Package ‘qlcVisualize’

August 1, 2024

Title Visualization for Quantitative Language Comparison

Description Collection of visualizations as used in quantitative language
comparison. Currently implemented are visualisations dealing nominal data with
multiple levels (" " level map" and * * factor map"), and assistance for making
weighted geographical Voronoi-maps (" * weighted map").

Version 0.4
Date 2024-07-31

URL https://github.com/cysouw/qlcVisualize

BugReports https://github.com/cysouw/qlcVisualize/issues
License GPL-3

Encoding UTF-8

Depends R (>=3.5.0)

Imports alphahull, automap, cartogramR, concaveman, fields, geodata,
gstat, mapplots, maps, MASS, methods, qlcMatrix, RSpectra,
seriation, sf, sp, spatstat.geom, spatstat.random, stars

Suggests rnaturalearth, mapdata, lingtypology

NeedsCompilation no

Author Michael Cysouw [aut, cre] (<https://orcid.org/0000-0003-3168-4946>)
Maintainer Michael Cysouw <cysouw@mac.com>

Repository CRAN

Date/Publication 2024-08-01 04:40:02 UTC

Contents

glcVisualize-package L
addContour
boundary e
dialects L e
factorMap
haspelmath

https://github.com/cysouw/qlcVisualize
https://github.com/cysouw/qlcVisualize/issues
https://orcid.org/0000-0003-3168-4946

2 addContour

heeringa e e e 9
hessen L e 11
levelMap e e e 12
VINAP . v v e 15
weightedMap L 17
WINdoOW . . . L 21
world . .. e 23
Index 25

glcVisualize-package Visualizations for Quantitative Language Comparison

Description

A collection of specific visualisations of data as used in quantitative language comparison.

Details

Package: qlcVisualize
Type: Package
Version: 0.4
Date: 2024-07-31
License: GPL-3

Currently implemented are visualisations dealing nominal data with multiple levels Imap ("lev-
elMap") and fmap ("factorMap"), and some assistance for making of weighted geographic Voronoi
maps wmap ("weigthedMap").

Author(s)

Michael Cysouw <cysouw @mac.com>

addContour Add contourlines to a map

Description

Convenience function to add contourlines to a map, specifically geared towards suggesting bound-
aries to the result of weightedMap. Internally based on a krige-interpolation.

Usage

addContour (heights, points, window, crs,
levels = c(0.4, 0.45, 0.5), grid = 50000, ...)

addContour

Arguments

heights

points

window

crs

levels

grid

Details

Numeric vector with the same length as points. Typically a 0/1 vector describ-
ing presence or absence of a features.

Locations of the datapoints as sfc_POINTS or an sf object with such a geometry.

Window for the interpolation as sfc_POLYGON or an sf object with such a geom-
etry.

A crs in WKT format.

Levels on which to draw the contourlines. Multiple lines get thicker towards
higher values to suggest a center. These levels have to be related relative to the
heights.

Number of points inside the window for the krige-interpolation. Higher numbers
lead to nicers contourlines, but take longer to evaluate.

Additional specifications passed internally to contour.

Internally, a grid is made inside the window and the height is interpolated using ordinary kriging
from [gstat]{krige} with a model suggested by autofitVariogram.

Value

Contourlines are added to the current plot.

Note

This is a preliminary convenience function that will be used to overhaul levelMap

Author(s)

Michael Cysouw <cysouw @mac.com>

See Also

weightedMap for more involved example

Examples

data(hessen)

continuous variable between @ and 1

data <- hessen$datal,1:3]

heights <- round(datal,1]/rowSums(data), digits = 1)
cols <- heat.colors(11)

names(cols) <- names(table(heights))

boundary as sf

w <- sf::st_as_sf(hessen$boundary)
sf::st_crs(w) <- 4326

w <- sf::st_transform(w, 2397)

points as sf

p <- sf::st_as_sf(hessen$villages, coords = c("longitude”, "latitude"))
sf::st_crs(p) <- 4326

p <- sf::st_transform(p, 2397)

plot map
plot(p, col = cols[as.character(heights)], border = NA, pch = 19)
plot(w, add = TRUE, border = "grey")

add boundary

boundary

addContour(heights, points = p, window = w, crs = 2397, grid = 1000,
levels = c(0.25, 0.35, 0.45), col = "blue")

boundary

Checking boundary parameters for plotting of levelMap

Description

The function levelMap can be tweaked by various parameters determining the boundary of the
interpolation. The function boundary helps finding suitable parameters.

Usage

boundary(points, density = 0.02, grid = 10, box.offset = 0.1

, tightness = "auto”, manual = NULL, plot = TRUE)
Arguments
points Points, typically a two-column matrix with x and y coordinates.
density Density of points below which there should be no interpolation.
grid Density of the grid.
box.offset Distance of the box around the points.
tightness Parameter influencing how tightly the boundary should be wrapped around the
points. Passed internally to kde2d. When "auto” this defaults to bandwidth.nrd.
Lower values will result in tighter boundaries.
manual Manually added boundary points in the form of a two-column matrix with coor-
dinates.
plot Logical: by default the impact of the chosen parameters is shown. If FALSE then
coordinates are returned that are the outside of the boundary.
Details

Instead of trying to use a polygon as a boundary for the interpolation internally in levelMap it
turned out to be easier to use a collection of points that mark the outside.

dialects 5

Value

By default, returns a plot with the original points in black, the points below density in red, and the
box around the points in blue. Contour lines of the density are shown to choose different density
parameters.

