
Package ‘mirai’
March 20, 2025

Type Package

Title Minimalist Async Evaluation Framework for R

Version 2.2.0

Description Designed for simplicity, a 'mirai' evaluates an R expression
asynchronously in a parallel process, locally or distributed over the
network. The result is automatically available upon completion. Modern
networking and concurrency, built on 'nanonext' and 'NNG' (Nanomsg Next
Gen), ensures reliable and efficient scheduling over fast inter-process
communications or TCP/IP secured by TLS. Distributed computing can launch
remote resources via SSH or cluster managers. An inherently queued
architecture handles many more tasks than available processes, and requires
no storage on the file system. Innovative features include support for
otherwise non-exportable reference objects, event-driven promises, and
asynchronous parallel map.

License GPL (>= 3)

BugReports https://github.com/shikokuchuo/mirai/issues

URL https://shikokuchuo.net/mirai/,

https://github.com/shikokuchuo/mirai

Encoding UTF-8

Depends R (>= 3.6)

Imports nanonext (>= 1.5.2)

Enhances parallel, promises

Suggests cli, litedown

VignetteBuilder litedown

RoxygenNote 7.3.2

NeedsCompilation no

Author Charlie Gao [aut, cre] (<https://orcid.org/0000-0002-0750-061X>),
Joe Cheng [ctb],
Hibiki AI Limited [cph],
Posit Software, PBC [cph]

1

https://github.com/shikokuchuo/mirai/issues
https://shikokuchuo.net/mirai/
https://github.com/shikokuchuo/mirai
https://orcid.org/0000-0002-0750-061X

2 mirai-package

Maintainer Charlie Gao <charlie.gao@shikokuchuo.net>

Repository CRAN

Date/Publication 2025-03-20 14:40:02 UTC

Contents
mirai-package . 2
as.promise.mirai . 3
as.promise.mirai_map . 4
call_mirai . 5
call_mirai_ . 6
collect_mirai . 7
daemon . 8
daemons . 10
dispatcher . 14
everywhere . 15
host_url . 17
is_mirai . 18
is_mirai_error . 19
launch_local . 20
make_cluster . 21
mirai . 23
mirai_map . 26
remote_config . 28
serial_config . 31
status . 32
stop_mirai . 33
unresolved . 34
with.miraiDaemons . 35

Index 36

mirai-package mirai: Minimalist Async Evaluation Framework for R

Description

Designed for simplicity, a ’mirai’ evaluates an R expression asynchronously in a parallel process,
locally or distributed over the network. The result is automatically available upon completion.
Modern networking and concurrency, built on ’nanonext’ and ’NNG’ (Nanomsg Next Gen), ensures
reliable and efficient scheduling over fast inter-process communications or TCP/IP secured by TLS.
Distributed computing can launch remote resources via SSH or cluster managers. An inherently
queued architecture handles many more tasks than available processes, and requires no storage on
the file system. Innovative features include support for otherwise non-exportable reference objects,
event-driven promises, and asynchronous parallel map.

as.promise.mirai 3

Notes

For local mirai requests, the default transport for inter-process communications is platform-dependent:
abstract Unix domain sockets on Linux, Unix domain sockets on MacOS, Solaris and other POSIX
platforms, and named pipes on Windows.

This may be overriden, if desired, by specifying ’url’ in the daemons() interface and launching
daemons using launch_local().

Reference Manual

vignette("mirai", package = "mirai")

Author(s)

Charlie Gao <charlie.gao@shikokuchuo.net> (ORCID)

See Also

Useful links:

• https://shikokuchuo.net/mirai/

• https://github.com/shikokuchuo/mirai

• Report bugs at https://github.com/shikokuchuo/mirai/issues

as.promise.mirai Make mirai Promise

Description

Creates a ’promise’ from a ’mirai’.

Usage

S3 method for class 'mirai'
as.promise(x)

Arguments

x an object of class ’mirai’.

Details

This function is an S3 method for the generic as.promise() for class ’mirai’.

Requires the promises package.

Allows a ’mirai’ to be used with the promise pipe %...>%, which schedules a function to run upon
resolution of the ’mirai’.

https://orcid.org/0000-0002-0750-061X
https://shikokuchuo.net/mirai/
https://github.com/shikokuchuo/mirai
https://github.com/shikokuchuo/mirai/issues
https://CRAN.R-project.org/package=promises

4 as.promise.mirai_map

Value

A ’promise’ object.

Examples

library(promises)

p <- as.promise(mirai("example"))
print(p)
is.promise(p)

p2 <- mirai("completed") %...>% identity()
p2$then(cat)
is.promise(p2)

as.promise.mirai_map Make mirai_map Promise

Description

Creates a ’promise’ from a ’mirai_map’.

Usage

S3 method for class 'mirai_map'
as.promise(x)

Arguments

x an object of class ’mirai_map’.

Details

This function is an S3 method for the generic as.promise() for class ’mirai_map’.

Requires the promises package.

Allows a ’mirai_map’ to be used with the promise pipe %...>%, which schedules a function to run
upon resolution of the entire ’mirai_map’.

The implementation internally uses promises::promise_all(). If all of the promises were suc-
cessful, the returned promise will resolve to a list of the promise values; if any promise fails, the
first error to be encountered will be used to reject the returned promise.

Value

A ’promise’ object.

https://CRAN.R-project.org/package=promises

call_mirai 5

Examples

library(promises)

with(daemons(1), {
mp <- mirai_map(1:3, function(x) { Sys.sleep(1); x })
p <- as.promise(mp)
print(p)
p %...>% print
mp[.flat]

})

call_mirai mirai (Call Value)

Description

Waits for the ’mirai’ to resolve if still in progress, stores the value at $data, and returns the ’mirai’
object.

Usage

call_mirai(x)

Arguments

x a ’mirai’ object, or list of ’mirai’ objects.

Details

Accepts a list of ’mirai’ objects, such as those returned by mirai_map(), as well as individual
’mirai’.

Waits for the asynchronous operation(s) to complete if still in progress, blocking but user-interruptible.

x[] may also be used to wait for and return the value of a mirai x, and is the equivalent of
call_mirai(x)$data.

Value

The passed object (invisibly). For a ’mirai’, the retrieved value is stored at $data.

Alternatively

The value of a ’mirai’ may be accessed at any time at $data, and if yet to resolve, an ’unresolved’
logical NA will be returned instead.

Using unresolved() on a ’mirai’ returns TRUE only if it has yet to resolve and FALSE otherwise.
This is suitable for use in control flow statements such as while or if.

6 call_mirai_

Errors

If an error occurs in evaluation, the error message is returned as a character string of class ’miraiEr-
ror’ and ’errorValue’. is_mirai_error() may be used to test for this. The elements of the original
condition are accessible via $ on the error object. A stack trace comprising a list of calls is also
available at $stack.trace.

If a daemon crashes or terminates unexpectedly during evaluation, an ’errorValue’ 19 (Connection
reset) is returned.

is_error_value() tests for all error conditions including ’mirai’ errors, interrupts, and timeouts.

