Package ‘PAMmisc’

February 5, 2026

Title Miscellaneous Functions for Passive Acoustic Analysis

Version 1.12.7

Description A collection of miscellaneous functions for passive acoustics.
Much of the content here is adapted to R from code written by other people.
If you have any ideas of functions to add, please contact Taiki Sakai.

License GNU General Public License

Encoding UTF-8
LazyData true

RoxygenNote 7.3.2

Imports ggplot2, tuneR, seewave, dplyr, RcppRoll, PamBinaries,
RSQLite, lubridate, rerddap, ncdf4, httr, purrr, xml2, methods,
geosphere, tcltk, scales, suncalc, rjson, fftw, signal

Suggests testthat

Depends R (>=3.50)
NeedsCompilation yes

Author Taiki Sakai [aut, cre],
Jay Barlow [ctb],
Julie Oswald [ctb],
Val Schmidt [ctb]

Maintainer Taiki Sakai <taiki.sakai@noaa.gov>

Repository CRAN

Date/Publication 2026-02-05 17:30:02 UTC

Contents

addPgAnno

addPgEvent

addPgGps

browseEdinfo

createSSP

dataToRanges e

addPgAnno

decimateWavFiles L 9
downloadEnv L 10
edinfoTOURL 11
erddapList L e 12
erddapToEdinfo 12
fastReadWave 13
findEchoTimes 14
formatURL e 15
getEdinfo e 17
getFigsharelnfo e 17
hycomList e 18
matchEnvData e 18
ncToData e e e 20
peakTrough e 22
plotPresBar L 23
plotPresGrid L. 25
pwelch e e e e e 27
TAYITACE © o v v v v v e 28
readGPXTrack e 29
readSpecANNO L. 30
soundtrapQAQC L 30
squishList L 32
straightPath 33
trainSplitPermute 34
updateUID e e e e 36
varSelecto e 37
wignerTransform L 38
writteAMWave L e 39
writeClickWave e e 40
Index 43
addPgAnno Add Spectrogram Annotations to Pamguard Database
Description

Add new annotations to an existing Pamguard Spectrogram Annotations table

Usage

addPgAnno(
db,
anno,
tableName = NULL,
channel = 1,
source = c("manual”, "aplose”, "pammisc”, "annomate", "raven”),
format = c("%m/%d/%Y %H:%M:%0S", "%m-%d-%Y %H:%M:%0S",

addPgEvent 3

"%Y/%m/%d %H:%M:%0S", "%Y-%m-%d %H:%M:%0S"),

tz = "UTC"
)
Arguments
db database file to add annotations to
anno annotations to add, must contain columns UTC, Duration (seconds), f1 (min
freq Hz), and f2 (max freq Hz). Any other columns matching columns in the
database will also be added
tableName name of the annotation table in the database
channel channel to display the annotations on
source annotation source. If 'manual', columns UTC, DUration, f1, and f2 must be
present. Other options will attempt to automate conversion to these column
names from specific output sources
format date format, default will try two variations of MDY HMS and YMD HMS
tz timezone of provided date
Value

Returns a dataframe of the rows added to the database

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

Not run:

myDb <- 'PamguardDatabase.sqlite3'’

myAnno <- data.frame(UTC = '2021/10/23 12:10:1@', Duration = .563, f1=2300, f2=3600)
addPgAnno(myDb, myAnno, tableName='Spectrogram_Annotation', source='manual')

End(Not run)

addPgEvent Add Pamguard Event to Database

Description

Add a new event to an existing Pamguard database in the "OfflineEvents" table. If the specified
eventType does not exist in the database, it will be added to the "Lookup" table.

addPgEvent(

db,

UIDs = NULL,
binary,
eventType,
comment = NA,
tableName = NULL,
start = NULL,

end = NULL,

addPgEvent

type =

Arguments

db

UIDs
binary
eventType

comment
tableName

start

end

type

Value

C(”Click”, ”dg”)

database file to add an event to
vector of the UIDs of the individual detections to add to the event
binary file(s) containing the detections from UIDs

the name of the event type to add. If this is not already present in the database,
it will be added to the "Lookup" table

(optional) a comment for the event

(optional) specify the name of the Click Detector that generated the event table
you want to add to. This only needs to be specified if you have more than
one click detector, it defaults to the first "NAME_OfflineEvents" table in the
database.

(optional) start time of event. Mandatory if no detections are added

(optional) end time of event. Mandatory if no detections are added

type of event data to add, either 'click' to add event data using the Click
Detector module, or 'dg' to add event data using the Detection Grouper module

Adds to the database db, invisibly returns TRUE if successful

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

Not run:

myDb <- 'PamguardDatabase.sqlite3'

myBinaries <- c('./Binaries/Bin1.pgdf', './Binaries/Bin2.pgdf")

addUIDs <- c(10000001, 10000002, 20000007, 20000008)

addPgEvent(db = myDb, UIDs = addUIDs, binary = myBinaries, eventType = 'MyNewEvent')

End(Not run)

addPgGps

addPgGps

Add GPS to a Pamguard Database

Description

Add GPS data to an existing Pamguard database

Usage

addPgGps (

db,
gps,

source
format =

c("csv", "SPOTcsv", "SPOTgpx"),
c("%m/%d/%Y %H:%M:%S", "%m-%d-%Y %H:%M:%S",

"%Y/%m/%d %H:%M:%S", "%Y-%m-%d %H:%M:%S"),

tz = "UTC”