When plot = FALSE, the blue and red points from the graphic are returned as a two-column matrix
of x and y coordinates.

Author(s)

Michael Cysouw <cysouw @mac.com>

See Also

Used internally in levelMap. The parameters of this function can be passed through, typically
density and box.offset.

Examples

data(hessen)

show impact of the chosen parameters
boundary(hessen$villages, density = 0.1, grid = 20
, manual = cbind(x = c(8.3, 9.2), y = c(49.9, 50.0)))

return coordinates
boundary(hessen$villages, plot = FALSE)

abstract example, showing tightness in action
oldpar<-par("mfrow")
par(mfrow = c(1,3))

p <- cbind(c(1:10, 1:10), c(1:10, 10:1))
boundary(p, density = 0.005, grid = 20, tightness = "auto")

boundary(p, density = 0.005, grid = 20, tightness = 5)
boundary(p, density = 0.005, grid = 20, tightness = 3)
par(mfrow = oldpar)
dialects Multiple correspondences of "f"-like sounds in German Dialects

Description

In total 34 different words in which an f-like sound occurs. The different pronunciations of this
sound in 183 different German villages are included in this dataset.

6 factorMap

Usage

data(dialects)

Format
List of 2:

villages Dataframe with two variables LONGITUDE and LATITUDE for all 183 villages.

data Matrix with 34 columns showing the pronunciation in the 183 villages.

Source

Excerpt from https://github.com/cysouw/PAD/

Examples

Not run:

might give error message because of non-ASCII phonetic symbols
data(dialects)

require(mapdata)

map("worldHires"”, "Germany"”, fill = TRUE, col = "grey90")

Imap(dialects$villages, dialects$datal,21]
, levels = c(0.20, 0.22, 0.24), add = TRUE, position = "topleft")

title(main = "f-sound in \'Kochloffel\'")

End(Not run)

factorMap Visualising nominal data with various factors.

Description

A factor map ("fmap") is a counterpart of the base function image. In contrast to an image, a factor
map can be used for nominal data with various levels (instead of continuous numerical data). A
matrix (or a dataframe coerced as matrix) is visualised by showing the most frequent contents of
the cells by colouring. There are various methods for ordering of rows and columns provided, alike
to a heatmap).

Usage

factorMap(x, order = NULL, col = rainbow(4), show.remaining = FALSE,
col.remaining = "grey"”, pch.na = 20, col.na = "lightgrey"”, legend = length(col),
labels.x = rownames(x), labels.y = colnames(x), cex.axis = 1, cex.legend = 1,
cex.remaining = 1, font = "", asp = nrow(x)/ncol(x), method = "hamming",
control = NULL, plot = TRUE)

https://github.com/cysouw/PAD/

factorMap

Arguments

X

order

col

show.remaining
col.remaining

pch.na

col.na

legend

labels.x

labels.y

cex.axis
cex.legend
cex.remaining

font

asp

method

control

plot

A matrix or dataframe with the data to be displayed. Rows are shown on the x-
axis, columns on the y-axis, showing the row- and column-names in the display.
All data in the whole matrix is interpreted as one large factor with different
levels.

How should rows and columns be ordered? By default the order of the data
matrix x is used. Many possible algorithmic orderings are available, see Details.
custom orderings should simply be applied to the x matrix beforehand, then
without invoking this order argument.

Colors to be used for the display. By default, the colours specified here are
used in order of frequency of the phenomena in the data (i.e. order (table(x),
decreasing = TRUE). A named vector of colors (or a named list) are applied
to the levels as named. All other levels are shown as ’others’. Optionally use
show. remaining to show labels for these others in the visualisation.

Logical: should all levels without color be shown inside the boxes as text?
Which color should the text of the uncolored levels have?

Symbol to be used for NA elements. Use NULL for no symbol, but complete
coloring of the boxes.

Color to be used for NA elements.

How many levels should be shown in the legend (in the order of frequency?
Alternatively, provide a vector with names of the levels to be shown. Use NULL
to suppress the legend.

Labels to be used on the x-axis. Defaults to rownames of the data. Use NULL to
suppress labels.

Labels to be used on the y-axis. Defaults to colnames of the data. Use NULL to
suppress labels.

Size of the row and columns names of x, shown as axis labels.
Size of the legend text.
Size of the text in the boxes. Only shown when show. remaining = TRUE.

Font to be used in the plotting, can be necessary for unusual unicode symbols.
Passed internally to par(family).

Aspect-ratio of the plotting of the boxes. By default the complete plot will be
approximately square. Use the value 1 for all square boxes. Manually resizing
the boxes by changing the plotting window can be achieved by setting asp = NA.

