detect_hyperglycemic_events function

detect_hyperglycemic_events

Runs the documented examples for detect_hyperglycemic_events().

example(detect_hyperglycemic_events, package = "cgmguru", run.dontrun = FALSE)
#> 
#> dtct__> # Load sample data
#> dtct__> library(iglu)
#> 
#> dtct__> data(example_data_5_subject)
#> 
#> dtct__> data(example_data_hall)
#> 
#> dtct__> # Level 1: \eqn{\geq} 15 min \eqn{>} 180 mg/dL, 
#> dtct__> # ends \eqn{\leq} 180 \eqn{\geq} 15 min
#> dtct__> hyper_lv1 <- detect_hyperglycemic_events(
#> dtct__+   example_data_5_subject, 
#> dtct__+   start_gl = 180, 
#> dtct__+   dur_length = 15, 
#> dtct__+   end_length = 15, 
#> dtct__+   end_gl = 180
#> dtct__+ )
#> 
#> dtct__> print(hyper_lv1$events_total)
#> # A tibble: 5 × 3
#>   id        total_events avg_ep_per_day
#>   <chr>            <int>          <dbl>
#> 1 Subject 1           14           1.1 
#> 2 Subject 2           17           1.02
#> 3 Subject 3            8           1.39
#> 4 Subject 4           13           1.01
#> 5 Subject 5           34           3.21
#> 
#> dtct__> # Level 2: \eqn{\geq} 15 min \eqn{>} 250 mg/dL, 
#> dtct__> # ends \eqn{\leq} 250 \eqn{\geq} 15 min
#> dtct__> hyper_lv2 <- detect_hyperglycemic_events(
#> dtct__+   example_data_5_subject, 
#> dtct__+   start_gl = 250, 
#> dtct__+   dur_length = 15, 
#> dtct__+   end_length = 15, 
#> dtct__+   end_gl = 250
#> dtct__+ )
#> 
#> dtct__> print(hyper_lv2$events_total)
#> # A tibble: 5 × 3
#>   id        total_events avg_ep_per_day
#>   <chr>            <int>          <dbl>
#> 1 Subject 1            2           0.16
#> 2 Subject 2           18           1.08
#> 3 Subject 3            4           0.69
#> 4 Subject 4            0           0   
#> 5 Subject 5           17           1.6 
#> 
#> dtct__> # Extended Hyperglycemia (\eqn{>} 250 mg/dL \eqn{\geq} 90 cumulative min within 120-min period,
#> dtct__> # ends \eqn{\leq} 180 mg/dL \eqn{\geq} 15 min after)
#> dtct__> hyper_extended <- detect_hyperglycemic_events(example_data_5_subject)
#> 
#> dtct__> print(hyper_extended$events_total)
#> # A tibble: 5 × 3
#>   id        total_events avg_ep_per_day
#>   <chr>            <int>          <dbl>
#> 1 Subject 1            0           0   
#> 2 Subject 2            9           0.54
#> 3 Subject 3            2           0.35
#> 4 Subject 4            0           0   
#> 5 Subject 5           10           0.94
#> 
#> dtct__> # Compare event rates across levels
#> dtct__> cat("Level 1 events:", sum(hyper_lv1$events_total$total_events), "\n")
#> Level 1 events: 86 
#> 
#> dtct__> cat("Level 2 events:", sum(hyper_lv2$events_total$total_events), "\n")
#> Level 2 events: 41 
#> 
#> dtct__> cat("Extended events:", sum(hyper_extended$events_total$total_events), "\n")
#> Extended events: 21 
#> 
#> dtct__> # Analysis on larger dataset with Level 1 criteria
#> dtct__> large_hyper <- detect_hyperglycemic_events(example_data_hall, 
#> dtct__+                                           start_gl = 180, 
#> dtct__+                                           dur_length = 15, 
#> dtct__+                                           end_length = 15, 
#> dtct__+                                           end_gl = 180)
#> 
#> dtct__> print(large_hyper$events_total)
#> # A tibble: 19 × 3
#>    id           total_events avg_ep_per_day
#>    <chr>               <int>          <dbl>
#>  1 1636-69-001             4           0.01
#>  2 1636-69-026             1           0.14
#>  3 1636-69-032             1           0.16
#>  4 1636-69-090             3           0.43
#>  5 1636-69-091             0           0   
#>  6 1636-69-114             0           0   
#>  7 1636-70-1005            3           0.37
#>  8 1636-70-1010            1           0.01
#>  9 2133-004                5           0.81
#> 10 2133-015                3           0.45
#> 11 2133-017                0           0   
#> 12 2133-018               12           1.94
#> 13 2133-019                0           0   
#> 14 2133-021                9           1.42
