlled
terminology recoding.

Usage

assign_no_ct(
tgt_dat = NULL,
tgt_var,
raw_dat,
raw_var,
id_vars = oak_id_vars()

assign_ct(
tgt_dat = NULL,
tgt_var,
raw_dat,
raw_var,
ct_spec,
ct_clst,
id_vars = oak_id_vars()

assign_no_ct

Arguments
tgt_dat Target dataset: a data frame to be merged against raw_dat by the variables
indicated in id_vars. This parameter is optional, see section Value for how the
output changes depending on this argument value.
tgt_var The target SDTM variable: a single string indicating the name of variable to be
derived.
raw_dat The raw dataset (dataframe); must include the variables passed in id_vars and
raw_var.
raw_var The raw variable: a single string indicating the name of the raw variable in
raw_dat.
id_vars Key variables to be used in the join between the raw dataset (raw_dat) and the
target data set (raw_dat).
ct_spec Study controlled terminology specification: a dataframe with a minimal set of
columns, see ct_spec_vars() for details.
ct_clst A codelist code indicating which subset of the controlled terminology to apply
in the derivation.
Value

The returned data set depends on the value of tgt_dat:

* If no target dataset is supplied, meaning that tgt_dat defaults to NULL, then the returned data
set is raw_dat, selected for the variables indicated in id_vars, and a new extra column: the
derived variable, as indicated in tgt_var.

« If the target dataset is provided, then it is merged with the raw data set raw_dat by the variables
indicated in id_vars, with a new column: the derived variable, as indicated in tgt_var.

Examples

mdl <-

tibble::tibble(

oak_id = 1:14,
raw_source = "MD1",
patient_number = 101:114,

MDIND = c(

"NAUSEA”, "NAUSEA”, "ANEMIA”, "NAUSEA", "PYREXIA",
"VOMITINGS”, "DIARHHEA", "COLD",
"FEVER”, "LEG PAIN”, "FEVER", "COLD", "COLD", "PAIN”

)
)

assign_no_ct(
tgt_var = "CMINDC",
raw_dat = md1,
raw_var = "MDIND"

)

cm_inter <-

tibble::tibble(

oak_id = 1:14,

raw_source = "MD1",

patient_number = 101:114,

CMTRT = ¢(
"BABY ASPIRIN",
"CORTISPORIN",
"ASPIRIN",
"DIPHENHYDRAMINE HCL",
"PARCETEMOL",
"VOMIKIND",
"ZENFLOX 0zZ",
"AMITRYPTYLINE",
"BENADRYL",
"DIPHENHYDRAMINE HYDROCHLORIDE",
"TETRACYCLINE",
"BENADRYL",
"SOMINEX",
"ZQUILL"

),

CMROUTE = c(
"ORAL",
"ORAL",
NA,
"ORAL",
"ORAL",
"ORAL",
"INTRAMUSCULAR",
"INTRA-ARTERIAL",
NA,
"NON-STANDARD",
"RANDOM_VALUE",
"INTRA-ARTICULAR",
"TRANSDERMAL",
"OPHTHALMIC"

)

)

Controlled terminology specification
(ct_spec <- read_ct_spec_example("ct-01-cm"))

assign_ct(
tgt_dat = cm_inter,
tgt_var = "CMINDC",
raw_dat = md1,
raw_var = "MDIND",
ct_spec = ct_spec,
ct_clst = "C66729"

assign_no_ct

condition_add 9

condition_add Add filtering tags to a data set

Description

condition_add() tags records in a data set, indicating which rows match the specified conditions,
resulting in a conditioned data frame. Learn how to integrate conditioned data frames in your SDTM
domain derivation in vignette("cnd_df").

Usage
condition_add(dat, ..., .na = NA, .dat2 = rlang::env())
Arguments
dat A data frame.
Conditions to filter the data frame.

.na Return value to be used when the conditions evaluate to NA.

.dat2 An optional environment to look for variables involved in logical expression
passed in A data frame or a list can also be passed that will be coerced to
an environment internally.

Value

A conditioned data frame, meaning a tibble with an additional class cnd_df and a logical vector
attribute indicating matching rows.

Examples

(df <- tibble::tibble(x = 1L:3L, y = letters[x1))

Mark rows for which “x° greater than ~1°
(cnd_df <- condition_add(dat = df, x > 1L))

create_iso8601 Convert date or time collected values to 1ISO 8601

Description

create_iso08601() converts vectors of dates, times or date-times to ISO 8601 format. Learn more
invignette(”"iso_8601").

https://en.wikipedia.org/wiki/ISO_8601

10

Usage

create_is08601(

L

.format,

create_iso8601

fmt_c = fmt_cmp(),

.na = NULL,

.cutoff_2000 = 68L,

.check_format
.warn = TRUE

Arguments

.format

.fmt_c

.ha

.cutoff_2000

.check_format

.warn

Value

= FALSE,

Character vectors of dates, times or date-times’ components.

Parsing format(s). Either a character vector or a list of character vectors. If a
character vector is passed then each element is taken as parsing format for each
vector passed in If a list is provided, then each element must be a character
vector of formats. The first vector of formats is used for parsing the first vector
passedin ..., and so on.