Arguments
db
gps

source

format

tz

Value

database file to add gps data to

data.frame of gps data or a character of the file name to be read. If a data.frame or
non-SPOT csv file, needs columns UTC, Latitude, and Longitude. If multiple
separate tracks are present in the same dataset, this should be marked with a
column labeled Name

one of SPOTcsv, SPOTgpx, or csv. Describes the source of the GPS data, not
needed if gps is a data.frame

date format for converting to POSIXct, only needed for source='csv'. See
strptime

timezone of gps source being added, will be converted to UTC

Adds to the database db, invisibly returns the Name of the GPS track if successful (NA if not named)

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

Not run:

not run because example files don't exist
myDb <- 'PamguardDatabase.sqlite3’

adding from a .gpx file downloaded from SPOT
spotGpx <- 'SpotGPX.gpx'

addPgGps (myDb, spotGpx, source='SPOTgpx')

6 browseEdinfo

adding from a csv file with a Y-M-D H:M date format
gpsCsv <- 'GPS.csv'
addPgGps (myDb, gpsCsv, source='csv', format='%Y-%m-%d %H:%M")

End(Not run)

browseEdinfo Browse a List of Environmental Datasets

Description

This function browses the list of selected environmental datasets that are recommended as a starting
point, and prompts the user to select one to use, returning an edinfo object. Also allows user to filter
by variable name, matching will be attempted using regex

Usage

browseEdinfo(var = NULL)

Arguments

var the name or partial name of a variable to filter the available datasets by

Value

Returns an edinfo class object that can be used to get environmental data with other functions

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

Not run:
browse the full list (interactive)
edi <- browseEdinfo()

search for sst datasets (interactive)
edi <- browseEdinfo(var='sst')

End(Not run)

createSSP 7

createSSP Create Sound Speed Profiles

Description

Creates sound speed profiles (Depth vs Sound Speed) using temperature and salinity data down-
loaded from HYCOM data servers

Usage
createSSP(
X ’
f = 30000,
nc = NULL,
ncVars = c("salinity”, "water_temp"),
dropNA = TRUE,
progress = TRUE,
)
Arguments
X a data.frame with columns UTC, Longitude, and Latitude to create sound speed
profiles for
f the frequency (Hz) to generate the profile for
nc netcdf file containing salinity and temperature data at depth, if NULL (default)
these will be downloaded from HYCOM servers
ncVars names of the salinity and temperature variables (in that order) in your netcdf file,
only change these if you are providing your own file to nc
dropNA logical flag to drop NA values from soundspeeed profile from outputs. SSP
will be calculated up to the maximum depth at each coordinate, which can vary.
Setting this option to FALSE ensures that outputs are the same length for each
coordinate, which can be useful
progress logical flag to show progress bar for SST download
additional arguments to pass to matchEnvData
Value

a list with one element for each row of x, each element is a list containing speed, the sound speed
(m/s), and depth (m)

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

8 dataToRanges

Examples

Not run:

examples not run because they require internet connection

coords <- data.frame(UTC=as.POSIXct('2014-07-15 01:00:00', tz='UTC'),
Longitude = -119, Latitude = 33)

ssp <- createSSP(coords)

plot(x=ssp[[1]]$speed, y=-ssp[[1]]1$depth, type='l")

End(Not run)

dataToRanges Create List of the Ranges of Coordinates

Description

Creates a named list with the ranges of Longitude, Latitude, and Time (UTC) data for use in func-
tions like formatURL. Can also specify an amount to buffer the min and max values by for each
coordinate

Usage
dataToRanges(data, buffer = c(@, 0, 0))

Arguments
data a data frame with longitude, latitude, and time (UTC) columns
buffer a vector of the amount to buffer the min and max values of Longitude, Latitude,
and UTC by (in that order)
Value

a list with the ranges of coordinates for Longitude, Latitude, and UTC. Ranges are listed as c(left,
right), so if your data spans across the dateline

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

gps <- data.frame(Latitude = c(32, 32.1, 32.2, 32.2, 32.2),
Longitude = c(-110, -110.1, -110.2, -110.3, -110.4),
UTC = as.POSIXct(c('2000-01-01 00:00:00', '2000-01-01 00:00:10"',
'2000-01-01 00:00:20', '2000-01-01 00:00:30",
'2000-01-01 00:00:40')))
dataToRanges(gps)

dataToRanges(gps, buffer = c(.05, .05, 86400))

decimateWavFiles

decimateWavFiles Decimate Wave Files

Description

Decimate a folder of .wav files or a single .wav file to a new sample rate.

Usage

decimateWavFiles(inDir, outDir, newSr, progress = TRUE)

Arguments
inDir directory of wave files to decimate. Can also be a single .wav file.
outDir directory to write wave files to
newsr sample rate to decimate the files to
progress logical flag to show progress bar
Details

This code is based on R code written by Jay Barlow.