Method used to determine similarity, passed to sim.obs, which is used internally
to determine the order of rows and columns, using the method chosen in order.

List of options passed to seriate.

By default, a plot is returned. When FALSE, nothing is plotted, but the re-
ordering is returned.

8 factorMap

Details

There are many different orderings implemented: "pca” and "varimax” use the second dimension
of prcomp and varimax respectively. "eig" will use the first eigenvector as computed by eigs. This
is really quick for large datasets. "mds" will use the first dimension of cmdscale.

Further, all methods as provided in the function seriate can be called. Specifcally, "R2E" and
"MDS_angle" seem worthwhile to try out. Any parameters for these methods can be passed us-
ing the option control.

Value
A plot is returned by default. When plot = FALSE, a list is returned with the reordering of the rows
and the columns.

Note

Note that it is slightly confusing that the resulting image is a transposed version of the data matrix
(rows of the matrix are shown as horizontal lines in the graphic, and they are shown from bottom to
top). This is standard practice though, also used in image and heatmap, so it is continued here.

Author(s)

Michael Cysouw <cysouw @mac.com>

See Also

image in base and pimage in the package seriation.

Examples

a simple data matrix
x <- matrix(letters[1:5],3,5)
x[2,3] <- x[1,4] <- NA

rownames(x) <- c("one”, "two", "three")
colnames(x) <- 1:5
X

some basic factor maps

factorMap(x, asp = 1)

factorMap(x, col = heat.colors(5), asp = NA)

factorMap(x, col = list(b = "red"”, e = "blue”), show.remaining = TRUE)

Not run:
more interesting example, different "f" sounds in german dialects
note that fonts might be problematic on some platforms
plotting window should be made really large as well
data(dialects)
factorMap(dialects$data, col = rainbow(8), order = "R2E"

, cex.axis = 0.3, cex.legend = 0.7

, show.remaining = TRUE, cex.remaining = 0.2)

haspelmath 9

get reordering of rows
to identify the group of words with "p-f" correspondences
factorMap(dialects$data, order = "R2E", plot = FALSE)

End(Not run)

haspelmath Data about indefinite constructions in 39 different languages

Description

Summary of the data in Haspelmath (1997), classical example of the usage of semantic maps.

Usage

data(haspelmath)

Format

The dataset is a matrix with nine rows, describing the different indefinite functions, and 134 columns
documenting for each individual construction which functions are possibly expressed by it.

Source

Haspelmath, Martin. Indefinite Pronouns. Oxford Studies in Typology and Linguistic Theory.
Oxford: Clarendon, 1997.

Examples

data(haspelmath)
English data
haspelmath[,7:9]

heeringa Heeringa-style colours

Description

Proposed in Heeringa (2004) to colour a (dis)similarity by decomposing it into three dimensions
(using cmdscale here) and then mapping these dimensions to RGB to make colours. Highly useful
to visualize pairwise similarities between geographic regions.

Usage

heeringa(dist, power = 0.5, mapping = c(1, 2, 3), method = "eigs”, center = NULL)

10

Arguments
dist

power

mapping

method

center

Details

heeringa

dist object specifying distances between points.

Factor used to influence the results of the multidimensional scaling. Values
closer to one will lead to clearer separated colours, while higher values will lead
to more gradual colours.

Optional vector to change the mapping of the dimensions to the colours. Should
be of length 3, specifying to which color each of the three dimensions is mapped.
A 1 means 'red’, a 2 means ’green’ and a 3 means ’blue’. Adding a minus
reverses the mapping.

Method used to determine the colour dimensions. Either mds (nicer colourbal-
ance) or eigs (much faster).

Optionally, specify an index of one of the points to be put in the center of the
coloring scheme, i.e. this point will become grey and all other points will be
colored relative to this point.

This proposal goes back to Heeringa (2004). The idea is to visualize distances by mapping the
first three dimensions of a multidimensional scaling to the the red-green-blue scales. The mapping
vector can be used to change the mapping to the colours.

Value

A vector of colours of the same length as the size of the dist object.

Author(s)

Michael Cysouw <cysouw @mac.com>

References

Heeringa, Wilbert.

"Measuring Dialect Pronunciation Differences Using Levenshtein Distance."

Ph.D. Thesis, Rijksuniversiteit Groningen, 2004.

Examples

data(hessen)

tess <- weightedMap(hessen$villages, window = hessen$boundary, crs = 2397)
d <- dist(hessen$data, method = "canberra”)

different mappings of the colors

cl <- heeringa(d)

plot(tess$weightedVoronoi, col = c1, border = NA)

c2 <- heeringa(d,

power = 1, mapping = c(3, -2, 1))

plot(tess$weightedVoronoi, col = c2, border = NA)

hessen 11

hessen Extract from the SyHD Project on the syntax of the dialect of Hessen
(Germany)

Description

An example dataset of dialect data.

Usage

data(hessen)

Format

List of 3

boundary An object of type owin describing a geographical boundary. This format is necessary
for Voronoi diagrams.

villages A dataframe with two variables "longitude" and "latitude" for the 157 villages on this
there is data in this dataset.

data Dataframe with 56 different characteristics of these 157 villages, distributed over 15 different
variables (as indicated in the column names).