A list of regexps to use when parsing . format. Use fmt_cmp() to create such
an object to pass as argument to this parameter.

A character vector of string literals to be regarded as missing values during pars-
ing.

An integer value. Two-digit years smaller or equal to . cutoff_2000 are parsed
as though starting with 20, otherwise parsed as though starting with 19.

Whether to check the formats passed in .format, meaning to check against a
selection of validated formats in dtc_formats; or to have a more permissible
interpretation of the formats.

Whether to warn about parsing failures.

A vector of dates, times or date-times in ISO 8601 format

Examples

Converting dates

create_iso8601(c("2020-01-01", "20200102"), .format

"y-m-d")

create_iso8601(c("2020-01-01", "20200102"), .format = "ymd")

create_iso8601(c("2020-01-01", "20200102"), .format

list(c("y-m-d", "ymd")))

Two-digit years are supported
create_iso8601(c("20-01-01", "200101"), .format = list(c("y-m-d", "ymd")))

~.cutoff_2000"

sets the cutoff for two-digit to four-digit year conversion

Default is at 68.
create_iso08601(c("67-01-01", "68-01-01", "69-01-01"), .format = "y-m-d")

https://en.wikipedia.org/wiki/ISO_8601

ctl_new_rowid_pillar.cnd_df 11

Change it to 80.
create_iso8601(c("79-01-01", "80-01-01", "81-01-01"), .format = "y-m-d”, .cutoff_2000 = 80)

Converting times

create_iso8601("15:10", .format = "HH:MM")
create_iso8601("2:10", .format = "HH:MM")
create_iso8601("2:1", .format = "HH:MM")
create_iso8601("02:01:56", .format = "HH:MM:SS")
create_iso8601("020156.5", .format = "HHMMSS")

Converting date-times
create_iso8601("12 NOV 202015:15", .format = "dd mmm yyyyHH:MM")

Indicate allowed missing values to make the parsing pass
create_iso8601("U DEC 201914:00", .format = "dd mmm yyyyHH:MM")
create_iso8601("U DEC 201914:00", .format = "dd mmm yyyyHH:MM" 6 .na = "U")

create_iso8601("NOV 2020", .format = "m y")
create_iso8601(c("MAR 2019", "MaR 2020", "mar 2021"), .format = "m y")

create_iso8601("2019-04-041045-", .format = "yyyy-mm-ddHHMM-")

create_iso8601("20200507null”, .format = "ymd(HH:MM:SS)")
create_iso8601("20200507null”, .format = "ymd((HH:MM:SS)|null)")

Fractional seconds
create_iso8601("2019-120602:20:13.1230001", .format = "y-mdH:M:S")

Use different reserved characters in the format specification

Here we change "H" to "x" and "M" to "w", for hour and minute, respectively.
create_iso8601("14H0eM", .format = "HHMM")

create_iso8601("14HO0M"”, .format = "xHwM", .fmt_c = fmt_cmpChour = "x", min = "w"))

Alternative formats with unknown values

datetimes <- c(”UN UNK 201914:00", "UN JAN 2021")

format <- list(c("dd mmm yyyy”, "dd mmm yyyyHH:MM"))
create_iso8601(datetimes, .format = format, .na = c("UN", "UNK"))

Dates and times may come in many format variations

fmt <- "dd MMM yyyy HH nn ss”

fmt_cmp <- fmt_cmp(mon = "MMM", min = "nn"”, sec = "ss")
create_iso8601("05 feb 1985 12 55 @2", .format = fmt, .fmt_c = fmt_cmp)

ctl_new_rowid_pillar.cnd_df
Conditioned tibble pillar print method

Description

Conditioned tibble pillar print method

12 ct_map

Usage
S3 method for class 'cnd_df'’
ctl_new_rowid_pillar(controller, x, width, ...)
Arguments
controller The object of class "tbl" currently printed.
X A simple (one-dimensional) vector.
width The available width, can be a vector for multiple tiers.

These dots are for future extensions and must be empty.

Value

A character vector to print the tibble which is a conditioned dataframe.

See Also
tbl_sum.cnd_df ().

ct_map Recode according to controlled terminology

Description

ct_map() recodes a vector following a controlled terminology.

Usage

ct_map(
X,
ct_spec = NULL,
ct_clst = NULL,
from = ct_spec_vars("from"),
to = ct_spec_vars("to")

)
Arguments

X A character vector of terms to be recoded following a controlled terminology.

ct_spec A tibble providing a controlled terminology specification.

ct_clst A character vector indicating a set of possible controlled terminology codelists
codes to be used for recoding. By default (NULL) all codelists available in
ct_spec are used.

from A character vector of column names indicating the variables containing values

to be matched against for terminology recoding.

to A single string indicating the column whose values are to be recoded into.

ct_spec_example 13

Value

A character vector of terminology recoded values from x. If no match is found in the controlled
terminology spec provided in ct_spec, then x values are returned in uppercase. If ct_spec is not
provided x is returned unchanged.

