What’s new

Version 2.0 integrates two well-known cubature libraries in one place:

It also provides a single function cubintegrate that allows one to call all methods in a uniform fashion, as I explain below.

N.B. One has to be aware that there are cases where one library will integrate a function while the other won’t, and in some cases, provide somewhat different answers. That still makes sense and depends on the underlying methodology used.

Unified Interface

Following a suggestion by Simen Guare, we now have a function cubintegrate that can be used to try out various integration methods easily. Some examples.

library(cubature)
m <- 3
sigma <- diag(3)
sigma[2,1] <- sigma[1, 2] <- 3/5 ; sigma[3,1] <- sigma[1, 3] <- 1/3
sigma[3,2] <- sigma[2, 3] <- 11/15
logdet <- sum(log(eigen(sigma, symmetric = TRUE, only.values = TRUE)$values))
my_dmvnorm <- function (x, mean, sigma, logdet) {
    x <- matrix(x, ncol = length(x))
    distval <- stats::mahalanobis(x, center = mean, cov = sigma)
    exp(-(3 * log(2 * pi) + logdet + distval)/2)
}

First we try the scalar invocation with hcubature.

cubintegrate(f = my_dmvnorm, lower = rep(-0.5, 3), upper = c(1, 4, 2), method = "pcubature",
             mean = rep(0, m), sigma = sigma, logdet = logdet)
## $integral
## [1] 0.3341125
## 
## $error
## [1] 2.21207e-06
## 
## $neval
## [1] 4913
## 
## $returnCode
## [1] 0

We can compare that with Cuba’s cuhre.

cubintegrate(f = my_dmvnorm, lower = rep(-0.5, 3), upper = c(1, 4, 2), method = "cuhre",
             mean = rep(0, m), sigma = sigma, logdet = logdet)
## $integral
## [1] 0.3341125
## 
## $error
## [1] 2.226266e-06
## 
## $nregions
## [1] 19
## 
## $neval
## [1] 4699
## 
## $prob
## [1] 0
## 
## $returnCode
## [1] 0

The Cuba routine can take various further arguments; see for example, the help on cuhre. Such arguments can be directly passed to cubintegrate.

cubintegrate(f = my_dmvnorm, lower = rep(-0.5, 3), upper = c(1, 4, 2), method = "cuhre",
             mean = rep(0, m), sigma = sigma, logdet = logdet,
             flags = list(verbose = 2))
## Cuhre input parameters:
##   ndim 3
##   ncomp 1
##   nvec 1
##   epsrel 1e-05
##   epsabs 1e-12
##   flags 6
##   mineval 0
##   maxeval 1000000
##   key 0
##   statefile "(null)"
## 
## Iteration 1:  127 integrand evaluations so far
## [1] 0.330292 +- 0.16199      chisq 0 (0 df)
## 
## Iteration 2:  381 integrand evaluations so far
## [1] 0.334551 +- 0.0726708    chisq 0.000575398 (1 df)
## 
## Iteration 3:  635 integrand evaluations so far
## [1] 0.334084 +- 0.0126583    chisq 0.000588724 (2 df)
## 
## Iteration 4:  889 integrand evaluations so far
## [1] 0.334093 +- 0.00467064   chisq 0.000590497 (3 df)
## 
## Iteration 5:  1143 integrand evaluations so far
## [1] 0.33411 +- 0.00213905    chisq 0.00060536 (4 df)
## 
## Iteration 6:  1397 integrand evaluations so far
## [1] 0.334113 +- 0.000658593      chisq 0.000616501 (5 df)
## 
## Iteration 7:  1651 integrand evaluations so far
## [1] 0.334113 +- 0.000290809      chisq 0.000617561 (6 df)
## 
## Iteration 8:  1905 integrand evaluations so far
## [1] 0.334113 +- 4.6551e-05   chisq 0.000617624 (7 df)
## 
## Iteration 9:  2159 integrand evaluations so far
## [1] 0.334113 +- 3.69574e-05      chisq 0.000617628 (8 df)
## 
## Iteration 10:  2413 integrand evaluations so far
## [1] 0.334113 +- 6.66791e-05      chisq 0.000623038 (9 df)
## 
## Iteration 11:  2667 integrand evaluations so far
## [1] 0.334113 +- 2.65953e-05      chisq 0.000637044 (10 df)
## 
## Iteration 12:  2921 integrand evaluations so far
## [1] 0.334113 +- 3.88133e-05      chisq 0.000639547 (11 df)
## 
## Iteration 13:  3175 integrand evaluations so far
## [1] 0.334113 +- 2.10511e-05      chisq 0.000643648 (12 df)
## 
## Iteration 14:  3429 integrand evaluations so far
## [1] 0.334113 +- 1.31307e-05      chisq 0.000650986 (13 df)
## 
## Iteration 15:  3683 integrand evaluations so far
## [1] 0.334113 +- 8.69938e-06      chisq 0.000654881 (14 df)
## 
## Iteration 16:  3937 integrand evaluations so far
## [1] 0.334113 +- 1.88417e-05      chisq 0.000655658 (15 df)
## 
## Iteration 17:  4191 integrand evaluations so far
## [1] 0.334113 +- 1.59906e-05      chisq 0.000656618 (16 df)
## 
## Iteration 18:  4445 integrand evaluations so far
## [1] 0.334113 +- 4.85581e-06      chisq 0.000660585 (17 df)
## 
## Iteration 19:  4699 integrand evaluations so far
## [1] 0.334113 +- 2.22627e-06      chisq 0.000668304 (18 df)
## $integral
## [1] 0.3341125
## 
## $error
## [1] 2.226266e-06
## 
## $nregions
## [1] 19
## 
## $neval
## [1] 4699
## 
## $prob
## [1] 0
## 
## $returnCode
## [1] 0