Source

Data from https://www.syhd.info/startseite/index.html

References

Jiirg Fleischer, Simon Kasper & Alexandra N. Lenz (2012): Die Erhebung syntaktischer Phinomene
durch die indirekte Methode: Ergebnisse und Erfahrungen aus dem Forschungsprojekt "Syntax
hessischer Dialekte" (SyHD). In: Zeitschrift fiir Dialektologie und Linguistik 79/1, 2-42.

Examples

data(hessen)

tessalation <- weightedMap(hessen$villages, window = hessen$boundary, crs = 2397)
plot(tessalation$weightedVoronoi)

https://www.syhd.info/startseite/index.html

12 levelMap

levelMap Drawing multi-level maps (e.g. semantic maps or linguistic
isoglosses)

Description

A multi-level map ("Imap") is a plot of the distribution of nominal data with multiple levels in space.
Such visualisations have two direct use-case in linguistics, viz. semantic maps and isoglosses. The
drawing if the lines in space is performed by interpolation in this function (see details).

Semantic maps (Haspelmath 2003) are a visualisation of linguistic diversity. A semantic map
shows a predefined configuration of functions/senses in two-dimensional space with an overlay of
language-specific encoding of these functions/senses. An level-map tries to emulate this linguistic
visualisation in an automatic fashion with various options for visual presentation.

Isoglosses show lines surrounding similar phenomena in space. Instead of drawing an exact bound-
ary around measured points, an interpolation-technique is used here to show areas of interest. By
only showing boundaries, multiple phenomena can be shown in one graphic.

Usage

levelMap(points, data,
main = NULL, draw = 5, levels = c(0.41, 0.46, 0.51),
labels = NULL, cex = 0.7, col = "rainbow”, add = FALSE,
ignore.others = FALSE, normalize.frequency = FALSE, scale.pies = FALSE,
lambda = NA, legend = TRUE, position = "bottomleft”, cex.legend = 0.7,

font = "", note = TRUE, file.out = NULL, ...)
Arguments
points Coordinates of the data points specified as a two-column matrix or dataframe.
data Language data to be plotted as contour-overlay over the points. Either specified

as a vector of language-specific forms, or as a numeric matrix with the forms as
columns and the points as rows (the language-specific forms should be specified
as colnames). The values in the matrix designate the occurrence of the forms,
allowing for the encoding of frequency/typicality and of overlap of different
forms being used in the same function. see Details.

main Title for the plot

draw Which forms to be drawn by contours. Specifying a numeric value will only
draw the uppermost frequent forms in the data, by default only the topmost five
forms are drawn (automatically ordered by frequency). Alternatively, a vector
with names or column-indices of the forms to be drawn can be specified.

levels height of contours to be drawn. Internally, all values are normalized between
zero and one, so only values between those extremes are sensible. Line thickness
is automatically balanced.

levelMap

labels

cex

col

add

ignore.others

13

Optionally, character vector with labels for the points, to be drawn instead of
symbols in the plot. Should be a vector of the same length as the number of
points. Alternatively, a single character-string is repeated for all points.

Character expansion of the labels (see previous option). Also influences the size
of symbols or pie-charts.

Colour specification, either in the form of the name of a built-in color palettes,
like rainbow, or a manually specified vector of colors. When NULL, an attempt
is made to use grey-scales.

Logical: should the plot be added to an existing plot or not?

Logical: ignore all other categories, not selected through draw.

normalize.frequency

scale.pies

lambda

legend
position

cex.legend

font

note

file.out

Details

Logical: should rows of data (points in the plot) be normalized to 1? Useful only
for data that represent frequency of occurence as columns. Note that setting this
to FALSE influences the behaviour of levels.

logical: for multivalued data: should the size of the pies represent frequencies
(TRUE) or all be of the same size (FALSE, by default)?

Parameter for the interpolation, passed internally to the function Krig. Low
values result in more detailed boundaries around the measured points.

Logical: should a legend be added?
Where should the legend be positioned? Passed internally to legend.

Character expansion passed to legend, and also used for the indication of the
levels in the plot

Font to be used for the legend and the labels. Passed internally to par(family).

Logical: should a note be added to the bottom of the graphic to document the
levels of the countour lines?

Location for writing the image to a file instead of plotting it on screen

Additional parameters optionally passed to boundary for the specification of the
area of interpolation.

The basic idea is to use some kind of interpolation to show areas of high-occurrence of a specific
phenomenon. Internally Kriging is used, and then only contour lines are shown of the interpolation.
Multiple lines are suggested to indicate the probibalistic interpretation of the lines.

Value

A plot is produces with the different phenomena in space surrounded by lines. When multiple
options are possible at each point then pie charts are added.

