
Package ‘ggsurveillance’
April 11, 2025

Title Tools for Outbreak Investigation/Infectious Disease Surveillance

Version 0.3.0

Description Create epicurves or epigantt charts in 'ggplot2'. Prepare
data for visualisation or other reporting for infectious disease
surveillance and outbreak investigation. Includes tidy functions to solve
date based transformations for common reporting tasks, like
(A) seasonal date alignment for respiratory disease surveillance,
(B) date-based case binning based on specified time intervals like
isoweek, epiweek, month and more, (C) automated detection and marking
of the new year based on the date/datetime axis of the 'ggplot2'.
An introduction on how to use epicurves can be found on the US CDC website
(2012, <https://www.cdc.gov/training/quicklearns/epimode/index.html>).

License GPL (>= 3)

URL https://ggsurveillance.biostats.dev,

https://github.com/biostats-dev/ggsurveillance

BugReports https://github.com/biostats-dev/ggsurveillance/issues

Depends R (>= 4.2.0)

Imports cli, dplyr, forcats, ggplot2 (>= 3.5.0), glue, ISOweek,
lubridate, rlang, scales, stringr, tidyr, tidyselect

Suggests Hmisc, knitr, outbreaks, plotly, rmarkdown, spelling,
testthat (>= 3.0.0), tsibble

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en-GB

LazyData true

NeedsCompilation no

RoxygenNote 7.3.2

Author Alexander Bartel [aut, cre] (<https://orcid.org/0000-0002-1280-6138>)

Maintainer Alexander Bartel <alexander.bartel@fu-berlin.de>

1

https://www.cdc.gov/training/quicklearns/epimode/index.html
https://ggsurveillance.biostats.dev
https://github.com/biostats-dev/ggsurveillance
https://github.com/biostats-dev/ggsurveillance/issues
https://orcid.org/0000-0002-1280-6138

2 align_dates_seasonal

Repository CRAN

Date/Publication 2025-04-11 19:30:02 UTC

Contents
align_dates_seasonal . 2
create_agegroups . 5
geometric_mean . 6
geom_epicurve . 8
geom_epigantt . 11
geom_vline_year . 13
influenza_germany . 15
linelist_hospital_outbreak . 16
scale_y_cases_5er . 17
scale_y_discrete_reverse . 20
theme_mod_disable_legend, theme_mod_legend_position 21
theme_mod_remove_minor_grid . 22
theme_mod_rotate_axis_labels . 23
uncount, expand_counts . 24

Index 25

align_dates_seasonal Align dates for seasonal comparison

Description

Standardizes dates from multiple years to enable comparison of epidemic curves and visualization
of seasonal patterns in infectious disease surveillance data. Commonly used for creating periodicity
plots of respiratory diseases like influenza, RSV, or COVID-19.

Usage

align_dates_seasonal(
x,
dates_from = NULL,
date_resolution = c("week", "isoweek", "epiweek", "day", "month"),
start = NULL,
target_year = NULL,
drop_leap_week = TRUE

)

align_and_bin_dates_seasonal(
x,
n = 1,
dates_from,
population = 1,

align_dates_seasonal 3

fill_gaps = FALSE,
date_resolution = c("week", "isoweek", "epiweek", "day", "month"),
start = NULL,
target_year = NULL,
drop_leap_week = TRUE

)

Arguments

x Either a data frame with a date column, or a date vector.
Supported date formats are date and datetime and also commonly used char-
acter strings:

• ISO dates "2024-03-09"
• Month "2024-03"

• Week "2024-W09" or "2024-W09-1"

dates_from Column name containing the dates to align. Used when x is a data.frame.

date_resolution

Character string specifying the temporal resolution. One of:

• "week" or "isoweek" - Calendar weeks (ISO 8601), reporting weeks as
used by the ECDC.

• "epiweek" - Epidemiological weeks (US CDC), i.e. ISO weeks with Sun-
day as week start.

• "month" - Calendar months
• "day" - Daily resolution

start Numeric value indicating epidemic season start:

• For week/epiweek: week number (default: 28, approximately July)
• For month: month number (default: 7 for July)
• For day: day of year (default: 150, approximately June) If start is set to

"1" the alignment is done for yearly comparison and the shift in dates for
seasonality is skipped.

target_year Numeric value for the reference year to align dates to. The default target year is
the start of the most recent season in the data. This way the most recent dates
stay unchanged.

drop_leap_week If TRUE and date_resolution is week, isoweek or epiweek, leap weeks (week 53)
are dropped if they are not in the most recent season. Disable if data should be
returned. Dropping week 53 from historical data is the most common approach.
Otherwise historical data for week 53 would map to week 52 if the target season
has no leap week, resulting in a doubling of the case counts.

n Numeric column with case counts. Supports quoted and unquoted column names.

population A number or a numeric column with the population size. Used to calculate the
incidence.

fill_gaps Logical; If TRUE, gaps in the time series will be filled with 0 cases.