Examples

using call_mirai()
df1 <- data.frame(a = 1, b = 2)
df2 <- data.frame(a = 3, b = 1)
m <- mirai(as.matrix(rbind(df1, df2)), df1 = df1, df2 = df2, .timeout = 1000)
call_mirai(m)$data

using unresolved()
m <- mirai(

{
res <- rnorm(n)
res / rev(res)

},
n = 1e6

)
while (unresolved(m)) {

cat("unresolved\n")
Sys.sleep(0.1)

}
str(m$data)

call_mirai_ Call mirai

Description

call_mirai_ is deprecated and exported for historical compatibility only. It will be removed in a
future package version. Use call_mirai() instead.

Usage

call_mirai_(x)

Arguments

x a ’mirai’ object, or list of ’mirai’ objects.

collect_mirai 7

collect_mirai mirai (Collect Value)

Description

Waits for the ’mirai’ to resolve if still in progress, and returns its value directly. It is a more efficient
version of and equivalent to call_mirai(x)$data.

Usage

collect_mirai(x, options = NULL)

Arguments

x a ’mirai’ object, or list of ’mirai’ objects.

options (if x is a list of mirai) a character vector comprising any combination of collec-
tion options for mirai_map(), such as ".flat" or c(".progress", ".stop").

Details

This function will wait for the asynchronous operation(s) to complete if still in progress, blocking
but interruptible.

x[] is an equivalent way to wait for and return the value of a mirai x.

Value

An object (the return value of the ’mirai’), or a list of such objects (the same length as x, preserving
names).

Alternatively

The value of a ’mirai’ may be accessed at any time at $data, and if yet to resolve, an ’unresolved’
logical NA will be returned instead.

Using unresolved() on a ’mirai’ returns TRUE only if it has yet to resolve and FALSE otherwise.
This is suitable for use in control flow statements such as while or if.

Errors

If an error occurs in evaluation, the error message is returned as a character string of class ’miraiEr-
ror’ and ’errorValue’. is_mirai_error() may be used to test for this. The elements of the original
condition are accessible via $ on the error object. A stack trace comprising a list of calls is also
available at $stack.trace.

If a daemon crashes or terminates unexpectedly during evaluation, an ’errorValue’ 19 (Connection
reset) is returned.

is_error_value() tests for all error conditions including ’mirai’ errors, interrupts, and timeouts.

8 daemon

Examples

using collect_mirai()
df1 <- data.frame(a = 1, b = 2)
df2 <- data.frame(a = 3, b = 1)
m <- mirai(as.matrix(rbind(df1, df2)), df1 = df1, df2 = df2, .timeout = 1000)
collect_mirai(m)

using x[]
m[]

mirai_map with collection options
daemons(1, dispatcher = FALSE)
m <- mirai_map(1:3, rnorm)
collect_mirai(m, c(".flat", ".progress"))
daemons(0)

daemon Daemon Instance

Description

Starts up an execution daemon to receive mirai() requests. Awaits data, evaluates an expression
in an environment containing the supplied data, and returns the value to the host caller. Daemon
settings may be controlled by daemons() and this function should not need to be invoked directly,
unless deploying manually on remote resources.

Usage

daemon(
url,
dispatcher = FALSE,
...,
asyncdial = FALSE,
autoexit = TRUE,
cleanup = TRUE,
output = FALSE,
idletime = Inf,
walltime = Inf,
maxtasks = Inf,
id = NULL,
tls = NULL,
rs = NULL

)

daemon 9

Arguments

url the character host or dispatcher URL to dial into, including the port to connect
to, e.g. ’tcp://hostname:5555’ or ’tls+tcp://10.75.32.70:5555’.

dispatcher [default FALSE] logical value, which should be set to TRUE if using dispatcher
and FALSE otherwise.

... reserved but not currently used.

asyncdial [default FALSE] whether to perform dials asynchronously. The default FALSE
will error if a connection is not immediately possible (for instance if daemons()
has yet to be called on the host, or the specified port is not open etc.). Specifying
TRUE continues retrying (indefinitely) if not immediately successful, which is
more resilient but can mask potential connection issues.

autoexit [default TRUE] logical value, whether the daemon should exit automatically
when its socket connection ends. If a signal from the tools package, such as
tools::SIGINT, or an equivalent integer value is supplied, this signal is addi-
tionally raised on exit (see ’Persistence’ section below).

cleanup [default TRUE] logical value, whether to perform cleanup of the global envi-
ronment and restore attached packages and options to an initial state after each
evaluation.

output [default FALSE] logical value, to output generated stdout / stderr if TRUE, or
else discard if FALSE. Specify as TRUE in the ... argument to daemons() or
launch_local() to provide redirection of output to the host process (applicable
only for local daemons).

idletime [default Inf] integer milliseconds maximum time to wait for a task (idle time)
before exiting.

walltime [default Inf] integer milliseconds soft walltime (time limit) i.e. the minimum
amount of real time elapsed before exiting.

maxtasks [default Inf] integer maximum number of tasks to execute (task limit) before
exiting.

id [default NULL] (optional) integer daemon ID provided to dispatcher to track
connection status. Causes status() to report this ID under $events when the
daemon connects and disconnects.

tls [default NULL] required for secure TLS connections over ’tls+tcp://’. Either
the character path to a file containing X.509 certificate(s) in PEM format, com-
prising the certificate authority certificate chain starting with the TLS certificate
and ending with the CA certificate, or a length 2 character vector comprising [i]
the certificate authority certificate chain and [ii] the empty string "".

rs [default NULL] the initial value of .Random.seed. This is set automatically
using L’Ecuyer-CMRG RNG streams generated by the host process and should
not be independently supplied.

Details

The network topology is such that daemons dial into the host or dispatcher, which listens at the
url address. In this way, network resources may be added or removed dynamically and the host or
dispatcher automatically distributes tasks to all available daemons.

10 daemons

Value

Invisibly, an integer exit code: 0L for normal termination, and a positive value if a self-imposed
limit was reached: 1L (idletime), 2L (walltime), 3L (maxtasks).

Persistence

The autoexit argument governs persistence settings for the daemon. The default TRUE ensures
that it will exit cleanly once its socket connection has ended.

Instead of TRUE, supplying a signal from the tools package, such as tools::SIGINT, or an equiv-
alent integer value, sets this signal to be raised when the socket connection ends. For instance,
supplying SIGINT allows a potentially more immediate exit by interrupting any ongoing evaluation
rather than letting it complete.

Setting to FALSE allows the daemon to persist indefinitely even when there is no longer a socket
connection. This allows a host session to end and a new session to connect at the URL where the
daemon is dialled in. Daemons must be terminated with daemons(NULL) in this case, which sends
explicit exit signals to all connected daemons.

daemons Daemons (Set Persistent Processes)

Description

Set daemons, or persistent background processes, to receive mirai() requests. Specify n to create
daemons on the local machine. Specify url to receive connections from remote daemons (for
distributed computing across the network). Specify remote to optionally launch remote daemons
via a remote configuration. Dispatcher (enabled by default) ensures optimal scheduling.