Examples

A few example terms.
terms <-
c(
"/day"”,
"Yes",
"Unknown",
"Prior”,
"Every 2 hours”,
"Percentage”,
"International Unit”

)

Load a controlled terminology example
(ct_spec <- read_ct_spec_example("ct-01-cm"))

Use all possible matching terms in the controlled terminology.
ct_map(x = terms, ct_spec = ct_spec)

Note that if the controlled terminology mapping is restricted to a codelist
code, e.g. C71113, then only “~"/day"™ and ~"Every 2 hours”" get mapped to
“"QD"" and “"Q2H"", respectively; remaining terms won't match given the
codelist code restriction, and will be mapped to an uppercase version of
the original terms.

ct_map(x = terms, ct_spec = ct_spec, ct_clst = "C71113")

o o o

ct_spec_example Find the path to an example controlled terminology file

Description

ct_spec_example() resolves the local path to an example controlled terminology file.

Usage

ct_spec_example(example)

Arguments

example A string with either the basename, file name, or relative path to a controlled
terminology file bundled with {stdm. oak}, see examples.

14 derive_blfl

Value

The local path to an example file if example is supplied, or a character vector of example file names.

Examples

Get the local path to controlled terminology example file 01
Using the basename only:
ct_spec_example("ct-01-cm")

Using the file name:
ct_spec_example("ct-@1-cm.csv")

Using the relative path:
ct_spec_example("ct/ct-01-cm.csv")

If no example is provided it returns a vector of possible choices.
ct_spec_example()

derive_blfl Derive Baseline Flag or Last Observation Before Exposure Flag

Description

Derive the baseline flag variable (--BLFL) or the last observation before exposure flag (--LOBXFL),
from the observation date/time (--DTC), and a DM domain reference date/time.

Usage

derive_blfl(
sdtm_in,
dm_domain,
tgt_var,
ref_var,
baseline_visits = character(),
baseline_timepoints = character()

)
Arguments
sdtm_in Input SDTM domain.
dm_domain DM domain with the reference variable ref_var
tgt_var Name of variable to be derived (--BLFL or --LOBXFL where -- is domain).
ref_var vector of a date/time from the Demographics (DM) dataset, which serves as

a point of comparison for other observations in the study. Common choices
for this reference variable include "RESTDTC" (the date/time of the first study
treatment) or "REXSTDTC" (the date/time of the first exposure to the study
drug).

derive_bIfl 15

baseline_visits

A character vector specifying the baseline visits within the study. These visits
are identified as critical points for data collection at the start of the study, before
any intervention is applied. This allows the function to assign the baseline flag
if the -DTC matches to the reference date.

baseline_timepoints

Details

A character vector of timepoints values in —TPT that specifies the specific time-
points during the baseline visits when key assessments or measurements were
taken. This allows the function to assign the baseline flag if the -DTC matches
to the reference date.

The derivation is as follows:

Value

Remove records where the result (--ORRES) is missing. Also, exclude records with results
labeled as "ND" (No Data) or "NOT DONE" in the --ORRES column, which indicate that the
measurement or observation was not completed.

Remove records where the status (--STAT) indicates the observation or test was not performed,
marked as "NOT DONE".

Divide the date and time column (--DTC) and the reference date/time variable (ref_var) into
separate date and time components. Ignore any seconds recorded in the time component,
focusing only on hours and minutes for further calculations.

Set partial or missing dates to NA.

Set partial or missing times to NA.

Filter on rows that have domain and reference dates not equal to NA. (Ref to as X)

Filter X on rows with domain date (-DTC) prior to (less than) reference date. (Ref to as A)

Filter X on rows with domain date (-DTC) equal to reference date but domain and reference
times not equal to NA and domain time prior to (less than) reference time. (Ref to as B)

Filter X on rows with domain date (-DTC) equal to reference date but domain and/or reference
time equal to NA and:

— VISIT is in baseline visits list (if it exists) and

— xxTPT is in baseline timepoints list (if it exists). (Ref to as C)

Combine the rows from A, B, and C to get a data frame of pre-reference date observations.
Sort the rows by USUBJID, --STAT, and --ORRES.

Group by USUBJID and --TESTCD and filter on the rows that have maximum value from --DTC.
Keep only the oak id variables and --TESTCD (because these are the unique values). Remove
any duplicate rows. Assign the baseline flag variable, --BLFL, the last observation before
exposure flag (--LOBXFL) variable to these rows.

Join the baseline flag onto the input dataset based on oak id vars

Modified input data frame with baseline flag variable --BLFL or last observation before exposure
flag --LOBXFL added.