4 align_dates_seasonal

Details

This function helps create standardized epidemic curves by aligning surveillance data from different
years. This enables:

• Comparison of disease patterns across multiple seasons

• Identification of typical seasonal trends

• Detection of unusual disease activity

• Assessment of current season against historical patterns

The alignment can be done at different temporal resolutions (daily, weekly, monthly) with cus-
tomizable season start points to match different disease patterns or surveillance protocols.

Value

A data frame with standardized date columns:

• year: Calendar year from original date

• week/month/day: Time unit based on chosen resolution

• date_aligned: Date standardized to target year

• season: Epidemic season identifier (e.g., "2023/24"), if start = 1 this is the year only (e.g.
2023).

• current_season: Logical flag for most recent season

Binning also creates the columns:

• n: Sum of cases in bin

• incidence: Incidence calculated using n/population

Examples

Sesonal Visualization of Germany Influenza Surveillance Data
library(ggplot2)

influenza_germany |>
align_dates_seasonal(
dates_from = ReportingWeek, date_resolution = "epiweek", start = 28

) -> df_flu_aligned

ggplot(df_flu_aligned, aes(x = date_aligned, y = Incidence, color = season)) +
geom_line() +
facet_wrap(~AgeGroup) +
theme_bw() +
theme_mod_rotate_x_axis_labels_45()

create_agegroups 5

create_agegroups Create Age Groups from Numeric Values

Description

Creates age groups from numeric values using customizable break points and formatting options.
The function allows for flexible formatting and customization of age group labels.

If a factor is returned, this factor includes factor levels of unobserved age groups. This allows for
reproducible age groups, which can be used for joining data (e.g. adding age grouped population
numbers for incidence calculation).

Usage

create_agegroups(
values,
age_breaks = c(5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90),
breaks_as_lower_bound = TRUE,
first_group_format = "0-{x}",
interval_format = "{x}-{y}",
last_group_format = "{x}+",
pad_numbers = FALSE,
pad_with = "0",
collapse_single_year_groups = FALSE,
na_label = NA,
return_factor = FALSE

)

Arguments

values Numeric vector of ages to be grouped

age_breaks Numeric vector of break points for age groups.
Default: c(5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90)

breaks_as_lower_bound

Logical; if TRUE (default), breaks are treated as lower bounds of the intervals. If
FALSE, as upper bounds.

first_group_format

Character string template for the first age group. Uses glue syntax.
Default: "0-{x}", Other common styles: "<={x}", "<{x+1}"

interval_format

Character string template for intermediate age groups. Uses glue syntax.
Default: "{x}-{y}", Other common styles: "{x} to {y}"

last_group_format

Character string template for the last age group. Uses glue syntax.
Default: "{x}+", Other common styles: ">={x}",">{x-1}"

pad_numbers Logical or numeric; if numeric, pad numbers up to the specified length (Tip: use
2). Not compatible with calculations within glue formats. Default: FALSE

6 geometric_mean

pad_with Character to use for padding numbers. Default: "0"
collapse_single_year_groups

Logical; if TRUE, groups spanning single years are collapsed. Default: FALSE

na_label Label for NA values. If NA, keeps default NA handling. Default: NA

return_factor Logical; if TRUE, returns a factor, if FALSE returns character vector. Default:
FALSE

Value

Vector of age group labels (character or factor depending on return_factor)

Examples

Basic usage
create_agegroups(1:100)

Custom formatting with upper bounds
create_agegroups(1:100,

breaks_as_lower_bound = FALSE,
interval_format = "{x} to {y}",
first_group_format = "0 to {x}"

)

Ages 1 to 5 are kept as numbers by collapsing single year groups
create_agegroups(1:10,

age_breaks = c(1, 2, 3, 4, 5, 10),
collapse_single_year_groups = TRUE

)

geometric_mean Compute a Geometric Mean

Description

The geometric mean is typically defined for strictly positive values. This function computes the
geometric mean of a numeric vector, with the option to replace certain values (e.g., zeros, non-
positive values, or values below a user-specified threshold) before computation.

Usage

geometric_mean(
x,
na.rm = FALSE,
replace_value = NULL,
replace = c("all", "non-positive", "zero"),
warning = TRUE

)

geometric_mean 7

Arguments

x A numeric or complex vector of values.

na.rm Logical. If FALSE (default), the presence of zero or negative values triggers a
warning and returns NA. If TRUE, such values (and any NA) are removed before
computing the geometric mean.

replace_value Numeric or NULL. The value used for replacement, depending on replace (e.g.,
a detection limit (LOD) or quantification limit (LOQ)). If NULL, no replacement
is performed. For recommendations how to use, see details.

replace Character string indicating which values to replace:

"all" Replaces all values less than replace_value with replace_value. This
is useful if you have a global threshold (such as a limit of detection) below
which any measurement is replaced.