Value

Invisibly returns the names of all files that were successfully decimated

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

one 20kHz wav file is included in package test data
origDir <- system.file('extdata', package='PAMmisc')
decDir <- file.path(tempdir(), 'decSR')

decWavs <- decimateWavFiles(origDir, decDir, 10000)
file.remove(decWavs)

10 downloadEnv

downloadEnv Download Environmental Data

Description

Downloads environmental data matching the coordinates in a set of data

Usage

downloadEnv(
data,
edinfo,
fileName = NULL,
buffer = c(0, 0, 0),
timeout = 120,
progress = TRUE,

Arguments
data Data containing Longitude, Latitude, and UTC to download matching environ-
mental data for
edinfo either a edinfo object from getEdinfo or erddapToEdinfo or an ERDDAP dataset
ID
fileName name of the file to save downloaded data. If left as the default NULL, data will be
saved to a temporary folder
buffer numeric vector of the amount to buffer the Longitude, Latitude, and UTC coor-
dinates by
timeout number of seconds before timeout stops download attempt
progress logical flag to show download progress
not used
Value

if download is successful, invisibly returns the filename. If it fails returns FALSE.

If successful, the file name of downloaded data. If not, returns FALSE

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

edinfoToURL 11

Examples

data <- data.frame(Latitude = 32, Longitude = -117,
UTC = as.POSIXct('2000-01-01 00:00:00', tz='UTC'))
Not run:
not run because download could take time
download jplMURSST41 dataset
edi <- erddapToEdinfo('jplMURSST41")
ncFile <- downloadEnv(data, edi, 'sstData.nc')

browse suggested sst datasets, then download
edi <- browseEdinfo(var='sst')

ncFile <- downloadEnv(data, edi, 'sstData.nc')

End(Not run)

edinfoToURL Create a URL for Downloading Data from a edinfo Object

Description

Creates a properly formatted URL (see formatURL) from a datalist either from the package’s rec-
ommended sources or an ERDDAP dataset id

Usage

edinfoToURL (edinfo, ranges)

Arguments
edinfo a edinfo class object, either from getEdinfo or created by erddapToEdinfo
ranges list of ranges for Longitude, Latitude, and UTC. Must be a named list with a
vector of min/max values for each of the three dimensions
Value

a properly formatted URL that can be used to download environmental data

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

12 erddapToEdinfo

Examples

sstEdi <- getEdinfo()[['jplMURSST41']]
select all variables for download
sstEdi <- varSelect(sstEdi, TRUE)
edinfoToURL (sstEdi, ranges = list(Latitude = c(32, 33),
Longitude = c(-118, -117),
UTC = as.POSIXct(c('2000-01-01 00:00:00',
'2000-01-02 00:00:00'), tz='UTC')))

erddapList A list of edinfo objects from ERDDAP data sources

Description
A list of edinfo objects, mostly used internally for functions. These objects represent different
environmental data sources from ERDDAP servers and are used to download environmental data.
Usage
erddapList

Format

A list with objects of class edinfo

Source

Southwest Fisheries Science Center / NMFS / NOAA

erddapToEdinfo Create an edinfo Object from an ERDDAP Dataset Id

Description

Creates an edinfo object that can be used to create a URL for downloading environmental data using
edinfoToURL

Usage

erddapToEdinfo(
dataset,
baseurl = c("https://upwell.pfeg.noaa.gov/erddap/",
"https://coastwatch.pfeg.noaa.gov/erddap/", "https://www.ncei.noaa.gov/erddap/",
"https://erddap.sensors.ioos.us/erddap”),
chooseVars = TRUE

fastReadWave 13

hycomToEdinfo(
dataset = "GLBy@.08/expt_93.0",
baseurl = "https://ncss.hycom.org/thredds/ncss/",
chooseVars = TRUE

)
Arguments
dataset an ERDDAP or HYCOM dataset id, or the result from info
baseurl the base URL of an ERDDAP/HYCOM server
chooseVars logical flag whether or not to select which variables you want now or character
vector naming variables to select
Value

an edinfo list object that can be used to download environmental data

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

Not run:
examples not run because they require internet connection
sstEdi <- erddapToEdinfo('jplMURSST41")
dataset from a diferent erddap server
sshEdi <- erddapToEdinfo('hawaii_soest_2ee3_0bfa_a8d6"',
baseurl = 'http://apdrc.soest.hawaii.edu/erddap/")
THese work the same - erddap function will pass to hycom if appears to be hycom dataset
hycomEdi <- hycomToEdinfo('GLBy®@.08/expt_93.0"')
hycomEdi <- erddapToEdinfo('GLBy@.08/expt_93.0"')

End(Not run)

fastReadWave Load Wave File

Description

loads data from a WAVE file

Usage

fastReadWave(where, from = @, to = NA_real_, header = FALSE, toWaveMC = FALSE)

14 findEchoTimes

Arguments
where file to load data from
from starting point to load data from (seconds)
to end point to read data to (seconds), NA to read til end
header logical flag to read only header information
toWaveMC logical flag to return a WaveMC object

Details

WAVE is a RIFF (Resource Interchange File Format) widely used for storage of uncompressed
audio data. It is often identified by the extension .WAV on DOS-legacy systems (such as Win-
dows). Although WAVE files may contain compressed data, the above functions only support plain,
uncompressed PCM data.

This function was originally written Simon Urbanek, all credit for the bulk of the C programming
goes to him. Adapted by Taiki Sakai to add additional features and fix some bugs. See additional
license comments in file.c

Value

returns an object of the class audioSample as loaded from the WAVE file, or if header=TRUE a
named list with the sample.rate, num channels, bit rate, and sample length. audioSample objects
store the wav data as a matrix wth one row for every channel and attributes "rate" and "bits"

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

findEchoTimes Find Estimated Echo Times

Description

Finds the estimated times of echoes in a waveform clip. This function was developed to estimate
the time of a surface reflected echo of echolocation clicks of deep diving marine mammals. The
times of echoes are estimated by finding peaks in the autocorrelation of a signal.