16

Examples

dm <- tibble::tribble(
~USUBJID, ~RFSTDTC, ~RFXSTDTC,

"test_study-375", "2020-09-28T10:10", "2020-09-28T10:10",
"test_study-376", "2020-09-21T11:00", "2020-09-21T11:00"

"test_study-377", NA, NA,

"test_study-378", "2020-01-20T10:00", "2020-01-20T10:00",

"test_study-379", NA, NA,

dm

sdtm_in <-
tibble::tribble(

~DOMAIN,
~oak_id,
~raw_source,
~patient_number,
~USUBJID,
~VSDTC,
~VSTESTCD,
~VSORRES,
~VSSTAT,
~VISIT,
"Vs",
1L,
"VTLS1",
375L,
"test_study-375",
"2020-09-01T13:31",
"DIABP",
"90",
NA,
"SCREENING",
"Vs",
2L,
"VTLS1",
375L,
"test_study-375",
"2020-10-01T11:20",
"DIABP",
99",
NA,
"SCREENING",
s,
1L,
"VTLS1",
375L,
"test_study-375",
"2020-09-28T10:10",
"PULSE",
"ND",

derive_blfl

derive_bIfl

NA,
"SCREENING",
"vs",

2L,

"VTLS1",

375L,
"test_study-375",
"2020-10-01T13:31",
"PULSE",

"85",

NA,

"SCREENING",
"vs",

1,

"VTLS2",

375L,
"test_study-375",
"2020-09-28T10:10",
"SYSBP",

"120",

NA,

"SCREENING",
"vys",

2L,

"WTLS2",

375L,
"test_study-375",
"2020-09-28T10:05",
"SYSBP",

"120",

NA,

"SCREENING",
"vs",

1,

"VTLS1",

376L,
"test_study-376",
"2020-09-20",
"DIABP",

"75",

NA,

"SCREENING",
"vs",

1L,

"VTLS1",

376L,
"test_study-376",
"2020-09-20",
"PULSE",

NA,

"NOT DONE",
"SCREENING",
"vs",

17

18

)

2L,
"VTLS1",

376L,
"test_study-376",
"2020-09-20",
"PULSE",

"110",

NA,

"SCREENING",

"vs",

2L,

"VTLS1",

378L,
"test_study-378",
"2020-01-20T10:00",
"PULSE",

"110",

NA,

"SCREENING",

"vs",

3L,

"VTLS1",

378L,
"test_study-378",
"2020-01-21T11:00",
"PULSE",

"105",

NA,

"SCREENING"

sdtm_in

Example 1:

observed_output <- derive_blf1l(

sdtm_in = sdtm_in,
dm_domain = dm,
tgt_var = "VSLOBXFL",
ref_var = "RFXSTDTC",

baseline_visits = c("SCREENING")

)

observed_output

Example 2:

observed_output2 <- derive_blfl(

sdtm_in = sdtm_in,
dm_domain = dm,
tgt_var = "VSLOBXFL",
ref_var = "RFXSTDTC",
baseline_timepoints =

)

observed_output2

c("PRE-DOSE")

derive_blfl

derive_seq 19

Example 3: Output is the same as Example 2
observed_output3 <- derive_blf1l(
sdtm_in = sdtm_in,
dm_domain = dm,
tgt_var = "VSLOBXFL",
ref_var = "RFXSTDTC",
baseline_visits = c("SCREENING"),
baseline_timepoints = c("PRE-DOSE")
)

observed_output3

derive_seq Derive the sequence number (-SEQ) variable

Description

derive_seq() creates a new identifier variable: the sequence number (--SEQ).

This function adds a newly derived variable to tgt_dat, namely the sequence number (--SEQ)
whose name is the one provided in tgt_var. An integer sequence is generated that uniquely iden-
tifies each record within the domain.

Prior to the derivation of tgt_var, the data frame tgt_dat is sorted according to grouping variables
indicated in rec_vars.

Usage

derive_seq(
tgt_dat,
tgt_var,
rec_vars,
sbj_vars = sdtm.oak::sbj_vars(),
start_at = 1L

)
Arguments
tgt_dat The target dataset, a data frame.
tgt_var The target SDTM variable: a single string indicating the name of the sequence
number (--SEQ) variable, e.g. "DSSEQ". Note that supplying a name not ending
in "SEQ"” will raise a warning.
rec_vars A character vector of record-level identifier variables.
sbj_vars A character vector of subject-level identifier variables.
start_at The sequence numbering starts at this value (default is 1).
Value

Returns the data frame supplied in tgt_dat with the newly derived variable, i.e. the sequence
number (--SEQ), whose name is that passed in tgt_var. This variable is of type integer.

20 derive_study_day

Examples

A VS raw data set example
(vs <- read_domain_example("vs"))

Derivation of VSSEQ
rec_vars <- c("STUDYID", "USUBJID", "VSTESTCD", "VSDTC", "VSTPTNUM")
derive_seq(tgt_dat = vs, tgt_var = "VSSEQ"”, rec_vars = rec_vars)

An APSC raw data set example
(apsc <- read_domain_example("apsc”))

Derivation of APSEQ
derive_seq(
tgt_dat = apsc,
tgt_var = "APSEQ",
rec_vars = c("STUDYID", "RSUBJID", "SCTESTCD"),
sbj_vars = c("STUDYID", "RSUBJID")

derive_study_day derive_study_day performs study day calculation

Description

This function takes the an input data frame and a reference data frame (which is DM domain in
most cases), and calculate the study day from reference date and target date. In case of unexpected
conditions like reference date is not unique for each patient, or reference and input dates are not
actual dates, NA will be returned for those records.