"non-positive" Replaces all non-positive values (x <= 0) with replace_value.
This is helpful if zeros or negative values are known to be invalid or below
a certain limit.

"zero" Replaces only exact zeros (x == 0) with replace_value. Useful if neg-
ative values should be treated as missing.

warning Disable warnings by setting it to FALSE. Defaults to TRUE.

Details

Replacement Considerations: The geometric mean is only defined for strictly positive numbers
(x > 0). Despite this, the geometric mean can be useful for laboratory measurements which can
contain 0 or negative values. If these values are treated as NA and are removed, this results in an
upward bias due to missingness. To reduce this, values below the limit of detection (LOD) or limit
of quantification (LOQ) are often replaced with the chosen limit, making this limit the practical
lower limit of the measurement scale. This is therefore an often recommended approach.

There are also alternatives approaches, where values are replaced by either LOD
2 or LOD√

2
(or LOQ).

These approaches create a gap in the distribution of values (e.g. no values for LOD
2 < x < LOD)

and should therefore be used with caution.

If the replacement approach for values below LOD or LOQ has a material effect on the in-
terpretation of the results, the values should be treated as statistically censored. In this case,
proper statistical methods to handle (left) censored data should be used.

When replace_value is provided, the function will first perform the specified replacements, then
proceed with the geometric mean calculation. If no replacements are requested but zero or negative
values remain and na.rm = FALSE, an NA will be returned with a warning.

Value

A single numeric value representing the geometric mean of the processed vector x, or NA if the
resulting vector is empty (e.g., if na.rm = TRUE removes all positive values) or if non-positive values
exist when na.rm = FALSE.

8 geom_epicurve

Examples

Basic usage with no replacements:
x <- c(1, 2, 3, 4, 5)
geometric_mean(x)

Replace all values < 0.5 with 0.5 (common in LOD scenarios):
x3 <- c(0.1, 0.2, 0.4, 1, 5)
geometric_mean(x3, replace_value = 0.5, replace = "all")

Remove zero or negative values, since log(0) = -Inf and log(-1) = NaN
x4 <- c(-1, 0, 1, 2, 3)
geometric_mean(x4, na.rm = TRUE)

geom_epicurve Create an epidemic curve plot or bin/count observations by date peri-
ods

Description

Creates a epicurve plot for visualizing epidemic case counts in outbreaks (epidemiological curves).
An epicurve is a bar plot, where every case is outlined. geom_epicurve additionally provides date-
based aggregation of cases (e.g. per week or month and many more).

• For week aggregation both isoweek (World + ECDC) and epiweek (US CDC) are supported.

• stat_bin_date and its alias stat_date_count provide date based binning only. After bin-
ning the by date, these stats behave like ggplot2::stat_count.

Usage

geom_epicurve(
mapping = NULL,
data = NULL,
stat = "epicurve",
position = "stack",
date_resolution = NULL,
week_start = getOption("lubridate.week.start", 1),
width = NULL,
relative.width = 1,
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_bin_date(
mapping = NULL,
data = NULL,

geom_epicurve 9

geom = "line",
position = "identity",
date_resolution = NULL,
week_start = getOption("lubridate.week.start", 1),
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_date_count(
mapping = NULL,
data = NULL,
geom = "line",
position = "identity",
date_resolution = NULL,
week_start = getOption("lubridate.week.start", 1),
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes. Commonly used mappings:

• x or y: date or datetime. Numeric is technically supported.
• fill: for colouring groups
• weight: if data is already aggregated (e.g. case counts)

data The data frame containing the variables for the plot

stat either "epicurve" for outlines around cases or "bin_date" for outlines around
(fill) groups. For large numbers of cases please use "bin_date" to reduce the
number of drawn rectangles.

position Position adjustment. Currently supports "stack" for geom_epicurve().
date_resolution

Character string specifying the time unit for date aggregation. Set to NULL or NA
for no date aggregation
Possible values are: "day", "week", "month", "bimonth", "season", "quarter",
"halfyear", "year". To special values enforce ISO or US week standard:

• isoweek will force date_resolution = week and week_start = 1 (ISO
and ECDC Standard)

• epiweek will force date_resolution = week and week_start = 7 (US CDC
Standard)

week_start Integer specifying the start of the week (1 = Monday, 7 = Sunday).
Only used when date_resolution includes weeks. Defaults to 1 (Monday).
For isoweek use week_start = 1 and for epiweek use week_start = 7.

