detect_all_events function : cgmguru vs iglu

Datasets

We use two CGM example datasets shipped with iglu:

data(example_data_5_subject, package = "iglu")
data(example_data_hall, package = "iglu")

# Base-R summaries (no external dependencies)
summary_5 <- data.frame(
  rows = nrow(example_data_5_subject),
  subjects = length(unique(example_data_5_subject$id)),
  time_min = min(example_data_5_subject$time),
  time_max = max(example_data_5_subject$time),
  gl_min = min(example_data_5_subject$gl, na.rm = TRUE),
  gl_max = max(example_data_5_subject$gl, na.rm = TRUE)
)

summary_5
#>    rows subjects            time_min            time_max gl_min gl_max
#> 1 13866        5 2015-02-24 17:31:29 2015-06-19 08:59:36     50    400
cat("Note: The 'iglu' package is not available; vignette examples are skipped.\n")

iglu: episode_calculation

iglu::episode_calculation() identifies hypo/hyperglycemia episodes.

iglu_episodes_5 <- iglu::episode_calculation(
  data = example_data_5_subject
)
print(iglu_episodes_5)
#> # A tibble: 35 × 7
#>    id        type  level avg_ep_per_day avg_ep_duration avg_ep_gl total_episodes
#>    <fct>     <chr> <chr>          <dbl>           <dbl>     <dbl>          <dbl>
#>  1 Subject 1 hypo  lv1           0.0899            35        68.6              1
#>  2 Subject 1 hypo  lv2           0                  0        NA                0
#>  3 Subject 1 hypo  exte…         0                  0        NA                0
#>  4 Subject 1 hyper lv1           1.44              80.3     200.              16
#>  5 Subject 1 hyper lv2           0.180             30       264.               2
#>  6 Subject 1 hypo  lv1_…         0.0899            35        68.6              1
#>  7 Subject 1 hyper lv1_…         1.26              79.6     195.              14
#>  8 Subject 2 hypo  lv1           0                  0        NA                0
#>  9 Subject 2 hypo  lv2           0                  0        NA                0
#> 10 Subject 2 hypo  exte…         0                  0        NA                0
#> # ℹ 25 more rows
iglu_episodes_hall <- iglu::episode_calculation(
  data = example_data_hall
)
print(iglu_episodes_hall)
#> # A tibble: 133 × 7
#>    id        type  level avg_ep_per_day avg_ep_duration avg_ep_gl total_episodes
#>    <chr>     <chr> <chr>          <dbl>           <dbl>     <dbl>          <dbl>
#>  1 1636-69-… hypo  lv1            0.468            15        68.1              3
#>  2 1636-69-… hypo  lv2            0                 0        NA                0
#>  3 1636-69-… hypo  exte…          0                 0        NA                0
#>  4 1636-69-… hyper lv1            0.623            57.5     201.               4
#>  5 1636-69-… hyper lv2            0                 0        NA                0
#>  6 1636-69-… hypo  lv1_…          0.468            15        68.1              3
#>  7 1636-69-… hyper lv1_…          0.623            57.5     201.               4
#>  8 1636-69-… hypo  lv1            0                 0        NA                0
#>  9 1636-69-… hypo  lv2            0                 0        NA                0
#> 10 1636-69-… hypo  exte…          0                 0        NA                0
#> # ℹ 123 more rows

cgmguru: detect_all_events

all_events_5 <- detect_all_events(example_data_5_subject, reading_minutes = 5)
print(all_events_5)
#> # A tibble: 40 × 6
#>    id        type  level    total_episodes avg_ep_per_day avg_episode_duration…¹
#>    <chr>     <chr> <chr>             <int>          <dbl>                  <dbl>
#>  1 Subject 1 hypo  lv1                   1           0.08                      0
#>  2 Subject 1 hypo  lv2                   0           0                         0
#>  3 Subject 1 hypo  extended              0           0                         0
#>  4 Subject 1 hypo  lv1_excl              1           0.08                      0
#>  5 Subject 1 hyper lv1                  14           1.1                       0
#>  6 Subject 1 hyper lv2                   2           0.16                      0
#>  7 Subject 1 hyper extended              0           0                         0
#>  8 Subject 1 hyper lv1_excl             12           0.95                      0
#>  9 Subject 2 hypo  lv1                   0           0                         0
#> 10 Subject 2 hypo  lv2                   0           0                         0
#> # ℹ 30 more rows
#> # ℹ abbreviated name: ¹​avg_episode_duration_below_54
all_events_hall <- detect_all_events(example_data_hall, reading_minutes = 5)
print(all_events_hall)
#> # A tibble: 152 × 6
#>    id          type  level  total_episodes avg_ep_per_day avg_episode_duration…¹
#>    <chr>       <chr> <chr>           <int>          <dbl>                  <dbl>
#>  1 1636-69-001 hypo  lv1                 2           0                         0
#>  2 1636-69-001 hypo  lv2                 0           0                         0
#>  3 1636-69-001 hypo  exten…              0           0                         0
#>  4 1636-69-001 hypo  lv1_e…              2           0                         0
#>  5 1636-69-001 hyper lv1                 4           0.01                      0
#>  6 1636-69-001 hyper lv2                 0           0                         0
#>  7 1636-69-001 hyper exten…              0           0                         0
#>  8 1636-69-001 hyper lv1_e…              4           0.01                      0
#>  9 1636-69-026 hypo  lv1                 0           0                         0
#> 10 1636-69-026 hypo  lv2                 0           0                         0
#> # ℹ 142 more rows
#> # ℹ abbreviated name: ¹​avg_episode_duration_below_54

Speed comparison

We compare performance using microbenchmark on both datasets. Each benchmark contrasts iglu::episode_calculation() with cgmguru::detect_all_events().

library(microbenchmark)
library(iglu)

# example_data_5_subject
bench_5 <- microbenchmark(
  episode_calculation = iglu::episode_calculation(example_data_5_subject),
  detect_all_events   = cgmguru::detect_all_events(example_data_5_subject, reading_minutes = 5),
  times = 100,
  unit = "ms"
)
print(bench_5)
#> Unit: milliseconds
#>                 expr        min         lq       mean    median        uq
#>  episode_calculation 376.474177 385.590486 390.380185 388.12088 392.58215
#>    detect_all_events   1.682353   1.736063   2.226354   1.77243   1.79865
#>        max neval cld
#>  432.52950   100  a 
#>   47.41675   100   b

# example_data_hall (all subjects)
bench_hall <- microbenchmark(
  episode_calculation = iglu::episode_calculation(example_data_hall),
  detect_all_events   = cgmguru::detect_all_events(example_data_hall, reading_minutes = 5),
  times = 100,
  unit = "ms"
)
print(bench_hall)
#> Unit: milliseconds
#>                 expr        min          lq        mean      median          uq
#>  episode_calculation 1078.02509 1099.925901 1126.088976 1110.985466 1130.421721
#>    detect_all_events    3.86999    3.935713    4.080439    3.973228    4.035322
#>          max neval cld
#>  1415.517087   100  a 
#>     7.642236   100   b
cat("Note: Installed 'iglu' version has a different 'episode_calculation' API; iglu examples are skipped.\n")