Usage
findEchoTimes(
wav,
sr = NULL,

filter = NULL,
clipLen = 0.03,

peakMin = 0.01,
minTime = 0.001,
maxTime = NULL,

formatURL 15

channel = NULL,

n =3,
plot = TRUE,
plotText = NULL
)
Arguments
wav waveform to find echoes in. Can be a numeric vector, Wave, or WaveMC class
object
sr sample rate of the waveform, if wav is a Wave or WaveMC object it will use the
samp.rate slot
filter filter to apply to wav, a vector of two numbers specifying the lower and upper
bounds of the filter in Hz. A first value of @ means no highpass filter is applied,
a second value greater than sr/2 means no lowpass filter is applied.
clipLen length of clip (seconds) to analyse for echoes, measured from start of wav
peakMin minimum magnitude of autocorrelation value to be considered a possible peak
minTime minimum allowed echo time (seconds), this should be large enough to avoid
correlating the original pulse with itself
maxTime maximum allowed echo time (seconds)
channel if wav has multiple channels, channel to use
n the number of potential echoes to return, times with the n highest autocorrelation
magnitude will be returned
plot logical flag to create plot, will create a two-panel plot of the waveform (top) and
the autocorrelation (bottom). Points of the selected candidate echo times are
also drawn
plotText optional text to plot on the upper waveform plot
Value

a list with elements mag, time and wav

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

formatURL Format URL for Environmental Data Download

Description

This creates a properly formatted URL for downloading environmental data either from an ERD-
DAP or HYCOM server. This URL can be pasted into a browser or submitted to something like
httr::GET to actually download the data. Also see edinfoToURL

16 formatURL

Usage
formatURL (
base,
dataset,
fileType,
vars,
ranges,
stride = 1,
style = c("erddap”, "hycom")
)
Arguments
base the base URL to download from
dataset the specific datased ID to download
fileType the type of file to download, usually a netcdf
vars a vector of variables to download
ranges a list of three vectors specifying the range of data to download, must a list with
named vectors Longitude, Latitude, and UTC where each vector is c(min,
max) (Note: even if the time is something like "dayOfYear" this should still be
called "UTC’ for the purpose of this list). (see dataToRanges).
stride the stride for all dimensions, a value of 1 gets every data point, 2 gets every
other, etc.
style either 'erddap' or 'hycom'
Value

a properly formatted URL that can be used to download environmental data

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

formatURL(
base = "https://upwell.pfeg.noaa.gov/erddap/griddap/",
dataset = "jplMURSST41",
fileType = "nc",
vars = "analysed_sst”,
ranges = list(
Latitude = c(30, 31),
Longitude = c(-118, -117),
UTC = as.POSIXct(c('2005-01-01 00:00:00', '2005-01-02 00:00:00'), tz='UTC')
),
stride=1,
style = 'erddap'

getEdinfo 17

getEdinfo Browse a List of Curated Environmental Datasets

Description
This function gets the list of environmental datasets provided as a recommended starting point for
various measures

Usage
getEdinfo()

Value

a list of edinfo list objects

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

ediList <- getEdinfo()
edilList[[1]]
edilList[['jplMURSST41'1]

getFigsharelnfo getFigsharelnfo

Description
downloads filename and recording URL information from a Figshare article. Requires a users API
token from their figshare account

Usage

getFigshareInfo(token, id)

Arguments

token Personal API token from users Figshare account, see here for information on
creating a token

id Figshare article ID to download information for

https://info.figshare.com/user-guide/how-to-get-a-personal-token/

18 matchEnvData

Value

dataframe with columns filename and recording_url

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

hycomList A list of edinfo objects from HYCOM data sources

Description
A list of edinfo objects, mostly used internally for functions. These objects represent different
environmental data sources from HYCOM servers and are used to download environmental data.
Usage

hycomList

Format

A list with objects of class edinfo

Source

Southwest Fisheries Science Center / NMFS / NOAA

matchEnvData Match Data From an Existing Netcdf File or Download and Match

Description

Extracts all variables from a netcdf file matching Longitude, Latitude, and UTC coordinates in given
dataframe

Usage

matchEnvData(
data,
nc = NULL,
var = NULL,
buffer = c(0, 0, 0),
FUN = c(mean),
fileName = NULL,
progress = TRUE,

matchEnvData
depth = 0,

)

19

S4 method for signature 'data.frame'

matchEnvData(
data,
nc = NULL,
var = NULL,

buffer = c(0, 0, 0),
FUN = c(mean),

fileName =

NULL,

progress = TRUE,

depth = 0,

Arguments

data

nc
var

buffer

FUN

fileName

progress

depth

Value

dataframe containing Longitude, Latitude, and UTC to extract matching vari-
ables from the netcdf file

name of a netcdf file, ERDDAP dataset id, or an edinfo object
(optional) vector of variable names

vector of Longitude, Latitude, and Time (seconds) to buffer around each data-
point. All values within the buffer will be used to report the mean, median, and
standard deviation

a vector or list of functions to apply to the data. Default is to apply mean,
median, and standard deviation calculations

(optional) file name to save downloaded nc file to. If not provided, then no
nc files will be stored, instead small temporary files will be downloaded and
then deleted. This can be much faster, but means that the data will need to be
downloaded again in the future. If fileName is provided, then the function will
attempt to download a single nc file covering the entire range of your data. If
your data spans a large amount of time and space this can be problematic.