10 geom_epicurve

width Numeric value specifying the width of the bars. If NULL, calculated based on
resolution and relative.width

relative.width Numeric value between 0 and 1 adjusting the relative width of bars. Defaults to
1

... Other arguments passed to layer. For example:

• colour Colour of the outlines around cases. Disable with colour = NA.
Defaults to "white".

• linewidth Width of the case outlines.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms.

Details

Epi Curves are a public health tool for outbreak investigation. For more details see the references.

Value

A ggplot2 geom layer that can be added to a plot

References

• Centers for Disease Control and Prevention. Quick-Learn Lesson: Using an Epi Curve to De-
termine Mode of Spread. USA. https://www.cdc.gov/training/quicklearns/epimode/

• Dicker, Richard C., Fátima Coronado, Denise Koo, and R. Gibson Parrish. 2006. Principles
of Epidemiology in Public Health Practice; an Introduction to Applied Epidemiology and
Biostatistics. 3rd ed. USA. https://stacks.cdc.gov/view/cdc/6914

See Also

scale_y_cases_5er(), geom_vline_year()

Examples

Basic epicurve with dates
library(ggplot2)
set.seed(1)

plot_data_epicurve_imp <- data.frame(

https://www.cdc.gov/training/quicklearns/epimode/
https://stacks.cdc.gov/view/cdc/6914

geom_epigantt 11

date = rep(as.Date("2023-12-01") + ((0:300) * 1), times = rpois(301, 0.5))
)

ggplot(plot_data_epicurve_imp, aes(x = date, weight = 2)) +
geom_vline_year(break_type = "week") +
geom_epicurve(date_resolution = "week") +
labs(title = "Epicurve Example") +
scale_y_cases_5er() +
scale_x_date(date_breaks = "4 weeks", date_labels = "W%V'%g") + # Correct ISOWeek labels week'year
coord_equal(ratio = 7) + # Use coord_equal for square boxes. 'ratio' are the days per week.
theme_bw()

Categorical epicurve
library(tidyr)
library(outbreaks)

sars_canada_2003 |> # SARS dataset from outbreaks
pivot_longer(starts_with("cases"), names_prefix = "cases_", names_to = "origin") |>
ggplot(aes(x = date, weight = value, fill = origin)) +
geom_epicurve(date_resolution = "week") +
scale_x_date(date_labels = "W%V'%g", date_breaks = "2 weeks") +
scale_y_cases_5er() +
theme_classic()

geom_epigantt Epi Gantt Chart: Visualize Epidemiological Time Intervals

Description

Creates Epi Gantt charts, which are specialized timeline visualizations used in outbreak investiga-
tions to track potential exposure periods and identify transmission patterns. They are particularly
useful for:

• Hospital outbreak investigations to visualize patient movements between wards

• Identifying potential transmission events by showing when cases were in the same location

• Visualizing common exposure times using overlapping exposure time intervals

The chart displays time intervals as horizontal bars, typically with one row per case/patient. Dif-
ferent colours can be used to represent different locations (e.g., hospital wards) or exposure types.
Additional points or markers can show important events like symptom onset or test dates.

geom_epigantt() will adjust the linewidth depending on the number of cases.

Usage

geom_epigantt(
mapping = NULL,
data = NULL,
stat = "identity",

12 geom_epigantt

position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings. Must include:

• y: Case/patient identifier
• xmin: Start date/time of interval
• xmax: End date/time of interval
• Optional: colour or fill for different locations/categories

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat A ggplot2 stat. Defaults to "identity".

position A ggplot2 position. Defaults to "identity".

... Additional parameters:

• linewidth: Set width of bars directly, disables auto-scaling if set.
• lw_scaling_factor: Scaling factor for auto-width calculation. The linewidth

is calculated as lw_scaling_factor/number_of_rows (default: 90)
• lw_min: Minimum auto-scaled line width cutoff (default: 1)
• lw_max: Maximum auto-scaled line width cutoff (default: 8)

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A ggplot2 geom layer that can be added to a plot

geom_vline_year 13

See Also

theme_mod_legend_bottom()

Examples

library(dplyr)
library(tidyr)
library(ggplot2)

Transform hospital outbreak line list to long format
linelist_hospital_outbreak |>

pivot_longer(
cols = starts_with("ward"),
names_to = c(".value", "num"),
names_pattern = "ward_(name|start_of_stay|end_of_stay)_([0-9]+)",
values_drop_na = TRUE

) -> df_stays_long

linelist_hospital_outbreak |>
pivot_longer(cols = starts_with("pathogen"), values_to = "date") -> df_detections_long

Create Epi Gantt chart showing ward stays and test dates
ggplot(df_stays_long) +
geom_epigantt(aes(y = Patient, xmin = start_of_stay, xmax = end_of_stay, color = name)) +
geom_point(aes(y = Patient, x = date, shape = "Date of pathogen detection"),
data = df_detections_long

) +
scale_y_discrete_reverse() +
theme_bw() +
theme_mod_legend_bottom()

geom_vline_year Automatically create lines at the turn of every year

Description

Determines turn of year dates based on the range of either the x or y axis of the ggplot.