Usage

derive_study_day(
sdtm_in,
dm_domain,
tgdt,
refdt,
study_day_var,
merge_key = "USUBJID"

)
Arguments
sdtm_in Input data frame that contains the target date.
dm_domain Reference date frame that contains the reference date.
tgdt Target date from sdtm_in that will be used to calculate the study day.
refdt Reference date from dm_domain that will be used as reference to calculate the

study day.

domain_example 21

study_day_var New study day variable name in the output. For example, AESTDY for AE
domain and CMSTDY for CM domain.

merge_key Character to represent the merging key between sdtm_in and dm_domain.

Value

Data frame that takes all columns from sdtm_in and a new variable to represent the calculated study
day.

Examples

ae <- data.frame(
USUBJID = c("study123-123", "study123-124", "study123-125"),
AESTDTC = c("2012-01-01", "2012-04-14", "2012-04-14")

)

dm <- data.frame(
USUBJID = c("study123-123", "study123-124", "study123-125"),
RFSTDTC = ¢(”2012-02-01", "2012-04-14", NA)

)

ae$AESTDTC <- as.Date(ae$AESTDTC)

dm$RFSTDTC <- as.Date(dm$RFSTDTC)

derive_study_day(ae, dm, "AESTDTC", "RFSTDTC", "AESTDY")

domain_example Find the path to an example SDTM domain file

Description

domain_example () resolves the local path to a SDTM domain example file. The domain examples
files were imported from pharmaversesdtm. See Details section for available datasets.

Usage

domain_example(example)

Arguments
example A string with either the basename, file name, or relative path to a SDTM domain
example file bundled with {stdm.oak}, e.g. "cm” (Concomitant Medication) or
"ae" (Adverse Events).
Details

Datasets were obtained from pharmaversesdtm but are originally sourced from the CDISC pilot
project or have been constructed ad-hoc by the admiral team. These datasets are bundled with
{sdtm. oak}, thus obviating a dependence on {pharmaversesdtm}.

Example SDTM domains:

https://cran.r-project.org/package=pharmaversesdtm
https://cran.r-project.org/package=pharmaversesdtm
https://github.com/cdisc-org/sdtm-adam-pilot-project
https://github.com/cdisc-org/sdtm-adam-pilot-project
https://cran.r-project.org/package=admiral

22 dtc_formats

e "ae": Adverse Events (AE) data set.

» "apsc": Associated Persons Subject Characteristics (APSC) data set.
e "cm": Concomitant Medications (CM) data set.

e "vs": Vital Signs (VS) data set.

Value

The local path to an example file if example is supplied, or a character vector of example file names.

Source

See https://cran.r-project.org/package=pharmaversesdtm.

See Also

read_domain_example()

Examples

If no example is provided it returns a vector of possible choices.
domain_example()

Get the local path to the Concomitant Medication dataset file.
domain_example("cm™)

Local path to the Adverse Events dataset file.
domain_example("ae")

dtc_formats Date/time collection formats

Description

Date/time collection formats

Usage

dtc_formats

Format
A tibble of 20 formats with three variables:
fmt Format string.

type Whether a date, time or date-time.

description Description of which date-time components are parsed.

https://cran.r-project.org/package=pharmaversesdtm

fmt_cmp 23

Examples

dtc_formats

fmt_cmp Regexps for date/time format components

Description

fmt_cmp() creates a character vector of patterns to match individual format date/time components.

Usage

fmt_cmp(
sec = "S+",
min = "M+",
hour = "H+",
mday = "d+",
mon = "m+",
year = "y+"

Arguments
sec A string pattern for matching the second format component.
min A string pattern for matching the minute format component.
hour A string pattern for matching the hour format component.
mday A string pattern for matching the month day format component.
mon A string pattern for matching the month format component.

year A string pattern for matching the year format component.

Value

A named character vector of date/time format patterns. This a vector of six elements, one for each
date/time component.

Examples

Regexps to parse format components
fmt_cmp()

fmt_cmp(year = "yyyy")

24

generate_oak_id_vars

generate_oak_id_vars A function to generate oak_id_vars

Description

A function to generate oak_id_vars

Usage

generate_oak_id_vars(raw_dat, pat_var, raw_src)

Arguments

raw_dat The raw dataset (dataframe)
pat_var Variable that holds the patient number

raw_src Name of the raw source

Value

dataframe

Examples

raw_dataset <-
tibble::tribble(
~patnum, ~MDRAW,
101L, "BABY ASPIRIN",
102L, "CORTISPORIN",
103L, NA_character_,
104L, "DIPHENHYDRAMINE HCL"

Generate oak_id_vars
generate_oak_id_vars(

raw_dat = raw_dataset,

pat_var = "patnum”,

raw_src = "Concomitant Medication”

harcode

25

harcode

Derive an SDTM variable with a hardcoded value

Description

* hardcode_no_ct() maps a hardcoded value to a target SDTM variable that has no terminol-
ogy restrictions.