logical flag to show progress bar

depth values (meters) to use for matching, overrides any Depth column in the
data or can be used to specify desired depth range when not present in data.
Variables will be summarised over the range of these depth values. NULL uses
all available depth values

other parameters to pass to ncToData

original dataframe with three attached columns for each variable in the netcdf file, one for each of
mean, median, and standard deviation of all values within the buffer

20 ncToData

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

data <- data.frame(Latitude = 32, Longitude = -117,
UTC = as.POSIXct('2004-12-31 09:00:00', tz='UTC'"))
Not run:
Not run because downloads files
default calculates mean, median, and standard deviation
matchEnvData(data, nc='jplMURSST41', var=c('analysed_sst', 'analysis_error'))
get just mean within a buffer around coordinates
matchEnvData(data, nc='jplMURSST41', var=c('analysed_sst', 'analysis_error'),
FUN = mean, buffer = c(.01, .01, 86400))

End(Not run)
Can also work from an existing nc file
nc <- system.file('extdata', 'sst.nc', package='PAMmisc')
matchEnvData(data, nc = nc)
Using a custom function
meanPlusOne <- function(x) {
mean(x, na.rm=TRUE) + 1
}

matchEnvData(data, nc=nc, FUN=c(mean, meanPlusOne))

ncToData Match Data From a Netcdf File

Description

Extracts all variables from a netcdf file matching Longitude, Latitude, and UTC coordinates in given
dataframe

Usage

ncToData(
data,
nc,
var = NULL,
buffer = c(0, 0, 0),
FUN = c(mean),
raw = FALSE,
keepMatch = TRUE,
progress = TRUE,
depth = 0,
verbose = TRUE,

ncToData

Arguments

data

nc

var

buffer

FUN

raw

keepMatch

progress
depth

verbose

Value

original dataframe
mean, median, and

Author(s)

21

dataframe containing Longitude, Latitude, and UTC to extract matching vari-
ables from the netcdf file

name of a netcdf file

(optional) character vector of variable names to match. If NULL, all variables
present in nc will be used

vector of Longitude, Latitude, and Time (seconds) to buffer around each data-
point. All values within the buffer will be used to report the mean, median, and
standard deviation

a vector or list of functions to apply to the data. Default is to apply mean,
median, and standard deviation calculations

logical flag to return only the raw values of the variables. If TRUE the output will
be changed to a list with length equal to the number of data points. Each item
in the list will have separate named entries for each variable that will have all
values within the given buffer and all values for any Z coordinates present.

logical flag to keep the matched coordinates, these are useful to make sure the
closest point is actually close to your XYZT

logical flag to show progress bar for matching data

depth values (meters) to use for matching, overrides any Depth column in the
data or can be used to specify desired depth range when not present in data.
Variables will be summarised over the range of these depth values. NULL uses
all available depth values

logical flag to show warning messages for possible coordinate mismatch

not used

with three attached columns for each variable in the netcdf file, one for each of
standard deviation of all values within the buffer

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

data <- data.frame(Latitude = 32, Longitude = -117,

nc <- system.file
default calcula
ncToData(data, nc
calculate mean,
ncToData(data, nc
custom function
meanPlusOne <- fu

UTC = as.POSIXct('2005-01-01 00:00:00', tz='UTC'"))
('extdata', 'sst.nc', package='PAMmisc')
tes mean
= nc)
median, and sd
=nc, FUN=c(mean, median, sd), buffer = c(.01, .01, 86400))

nction(x) {

mean(x, na.rm=TRUE) + 1

22

}

peakTrough

ncToData(data, nc=nc, FUN=c(mean, meanPlusOne))

peakTrough

Find Peaks and Troughs in a Spectrum

Description

Finds up to three peaks in a spectrum, as well as the troughs between those peaks.

Usage

peakTrough(spec, fregBounds = c(10, 30), dbMin = -15, smooth = 5, plot = FALSE)

Arguments

spec

fregBounds

dbMin

smooth

plot

Details

the spectrum of a signal, the first column must be frequency in kilohertz, the
second column must be dB

a two element vector specifying the frequency range around the highest peak to
search for a second/third peak. Units are in kHz, a value of c(f1, {2) requires a
second peak to be at least f1 kHz away from the first peak, but no further than
f2 kHz away.

minimum dB level for second / third peaks, relative to maximum dB. Any points
lower than this dB level will not be considered a candidate peak.

the amount to smooth the spectrum before attempting to find second / third
peaks. Uses a simple local average, smooth is the total number of points to
use. A value of 1 applies no smoothing.

logical flag to plot image of peak/trough locations on spectrum. Useful for find-
ing appropriate settings for freqBounds and dbMin

The first peak is the frequency with the highest dB level (first and last frequency points are ignored).
Then this uses a very simple algorithm to find second and third peaks in a spectrum. Peak candidates
are identified with a few simple steps:

Step 1 Use a local average of (smooth) points to smooth the spectrum.

Step 2 Check if a point is larger than both its neighbors.

Step 3 Check if points are within the frequency range specified by freqBounds. Points must be at
least f1 kHz away from the frequency , but no further than {2 kHz away.

Step 4 Check if points are above the minimum dB level specified by dbMin.

plotPresBar 23

From the remaining points the point with the highest dB level is selected as the second peak, then the
frequency range filter of Step 3 is applied again around this second peak before attempting to find
a third peak. If no second or third peak is found (ie. no values fall within the specified frequency
and dB search ranges), then it will be set to 0. The trough values are set as the frequency with the
lowest dB level between any peaks that were found. The trough values will be O for any peaks that
were not found.