• geom_vline_year() draws vertical lines at the turn of each year

• geom_hline_year() draws horizontal lines at the turn of each year

Usage

geom_vline_year(
mapping = NULL,
position = "identity",
year_break = "01-01",
break_type = c("day", "week", "isoweek", "epiweek"),

14 geom_vline_year

just = NULL,
...,
show.legend = NA

)

geom_hline_year(
mapping = NULL,
position = "identity",
year_break = "01-01",
break_type = c("day", "week", "isoweek", "epiweek"),
just = NULL,
...,
show.legend = NA

)

Arguments

mapping Mapping created using ggplot2::aes(). Can be used to add the lines to the
legend. E.g. aes(linetype = 'End of Year'). Cannot access data specified in
ggplot2::ggplot(). Panels created by ggplot2::facet_wrap() or ggplot2::facet_grid()
are available with aes(linetype = PANEL).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

year_break String specifying the month and day ("MM-DD") or week ("W01") of the year
break . Defaults to: "01-01" for January 1. "Week" and "MM-DD" are con-
verted automatically based on a leap year (366 days) which starts on Monday.

break_type String specifying the type of break to use. Options are:

• "day" (default): Line drawn based on the specified day for each visible
year.

• "week" or "isoweek": Line drawn based on the Monday of the specified
week for each visible year. (e.g., "W01" for new year or "W40" for start of
influenza season)

• "epiweek": same as week, but the line is drawn one day earlier (Sunday).

just Numeric offset in days (justification). Shifts the lines from the year break date.
Defaults to -0.5 for day, which shifts the line by half a day so it falls between
December 31 and January 1 by default. Defaults to -3.5 (i.e. half a week) for
week, isoweek and epiweek.

... Other arguments passed to layer. For example:

• colour Colour of the line. Try: colour = "grey50"

• linetype Linetype. Try: linetype = "dashed" or linetype = "dotted"

• linewidth Width of the line.
• alpha Transparency of the line. used to set an aesthetic to a fixed value.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

influenza_germany 15

Value

A ggplot2 layer that can be added to a plot.

See Also

geom_epicurve(), ggplot2::geom_vline()

Examples

library(ggplot2)
set.seed(1)

plot_data_epicurve_imp <- data.frame(
date = rep(as.Date("2023-12-01") + ((0:300) * 1), times = rpois(301, 0.5))

)

Break type day
ggplot(plot_data_epicurve_imp, aes(x = date, weight = 2)) +

geom_epicurve(date_resolution = "week") +
geom_vline_year() +
labs(title = "Epicurve Example") +
scale_y_cases_5er() +
scale_x_date(date_breaks = "4 weeks", date_labels = "W%V'%g") + # Correct ISOWeek labels week'year
theme_bw()

Break type week
ggplot(plot_data_epicurve_imp, aes(x = date, weight = 2)) +

geom_epicurve(date_resolution = "week") +
geom_vline_year(break_type = "week") +
labs(title = "Epicurve Example") +
scale_y_cases_5er() +
scale_x_date(date_breaks = "4 weeks", date_labels = "W%V'%g") + # Correct ISOWeek labels week'year
theme_bw()

influenza_germany Germany Influenza (FLU) Surveillance data

Description

A subset of the weekly German influenza surveillance data from January 2020 to January 2025.

Usage

influenza_germany

Format

An object of class tbl_df (inherits from tbl, data.frame) with 1037 rows and 4 columns.

16 linelist_hospital_outbreak

Details

A data frame with 1,037 rows and 4 columns:

ReportingWeek Reporting Week in "2024-W03" format

AgeGroup Age groups: 00+ for all and 00-14, 15-59 and 60+ for age stratified cases.

Cases Weekly case count

Incidence Calculated weekly incidence

Source

License CC-BY 4.0: Robert Koch-Institut (2025): Laborbestätigte Influenzafälle in Deutschland.
Dataset. Zenodo. DOI:10.5281/zenodo.14619502. https://github.com/robert-koch-institut/
Influenzafaelle_in_Deutschland

linelist_hospital_outbreak

Line list of a fictional hospital outbreak (Data)

Description

This hospital outbreak is inspired by typical hospital outbreaks with resistant 4MRGN bacterial
pathogens. These outbreaks start silent, since they are not initially apparent from the symptoms of
the patient.

