Package 'fangs'

April 11, 2025

Title Feature Allocation Neighborhood Greedy Search Algorithm

Version 0.2.21

Description A neighborhood-based, greedy search algorithm is performed to estimate a feature allocation by minimizing the expected loss based on posterior samples from the feature allocation distribution. The method is described in Dahl, Johnson, and Andros (2023) ``Comparison and Bayesian Estimation of Feature Allocations'' <doi:10.1080/10618600.2023.2204136>.

License MIT + file LICENSE | Apache License 2.0

URL https://github.com/dbdahl/fangs-package

BugReports https://github.com/dbdahl/fangs-package/issues

Depends R (>= 4.2.0)

SystemRequirements Cargo (Rust's package manager), rustc (>= 1.81.0)

Encoding UTF-8

LazyData TRUE

RoxygenNote 7.3.2

Config/Roxido/Version 25.04.10

NeedsCompilation yes

Author David B. Dahl [aut, cre] (<https://orcid.org/0000-0002-8173-1547>), R. Jacob Andros [aut] (<https://orcid.org/0000-0002-1289-385X>), Devin J. Johnson [aut] (<https://orcid.org/0000-0003-2619-6649>), Alex Crichton [ctb] (Rust crates: cfg-if, proc-macro2), Andrii Dmytrenko [ctb] (Rust crate: lapjv), Brendan Zabarauskas [ctb] (Rust crate: approx), David B. Dahl [ctb] (Rust crates: roxido, roxido_macro), David Tolnay [ctb] (Rust crates: proc-macro2, quote, syn, unicode-ident), Jim Turner [ctb] (Rust crate: adarray), Josh Stone [ctb] (Rust crates: autocfg, rayon, rayon-core), Niko Matsakis [ctb] (Rust crates: rayon, rayon-core), R. Janis Goldschmidt [ctb] (Rust crate: matrixmultiply), The Cranelift Project Developers [ctb] (Rust crates: pv-lite86, rand_chacha),
The Rand Project Developers [ctb] (Rust crates: getrandom, rand, rand_chacha, rand_core, rand_pcg),
The Rust Project Developers [ctb] (Rust crates: libc, log, num-complex, num-integer, num-traits, rand, rand_chacha, rand_core),
Ulrik Sverdrup ``bluss'' [ctb] (Rust crate: ndarray),
bluss [ctb] (Rust crates: either, itertools, matrixmultiply, rawpointer)

Maintainer David B. Dahl <dahl@stat.byu.edu>

Repository CRAN

Date/Publication 2025-04-11 03:10:03 UTC

Contents

compute_expected_loss	. 2
compute_loss	. 3
fangs	. 4
samplesFA	. 6
	7

compute_expected_loss Estimate the expected FARO Loss for a Feature Allocation

Description

A Monte Carlo estimate of the expected FARO loss is computed for a feature allocation given a set of posterior samples.

Usage

Index

```
compute_expected_loss(samples, Z, a = 1, nCores = 0)
```

Arguments

samples	An object of class 'list' containing posterior samples from a feature allocation distribution. Each list element encodes one feature allocation as a binary matrix, with items in the rows and features in the columns.
Z	A feature allocation in binary matrix form, with items in the rows and features in the columns.
a	A numeric scalar for the cost parameter of generalized Hamming distance used in FARO loss. The other cost parameter, b , is equal to $2 - a$.
nCores	The number of CPU cores to use, i.e., the number of simultaneous calculations at any given time. A value of zero indicates to use all cores on the system.

2

compute_loss

Value

The estimated expected FARO loss as a scalar value.

References

D. B. Dahl, D. J. Johnson, R. J. Andros (2023), Comparison and Bayesian Estimation of Feature Allocations, Journal of Computational and Graphical Statistics, doi:10.1080/10618600.2023.2204136.

Examples

```
data(samplesFA)
Z <- matrix(sample(c(0,1), 60, replace=TRUE), byrow=TRUE, nrow=20)
compute_expected_loss(samplesFA, Z)</pre>
```

compute_loss Compute the FARO Loss Between Feature Allocations

Description

The FARO loss is computed between two feature allocations, each represented in binary matrix form.

Usage

compute_loss(Z1, Z2, a = 1, augmented = FALSE)

Arguments

Z1	A feature allocation in binary matrix form, with items in the rows and features in the columns.
Z2	A feature allocation in binary matrix form, with items in the rows and features in the columns.
a	A numeric scalar for the cost parameter of generalized Hamming distance used in FARO loss. The other cost parameter, b , is equal to $2 - a$.
augmented	If TRUE, the column permutation (used by FARO loss to compare the feature allocations) is returned for each matrix.

Value

The FARO loss as a scalar value if augmented = FALSE, otherwise, a list of 3 elements including the loss and the two column permutations.