If you are unsure of what levels to specify for fregBounds and dbMin, setting plot=TRUE will
show a visualization of the search range and selected peaks so you can easily see if the selected
parameters are capturing the behavior you want.

Value

a dataframe with the frequencies (in kHz) of up to 3 peaks and 2 troughs between those peaks. Also
reports the peak-to-peak distance. Any peaks / troughs that were not able to be found (based on
fregBounds and dbMin parameters) will be O.

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

clickWave <- createClickWave(signallLength = .1, clickLength = 1000, clicksPerSecond = 200,
frequency = 3e3, sampleRate = 10e3)
peakTrough(seewave: :spec(clickWave, plot=FALSE), plot=TRUE)

plotPresBar plotPresBar

Description

Creates a bar plot of the presence or density of detections across time

Usage

plotPresBar(
X,
start = NULL,
end = NULL,
bin = "hour/day"”,
by = NULL,
title = TRUE,

fill = "grey35”,

format = c("%m/%d/%Y %H:%M:%S", "%m-%d-%Y %H:%M:%S",
"%Y/%m/%d %H:%M:%S", "%Y-%m-%d %H:%M:%S"),

plotTz = "UTC"

24

Arguments

X

start
end

bin

by

title

fill

format

plotTz

Value

a ggplot2 object

Author(s)

plotPresBar

a data.frame of detections, must have a column UTC that contains the time of
detection as a POSIXct object in UTC timezone

the beginning datetime of the plot, if NULL will be set to the minimum time in x
the ending datetime of the plot, if NULL will be set to the maximum time in x

string identifying how to bin detections. Acceptable time units are c('minute’,
"hour', 'day', 'week', 'month'). For presence, bin should be of the form
'unit1/unit2', e.g. "hour/day' will show the hours per day with detections.
For call density, bin is a single time unit, e.g. "hour' will show the number
of calls per hour. Call density can also be specified as 'call/hour'. Note that
plural forms of all units are accepted.

(optional) if not NULL, specifies the name of a column in x to split and color the
bars by

if TRUE, a title will automatically created. If any other value, that will be used
for the title of the plot.

the fill color for the bars, only used if by is NULL, otherwise bars are colored by
species using the default ggplot2 palette

date format if UTC column of x is a character

the timezone to use for plotting the data. Note that inputs must still be in UTC,
this option allows you to create plots scaled to local time. Valid values come
from OlsonNames

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

df <- data.frame(UTC = as.POSIXct(runif(l1e2, min=0, max=7x24%3600),

origin='1970-01-01 00:00:00', tz='UTC'),
label = sample(letters[1:3], 1e2, replace=TRUE))

hours per day with detections

plotPresBar(df,

bin="hour/day"')

calls per day - these options are identical

plotPresBar(df,
plotPresBar(df,
plotPresBar (df,

bin="day")
bin="'call/day"')
bin="'calls/day"')

calls per day, colored by 'label’

plotPresBar(df,

bin='day', by='label")

plotPresGrid 25

plotPresGrid plotPresGrid

Description

Creates a grid plot of the presence or density of detections across time where the x-axis is the hour
of the day and the y-axis is the date

Usage

plotPresGrid(
X)
start = NULL,
end = NULL,
bin = c¢("hour”, "minute”, "3@0min", "15min"),
type = c("presence”, "density"),
by = NULL,
alpha = 0.5,
gps = NULL,

format = c("%m/%d/%Y %H:%M:%S", "%m-%d-%Y %H:%M:%S",
"%Y/%m/%d %H:%M:%S", "%Y-%m-%d %H:%M:%S"),

fill = "blue”,
color = NA,
cmap = viridis_pal()(25),
title = TRUE,
plotTz = "UTC"
)
Arguments
X a data.frame of detections, must have a column UTC that contains the time of
detection as a POSIXct object in UTC timezone
start the beginning datetime of the plot, if NULL will be set to the minimum time in x
end the ending datetime of the plot, if NULL will be set to the maximum time in x
bin the unit of time for each rectangle in the grid, must be one of "hour", "minute",
"30min", or "15min"
type one of either "presence” or "density". If "density", then boxes will be colored
according to the number of detections in each timeBin will be plotted. If "pres-
ence", then each box will be colored by fill
by (optional) if not NULL, specifies the name of a column in x to split and color the
rectangles by. Only valid for presence plots.
alpha opacity of rectangles, only used if by is not NULL
gps (optional) if not NULL, a data.frame of GPS coordinates covering the date range

of x. These are used to calculate sunrise and sunset information which is shown
as a shaded dark region in the background of the plot. The data.frame must

26 plotPresGrid
have columns "UTC", "Latitude", and "Longitude". If columns "Latitude" and
"Longitude" are present in x, then these values will be used and you do not need
to provide separate GPS data here
format date format if UTC column of x is a character
fill the fill color for the boxes, only used if type is "presence"
color the outline color for the boxes, only used if type is "presence"”
cmap the colormap to use for the boxes, only used if type is "density"
title if TRUE, a title will automatically created. If any other value, that will be used
for the title of the plot.
plotTz the timezone to use for plotting the data. Note that inputs must still be in UTC,
this option allows you to create plots scaled to local time. Valid values come
from OlsonNames
Value
a ggplot2 object
Author(s)
Taiki Sakai <taiki.sakai@noaa.gov>
Examples

df <- data.frame(UTC = as.POSIXct(runif(le2, min=0, max=7x24%3600),

origin='1970-01-01 00:00:00', tz='UTC'),
label = sample(letters[1:3], 1e2, replace=TRUE))

plotPresGrid(df, type='presence', bin="hour")
plotPresGrid(df, type='density', bin='hour')
plotPresGrid(df, type='density', bin='30min")
gps <- data.frame(UTC = as.POSIXct('1970-01-01 00:00:00', tz='UTC'),