Usage

linelist_hospital_outbreak

Format

A data frame with 8 rows and 9 columns:

• Patient - Patient ID (0-7)

• ward_name_1 - Name of first ward where patient stayed

• ward_start_of_stay_1 - Start date of stay in first ward

• ward_end_of_stay_1 - End date of stay in first ward

• ward_name_2 - Name of second ward where patient stayed (if applicable)

• ward_start_of_stay_2 - Start date of stay in second ward (if applicable)

• ward_end_of_stay_2 - End date of stay in second ward (if applicable)

• pathogen_detection_1 - Date of first positive pathogen test

• pathogen_detection_2 - Date of second positive pathogen test (if applicable)

Patient details:

• Patient 0: Index case (ICU), infected early on but detected June 30, 2024

https://github.com/robert-koch-institut/Influenzafaelle_in_Deutschland
https://github.com/robert-koch-institut/Influenzafaelle_in_Deutschland

scale_y_cases_5er 17

• Patient 1-2: ICU patients, found during initial screening

• Patient 3: Case who moved from ICU to general ward prior to the detection of patient 0,
potentially linking both outbreak clusters. Detected during extended case search

• Patient 4-6: General ward cases, found after Patient 3’s detection

• Patient 7: General ward case, detected post-discharge by GP, who notified the hospital

Examples

library(dplyr)
library(tidyr)
library(ggplot2)

Transform hospital outbreak line list to long format
linelist_hospital_outbreak |>

pivot_longer(
cols = starts_with("ward"),
names_to = c(".value", "num"),
names_pattern = "ward_(name|start_of_stay|end_of_stay)_([0-9]+)",
values_drop_na = TRUE

) -> df_stays_long

linelist_hospital_outbreak |>
pivot_longer(cols = starts_with("pathogen"), values_to = "date") -> df_detections_long

Create Epi Gantt chart showing ward stays and test dates
ggplot(df_stays_long) +
geom_epigantt(aes(y = Patient, xmin = start_of_stay, xmax = end_of_stay, color = name)) +
geom_point(aes(y = Patient, x = date, shape = "Date of pathogen detection"),
data = df_detections_long

) +
scale_y_discrete_reverse() +
theme_bw() +
theme(legend.position = "bottom")

scale_y_cases_5er Continuous x-axis and y-axis scale for (case) counts

Description

A continuous ggplot scale for count data with sane defaults for breaks. It uses base::pretty() to
increase the default number of breaks and prefers 5er breaks. Additionally, the first tick (i.e. zero)
is aligned to the lower left corner.

Usage

scale_y_cases_5er(
name = waiver(),

18 scale_y_cases_5er

n = 8,
min.n = 5,
u5.bias = 4,
expand = NULL,
labels = waiver(),
limits = NULL,
oob = scales::censor,
na.value = NA_real_,
transform = "identity",
position = "left",
sec.axis = waiver(),
guide = waiver(),
...

)

scale_x_cases_5er(
name = waiver(),
n = 8,
min.n = 5,
u5.bias = 4,
expand = NULL,
labels = waiver(),
limits = NULL,
oob = scales::censor,
na.value = NA_real_,
transform = "identity",
position = "bottom",
sec.axis = waiver(),
guide = waiver(),
...

)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

n Target number of breaks passed to base::pretty(). Defaults to 8.

min.n Minimum number of breaks passed to base::pretty(). Defaults to 5.

u5.bias The "5-bias" parameter passed to base::pretty(); higher values push the breaks
more strongly toward multiples of 5. Defaults to 4.

expand Uses own expansion logic. Use expand = waiver() to restore ggplot defaults
or ggplot2::expansion() to modify

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)

scale_y_cases_5er 19

• An expression vector (must be the same length as breaks). See ?plotmath
for details.

• A function that takes the breaks as input and returns labels as output. Also
accepts rlang lambda function notation.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

oob One of:

• Function that handles limits outside of the scale limits (out of bounds). Also
accepts rlang lambda function notation.

• The default (scales::censor()) replaces out of bounds values with NA.
• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

na.value Missing values will be replaced with this value.

transform For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called transform_<name>. If transformations require argu-
ments, you can call them from the scales package, e.g. scales::transform_boxcox(p
= 2). You can create your own transformation with scales::new_transform().

position For position scales, The position of the axis. left or right for y axes, top or
bottom for x axes.

sec.axis sec_axis() is used to specify a secondary axis.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

... Additional arguments passed on to base::pretty().

Value

A ggplot2 scale object that can be added to a plot.