Usage

daemons(
n,
url = NULL,
remote = NULL,
dispatcher = TRUE,
...,
seed = NULL,
serial = NULL,
tls = NULL,
pass = NULL,
.compute = "default"

)

daemons 11

Arguments

n integer number of daemons to launch.

url [default NULL] if specified, a character string comprising a URL at which to
listen for remote daemons, including a port accepting incoming connections, e.g.
’tcp://hostname:5555’ or ’tcp://10.75.32.70:5555’. Specify a URL with scheme
’tls+tcp://’ to use secure TLS connections (for details see Distributed Computing
section below). Auxiliary function host_url() may be used to construct a valid
host URL.

remote [default NULL] required only for launching remote daemons, a configuration
generated by remote_config() or ssh_config().

dispatcher [default TRUE] logical value, whether to use dispatcher. Dispatcher runs in a
separate process to ensure optimal scheduling, although this may not always be
required (for details see Dispatcher section below).

... (optional) additional arguments passed through to daemon() if launching dae-
mons. These include asyncdial, autoexit, cleanup, output, maxtasks, idletime
and walltime.

seed [default NULL] (optional) supply a random seed (single value, interpreted as
an integer). This is used to inititalise the L’Ecuyer-CMRG RNG streams sent to
each daemon. Note that reproducible results can be expected only for dispatcher
= FALSE, as the unpredictable timing of task completions would otherwise in-
fluence the tasks sent to each daemon. Even for dispatcher = FALSE, repro-
ducibility is not guaranteed if the order in which tasks are sent is not determin-
istic.

serial [default NULL] (optional, requires dispatcher) a configuration created by serial_config()
to register serialization and unserialization functions for normally non-exportable
reference objects, such as Arrow Tables or torch tensors.

tls [default NULL] (optional for secure TLS connections) if not supplied, zero-
configuration single-use keys and certificates are automatically generated. If
supplied, either the character path to a file containing the PEM-encoded TLS
certificate and associated private key (may contain additional certificates leading
to a validation chain, with the TLS certificate first), or a length 2 character
vector comprising [i] the TLS certificate (optionally certificate chain) and [ii]
the associated private key.

pass [default NULL] (required only if the private key supplied to tls is encrypted
with a password) For security, should be provided through a function that returns
this value, rather than directly.

.compute [default ’default’] character value for the compute profile to use (each compute
profile has its own independent set of daemons).

Details

Use daemons(0) to reset daemon connections:

• All connected daemons and/or dispatchers exit automatically.

• mirai reverts to the default behaviour of creating a new background process for each request.

12 daemons

• Any unresolved ’mirai’ will return an ’errorValue’ 19 (Connection reset) after a reset.

• Daemons must be reset before calling daemons() with revised settings for a compute profile.
Daemons may be added at any time by using launch_local() or launch_remote() without
needing to revise daemons settings.

If the host session ends, all connected dispatcher and daemon processes automatically exit as soon
as their connections are dropped (unless the daemons were started with autoexit = FALSE). If a
daemon is processing a task, it will exit as soon as the task is complete.

To reset persistent daemons started with autoexit = FALSE, use daemons(NULL) instead, which
also sends exit signals to all connected daemons prior to resetting.

For historical reasons, daemons() with no arguments (other than optionally .compute) returns the
value of status().

Value

The integer number of daemons launched locally (zero if specifying url or using a remote launcher).

Local Daemons

Daemons provide a potentially more efficient solution for asynchronous operations as new processes
no longer need to be created on an ad hoc basis.

Supply the argument n to set the number of daemons. New background daemon() processes are
automatically created on the local machine connecting back to the host process, either directly or
via dispatcher.

Dispatcher

By default dispatcher = TRUE launches a background process running dispatcher(). Dispatcher
connects to daemons on behalf of the host, queues tasks, and ensures optimal scheduling.

Specifying dispatcher = FALSE, daemons connect directly to the host and tasks are distributed in
a round-robin fashion. As tasks are queued at each daemon, optimal scheduling is not guaranteed
as the duration of each task cannot be known a priori. Tasks can be queued at one daemon while
others remain idle. However, this provides the most resource-light approach, suited to working with
similar-length tasks, or where concurrent tasks typically do not exceed available daemons.

Distributed Computing

Specifying url as a character string allows tasks to be distributed across the network. n is only
required in this case if providing a launch configuration to remote to launch remote daemons.

Supply a URL with a ’tcp://’ scheme, such as ’tcp://10.75.32.70:5555’. The host / dispatcher listens
at this address, utilising a single port. Individual daemons (started with daemon()) may then dial in
to this URL. Host / dispatcher automatically adjusts to the number of daemons actually connected,
allowing dynamic upscaling or downscaling as required.

Switching the URL scheme to ’tls+tcp://’ automatically upgrades the connection to use TLS. The
auxiliary function host_url() may be used to construct a valid host URL based on the computer’s
hostname.

daemons 13

IPv6 addresses are also supported and must be enclosed in square brackets [] to avoid confusion
with the final colon separating the port. For example, port 5555 on the IPv6 loopback address ::1
would be specified as ’tcp://[::1]:5555’.

Specifying the wildcard value zero for the port number e.g. ’tcp://[::1]:0’ will automatically assign
a free ephemeral port. Use status() to inspect the actual assigned port at any time.

Specify remote with a call to remote_config() or ssh_config() to launch daemons on remote
machines. Otherwise, launch_remote() may be used to generate the shell commands to deploy
daemons manually on remote resources.

Compute Profiles

By default, the "default" compute profile is used. Providing a character value for .compute cre-
ates a new compute profile with the name specified. Each compute profile retains its own daemons
settings, and may be operated independently of each other. Some usage examples follow:

local / remote daemons may be set with a host URL and specifying .compute as "remote", which
creates a new compute profile. Subsequent mirai() calls may then be sent for local computation
by not specifying the .compute argument, or for remote computation to connected daemons by
specifying the .compute argument as "remote".

cpu / gpu some tasks may require access to different types of daemon, such as those with GPUs.
In this case, daemons() may be called to set up host URLs for CPU-only daemons and for those
with GPUs, specifying the .compute argument as "cpu" and "gpu" respectively. By supplying the
.compute argument to subsequent mirai() calls, tasks may be sent to either cpu or gpu daemons
as appropriate.

Note: further actions such as resetting daemons via daemons(0) should be carried out with the
desired .compute argument specified.