As there are many such method-specific arguments, you may find the function default_args() useful.

str(default_args())
## List of 6
##  $ hcubature:List of 1
##   ..$ norm: chr [1:5] "INDIVIDUAL" "PAIRED" "L2" "L1" ...
##  $ pcubature:List of 1
##   ..$ norm: chr [1:5] "INDIVIDUAL" "PAIRED" "L2" "L1" ...
##  $ cuhre    :List of 4
##   ..$ minEval  : int 0
##   ..$ stateFile: NULL
##   ..$ flags    :List of 6
##   .. ..$ verbose   : int 0
##   .. ..$ final     : int 1
##   .. ..$ smooth    : int 0
##   .. ..$ keep_state: int 0
##   .. ..$ load_state: int 0
##   .. ..$ level     : int 0
##   ..$ key      : int 0
##  $ divonne  :List of 14
##   ..$ minEval     : int 0
##   ..$ stateFile   : NULL
##   ..$ flags       :List of 6
##   .. ..$ verbose   : int 0
##   .. ..$ final     : int 1
##   .. ..$ smooth    : int 0
##   .. ..$ keep_state: int 0
##   .. ..$ load_state: int 0
##   .. ..$ level     : int 0
##   ..$ rngSeed     : int 0
##   ..$ key1        : int 47
##   ..$ key2        : int 1
##   ..$ key3        : int 1
##   ..$ maxPass     : int 5
##   ..$ border      : num 0
##   ..$ maxChisq    : num 10
##   ..$ minDeviation: num 0.25
##   ..$ xGiven      : NULL
##   ..$ nExtra      : int 0
##   ..$ peakFinder  : NULL
##  $ sauve    :List of 7
##   ..$ minEval  : int 0
##   ..$ stateFile: NULL
##   ..$ flags    :List of 6
##   .. ..$ verbose   : int 0
##   .. ..$ final     : int 1
##   .. ..$ smooth    : int 0
##   .. ..$ keep_state: int 0
##   .. ..$ load_state: int 0
##   .. ..$ level     : int 0
##   ..$ rngSeed  : int 0
##   ..$ nNew     : int 1000
##   ..$ nMin     : int 50
##   ..$ flatness : num 50
##  $ vegas    :List of 8
##   ..$ minEval  : int 0
##   ..$ stateFile: NULL
##   ..$ flags    :List of 6
##   .. ..$ verbose   : int 0
##   .. ..$ final     : int 1
##   .. ..$ smooth    : int 0
##   .. ..$ keep_state: int 0
##   .. ..$ load_state: int 0
##   .. ..$ level     : int 0
##   ..$ rngSeed  : int 0
##   ..$ nStart   : int 1000
##   ..$ nIncrease: int 500
##   ..$ nBatch   : int 1000
##   ..$ gridNo   : int 0

Vectorization

cubintegrate provides vector intefaces too: the parameter nVec is by default 1, indicating a scalar interface. Any value > 1 results in a vectorized call. So f has to be constructed appropriately, thus:

my_dmvnorm_v <- function (x, mean, sigma, logdet) {
    distval <- stats::mahalanobis(t(x), center = mean, cov = sigma)
    exp(matrix(-(3 * log(2 * pi) + logdet + distval)/2, ncol = ncol(x)))
}

Here, the two underlying C libraries differ. The cubature library manages the number of points used in vectorization dynamically and this number can even vary from call to call. So any value of nVec greater than 1 is merely a flag to use vectorization. The Cuba C library on the other hand, will use the actual value of nVec.

cubintegrate(f = my_dmvnorm_v, lower = rep(-0.5, 3), upper = c(1, 4, 2), method = "pcubature",
             mean = rep(0, m), sigma = sigma, logdet = logdet,
             nVec = 128)
## $integral
## [1] 0.3341125
## 
## $error
## [1] 2.21207e-06
## 
## $neval
## [1] 4913
## 
## $returnCode
## [1] 0
cubintegrate(f = my_dmvnorm_v, lower = rep(-0.5, 3), upper = c(1, 4, 2), method = "cuhre",
             mean = rep(0, m), sigma = sigma, logdet = logdet,
             nVec = 128)
## $integral
## [1] 0.3341125
## 
## $error
## [1] 2.226266e-06
## 
## $nregions
## [1] 19
## 
## $neval
## [1] 4699
## 
## $prob
## [1] 0
## 
## $returnCode
## [1] 0

Session Info

sessionInfo()
## R version 4.5.0 (2025-04-11)
## Platform: aarch64-apple-darwin20
## Running under: macOS Sequoia 15.4.1
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRblas.0.dylib 
## LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.1
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## time zone: America/Los_Angeles
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] mvtnorm_1.3-3  cubature_2.1.2 benchr_0.2.5  
## 
## loaded via a namespace (and not attached):
##  [1] digest_0.6.37      R6_2.6.1           fastmap_1.2.0      xfun_0.52         
##  [5] cachem_1.1.0       knitr_1.50         htmltools_0.5.8.1  rmarkdown_2.29    
##  [9] lifecycle_1.0.4    cli_3.6.5          RcppProgress_0.4.2 sass_0.4.10       
## [13] jquerylib_0.1.4    compiler_4.5.0     tools_4.5.0        evaluate_1.0.3    
## [17] bslib_0.9.0        Rcpp_1.0.14.12     yaml_2.3.10        rlang_1.1.6       
## [21] jsonlite_2.0.0