References

D. B. Dahl, D. J. Johnson, R. J. Andros (2023), Comparison and Bayesian Estimation of Feature Allocations, Journal of Computational and Graphical Statistics, doi:10.1080/10618600.2023.2204136.

fangs

Examples

```
Z1 <- matrix(c(0,1,1,0,1,1,0,1,1,1,1), byrow=TRUE, nrow=6)
Z2 <- matrix(c(0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0), byrow=TRUE, nrow=6)
compute_loss(Z1,Z2)
x <- compute_loss(Z1,Z2,a=1,TRUE)
sum(cbind(Z1,0) != Z2)
sum(cbind(Z1,0)[,x$permutation1] != Z2)
sum(cbind(Z1,0) != Z2[,x$permutation2])</pre>
```

fangs

Feature Allocation Neighborhood Greedy Search

Description

An implementation of the feature allocation greedy search algorithm is provided.

Usage

```
fangs(
   samples,
   nInit = 16,
   nSweet = 4,
   nIterations = 0,
   maxSeconds = 60,
   a = 1,
   nCores = 0,
   algorithm = "stochastic",
   quiet = FALSE
)
```

Arguments

samples	An object of class 'list' containing posterior samples from a feature allocation distribution. Each list element encodes one feature allocation as a binary matrix, with items in the rows and features in the columns.
nInit	The number of initial feature allocations to obtain using the alignment method. For each initial feature, a baseline feature allocation is uniformly selected from the list provided in samples. Samples are aligned to the baseline, proportions are computed for each matrix element, and the initial feature allocation is ob- tained by thresholding according to $a/2$.
nSweet	The number of feature allocations among nInit which are chosen (by lowest expected loss) to be optimized in the sweetening phase.
nIterations	The number of iterations (i.e., proposed changes) to consider per initial estimate in the stochastic sweetening phase, although the actual number may be less due to the maxSeconds argument. The default value is 0, which sets the number of iterations to the number of items times the number of columns.

4

fangs

maxSeconds	Stop the search and return the current best estimate once the elapsed time exceeds this value.
a	A numeric scalar for the cost parameter of generalized Hamming distance used in FARO loss. The other cost parameter, b , is equal to $2 - a$.
nCores	The number of CPU cores to use, i.e., the number of simultaneous calculations at any given time. A value of zero indicates to use all cores on the system.
algorithm	A string indicating the algorithm to use; equal to "stochastic", "deterministic", or "draws". The "stochastic" algorithm is recommended, although the "deterministic" algorithm may provide an improvement at the cost of time.
quiet	If TRUE, intermediate status reporting is suppressed. Otherwise details are pro- vided, especially when algorithm="stochastic".

Value

A list with the following elements:

- estimate The feature allocation point estimate in binary matrix form.
- expectedLoss The estimated expected FARO loss of the point estimate.
- iteration The iteration number (out of nIterations) at which the point estimate was found while sweetening.
- nIterations The number of sweetening iterations performed.
- secondsInitialization The elapsed time in the initialization phrase.
- secondsSweetening The elapsed time in the sweetening phrase.
- secondsTotal The total elapsed time.
- whichSweet The proposal number (out of nSweet) from which the point estimate was found.
- nInit The original supplied value of nInit.
- nSweet The original supplied value of nSweet.
- a The original supplied value of a.

References

D. B. Dahl, D. J. Johnson, R. J. Andros (2023), Comparison and Bayesian Estimation of Feature Allocations, Journal of Computational and Graphical Statistics, doi:10.1080/10618600.2023.2204136.

Examples

```
# To reduce load on CRAN testing servers, limit the number of iterations.
data(samplesFA)
fangs(samplesFA, nIterations=100, nCores=2)
```

```
samplesFA
```

Description

Samples are provided from a latent feature allocation model using the Attraction Indian Buffet Distribution (Warr et al., 2022) as a prior distribution. The purpose of the model was to use pairwise distance information to identify and predict the presence of Alzheimer's disease in patients.

Usage

```
data(samplesFA)
```

Format

An object of class 'list' containing 100 posterior samples from Warr et al. (2022)'s analysis. Each list elements encodes one feature allocation as a binary matrix, with items in the rows and features in the columns. These 100 feature allocation samples are a subset of the original 1000 samples obtained using MCMC in the original simulation study described by Warr et al. (2022).

References

R. L. Warr, D. B. Dahl, J. M. Meyer, A. Lui (2022), The Attraction Indian Buffet Distribution, Bayesian Analysis, 17 (3), 931-967, doi:10.1214/21BA1279.

Index

* **datasets** samplesFA, 6

compute_expected_loss, 2
compute_loss, 3

fangs, 4

samplesFA, 6