Examples

Create 2 local daemons (using dispatcher)
daemons(2)
status()
Reset to zero
daemons(0)

Create 2 local daemons (not using dispatcher)
daemons(2, dispatcher = FALSE)
status()
Reset to zero
daemons(0)

Set up dispatcher accepting TLS over TCP connections
daemons(url = host_url(tls = TRUE))
status()
Reset to zero
daemons(0)

Set host URL for remote daemons to dial into
daemons(url = host_url(), dispatcher = FALSE)
status()

14 dispatcher

Reset to zero
daemons(0)

Use with() to evaluate with daemons for the duration of the expression
with(

daemons(2),
{
m1 <- mirai(Sys.getpid())
m2 <- mirai(Sys.getpid())
cat(m1[], m2[], "\n")

}
)

Not run:

Launch daemons on remotes 'nodeone' and 'nodetwo' using SSH
connecting back directly to the host URL over a TLS connection:
daemons(

url = host_url(tls = TRUE),
remote = ssh_config(c('ssh://nodeone', 'ssh://nodetwo'))

)

Launch 4 daemons on the remote machine 10.75.32.90 using SSH tunnelling:
daemons(

n = 4,
url = local_url(tcp = TRUE),
remote = ssh_config('ssh://10.75.32.90', tunnel = TRUE)

)

End(Not run)

dispatcher Dispatcher

Description

Dispatches tasks from a host to daemons for processing, using FIFO scheduling, queuing tasks as
required. Daemon / dispatcher settings may be controlled by daemons() and this function should
not need to be invoked directly.

Usage

dispatcher(host, url = NULL, n = NULL, ..., tls = NULL, pass = NULL, rs = NULL)

Arguments

host the character host URL to dial (where tasks are sent from), including the port to
connect to e.g. ’tcp://hostname:5555’ or ’tcp://10.75.32.70:5555’.

everywhere 15

url (optional) the character URL dispatcher should listen at (and daemons should
dial in to), including the port to connect to e.g. ’tcp://hostname:5555’ or ’tcp://10.75.32.70:5555’.
Specify ’tls+tcp://’ to use secure TLS connections.

n (optional) if specified, the integer number of daemons to launch. In this case, a
local url is automatically generated.

... (optional) additional arguments passed through to daemon(). These include
asyncdial, autoexit, and cleanup.

tls [default NULL] (required for secure TLS connections) either the character path
to a file containing the PEM-encoded TLS certificate and associated private key
(may contain additional certificates leading to a validation chain, with the TLS
certificate first), or a length 2 character vector comprising [i] the TLS certificate
(optionally certificate chain) and [ii] the associated private key.

pass [default NULL] (required only if the private key supplied to tls is encrypted
with a password) For security, should be provided through a function that returns
this value, rather than directly.

rs [default NULL] the initial value of .Random.seed. This is set automatically
using L’Ecuyer-CMRG RNG streams generated by the host process and should
not be independently supplied.

Details

The network topology is such that a dispatcher acts as a gateway between the host and daemons,
ensuring that tasks received from the host are dispatched on a FIFO basis for processing. Tasks
are queued at the dispatcher to ensure tasks are only sent to daemons that can begin immediate
execution of the task.

Value

Invisible NULL.

everywhere Evaluate Everywhere

Description

Evaluate an expression ’everywhere’ on all connected daemons for the specified compute profile -
this must be set prior to calling this function. Designed for performing setup operations across dae-
mons by loading packages or exporting common data. Resultant changes to the global environment,
loaded packages and options are persisted regardless of a daemon’s cleanup setting.

Usage

everywhere(.expr, ..., .args = list(), .compute = "default")

16 everywhere

Arguments

.expr an expression to evaluate asynchronously (of arbitrary length, wrapped in { }
where necessary), or else a pre-constructed language object.

... (optional) either named arguments (name = value pairs) specifying objects ref-
erenced, but not defined, in .expr, or an environment containing such objects.
See ’evaluation’ section below.

.args (optional) either a named list specifying objects referenced, but not defined, in
.expr, or an environment containing such objects. These objects will remain
local to the evaluation environment as opposed to those supplied in ... above -
see ’evaluation’ section below.

.compute [default ’default’] character value for the compute profile to use (each compute
profile has its own independent set of daemons).

Details

This function should be called when no other mirai operations are in progress. If necessary, wait
for all mirai operations to complete. This is as this function does not force a synchronization
point, and using concurrently with other mirai operations does not guarantee the timing of when the
instructions will be received, or that they will be received on each daemon.

Value

A list of mirai executed on each daemon. This may be waited for and inspected using call_mirai()
or collect_mirai().

Evaluation

The expression .expr will be evaluated in a separate R process in a clean environment (not the
global environment), consisting only of the objects supplied to .args, with the objects passed as
... assigned to the global environment of that process.

As evaluation occurs in a clean environment, all undefined objects must be supplied through ...
and/or .args, including self-defined functions. Functions from a package should use namespaced
calls such as mirai::mirai(), or else the package should be loaded beforehand as part of .expr.

For evaluation to occur as if in your global environment, supply objects to ... rather than .args,
e.g. for free variables or helper functions defined in function bodies, as scoping rules may otherwise
prevent them from being found.

Examples

daemons(1)
export common data by a super-assignment expression:
everywhere(y <<- 3)
'...' variables are assigned to the global environment
'.expr' may be specified as an empty {} in such cases:
everywhere({}, a = 1, b = 2)
m <- mirai(a + b - y == 0L)
m[]
everywhere() returns a list of mirai which may be waited for and inspected

host_url 17

mlist <- everywhere("just a normal operation")
collect_mirai(mlist)
mlist <- everywhere(stop("error"))
collect_mirai(mlist)
daemons(0)

loading a package on all daemons
daemons(1, dispatcher = FALSE)
everywhere(library(parallel))
m <- mirai("package:parallel" %in% search())
m[]
daemons(0)

host_url URL Constructors

Description

host_url constructs a valid host URL (at which daemons may connect) based on the computer’s
hostname. This may be supplied directly to the url argument of daemons().

local_url constructs a URL suitable for local daemons, or for use with SSH tunnelling. This may
be supplied directly to the url argument of daemons().

Usage

host_url(tls = FALSE, port = 0)

local_url(tcp = FALSE, port = 0)

Arguments

tls [default FALSE] logical value whether to use TLS in which case the scheme
used will be ’tls+tcp://’.

port [default 0] numeric port to use. 0 is a wildcard value that automatically assigns
a free ephemeral port. For host_url, this port should be open to connections
from the network addresses the daemons are connecting from. For local_url,
is only taken into account if tcp = TRUE.

tcp [default FALSE] logical value whether to use a TCP connection. This must be
used for SSH tunnelling.

Details

host_url relies on using the host name of the computer rather than an IP address and typically
works on local networks, although this is not always guaranteed. If unsuccessful, substitute an IPv4
or IPv6 address in place of the hostname.

local_url generates a random URL for the platform’s default inter-process communications trans-
port: abstract Unix domain sockets on Linux, Unix domain sockets on MacOS, Solaris and other
POSIX platforms, and named pipes on Windows.

18 is_mirai

Value

A character string comprising a valid URL.

Examples

host_url()
host_url(tls = TRUE)
host_url(tls = TRUE, port = 5555)

local_url()
local_url(tcp = TRUE)
local_url(tcp = TRUE, port = 5555)

is_mirai Is mirai / mirai_map

Description

Is the object a ’mirai’ or ’mirai_map’.