See Also

geom_epicurve(), ggplot2::scale_y_continuous(), base::pretty(), theme_mod_remove_minor_grid_y()

20 scale_y_discrete_reverse

Examples

library(ggplot2)

data <- data.frame(date = as.Date("2024-01-01") + 0:30)
ggplot(data, aes(x = date)) +

geom_epicurve(date_resolution = "week") +
scale_y_cases_5er() +
theme_mod_remove_minor_grid_y()

scale_y_discrete_reverse

Reversed discrete scale for ’ggplot2’

Description

scale_y_discrete_reverse() and scale_x_discrete_reverse() are standard discrete ’ggplot2’
scales with a reversed order of values. Since the ggplot2 coordinate system starts with 0 in the lower
left corner, factors on the y-axis are sorted is descending order by default (i.e. alphabetically from
Z to A). With this scale the the y-axis will start with the first factor level at the top or with alphabet-
ically correctly ordered values

Usage

scale_y_discrete_reverse(
name = waiver(),
limits = NULL,
...,
expand = waiver(),
position = "left"

)

scale_x_discrete_reverse(
name = waiver(),
limits = NULL,
...,
expand = waiver(),
position = "bottom"

)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

limits Can be either NULL which uses the default reversed scale values or a character
vector which will be reversed.

... Arguments passed on to ggplot2::discrete_scale()

theme_mod_disable_legend, theme_mod_legend_position 21

expand For position scales, a vector of range expansion constants used to add some
padding around the data to ensure that they are placed some distance away from
the axes. Use the convenience function expansion() to generate the values for
the expand argument. The defaults are to expand the scale by 5% on each side
for continuous variables, and by 0.6 units on each side for discrete variables.

position For position scales, The position of the axis. left or right for y axes, top or
bottom for x axes.

Value

A ggplot2 scale object that can be added to a plot.

See Also

geom_epigantt(), ggplot2::scale_y_discrete()

Examples

library(ggplot2)

Create sample data
df <- data.frame(

category = factor(c("A", "B", "C", "D")),
value = c(10, 5, 8, 3)

)

Basic plot with reversed y-axis
ggplot(df, aes(x = value, y = category)) +

geom_col() +
scale_y_discrete_reverse()

theme_mod_disable_legend, theme_mod_legend_position

Quickly adjust the legend position

Description

Convenience functions to control the legend position for ggplot2. Has to be called after setting the
theme.

Usage

theme_mod_disable_legend()

theme_mod_legend_position(
position = c("top", "bottom", "left", "right", "none", "inside"),
position.inside = NULL

22 theme_mod_remove_minor_grid

)

theme_mod_legend_top()

theme_mod_legend_bottom()

theme_mod_legend_left()

theme_mod_legend_right()

Arguments

position Position of the ggplot2 legend. Options are ("top", "bottom", "left", "right", "none", "inside")

position.inside

Coordinates for the legend inside the plot. If set overwrites position to inside.

Value

Changes the legend.position of the ggplot2::theme().

theme_mod_remove_minor_grid

Quickly remove the minor lines of the panel grid

Description

theme_mod_remove_minor_grid(), theme_mod_remove_minor_grid_x(), theme_mod_remove_minor_grid_y()
are convenience functions remove the minor lines of the panel grid. Has to be called after setting
the theme.

Usage

theme_mod_remove_minor_grid()

theme_mod_remove_minor_grid_y()

theme_mod_remove_minor_grid_x()

theme_mod_remove_panel_grid()

Value

Changes the panel.grid.minor of the ggplot2::theme().

theme_mod_rotate_axis_labels 23

theme_mod_rotate_axis_labels

Rotate axis labels

Description

Rotate axis labels by 90°, 45° or any angle. Has to be called after setting the theme.

Usage

theme_mod_rotate_x_axis_labels(
angle = 90,
margin_top = 2,
vjust = 0.4,
hjust = 0,
...

)

theme_mod_rotate_x_axis_labels_90(angle = 90, ...)

theme_mod_rotate_x_axis_labels_45(angle = 45, ...)

theme_mod_rotate_x_axis_labels_30(angle = 30, ...)

theme_mod_rotate_x_axis_labels_60(angle = 60, ...)

theme_mod_rotate_y_axis_labels(angle = 90, hjust = 0.5, vjust = 0, ...)

Arguments

angle Angle of rotation. Should be between 10 and 90 degrees.

margin_top Used to move the tick labels downwards to prevent text intersecting the x-axis.
Increase for angled multiline text (e.g. 5 for two lines at 45°).

hjust, vjust Text justification within the rotated text element. Just ignore.

... Arguments passed to theme_mod_rotate_x_axis_labels and ggplot2::element_text().

Value

Changes the rotation of the axis labels by modifying the axis.text of the ggplot2::theme().

24 uncount, expand_counts

uncount, expand_counts

Duplicate rows according to a weighting variable

Description

uncount() is provided by the tidyr package, and re-exported by ggsurveillance. See tidyr::uncount()
for more details.

uncount() and its alias expand_counts() are complements of dplyr::count(): they take a data
frame with a column of frequencies and duplicate each row according to those frequencies.

Usage

uncount(data, weights, ..., .remove = TRUE, .id = NULL)

expand_counts(data, weights, ..., .remove = TRUE, .id = NULL)

Arguments

data A data frame, tibble, or grouped tibble.

weights A vector of weights. Evaluated in the context of data; supports quasiquotation.