Author(s)

Michael Cysouw <cysouw @mac.com>

14 levelMap

Examples

isogloss example

choose one feature from hessen dataset (number 4)
data(hessen)

f4 <- hessen$datal,9:13]

look for area for interpolation, changing density and grid parameters
suitable parameters can be passed through to function levelMap below
boundary(hessen$villages, density = 0.1, grid = 10)

useful size of pies has to be determined by changing cex

plot(hessen$boundary, main = NULL)

levelMap(hessen$villages, f4, draw = 3, cex = 0.8, normalize.frequency = TRUE
, density = 0.1, grid = 10, add = TRUE, cex.legend = 0.5, scale.pies = TRUE)

Not run:

another isogloss example:

"f" sounds in German dialects in the words "Kochloffel”
might give Unicode-errors because of phonetic symbols
require(mapdata)

map("worldHires"”, "Germany"”, fill = TRUE, col = "grey90")

data(dialects)

levelMap(dialects$villages, dialects$datal,21], levels = c(0.20, 0.22, 0.24)
, add = TRUE, position = "topleft")

title(main = "f-sound in \'Kochloffel\'")

End(Not run)

semantic map example

location of points via multidimensional scaling of complete data
data(haspelmath)

d <- dist(haspelmath)

p <- MASS::isoMDS(d)$points

testing boundary parameters
boundary(p)
boundary(p, density = 0.004, box = ©.15, tightness = 8)

labels to be plotted instead of points
text <- gsub(”"\\.”, "\n", rownames(haspelmath))

show a few languages for Haspelmaths indefinite data
using a quick dummy function to set all parameters
indef <- function(columns) {
levelMap(p, haspelmath[,columns]
, levels = 0.1, labels = text
, density = 0.004, box = 0.15, tightness = 8
, lambda = @.1, note = FALSE)

oldpar <- par("mfcol”)

vmap

15

par(mfcol = c(2,3))

indef (1:3)
indef(4:6)
indef(7:9)
indef (10:12)
indef(13:17)
indef (18:22)

par(mfcol = oldpar)

vmap

Plotting a Voronoi-map ("v-map")

Description

These functions are deprecated: use weightedMap instead.

A Voronoi-map (voronoi-tessellation, also known as dirichlet tessellation) is used in quantitative
dialectology. This function is a convenience wrapper to easily produce dialect maps with voronoi
tessellations. Also described here are a helper functions to produce the tessellation.

Usage

vmap(tessellation, col = NULL, add = FALSE,
outer.border = "black”, border = "grey”, lwd =1, ...)

voronoi(points, window)

Arguments

tessellation
col
add
outer.border

border
1wd

points

window

Tessellation of class tess from the library spatstat.geom. Can easily be pro-
duces by using the convenience function voronoi provided here.

Vector of colors for the filling of the tessellation. Is recycled when there are
more tiles than colours. The order of the tiles is the same as the order of the
points as specified in the function voronoi.

Add graphics to an existing plot

Colour of the outer border. Specifying NA removes the border.
Colour of the inner borders. Specifying NA removes all borders.
Line width of borders.

Further arguments passed to polygon.

Two-column matrix with all coordinates of the points to make a Voronoi tessel-
lation.

Outer boundary for the Voronoi tessellation. Should be in the form of an owin
object. There are two helper functions provided here to get such object. Note
that the function voronoi will give warnings if there are points outside of this
window.

16 vmap

Details

This code is almost completely based on functions from the spatstat.geom package. For con-
venience, first some geographical boundaries can easily be accessed and converted for use in
spatstat.geom. Then a Voronoi tessellation can be made (based on the function dirichlet,
which in turn is based on deldir from the package deldir). Finally, this tessellation can be plotted
filled with different colours.

Any legends have to be added manually by using legend, see examples below.

The function voronoi returns a warning when points are attested that lie outside of the specified
border. For these points there is no polygon specified. Indices for the rejected points outside the
border can be accessed by attr(x, "rejects”).

Value

voronoi returns a tessellation of the class tess from the package spatstat.geom. When points
outside of the border are attested, the indices of these points are added to an attribute "rejects". vmap
plots a map.

Author(s)

Michael Cysouw <cysouw @mac.com>

Examples

Not run:

make a Voronoi tessellation for some villages in hessen
data(hessen)

plot(hessen$boundary)

points(hessen$villages, cex = 0.3)

tessellation <- voronoi(hessen$villages, hessen$boundary)
plot(tessellation)

make a resizable plot with random colour specification
vmap (tessellation, col = rainbow(5), border = NA)
legend("bottomright”, legend = c("a","b","c","d","e"), fill = rainbow(5))

use actual colors from data, using first feature from supplied data
multiple levels cannot easily be shown
consider \link{lmap} for more detail
d1 <- hessen$datal,1:3]
d1 <- d1[,1]/rowSums(d1)
vmap(tessellation, col = rgb(1, 1-d1, 1-d1))
text(hessen$villages, labels=hessen$datal,1],cex=.5)
legend("bottomright”, legend = c("es mir"”, "mir es / other”),
fill = c("red”, "white"))

Use distances to determine colour, as proposed by Heeringa (2004)

Note that different methods to establish distances can lead to rather
different results! Also try method = "euclidean”

d <- dist(hessen$data, method = "canberra”)

weightedMap 17

cols <- heeringa(d)
vmap(tessellation, col = cols, border = NA)

End(Not run)

weightedMap Construct weighted map using Voronoi tessellation and cartogram
weighting

Description

A weighted map ("wmap") is a combination of a Voronoi tessellation with cartogram weighting. A
Voronoi map is a tessellation of a surface based on a set of geographic points. It is used to display
areal patterns without overlap. Additionally, the size of the tiles can be weighted by cartogram-
deformation to allow for varying the visual impression of the data. Specifically, this allows for
equal-area-sized tiles to equally represent all data-points in the visual display.