* hardcode_ct () maps a hardcoded value to a target SDTM variable with controlled terminol-
ogy recoding.

Usage

hardcode_no_ct(

tgt_dat = NULL,

tgt_val,
raw_dat,
raw_var,
tgt_var,
id_vars

)

hardcode_ct(

oak_id_vars()

tgt_dat = NULL,

tgt_val,
raw_dat,
raw_var,
tgt_var,
ct_spec,
ct_clst,
id_vars

Arguments

tgt_dat

tgt_val

raw_dat

raw_var

tgt_var

id_vars

oak_id_vars()

Target dataset: a data frame to be merged against raw_dat by the variables
indicated in id_vars. This parameter is optional, see section Value for how the
output changes depending on this argument value.

The target SDTM value to be hardcoded into the variable indicated in tgt_var.

The raw dataset (dataframe); must include the variables passed in id_vars and
raw_var.

The raw variable: a single string indicating the name of the raw variable in
raw_dat.

The target SDTM variable: a single string indicating the name of variable to be
derived.

Key variables to be used in the join between the raw dataset (raw_dat) and the
target data set (raw_dat).

26

ct_spec

ct_clst

Value

harcode

Study controlled terminology specification: a dataframe with a minimal set of
columns, see ct_spec_vars() for details. This parameter is optional, if left as
NULL no controlled terminology recoding is applied

A codelist code indicating which subset of the controlled terminology to apply in
the derivation. This parameter is optional, if left as NULL, all possible recodings
in ct_spec are attempted.

The returned data set depends on the value of tgt_dat:

* If no target dataset is supplied, meaning that tgt_dat defaults to NULL, then the returned data
set is raw_dat, selected for the variables indicated in id_vars, and a new extra column: the
derived variable, as indicated in tgt_var.

* Ifthe target dataset is provided, then it is merged with the raw data set raw_dat by the variables
indicated in id_vars, with a new column: the derived variable, as indicated in tgt_var.

Examples

mdl <-

tibble::tribble(
~oak_id, ~raw_source, ~patient_number, ~MDRAW,

1L,
2L,
3L,
4L,
)

"MD1", 101L, "BABY ASPIRIN",
"MD1", 102L, "CORTISPORIN",
"MD1", 103L, NA_character_,
"MD1", 104L, "DIPHENHYDRAMINE HCL"

Derive a new variable “CMCAT" by overwriting “MDRAW™ with the
hardcoded value "GENERAL CONCOMITANT MEDICATIONS".
hardcode_no_ct(

tgt_val
raw_dat
raw_var
tgt_var

cm_inter <-
tibble::tribble(

~oak_id,

1L,
2L,
3L,
4L,
5L,
)

"GENERAL CONCOMITANT MEDICATIONS",
md1,

"MDRAW",

"CMCAT"

~raw_source, ~patient_number, ~CMTRT, ~CMINDC,
"MD1", 101L, "BABY ASPIRIN", NA,
"MD1", 102L, "CORTISPORIN", "NAUSEA"
"MD1", 103L, "ASPIRIN", "ANEMIA",
"MD1", 104L, "DIPHENHYDRAMINE HCL", "NAUSEA",
"MD1", 105L, "PARACETAMOL", "PYREXIA"

Derive a new variable “CMCAT™ by overwriting “MDRAW™ with the

hardcoded value "GENERAL CONCOMITANT MEDICATIONS” with a prior join to
~target_dataset’.

hardcode_no_ct(

mutate.cnd_df 27

tgt_dat = cm_inter,
tgt_val = "GENERAL CONCOMITANT MEDICATIONS",
raw_dat = md1,
raw_var = "MDRAW",
tgt_var = "CMCAT"
)

Controlled terminology specification
(ct_spec <- read_ct_spec_example("ct-01-cm"))

Hardcoding of “CMCAT™ with the value ~"GENERAL CONCOMITANT MEDICATIONS"®
involving terminology recoding. “NA™ values in “MDRAW™ are preserved in
“CMCAT".
hardcode_ct(

tgt_dat = cm_inter,

tgt_var = "CMCAT",

raw_dat = md1,

raw_var = "MDRAW",

tgt_val = "GENERAL CONCOMITANT MEDICATIONS",

ct_spec = ct_spec,

ct_clst = "C66729"

mutate.cnd_df Mutate method for conditioned data frames

Description

mutate.cnd_df () is an S3 method to be dispatched by mutate generic on conditioned data frames.
This function implements a conditional mutate by only changing rows for which the condition
stored in the conditioned data frame is TRUE.

Usage
S3 method for class 'cnd_df'
mutate(
.data,
.by = NULL,
.keep = c("all”, "used"”, "unused”, "none"),
.before = NULL,
.after = NULL
)
Arguments

.data A conditioned data frame.

28 oak_id_vars

<data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

* A vector of length 1, which will be recycled to the correct length.

* A vector the same length as the current group (or the whole data frame if
ungrouped).

¢ NULL, to remove the column.

* A data frame or tibble, to create multiple columns in the output.

. by Not used when .data is a conditioned data frame.