Latitude=32.4,
Longitude = -118)

plotPresGrid(df, gps=gps, bin="hour')
coloring presence grid by label column
plotPresGrid(df, gps=gps, by='label')

can be confusing if there is a lot of overlap, ggplot output can be split
library(ggplot2)

plotPresGrid(df, gps=gps, by='label') + facet_wrap(vars(label), ncol=2)

using "by"” with type="density” defaults to this facet_wrap behavior

since color is already being used to represent density

plotPresGrid(df, gps=gps, by='label', type='density')

can adjust facet_wrap parameters by adding it again

plotPresGrid(df, gps=gps, by='label', type='density') + facet_wrap(vars(label), ncol=2)

pwelch 27

pwelch Estimate Power Spectral Density Using Welch’s Method

Description

Estimates the power spectral density (PSD) of an input signal using Welch’s method. This should
function similarly to the Matlab function pwelch, but results may not be identical. Breaks the input
signal into (usually) overlapping frames and averages the resulting PSD estimates

Usage
pwelch(
X ’
nfft,
noverlap = 0,
sr = NULL,
window = NULL,
demean = c("long"”, "short”, "none"),
channel =1
)
Arguments
X input signal, either a numeric vector, Wave, WaveMC, or audioSample object.
Can also be a path to a wav file and it will be read in
nfft length of FFT window to use for individual frames
noverlap number of samples each frame should overlap
sr sample rate of data, only necessary if x is a vector
window window to apply, must be a vector of length nfft. If NULL (default), then a
hamming window will be used
demean method of demeaning the signal, one of 'long', 'short', or 'none'. Long sub-
tracts the mean of the entire signal x, short subtracts the mean of each individual
frame, none does no mean subtraction.
channel channel number to analyse, ignored if x is a vector
Value

returns a list with items spec, the PSD estimate of the input signal, and freq, the frequency values
(Hz) at each value of spec

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

28 raytrace

Examples

wav example is synthetic echolocation clicks at 4kHz

wavFile <- system.file('extdata/testWav.wav', package='PAMmisc')
psd <- pwelch(wavFile, nfft=1e3, noverlap=500, demean='long')
plot(x=psd$freq, y=10xlogl0(psd$spec), type='l")

raytrace Raytrace Through a Soundspeed Profile

Description

Traces the ray of a sound through a varying soundspeed profile for a fixed amount of time. Also
plots the provided sound speed profile and all traces generated. All code here is based on MATLAB
code originally written by Val Schmidt from the University of New Hampshire Val Schmidt (2021).
raytrace https://www.mathworks.com/matlabcentral/fileexchange/26253-raytrace), MATLAB Cen-
tral File Exchange. Retrieved June 29, 2021.

Usage

raytrace(x@, z0, theta®, tt, zz, cc, plot = TRUE, progress = FALSE)

Arguments
X0 starting horizontal coordinate in meters
z0 starting vertical coordinate in meters
theta® starting angle(s) of ray in degrees
tt max travel time of ray in seconds
zz vertical coordinates of sound speed profile (positive values are down)
cc sound speed measurements at zz locations, meters / second
plot logical flag to plot. Can be a vector of length two to individually select plotting
one of the two plots generated
progress logical flag to show progress bar
Value

A list with four elements: X, the horizontal coordinates of ray path, z the vertical coordinates of ray
path, t actual travel time of ray in seconds, and d the total distance the ray traveled. Each individual
item in the output is a list with one entry for each theta® provided.

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

readGPXTrack

Examples

Setup the sound speed profile

zz <- seq(from=0, to=5000, by=1)

cc <- 1520 + zz * -.05

cc[751:1ength(cc)] <- cc[750] + (zz[751:1length(zz)] - zz[750]1)*.014
rt <- raytrace(o@, 0, 5, 120, zz, cc, TRUE)

29

readGPXTrack Read Tracks from a GPX File

Description

Read in a GPX file and convert the tracks to a dataframe

Usage

readGPXTrack (x)

Arguments

X a path to a .gpx file

Value

a dataframe with columns Latitude, Longitude, UTC, and Name

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

gpxFile <- system.file('extdata', 'GPX.gpx', package='PAMmisc')
gpxData <- readGPXTrack(gpxFile)
str(gpxData)

30 soundtrapQAQC

readSpecAnno Read Pamguard Spectrogram Annotation Table

Description

Reads the Spectrogram Annotation table from a PAMGuard database and applies some minor for-
matting

Usage

readSpecAnno(db, table = "Spectrogram_Annotation”)

Arguments

db database file to read data from

table name of the Spectrogram Annotation table to read
Value

a dataframe containing spectrogram annotation data

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

Not run:
myDb <- 'PamguardDatabase.sqlite3'’
specAnno <- readSpecAnno(db)