Usage

weightedMap(x, y = NULL, window = NULL, crs = NULL, weights = "equal”,
grouping = NULL, holes = NULL, concavity = 2, expansion = 1000,
method = "dcn”, maxit = 10, verbose = 0)

Arguments

X Coordinates of the data-points, either an sf object or a two-column matrix/dataframe
with x ("longitude’) and y (’latitude’) coordinates. Alternatively, only specify
the x-coordinates here and use the y parameter for the y-coordinates.

y Latitude (y-coordinates), when the parameter x is used for longitude only.

window Geographical window within which the Voronoi-tessellation will be displayed.
Typically an sf (multi)polygon, but an attempt is made to interpret other formats
(e.g. owin from Spatstat, SpatVector from Terra and Spatial from sp). Con-
sider libraries like geodata and rnaturalearth to obtain suitable windows.
Polygons that do not contain any coordinates are removed (with a warning).
Coordinates that do not lie within the window are removed (with a warning).

When no window is provided (by default), then a concave hull is induced from
the coordinates (using concaveman). Various other parameters explained below
can be used to influence this hull.

crs Coordinate reference system that is necessary for the projection of the map.
When not provided, an attempt is made to extract a crs from the provided coor-
dinates or from the provided window. Without any crs there will be a warning
and EPSG: 3857 will be assumed. Note that the ubiquitous EPSG: 4326 is strictly
speaking not a projection and results in various errors; use a projected version
like EPSG: 3857 instead, or use any of the numerous better alternatives (see ex-
amples below for some ideas).

18

weights

grouping

holes

concavity

expansion

method

maxit

verbose

Details

weightedMap

Vector with weights for the deformation of the Voronoi-tiles. Should have the
same length as the number of coordinates provided. The weights are passed to
cartogramR to perform the deformation. Defaults to "equal” for equal-area
tiles. When NULL no weighting is performed, but a non-weighted Voronoi-map
is still produced.

Influence the form of the concave window around the coordinates. Only used
when there is no window provided. A vector with the same length as the number
of coordinates, listing for each coordinate to which group it belongs. An attempt
is made to make separate windows for each group. Note that a high value for
the parameter expansion might result in overlap.

A list of x,y coordinates where holes should be inferred. When window = NULL
there will be holes inserted inside the window around the coordinates specified
within a distance as specified in expansion from the nearest points around the
coordinates. Not used when there is an explicit window provided.

Influence the form of the concave window around the coordinates. Only used
when there is no window provided. Parameter passed internally to concaveman
determining the concavity of the hull. High values result in more convex hulls.
Low values (especially between 1 and 0) lead to highly concave ("wiggly") win-
dows.

Influence the form of the concave window around the coordinates. Only used
when there is no window provided. Expands the window (value in meters), and
results in more "rounded" windows.

Method used for cartogram deformation, passed to cartogramR. By default,
the older-quicker-less accurate method dcn is used. More modern and accurate
methods gsm and gn can also be used, but they might lead to strange results
with more complex windows. They also sometimes lead to strange results, or
downright stall. Lower maxit might prevent these problems, but lead to less
accurate weighting. Also consider the option verbose to get an indication where
things go wring.

Maximum number of iterations to find a suitable deformation. Parameter passed
internally to cartogramR. Higher values lead to better approximations of the
size of the polygons to the weights. However, with complex maps it might take
very long to converge (or even never finish).

With verbose =1 turn on verbose output for cartogramR to check where the
deformation might run wild

Internally, the Voronoi-tessellation is made without respecting the window, and only afterwards
the window is superimposed on the tessellation. In some circumstances with internal holes in the
window provided, an attempt is made to return tiles that do not jump across such holes. However,
sometimes artefacts are still visible in the output.

Warnings are produced when coordinates lie outside the window provided. The results should still
work, but without these points outside. Any colouring or other uses of the results have to be adapted
accordingly by using the information in $outsideWindow. Polygons without any points inside are
likewise removed with a warning.

weightedMap 19

To deal with overlapping coordinates some jitter is automatically applied to the coordinates pro-
vided.