Usage

is_mirai(x)

is_mirai_map(x)

Arguments

x an object.

Value

Logical TRUE if x is of class ’mirai’ or ’mirai_map’ respectively, FALSE otherwise.

Examples

daemons(1, dispatcher = FALSE)
df <- data.frame()
m <- mirai(as.matrix(df), df = df)
is_mirai(m)
is_mirai(df)

mp <- mirai_map(1:3, runif)
is_mirai_map(mp)
is_mirai_map(mp[])
daemons(0)

is_mirai_error 19

is_mirai_error Error Validators

Description

Validator functions for error value types created by mirai.

Usage

is_mirai_error(x)

is_mirai_interrupt(x)

is_error_value(x)

Arguments

x an object.

Details

Is the object a ’miraiError’. When execution in a ’mirai’ process fails, the error message is returned
as a character string of class ’miraiError’ and ’errorValue’. The elements of the original condition
are accessible via $ on the error object. A stack trace is also available at $stack.trace.

Is the object a ’miraiInterrupt’. When an ongoing ’mirai’ is sent a user interrupt, it will resolve to
an empty character string classed as ’miraiInterrupt’ and ’errorValue’.

Is the object an ’errorValue’, such as a ’mirai’ timeout, a ’miraiError’ or a ’miraiInterrupt’. This is
a catch-all condition that includes all returned error values.

Value

Logical value TRUE or FALSE.

Examples

m <- mirai(stop())
call_mirai(m)
is_mirai_error(m$data)
is_mirai_interrupt(m$data)
is_error_value(m$data)
m$data$stack.trace

m2 <- mirai(Sys.sleep(1L), .timeout = 100)
call_mirai(m2)
is_mirai_error(m2$data)
is_mirai_interrupt(m2$data)
is_error_value(m2$data)

20 launch_local

launch_local Launch Daemon

Description

launch_local spawns a new background Rscript process calling daemon() with the specified
arguments.

launch_remote returns the shell command for deploying daemons as a character vector. If a con-
figuration generated by remote_config() or ssh_config() is supplied then this is used to launch
the daemon on the remote machine.

Usage

launch_local(n = 1L, ..., tls = NULL, .compute = "default")

launch_remote(
n = 1L,
remote = remote_config(),
...,
tls = NULL,
.compute = "default"

)

Arguments

n integer number of daemons.
or for launch_remote only, a ’miraiCluster’ or ’miraiNode’.

... (optional) arguments passed through to daemon(). These include autoexit,
cleanup, output, maxtasks, idletime and walltime. Only supply to over-
ride arguments originally provided to daemons(), otherwise those will be used
instead.

tls [default NULL] required for secure TLS connections over ’tls+tcp://’. Zero-
configuration TLS certificates generated by daemons() are automatically passed
to the daemon, without requiring to be specified here. Otherwise, supply either
the character path to a file containing X.509 certificate(s) in PEM format, com-
prising the certificate authority certificate chain, or a length 2 character vector
comprising [i] the certificate authority certificate chain and [ii] the empty string
"".

.compute [default ’default’] character value for the compute profile to use (each compute
profile has its own independent set of daemons).

remote required only for launching remote daemons, a configuration generated by remote_config()
or ssh_config(). An empty remote_config() does not effect any daemon
launches but returns the shell commands for deploying manually on remote ma-
chines.

make_cluster 21

Details

These functions may be used to re-launch daemons that have exited after reaching time or task
limits.

Daemons must already be set for launchers to work.

The generated command contains the argument rs specifying the length 7 L’Ecuyer-CMRG random
seed supplied to the daemon. The values will be different each time the function is called.

Value

For launch_local: Integer number of daemons launched.

For launch_remote: A character vector of daemon launch commands, classed as ’miraiLaunchCmd’.
The printed output may be copy / pasted directly to the remote machine.

Examples

daemons(url = host_url(), dispatcher = FALSE)
status()
launch_local(1L, cleanup = FALSE)
launch_remote(1L, cleanup = FALSE)
Sys.sleep(1)
status()
daemons(0)

daemons(url = host_url(tls = TRUE))
status()
launch_local(2L, output = TRUE)
Sys.sleep(1)
status()
daemons(0)

make_cluster Make Mirai Cluster

Description

make_cluster creates a cluster of type ’miraiCluster’, which may be used as a cluster object for any
function in the parallel base package such as parallel::clusterApply() or parallel::parLapply().

stop_cluster stops a cluster created by make_cluster.

Usage

make_cluster(n, url = NULL, remote = NULL, ...)

stop_cluster(cl)

22 make_cluster

Arguments

n integer number of nodes (automatically launched on the local machine unless
url is supplied).

url [default NULL] (specify for remote nodes) the character URL on the host for
remote nodes to dial into, including a port accepting incoming connections, e.g.
’tcp://10.75.37.40:5555’. Specify a URL with the scheme ’tls+tcp://’ to use se-
cure TLS connections.

remote [default NULL] (specify to launch remote nodes) a remote launch configuration
generated by remote_config() or ssh_config(). If not supplied, nodes may
be deployed manually on remote resources.

... additional arguments passed onto daemons().

cl a ’miraiCluster’.

Details

For R version 4.5 or newer, parallel::makeCluster() specifying type = "MIRAI" is equivalent
to this function.

Value

For make_cluster: An object of class ’miraiCluster’ and ’cluster’. Each ’miraiCluster’ has an
automatically assigned ID and n nodes of class ’miraiNode’. If url is supplied but not remote, the
shell commands for deployment of nodes on remote resources are printed to the console.

For stop_cluster: invisible NULL.

Remote Nodes

Specify url and n to set up a host connection for remote nodes to dial into. n defaults to one if not
specified.

Also specify remote to launch the nodes using a configuration generated by remote_config() or
ssh_config(). In this case, the number of nodes is inferred from the configuration provided and n
is disregarded.

If remote is not supplied, the shell commands for deploying nodes manually on remote resources
are automatically printed to the console.

launch_remote() may be called at any time on a ’miraiCluster’ to return the shell commands for
deployment of all nodes, or on a ’miraiNode’ to return the command for a single node.

Status

Call status() on a ’miraiCluster’ to check the number of currently active connections as well as
the host URL.

Errors

Errors are thrown by the parallel package mechanism if one or more nodes failed (quit unexpect-
edly). The resulting ’errorValue’ returned is 19 (Connection reset). Other types of error, e.g. in
evaluation, result in the usual ’miraiError’ being returned.

mirai 23

Note

The default behaviour of clusters created by this function is designed to map as closely as possible
to clusters created by the parallel package. However, ... arguments are passed onto daemons()
for additional customisation if desired, although resultant behaviour may not always be supported.

Examples

cl <- make_cluster(2)
cl
cl[[1L]]

Sys.sleep(0.5)
status(cl)

stop_cluster(cl)

mirai mirai (Evaluate Async)

Description

Evaluate an expression asynchronously in a new background R process or persistent daemon (local
or remote). This function will return immediately with a ’mirai’, which will resolve to the evaluated
result once complete.