#> 15 2133-024                0           0   
#> 16 2133-027                0           0   
#> 17 2133-035                1           0.14
#> 18 2133-036                2           0.23
#> 19 2133-039                2           0.22
#> 
#> dtct__> # Analysis on larger dataset with Level 2 criteria
#> dtct__> large_hyper_lv2 <- detect_hyperglycemic_events(example_data_hall,
#> dtct__+                                                start_gl = 250,
#> dtct__+                                                dur_length = 15,
#> dtct__+                                                end_length = 15,
#> dtct__+                                                end_gl = 250)
#> 
#> dtct__> print(large_hyper_lv2$events_total)
#> # A tibble: 19 × 3
#>    id           total_events avg_ep_per_day
#>    <chr>               <int>          <dbl>
#>  1 1636-69-001             0           0   
#>  2 1636-69-026             0           0   
#>  3 1636-69-032             0           0   
#>  4 1636-69-090             0           0   
#>  5 1636-69-091             0           0   
#>  6 1636-69-114             0           0   
#>  7 1636-70-1005            0           0   
#>  8 1636-70-1010            0           0   
#>  9 2133-004                0           0   
#> 10 2133-015                0           0   
#> 11 2133-017                0           0   
#> 12 2133-018                2           0.32
#> 13 2133-019                0           0   
#> 14 2133-021                0           0   
#> 15 2133-024                0           0   
#> 16 2133-027                0           0   
#> 17 2133-035                0           0   
#> 18 2133-036                0           0   
#> 19 2133-039                0           0   
#> 
#> dtct__> # Analysis on larger dataset with Extended criteria
#> dtct__> large_hyper_extended <- detect_hyperglycemic_events(example_data_hall)
#> 
#> dtct__> print(large_hyper_extended$events_total)
#> # A tibble: 19 × 3
#>    id           total_events avg_ep_per_day
#>    <chr>               <int>          <dbl>
#>  1 1636-69-001             0           0   
#>  2 1636-69-026             0           0   
#>  3 1636-69-032             0           0   
#>  4 1636-69-090             0           0   
#>  5 1636-69-091             0           0   
#>  6 1636-69-114             0           0   
#>  7 1636-70-1005            0           0   
#>  8 1636-70-1010            0           0   
#>  9 2133-004                0           0   
#> 10 2133-015                0           0   
#> 11 2133-017                0           0   
#> 12 2133-018                1           0.16
#> 13 2133-019                0           0   
#> 14 2133-021                0           0   
#> 15 2133-024                0           0   
#> 16 2133-027                0           0   
#> 17 2133-035                0           0   
#> 18 2133-036                0           0   
#> 19 2133-039                0           0   
#> 
#> dtct__> # View detailed events for specific subject
#> dtct__> if(nrow(hyper_lv1$events_detailed) > 0) {
#> dtct__+   first_subject <- hyper_lv1$events_detailed$id[1]
#> dtct__+   subject_events <- hyper_lv1$events_detailed[hyper_lv1$events_detailed$id == first_subject, ]
#> dtct__+   head(subject_events)
#> dtct__+ }
#> # A tibble: 6 × 7
#>   id        start_time          start_glucose end_time            end_glucose
#>   <chr>     <dttm>                      <dbl> <dttm>                    <dbl>
#> 1 Subject 1 2015-06-11 15:45:07           194 2015-06-11 17:10:07         157
#> 2 Subject 1 2015-06-11 17:25:07           195 2015-06-11 20:05:06         142
#> 3 Subject 1 2015-06-11 22:35:06           187 2015-06-12 00:05:06         151
#> 4 Subject 1 2015-06-12 07:50:04           181 2015-06-12 09:35:04         164
#> 5 Subject 1 2015-06-13 17:04:59           181 2015-06-13 18:40:00         155
#> 6 Subject 1 2015-06-13 19:44:59           223 2015-06-13 20:49:58         158
#> # ℹ 2 more variables: start_indices <int>, end_indices <int>