Value

List of various lengths, depending on specified parameters. Use the names to select any of these

results:
crs: The crs in WKT format.
points: The coordinates as provided, but as a projected sfc_POINT object.
grouping: Character vector with the provided grouping, or the grouping as induced from
any provided window.
window: The window around the coordinates as a projected sfc_POLYGON or sfc_MULTIPOLYGON

object. Some polygons from a provided window might have been removed be-
cause they are empty.

emptyPolygons: Numeric vector with the indices of the polygons that are removed because they
do not contain any of the coordinates provided.

outsideWindow: Numeric vector with the indices of the coordinates that are removed because
they are outside of the window provided.

voronoi: Voronoi-tessellation of the window as a projected sfc_MULTIPOLYGON object.

weights: Numeric vector with the weights used for the deformation. Weights for coordi-
nates outside of the window are removed.

weightedPoints:
Coordinates after the weighting-deformation, specified as a projected sfc_POINT
object.

weightedWindow:
Window after the weighting-deformation, specified as a projected sfc_POLYGON
or sfc_MULTIPOLYGON object.

weightedMap: Voronoi-tessellation after the weighting-deformation, specified as a projected
sfc_MULTIPOLYGON object.

Note

With more complex windows the deformation by cartogramR might throw errors (like "Illegal Argu-
mentException") or fall into an infinite loop. Try to reduce maxit and check verbose = 1 to get an
idea what might be going wrong.

Author(s)

Michael Cysouw <cysouw @mac.com>

Examples

generate a window from coordinates

note the Germany-centered Gauss-Kruger projection "EPSG:2397"

consider increasing 'maxit' to remove the warning about convergence
data(hessen)

20

v <- weightedMap(hessen$villages, expansion = 4000, crs = 2397, maxit = 2)

plot(v$weightedVoronoi)

show the original locations before the transformation in orange
plot(v$points, add = TRUE, col = "green”, cex = .5)

show the new locations after transformation in red
plot(v$weightedPoints, add = TRUE, col = "blue"”, cex = .5)

add the real border of Hessen for comparison
h <- sf::st_as_sf(hessen$boundary)
sf::st_crs(h) <- 4326

h <- sf::st_transform(h, 2397)

plot(h, add = TRUE, border = "red")

weightedMap

use the Voronoi tiles e.g. for Heeringa-colouring (see function "heeringa()")

d <- dist(hessen$data, method = "canberra")
plot(v$weightedVoronoi, col = heeringa(d), border = NA)
plot(v$weightedWindow, add = TRUE, 1lwd = 2)

grouping-vector can be used to make separations in the base-map

groups <- rep(”a", times = 157)

groups[157] <- "b"

groups[c(58,59)] <- "c"

groups[c(101, 102, 107)] <- "d"

holes-list can be used to add holes inside the region

holes <- list(c(9, 50.5), c(9.6, 51.3), c(8.9, 51))

v <- weightedMap(hessen$villages, grouping = groups, holes = holes,
crs = 2397, expansion = 3000)

plot(v$weightedVoronoi, col = "grey")

Not run:

extensive example using data from WALS (https://wals.info). Both the worldmap

and the WALS data are downloaded directly. The worldmap is projected and

deformed so that each datapoint has equal area on the map.

load worldmap
data(world)

try different projections

azimuth_equaldist <- "+proj=aeqd +lat_0=90 +lon_0=45"
mollweide_atlantic <- "+proj=moll +lon_0=11.5"
mollweide_pacific <- "+proj=moll +lon_0=151"

plot(sf::st_transform(world, crs = azimuth_equaldist))

load WALS data, example feature 13: "tone”
library(lingtypology)

feature <- "13A"

wals <- wals.feature(feature)

head(wals)

get glottolog coordinates and correct errors in WALS
wals$glottocode[wals$glottocode == "pogo1257"] <- "pogo1253"

window 21

wals$glottocode[wals$glottocode == "mamc1234"] <- "mamm1241"
wals$glottocode[wals$glottocode == "tukal247"] <- "tukal248"
wals$glottocode[wals$glottocode == "bali1280"] <- "uneal237"
wals <- merge(wals[,c("glottocode”, "wals.code”, feature)l],

glottologl[,c("glottocode”, "longitude”, "latitude"”)])

calculate an equally-weighted voronoi transformation
v <- weightedMap(wals$longitude, wals$latitude, window = world,
crs = mollweide_atlantic, method = "dcn”, maxit = 10)

prepare colors

cols <- c("lightsalmon”, "grey", "lightpink")
names(cols) <- names(table(wals[,featurel))
cols <- cols[c(2,3,1)]

the map

plot(v$weightedVoronoi, col = cols[wals[,feature]], border = "darkgrey", lwd = 0.2)
plot(v$weightedWindow, border = "black”, add = TRUE, lwd = 0.5)
legend("bottomleft”, legend = names(cols), fill = cols, cex = .7)

add contourlines
height <- c(@, 0.5, 1)
names(height) <- c(”"No tones”, "Simple tone system”, "Complex tone system")
addContour(height = height[wals[,feature]],
points = v$weightedPoints,
window = v$weightedWindow,
crs = v$ers,
col = "darkred", levels = c(0.2, 0.4, 0.6))

Alternative: using points instead of polygons
cols[2:3] <- c("orange", "red")
plot(v$weightedPoints, col = cols[wals[,featurel], cex

=1, pch = 19)
plot(v$weightedWindow, add = T, border = "darkgrey”, lwd =

0.5)

End(Not run)

window Producing windows of class "owin"

Description

These functions are deprecated: use weightedMap instead.