.keep Control which columns from . data are retained in the output. Grouping columns
and columns created by . .. are always kept.

e "3l1" retains all columns from .data. This is the default.

* "used” retains only the columns used in ... to create new columns. This
is useful for checking your work, as it displays inputs and outputs side-by-
side.

e "unused” retains only the columns not used in . . . to create new columns.
This is useful if you generate new columns, but no longer need the columns
used to generate them.

* "none” doesn’t retain any extra columns from .data. Only the grouping

variables and columns created by . . . are kept.
.before Not used, use . after instead.
.after Control where new columns should appear, i.e. after which columns.

Value

A conditioned data frame, meaning a tibble with mutated values.

oak_id_vars Raw dataset keys

Description

oak_id_vars() is a helper function providing the variable (column) names to be regarded as keys
in tibbles representing raw datasets. By default, the set of names is oak_id, raw_source, and pa-
tient_number. Extra variable names may be indicated and passed in extra_vars which are ap-
pended to the default names.

Usage

oak_id_vars(extra_vars = NULL)

Arguments

extra_vars A character vector of extra column names to be appended to the default names:
oak_id, raw_source, and patient_number.

problems 29

Value

A character vector of column names to be regarded as keys in raw datasets.

problems Retrieve date/time parsing problems

Description

problems() is a companion helper function to create_iso8601(). It retrieves ISO 8601 parsing
problems from an object of class iso8601, which is create_iso8601()’s return value and that
might contain a problems attribute in case of parsing failures. problems() is a helper function that
provides easy access to these parsing problems.

Usage
problems(x = .Last.value)
Arguments
X An object of class 1508601, as typically obtained from a call to create_iso8601().
The argument can also be left empty, in that case problems () will use the last re-
turned value, making it convenient to use immediately after create_iso8601().
Value

If there are no parsing problems in X, then the returned value is NULL; otherwise, a tibble of parsing
failures is returned. Each row corresponds to a parsing problem. There will be a first column named
.. 1 indicating the position(s) in the inputs to the create_iso8601() call that resulted in failures;
remaining columns correspond to the original input values passed on to create_iso8601(), with
columns being automatically named . . var1, . .var2, and so on, if the inputs to create_iso8601 ()
were unnamed, otherwise, the original variable names are used instead.

Examples
dates <-

c(
"2020-01-01",
"2020-02-11",
"2020-01-06",
"2020-0921",
"2020/10/30",
"2020-12-05",
"20231225"

)

By inspecting the problematic dates it can be understood that
the ~.format™ parameter needs to updated to include other variations.
is086071_dttm <- create_iso8601(dates, .format = "y-m-d")

30 read_ct_spec

problems(iso8601_dttm)

Including more parsing formats addresses the previous problems
formats <- c("y-m-d", "y-md", "y/m/d", "ymd")
is08601_dttm2 <- create_iso8601(dates, .format = list(formats))

So now “problems()™ returns “NULL™ because there are no more parsing issues.
problems(iso8601_dttm2)

If you pass named arguments when calling “create_iso8601()" then they will
be used to create the problems object.

is08601_dttm3 <- create_iso8601(date = dates, .format = "y-m-d")
problems(iso8601_dttm3)

read_ct_spec Read in a controlled terminology

Description

read_ct_spec() imports a controlled terminology specification data set as a tibble.

Usage

read_ct_spec(file = cli::cli_abort(" file™ must be specified”))

Arguments
file A path to a file containing a controlled terminology specification data set. The
following are expected of this file:
* The file is expected to be a CSV file;
* The file is expected to contain a first row of column names;
» This minimal set of variables is expected: codelist_code, collected_value,
term_synonyms, and term_value.
Value

A tibble with a controlled terminology specification.

Examples

Get the local path to one of the controlled terminology example files.
path <- ct_spec_example("ct-01-cm")

Import it to R.
read_ct_spec(file = path)

read_ct_spec_example 31

read_ct_spec_example Read an example controlled terminology specification

Description

read_ct_spec_example() imports one of the bundled controlled terminology specification data
sets as a tibble into R.

Usage

read_ct_spec_example(example)

Arguments
example The file name of a controlled terminology data set bundled with {stdm.oak},
run read_ct_spec_example() for available example files.
Value

A tibble with a controlled terminology specification data set, or a character vector of example file
names.

Examples
Leave the “example” parameter as missing for available example files.

read_ct_spec_example()

Read an example controlled terminology spec file.
read_ct_spec_example("ct-01-cm.csv")

You may omit the file extension.
read_ct_spec_example("ct-01-cm")

read_domain_example Read an example SDTM domain

Description

read_domain_example() imports one of the bundled SDTM domain examples as a tibble into R.
See domain_example() for possible choices.

Usage

read_domain_example(example)

32 sbj_vars

Arguments
example The name of SDTM domain example, e.g. "cm” (Concomitant Medication) or
"ae" (Adverse Events). Run read_domain_example() for available example
files.
Value

A tibble with an SDTM domain dataset, or a character vector of example file names.