Usage

mirai(.expr, ..., .args = list(), .timeout = NULL, .compute = "default")

Arguments

.expr an expression to evaluate asynchronously (of arbitrary length, wrapped in { }
where necessary), or else a pre-constructed language object.

... (optional) either named arguments (name = value pairs) specifying objects ref-
erenced, but not defined, in .expr, or an environment containing such objects.
See ’evaluation’ section below.

.args (optional) either a named list specifying objects referenced, but not defined, in
.expr, or an environment containing such objects. These objects will remain
local to the evaluation environment as opposed to those supplied in ... above -
see ’evaluation’ section below.

.timeout [default NULL] for no timeout, or an integer value in milliseconds. A mirai will
resolve to an ’errorValue’ 5 (timed out) if evaluation exceeds this limit.

.compute [default ’default’] character value for the compute profile to use (each compute
profile has its own independent set of daemons).

24 mirai

Details

This function will return a ’mirai’ object immediately.

The value of a mirai may be accessed at any time at $data, and if yet to resolve, an ’unresolved’
logical NA will be returned instead.

unresolved() may be used on a mirai, returning TRUE if a ’mirai’ has yet to resolve and FALSE
otherwise. This is suitable for use in control flow statements such as while or if.

Alternatively, to call (and wait for) the result, use call_mirai() on the returned ’mirai’. This will
block until the result is returned.

Specify .compute to send the mirai using a specific compute profile (if previously created by
daemons()), otherwise leave as "default".

Value

A ’mirai’ object.

Evaluation

The expression .expr will be evaluated in a separate R process in a clean environment (not the
global environment), consisting only of the objects supplied to .args, with the objects passed as
... assigned to the global environment of that process.

As evaluation occurs in a clean environment, all undefined objects must be supplied through ...
and/or .args, including self-defined functions. Functions from a package should use namespaced
calls such as mirai::mirai(), or else the package should be loaded beforehand as part of .expr.

For evaluation to occur as if in your global environment, supply objects to ... rather than .args,
e.g. for free variables or helper functions defined in function bodies, as scoping rules may otherwise
prevent them from being found.

Timeouts

Specifying the .timeout argument ensures that the mirai always resolves. However, the task may
not have completed and still be ongoing in the daemon process. Use stop_mirai() instead to
explicitly stop and interrupt a task.

Errors

If an error occurs in evaluation, the error message is returned as a character string of class ’miraiEr-
ror’ and ’errorValue’. is_mirai_error() may be used to test for this. The elements of the original
condition are accessible via $ on the error object. A stack trace comprising a list of calls is also
available at $stack.trace.

If a daemon crashes or terminates unexpectedly during evaluation, an ’errorValue’ 19 (Connection
reset) is returned.

is_error_value() tests for all error conditions including ’mirai’ errors, interrupts, and timeouts.

mirai 25

Examples

specifying objects via '...'
n <- 3
m <- mirai(x + y + 2, x = 2, y = n)
m
m$data
Sys.sleep(0.2)
m$data

passing the calling environment to '...'
df1 <- data.frame(a = 1, b = 2)
df2 <- data.frame(a = 3, b = 1)
m <- mirai(as.matrix(rbind(df1, df2)), environment(), .timeout = 1000)
m[]

using unresolved()
m <- mirai(

{
res <- rnorm(n)
res / rev(res)

},
n = 1e6

)
while (unresolved(m)) {

cat("unresolved\n")
Sys.sleep(0.1)

}
str(m$data)

evaluating scripts using source() in '.expr'
n <- 10L
file <- tempfile()
cat("r <- rnorm(n)", file = file)
m <- mirai({source(file); r}, file = file, n = n)
call_mirai(m)$data
unlink(file)

use source(local = TRUE) when passing in local variables via '.args'
n <- 10L
file <- tempfile()
cat("r <- rnorm(n)", file = file)
m <- mirai({source(file, local = TRUE); r}, .args = list(file = file, n = n))
call_mirai(m)$data
unlink(file)

passing a language object to '.expr' and a named list to '.args'
expr <- quote(a + b + 2)
args <- list(a = 2, b = 3)
m <- mirai(.expr = expr, .args = args)
collect_mirai(m)

26 mirai_map

mirai_map mirai Map

Description

Asynchronous parallel map of a function over a list or vector using mirai, with optional promises
integration. Performs multiple map over the rows of a dataframe or matrix.

Usage

mirai_map(.x, .f, ..., .args = list(), .promise = NULL, .compute = "default")

Arguments

.x a list or atomic vector. Also accepts a matrix or dataframe, in which case multi-
ple map is performed over its rows.

.f a function to be applied to each element of .x, or row of .x as the case may be.

... (optional) named arguments (name = value pairs) specifying objects referenced,
but not defined, in .f.

.args (optional) further constant arguments to .f, provided as a list.

.promise (optional) if supplied, registers a promise against each mirai. Either a function,
supplied to the onFulfilled argument of promises::then() or a list of 2 func-
tions, supplied respectively to onFulfilled and onRejected of promises::then().
Using this argument requires the promises package.

.compute [default ’default’] character value for the compute profile to use (each compute
profile has its own independent set of daemons).

Details

Sends each application of function .f on an element of .x (or row of .x) for computation in a
separate mirai() call. If .x is named, names are preserved.

This simple and transparent behaviour is designed to make full use of mirai scheduling to minimise
overall execution time.

Facilitates recovery from partial failure by returning all ’miraiError’ / ’errorValue’ as the case may
be, thus allowing only failures to be re-run.

This function requires daemons to have previously been set, and will error otherwise.

Value

A ’mirai_map’ (list of ’mirai’ objects).

https://CRAN.R-project.org/package=promises

mirai_map 27

Collection Options

x[] collects the results of a ’mirai_map’ x and returns a list. This will wait for all asynchronous
operations to complete if still in progress, blocking but user-interruptible.

x[.flat] collects and flattens map results to a vector, checking that they are of the same type to
avoid coercion. Note: errors if an ’errorValue’ has been returned or results are of differing type.

x[.progress] collects map results whilst showing a progress bar from the cli package, if installed,
with completion percentage and ETA, or else a simple text progress indicator. Note: if the map
operation completes too quickly then the progress bar may not show at all.

x[.stop] collects map results applying early stopping, which stops at the first failure and cancels
remaining operations. Note: operations already in progress continue to completion, although their
results are not collected.

The options above may be combined in the manner of:
x[.stop, .progress] which applies early stopping together with a progress indicator.

Multiple Map

If .x is a matrix or dataframe (or other object with ’dim’ attributes), multiple map is performed over
its rows. Character row names are preserved as names of the output.

This allows map over 2 or more arguments, and .f should accept at least as many arguments as
there are columns. If the dataframe has names, or the matrix column dimnames, named arguments
are provided to .f.

To map over columns instead, first wrap a dataframe in as.list(), or transpose a matrix using
t().