Different ways to easily produce windows of class "owin" from the package "spatstat" are presented
here. These are used by voronoi.

Usage

hullToOwin(points, shift, alpha)
mapsToOwin(country, database = "world")

gadmToOwin(country, sub = NULL, level = @)

22 window

Arguments
points Set of points that need a window around them. Two column matrix.
shift The amount of space around the outer points at determining the window.
alpha Parameter for the ’curviness’: lower values show more detail. Passed internally
to ahull.
country Name of the country to obtain borders and turn them into an owin object needed
for the function voronoi. For mapsToOwin check map how to specify the names.
For gadmToOwin, check https://gadm.org.
database Database as used by map.
sub, level Names for Subdivisions of countries as available in the GADM database
Details

For hullToOwin, the function ahull is used to make a hull around the points. This is then converted
to an "owin" window.

The functions mapsToOwin and GadmToWin use external topogaphic boundaries to produce windows.

Value

All functions return an object of class owin from the package spatstat.

Note

Includes code from code from Andrew Bevan, based on code from Dylan Beaudette, see https:
//stat.ethz.ch/pipermail/r-sig-geo/2012-March/014409.html.

The function gadmToOwin needs online access to download the data. The data is saved in the current
working directory, and will not be downloaded again when it is already available there.

Author(s)

Michael Cysouw <cysouw @mac.com>

Examples

Not run:

Boundary of the German state "Hessen”

This will need to access the online GADM database
and might take some time

boundary <- gadmToOwin("DEU", "Hessen”, 1)

A window does not have to be continuous
random <- mapsToOwin(c("Germany", "Greece"))
plot(random, main = NULL)

hull around some points
note influence of alpha and shift
data(hessen)

https://gadm.org
https://stat.ethz.ch/pipermail/r-sig-geo/2012-March/014409.html
https://stat.ethz.ch/pipermail/r-sig-geo/2012-March/014409.html

world 23

hull <- hullToOwin(hessen$villages, shift = 0.2, alpha = 1)
plot(hull)
points(hessen$villages)

hull <- hullToOwin(hessen$villages, shift = @.1, alpha = 0.2)
plot(hull)
points(hessen$villages)

End(Not run)

world Boundary of the World fitting all Glottolog languages

Description

A polygon representing a worldmap tailored to be not too detailed, but still fitting all glottolog
languages inside the polygons.

Usage
data("world")

Format

The format is a sfc_POLYGON of length 475 with an EPSG:4326 projection.

Details

Some trickery was needed to produce a lightweight polygon to represent the worldmap in reasonably
accuracy without becoming too large and unwiedly. The polygons are such that all coordinates for
languages as listed in the glottolog (version 5) are inside these polygons.

The map has a basic EPSG:4326 projection, so longitude-latitude coordinates can immediately be
added to it. However, this does not look very nice, because the polygon from Eurasia wraps around.
Consider more suitable projections, see examples. To allow for a nice pacific-centered projection
Greenland has been clipped.

Source

Polygons are based on the data from https://www.naturalearthdata.com with adjustments.
Glottolog coordinates to select and adjust the polygons are from https://glottolog.org.

Examples

data(world)
plot(world)

use different projections
azimuth_equaldist <- "+proj=aeqd +lat_0=90 +lon_0=45"
mollweide_atlantic <- "+proj=moll +lon_0=11.5"

https://www.naturalearthdata.com
https://glottolog.org

world

mollweide_pacific <- "+proj=moll +lon_0=151"

plot(sf::st_transform(world, crs = azimuth_equaldist))

Index

+ datasets
dialects, 5
haspelmath, 9
hessen, 11
world, 23

* hplot
weightedMap, 17

addContour, 2
ahull, 22
autofitVariogram, 3

bandwidth.nrd, 4
boundary, 4, 13

cartogramR, I8, 19
cmdscale, 8
concaveman, 17, 18
contour, 3

dialects, 5
dirichlet, 16
dist, 10

eigs, 8

factorMap, 6
fmap, 2
fmap (factorMap), 6

gadmToOwin (window), 21

haspelmath, 9
heatmap, 6, 8
heeringa, 9

hessen, 11

hullToOwin (window), 21

image, 6, 8

kde2d, 4

25

Krig, 13

legend, 13, 16
levelMap, 3-5, 12
limage (factorMap), 6
1map, 2

1map (levelMap), 12

map, 22
mapsToOwin (window), 21

NULL, /3
owin, 15, 22
pimage, 8

polygon, 15
prcomp, 8

glcVisualize (qlcVisualize-package), 2

glcVisualize-package, 2
rainbow, /3

seriate, 7, 8
sim.obs, 7

tess, 15

varimax, 8

vmap, 15

voronoi, 15,21, 22
voronoi (vmap), 15
voronoimap (vmap), 15

weightedMap, 2, 3, 15,17, 21

window, 21

wmap, 2

wmap (weightedMap), 17
world, 23

	qlcVisualize-package
	addContour
	boundary
	dialects
	factorMap
	haspelmath
	heeringa
	hessen
	levelMap
	vmap
	weightedMap
	window
	world
	Index