See Also

domain_example()

Examples

Leave the “example” parameter as missing for available example files.
read_domain_example()

Read the example Concomitant Medication domain.
read_domain_example("cm")

Read the example Adverse Events domain.
read_domain_example("ae")

sbj_vars Subject-level key variables

Description

sbj_vars() returns the set of variable names that uniquely define a subject.

Usage

sbj_vars()

Value

A character vector of variable names.

Examples

sbj_vars()

tbl_sum.cnd_df 33

tbl_sum.cnd_df Conditioned tibble header print method

Description

Conditioned tibble header print method. This S3 method adds an extra line in the header of a
tibble that indicates the tibble is a conditioned tibble (# Cond. tbl:) followed by the tally of the
conditioning vector: number of TRUE, FALSE and NA values: e.g., 1/1/1.

Usage
S3 method for class 'cnd_df'
tbl_sum(x, ...)
Arguments
X A conditioned tibble of class cnd_df.

Additional arguments passed to the default print method.

Value

A character vector with header values of the conditioned data frame.

See Also

ctl_new_rowid_pillar.cnd_df ().

Examples

df <- data.frame(x = c(1L, NA_integer_, 3L))
(cnd_df <- condition_add(dat = df, x >= 2L))
pillar::tbl_sum(cnd_df)

% . >% Explicit Dot Pipe

Description

[Experimental]

This operator pipes an object forward into a function or call expression using an explicit placement
of the dot (.) placeholder. Unlike magrittr’s %>% operator, %.>% does not automatically place the
left-hand side (1hs) as the first argument in the right-hand side (rhs) call. This operator provides a
simpler alternative to the use of braces with magrittr, while achieving similar behavior.

34 %.>%

Usage
lhs %.>% rhs

Arguments
lhs A value to be piped forward.
rhs A function call that utilizes the dot (.) placeholder to specify where 1hs should
be placed.
Details

The %.>% operator is used to pipe the 1hs value into the rhs function call. Within the rhs ex-
pression, the placeholder . represents the position where 1hs will be inserted. This provides more
control over where the 1hs value appears in the rhs function call, compared to the magrittr pipe
operator which always places lhs as the first argument of rhs.

Unlike magrittr’s pipe, which may require the use of braces to fully control the placement of 1hs in
nested function calls, %. >% simplifies this by directly allowing multiple usages of the dot placeholder
without requiring braces. For example, the following expression using magrittr’s pipe and braces:

library(magrittr)

1:10 %>% { c(min(.), max(.)) }
can be written as:

1:10 %.>% c(min(.), max(.))

without needing additional braces.

Downside:

The disadvantage of %.>% is that you always need to use the dot placeholder, even when piping to
the first argument of the right-hand side (rhs).

Value

No Return Value.

Examples
Equivalent to “subset(head(iris), 1:nrow(head(iris)) %% 2 == 0@)°
head(iris) %.>% subset(., 1:nrow(.) %% 2 == 0)

Equivalent to “c(min(1:10), max(1:10))"
1:10 %.>% c(min(.), max(.))

Index

+ datasets
dtc_formats, 22

%.>%, 33

%>%, 33

assign (assign_no_ct), 6
assign_ct (assign_no_ct), 6
assign_ct(), 6
assign_datetime, 3
assign_datetime(), 3
assign_no_ct, 6
assign_no_ct(), 6

condition_add, 9

create_iso8601, 9
create_iso08601(), 9, 29

ct_map, 12

ct_map(), 12

ct_spec_example, 13
ct_spec_example(), I3
ct_spec_vars(), 7, 26
ctl_new_rowid_pillar.cnd_df, 11
ctl_new_rowid_pillar.cnd_df (), 33

derive_blfl, 14
derive_seq, 19
derive_seq(), 19
derive_study_day, 20
domain_example, 21
domain_example(), 21, 31, 32
dtc_formats, 10, 22

fmt_cmp, 23
fmt_cmp(), 10, 23

generate_oak_id_vars, 24

harcode, 25

hardcode_ct (harcode), 25
hardcode_ct(), 25
hardcode_no_ct (harcode), 25

hardcode_no_ct(), 25

mutate, 27
mutate.cnd_df, 27
mutate.cnd_df (), 27

oak_id_vars, 28
oak_id_vars(), 28

problems, 29
problems(), 29

read_ct_spec, 30
read_ct_spec(), 30
read_ct_spec_example, 31
read_ct_spec_example(), 31
read_domain_example, 31
read_domain_example(), 22, 31

sbj_vars, 32
sbj_vars(), 32

tbl_sum.cnd_df, 33
tbl_sum.cnd_df (), 12
tibble, 12, 22, 29-32
tibbles, 28

35

	assign_datetime
	assign_no_ct
	condition_add
	create_iso8601
	ctl_new_rowid_pillar.cnd_df
	ct_map
	ct_spec_example
	derive_blfl
	derive_seq
	derive_study_day
	domain_example
	dtc_formats
	fmt_cmp
	generate_oak_id_vars
	harcode
	mutate.cnd_df
	oak_id_vars
	problems
	read_ct_spec
	read_ct_spec_example
	read_domain_example
	sbj_vars
	tbl_sum.cnd_df
	.>
	Index