Examples

daemons(4)

perform and collect mirai map
mm <- mirai_map(c(a = 1, b = 2, c = 3), rnorm)
mm
mm[]

map with constant args specified via '.args'
mirai_map(1:3, rnorm, .args = list(n = 5, sd = 2))[]

flatmap with helper function passed via '...'
mirai_map(

10^(0:9),
function(x) rnorm(1L, valid(x)),
valid = function(x) min(max(x, 0L), 100L)

)[.flat]

unnamed matrix multiple map: arguments passed to function by position
(mat <- matrix(1:4, nrow = 2L))
mirai_map(mat, function(x = 10, y = 0, z = 0) x + y + z)[.flat]

named matrix multiple map: arguments passed to function by name

https://CRAN.R-project.org/package=cli

28 remote_config

dimnames(mat) <- list(c("a", "b"), c("y", "z"))
mirai_map(mat, function(x = 10, y = 0, z = 0) x + y + z)[.flat]

dataframe multiple map: using a function taking '...' arguments
df <- data.frame(a = c("Aa", "Bb"), b = c(1L, 4L))
mirai_map(df, function(...) sprintf("%s: %d", ...))[.flat]

indexed map over a vector (using a dataframe)
v <- c("egg", "got", "ten", "nap", "pie")
mirai_map(

data.frame(1:length(v), v),
sprintf,
.args = list(fmt = "%d_%s")

)[.flat]

return a 'mirai_map' object, check for resolution, collect later
mp <- mirai_map(2:4, function(x) runif(1L, x, x + 1))
unresolved(mp)
mp
mp[.flat]
unresolved(mp)

progress indicator counts up from 0 to 4 seconds
res <- mirai_map(1:4, Sys.sleep)[.progress]

stops early when second element returns an error
tryCatch(mirai_map(list(1, "a", 3), sum)[.stop], error = identity)

daemons(0)

promises example that outputs the results, including errors, to the console
daemons(1, dispatcher = FALSE)
ml <- mirai_map(

1:30,
function(i) {Sys.sleep(0.1); if (i == 30) stop(i) else i},
.promise = list(
function(x) cat(paste(x, "")),
function(x) { cat(conditionMessage(x), "\n"); daemons(0) }

)
)

remote_config Generic and SSH Remote Launch Configuration

Description

remote_config provides a flexible generic framework for generating the shell commands to deploy
daemons remotely.

remote_config 29

ssh_config generates a remote configuration for launching daemons over SSH, with the option of
SSH tunnelling.

Usage

remote_config(
command = NULL,
args = c("", "."),
rscript = "Rscript",
quote = FALSE

)

ssh_config(
remotes,
tunnel = FALSE,
timeout = 10,
command = "ssh",
rscript = "Rscript"

)

Arguments

command the command used to effect the daemon launch on the remote machine as a char-
acter string (e.g. "ssh"). Defaults to "ssh" for ssh_config, although may be
substituted for the full path to a specific SSH application. The default NULL for
remote_config does not carry out any launches, but causes launch_remote()
to return the shell commands for manual deployment on remote machines.

args (optional) arguments passed to command, as a character vector that must include
"." as an element, which will be substituted for the daemon launch command.
Alternatively, a list of such character vectors to effect multiple launches (one for
each list element).

rscript (optional) name / path of the Rscript executable on the remote machine. The
default assumes "Rscript" is on the executable search path. Prepend the full
path if necessary. If launching on Windows, "Rscript" should be replaced with
"Rscript.exe".

quote [default FALSE] logical value whether or not to quote the daemon launch com-
mand (not required for Slurm "srun" for example, but required for Slurm "sbatch"
or "ssh").

remotes the character URL or vector of URLs to SSH into, using the ’ssh://’ scheme and
including the port open for SSH connections (defaults to 22 if not specified),
e.g. ’ssh://10.75.32.90:22’ or ’ssh://nodename’.

tunnel [default FALSE] logical value, whether to use SSH tunnelling. If TRUE, re-
quires the daemons() url hostname to be ’127.0.0.1’. See the ’SSH Tunnelling’
section below for further details.

timeout [default 10] maximum time allowed for connection setup in seconds.

30 remote_config

Value

A list in the required format to be supplied to the remote argument of launch_remote(), daemons(),
or make_cluster().

SSH Direct Connections

The simplest use of SSH is to execute the daemon launch command on a remote machine, for it to
dial back to the host / dispatcher URL.

It is assumed that SSH key-based authentication is already in place. The relevant port on the host
must also be open to inbound connections from the remote machine, and is hence suitable for use
within trusted networks.

SSH Tunnelling

Use of SSH tunnelling provides a convenient way to launch remote daemons without requiring the
remote machine to be able to access the host. Often firewall configurations or security policies may
prevent opening a port to accept outside connections.

In these cases SSH tunnelling offers a solution by creating a tunnel once the initial SSH connection
is made. For simplicity, this SSH tunnelling implementation uses the same port on both host and
daemon. SSH key-based authentication must already be in place, but no other configuration is
required.

To use tunnelling, set the hostname of the daemons() url argument to be ’127.0.0.1’. Using
local_url() with tcp = TRUE also does this for you. Specifying a specific port to use is optional,
with a random ephemeral port assigned otherwise. For example, specifying ’tcp://127.0.0.1:5555’
uses the local port ’5555’ to create the tunnel on each machine. The host listens to ’127.0.0.1:5555’
on its machine and the remotes each dial into ’127.0.0.1:5555’ on their own respective machines.

This provides a means of launching daemons on any machine you are able to access via SSH, be it
on the local network or the cloud.

Examples

Slurm srun example
remote_config(

command = "srun",
args = c("--mem 512", "-n 1", "."),
rscript = file.path(R.home("bin"), "Rscript")

)

Slurm sbatch requires 'quote = TRUE'
remote_config(

command = "sbatch",
args = c("--mem 512", "-n 1", "--wrap", "."),
rscript = file.path(R.home("bin"), "Rscript"),
quote = TRUE

)

SSH also requires 'quote = TRUE'
remote_config(

command = "/usr/bin/ssh",

serial_config 31

args = c("-fTp 22 10.75.32.90", "."),
quote = TRUE

)

can be used to start local dameons with special configurations
remote_config(

command = "Rscript",
rscript = "--default-packages=NULL --vanilla"

)

direct SSH example
ssh_config(c("ssh://10.75.32.90:222", "ssh://nodename"), timeout = 5)

SSH tunnelling example
ssh_config(c("ssh://10.75.32.90:222", "ssh://nodename"), tunnel = TRUE)

Not run:

launch 2 daemons on the remote machines 10.75.32.90 and 10.75.32.91 using
SSH, connecting back directly to the host URL over a TLS connection:
daemons(

url = host_url(tls = TRUE),
remote = ssh_config(c("ssh://10.75.32.90:222", "ssh://10.75.32.91:222"))

)

launch 2 daemons on the remote machine 10.75.32.90 using SSH tunnelling:
daemons(

n = 2,
url = local_url(tcp = TRUE),
remote = ssh_config("ssh://10.75.32.90", tunnel = TRUE)

)

End(Not run)

serial_config Create Serialization Configuration

Description

Returns a serialization configuration, which may be set to perform custom serialization and un-
serialization of normally non-exportable reference objects, allowing these to be used seamlessly
between different R sessions. This feature utilises the ’refhook’ system of R native serialization.
Once set, the functions apply to all mirai requests for a specific compute profile.