... Additional arguments passed on to methods.

.remove If TRUE, and weights is the name of a column in data, then this column is
removed.

.id Supply a string to create a new variable which gives a unique identifier for each
created row.

Value

A data.frame with rows duplicated according to weights.

Examples

df <- data.frame(x = c("a", "b"), n = c(2, 3))
df |> uncount(n)
Or equivalently:
df |> expand_counts(n)

Index

∗ datasets
geom_epicurve, 8
influenza_germany, 15
linelist_hospital_outbreak, 16

aes, 9
align_and_bin_dates_seasonal

(align_dates_seasonal), 2
align_dates_seasonal, 2

base::pretty(), 17–19
borders(), 10, 12

coord_cartesian(), 19
create_agegroups, 5

dplyr::count(), 24

expand_counts (uncount, expand_counts),
24

expansion(), 21

fortify(), 12

geom_epicurve, 8
geom_epicurve(), 15, 19
geom_epigantt, 11
geom_epigantt(), 21
geom_hline_year (geom_vline_year), 13
geom_vline_year, 13
geom_vline_year(), 10
geometric_mean, 6
ggplot(), 12
ggplot2::aes(), 14
ggplot2::discrete_scale(), 20
ggplot2::element_text(), 23
ggplot2::expansion(), 18
ggplot2::facet_grid(), 14
ggplot2::facet_wrap(), 14
ggplot2::geom_vline(), 15
ggplot2::ggplot(), 14

ggplot2::scale_y_continuous(), 19
ggplot2::scale_y_discrete(), 21
ggplot2::stat_count, 8
ggplot2::theme(), 22, 23
guides(), 19

influenza_germany, 15

lambda, 19
layer, 10, 14
linelist_hospital_outbreak, 16

scale_x_cases_5er (scale_y_cases_5er),
17

scale_x_discrete_reverse
(scale_y_discrete_reverse), 20

scale_y_cases_5er, 17
scale_y_cases_5er(), 10
scale_y_discrete_reverse, 20
scales::censor(), 19
scales::new_transform(), 19
scales::squish(), 19
scales::squish_infinite(), 19
sec_axis(), 19
stat_bin_date (geom_epicurve), 8
stat_date_count (geom_epicurve), 8
StatBinDate (geom_epicurve), 8
StatDateCount (geom_epicurve), 8
StatEpicurve (geom_epicurve), 8

theme_mod_disable_legend
(theme_mod_disable_legend,
theme_mod_legend_position), 21

theme_mod_disable_legend,
theme_mod_legend_position, 21

theme_mod_legend_bottom
(theme_mod_disable_legend,
theme_mod_legend_position), 21

theme_mod_legend_bottom(), 13

25

26 INDEX

theme_mod_legend_left
(theme_mod_disable_legend,
theme_mod_legend_position), 21

theme_mod_legend_position
(theme_mod_disable_legend,
theme_mod_legend_position), 21

theme_mod_legend_right
(theme_mod_disable_legend,
theme_mod_legend_position), 21

theme_mod_legend_top
(theme_mod_disable_legend,
theme_mod_legend_position), 21

theme_mod_remove_minor_grid, 22
theme_mod_remove_minor_grid_x

(theme_mod_remove_minor_grid),
22

theme_mod_remove_minor_grid_y
(theme_mod_remove_minor_grid),
22

theme_mod_remove_minor_grid_y(), 19
theme_mod_remove_panel_grid

(theme_mod_remove_minor_grid),
22

theme_mod_rotate_axis_labels, 23
theme_mod_rotate_x_axis_labels

(theme_mod_rotate_axis_labels),
23

theme_mod_rotate_x_axis_labels_30
(theme_mod_rotate_axis_labels),
23

theme_mod_rotate_x_axis_labels_45
(theme_mod_rotate_axis_labels),
23

theme_mod_rotate_x_axis_labels_60
(theme_mod_rotate_axis_labels),
23

theme_mod_rotate_x_axis_labels_90
(theme_mod_rotate_axis_labels),
23

theme_mod_rotate_y_axis_labels
(theme_mod_rotate_axis_labels),
23

tidyr::uncount(), 24

uncount (uncount, expand_counts), 24
uncount, expand_counts, 24

	align_dates_seasonal
	create_agegroups
	geometric_mean
	geom_epicurve
	geom_epigantt
	geom_vline_year
	influenza_germany
	linelist_hospital_outbreak
	scale_y_cases_5er
	scale_y_discrete_reverse
	theme_mod_disable_legend, theme_mod_legend_position
	theme_mod_remove_minor_grid
	theme_mod_rotate_axis_labels
	uncount, expand_counts
	Index