Usage

serial_config(class, sfunc, ufunc, vec = FALSE)

32 status

Arguments

class character string of the class of object custom serialization functions are applied
to, e.g. ’ArrowTabular’ or ’torch_tensor’.

sfunc a function that accepts a reference object inheriting from class (or a list of such
objects) and returns a raw vector.

ufunc a function that accepts a raw vector and returns a reference object (or list of such
objects).

vec [default FALSE] whether or not the serialization functions are vectorized. If
FALSE, they should accept and return reference objects individually e.g. arrow::write_to_raw
and arrow::read_ipc_stream. If TRUE, they should accept and return a list
of reference objects, e.g. torch::torch_serialize and torch::torch_load.

Value

A list comprising the configuration. This should be passed to the serial argument of daemons().

Examples

cfg <- serial_config("test_cls", function(x) serialize(x, NULL), unserialize)
cfg

status Status Information

Description

Retrieve status information for the specified compute profile, comprising current connections and
daemons status.

Usage

status(.compute = "default")

Arguments

.compute [default ’default’] character compute profile (each compute profile has its own
set of daemons for connecting to different resources).

or a ’miraiCluster’ to obtain its status.

stop_mirai 33

Value

A named list comprising:

• connections - integer number of active daemon connections.

• daemons - character URL at which host / dispatcher is listening, or else 0L if daemons have
not yet been set.

• mirai (present only if using dispatcher) - a named integer vector comprising: awaiting -
number of tasks queued for execution at dispatcher, executing - number of tasks sent to a
daemon for execution, and completed - number of tasks for which the result has been received
(either completed or cancelled).

Events

If dispatcher is used combined with daemon IDs, an additional element events will report the pos-
itive integer ID when the daemon connects and the negative value when it disconnects. Only the
events since the previous status query are returned.

Examples

status()
daemons(url = "tcp://[::1]:0")
status()
daemons(0)

stop_mirai mirai (Stop)

Description

Stops a ’mirai’ if still in progress, causing it to resolve immediately to an ’errorValue’ 20 (Operation
canceled).

Usage

stop_mirai(x)

Arguments

x a ’mirai’ object, or list of ’mirai’ objects.

34 unresolved

Details

Using dispatcher allows cancellation of ’mirai’. In the case that the ’mirai’ is awaiting execution, it
is discarded from the queue and never evaluated. In the case it is already in execution, an interrupt
will be sent.

A successful cancellation request does not guarantee successful cancellation: the task, or a portion
of it, may have already completed before the interrupt is received. Even then, compiled code is not
always interruptible. This should be noted, particularly if the code carries out side effects during
execution, such as writing to files, etc.

Value

Logical TRUE if the cancellation request was successful (was awaiting execution or in execution),
or else FALSE (if already completed or previously cancelled). Will always return FALSE if not
using dispatcher.

Or a vector of logical values if supplying a list of ’mirai’, such as those returned by mirai_map().

Examples

m <- mirai(Sys.sleep(n), n = 5)
stop_mirai(m)
m$data

unresolved Query if a mirai is Unresolved

Description

Query whether a ’mirai’, ’mirai’ value or list of ’mirai’ remains unresolved. Unlike call_mirai(),
this function does not wait for completion.

Usage

unresolved(x)

Arguments

x a ’mirai’ object or list of ’mirai’ objects, or a ’mirai’ value stored at $data.

Details

Suitable for use in control flow statements such as while or if.

Note: querying resolution may cause a previously unresolved ’mirai’ to resolve.

Value

Logical TRUE if x is an unresolved ’mirai’ or ’mirai’ value or the list contains at least one unre-
solved ’mirai’, or FALSE otherwise.

with.miraiDaemons 35

Examples

m <- mirai(Sys.sleep(0.1))
unresolved(m)
Sys.sleep(0.3)
unresolved(m)

with.miraiDaemons With Mirai Daemons

Description

Evaluate an expression with daemons that last for the duration of the expression. Ensure each mirai
within the statement is explicitly called (or their values collected) so that daemons are not reset
before they have all completed.

Usage

S3 method for class 'miraiDaemons'
with(data, expr, ...)

Arguments

data a call to daemons().

expr an expression to evaluate.

... not used.

Details

This function is an S3 method for the generic with() for class ’miraiDaemons’.

Value

The return value of expr.

Examples

with(
daemons(2, dispatcher = FALSE),
{

m1 <- mirai(Sys.getpid())
m2 <- mirai(Sys.getpid())
cat(m1[], m2[], "\n")

}
)

status()

Index

as.list(), 27
as.promise.mirai, 3
as.promise.mirai_map, 4

call_mirai, 5
call_mirai(), 6, 16, 24, 34
call_mirai_, 6
collect_mirai, 7
collect_mirai(), 16

daemon, 8
daemon(), 11, 12, 15, 20
daemons, 10
daemons(), 3, 8, 9, 14, 17, 20, 22–24, 29, 30,

32, 35
dispatcher, 14
dispatcher(), 12

everywhere, 15

host_url, 17
host_url(), 11, 12

is_error_value (is_mirai_error), 19
is_error_value(), 6, 7, 24
is_mirai, 18
is_mirai_error, 19
is_mirai_error(), 6, 7, 24
is_mirai_interrupt (is_mirai_error), 19
is_mirai_map (is_mirai), 18

launch_local, 20
launch_local(), 3, 9, 12
launch_remote (launch_local), 20
launch_remote(), 12, 13, 22, 29, 30
local_url (host_url), 17
local_url(), 30

make_cluster, 21
make_cluster(), 30
mirai, 23

mirai(), 8, 10, 13, 26
mirai-package, 2
mirai_map, 26
mirai_map(), 5, 7, 34

parallel::clusterApply(), 21
parallel::makeCluster(), 22
parallel::parLapply(), 21

remote_config, 28
remote_config(), 11, 13, 20, 22

serial_config, 31
serial_config(), 11
ssh_config (remote_config), 28
ssh_config(), 11, 13, 20, 22
status, 32
status(), 9, 12, 13, 22
stop_cluster (make_cluster), 21
stop_mirai, 33
stop_mirai(), 24

t(), 27

unresolved, 34
unresolved(), 5, 7, 24

with(), 35
with.miraiDaemons, 35

36

	mirai-package
	as.promise.mirai
	as.promise.mirai_map
	call_mirai
	call_mirai_
	collect_mirai
	daemon
	daemons
	dispatcher
	everywhere
	host_url
	is_mirai
	is_mirai_error
	launch_local
	make_cluster
	mirai
	mirai_map
	remote_config
	serial_config
	status
	stop_mirai
	unresolved
	with.miraiDaemons
	Index