End(Not run)

soundtrapQAQC Perform QA/QC on Soundtrap Files

Description

Gathers data from Soundtrap XML log files to perform QA/QC on a set of recordings.

soundtrapQAQC 31

Usage
soundtrapQAQC(
dir,
outDir = NULL,
xlim = NULL,
label = NULL,
voltSelect = c("internal”, "external”),
plot = TRUE
)
processSoundtrapLogs(dir, voltSelect = c("internal”, "external"))
Arguments
dir directory containing Soundtrap XML logs, wav files, and SUD files. Can either
be a single directory containing folders with all files (will search recursively), or
a vector of three directories containing the SUD files, wav files, and XML files
(in that order - alphabetical S-W-X)
outDir if provided, output plots and data will be written to this folder
x1lim date limit for plots
label label to be used for plots and names of exported files
voltSelect one of "internal" or "external" to select which battery voltage to use
plot logical flag to create output plots
Value

list of dataframes with summary data for $xmlInfo, $sudInfo, and $wavInfo

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

Not run:

not run

stDir <- './Data/SoundtrapFiles/'

stData <- soundtrapQAQC(stDir, plot=TRUE)

save data

stData <- soundtrapQAQC(stDir, outDir='./Data/SoundtrapFiles/QAQC', plot=TRUE)
or provide separate folders of data

stDirs <- c('./Data/SoundtrapFiles/SUDFiles",

'./Data/SoundtrapFiles/WavFiles',
'./Data/SoundtrapFiles/XMLFiles")

stData <- soundtrapQAQC(stDirs, plot=TRUE)

End(Not run)

32 squishList

squishList Compress a List by Name

Description

Attempts to compress a list by combining elements with the same name, searching recursively if
there are lists in your list

Usage

squishList(myList, unique = FALSE)

Arguments

myList a list with named elements to be compressed

unique logical flag to try and reduce result to only unique values
Details

items with the same name are assumed to have the same structure and will be combined. Dataframes
will be combined with bind_rows, vectors just be collapsed into one vector, matrices will be com-
bined with rbind, lists will be combined recursively with another call to squishList

Value

a list with one element for every unique name in the original list

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

myList <- list(a=1:3, b=letters[1:4], a=5:6, b=letters[4:10])
squishList(myList)

myList <- list(a=1:3, b=data.frame(x=1:3, y=4:6), b=data.frame(x=10:14, y=1:5))
squishList(myList)

myList <- list(a=list(c=1:2, d=2), b=letters[1:3], a=list(c=4:5, d=6:9))
squishList(myList)

straightPath 33

straightPath Mark Straight Path Segments in GPS Track

Description

This function attempts to mark portions of a GPS track where a ship is traveling in a straight line
by comparing the recent average heading with a longer term average heading. If these are different,
then the ship should be turning. Note this currently does not take in to account time, only number
of points

Usage

straightPath(gps, nSmall = 10, nLarge = 60, thresh = 10, plot = FALSE)

Arguments
gps gps data with columns Longitude, Latitude, and UTC (POSIX format). Usually
this has been read in from a Pamguard database, in which case columns Heading
and Speed will also be used.
nSmall number of points to average to get ship’s current heading
nLarge number of points to average to get ship’s longer trend heading
thresh the amount which nSmall and nBig should differ by to call this a turn
plot logical flag to plot result, gps must also have columns Latitude and Longitude
Value

the original dataframe gps with an added logical column straight indicating which portions are
approximately straight

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

gps <- data.frame(Latitude = c(32, 32.1, 32.2, 32.2, 32.2),
Longitude = c(-110, -110.1, -110.2, -110.3, -110.4),
UTC = as.POSIXct(c('2000-01-01 00:00:00', '2000-01-01 00:00:10"',
'2000-01-01 00:00:20', '2000-01-01 00:00:30',
'2000-01-01 00:00:40')),
Heading = c(320, 320, 270, 270, 270),
Speed = ¢(.8, .8, .5, .5, .5))

straightPath(gps, nSmall=1, nlLarge=2)

straightPath(gps, nSmall=1, nLarge=4)

34 trainSplitPermute
trainSplitPermute trainSplitPermute
Description
Find a desired train/val/test split of a dataset through random permutation. Uses a variable in your
dataset to randomly split by (for example, could be the location of different sites, or different months
of data), then tries to find the split that most closesly matches your desired distribution of data for
a set of labels. It can often be difficult to find a good split if the distribution of your labels is not
consistent across sites, so this function tries a bunch of random splits then uses a score to find the
best one.
Usage
trainSplitPermute(
X ’
probs = ¢c(0.7, 0.15, 0.15),
n = 1000,
splitBy = "drift",
label = "species”,
countCol = NULL,
minCount = c(1, 1, 1),
top = 3,
seed = 112188
)
Arguments
X a dataframe of data you want to find splits for
probs a vector of 3 values that sum to one defining what percentage of data should be
in your training, validation, and test sets (respectively)
n number of random samples to try. If your labels are fairly evenly distributed this
can be smaller, but needs to be larger for more uneven distributions
splitBy name of column containing the variable you want to split by
label name of the column containing your dataset labels
countCol the names of any additional columns in your dataset defining the quantities you
want to count (see example for why this is useful)
minCount minimum count for each split category, usually safe to leave this as the default
of 1 for all splits
top the number of results to return. Usually you want to use just the best scoring
result, but this can occasionally result in splits that are distributed in an unde-
sirable way by random chance (eg maybe all sites in your validation data are
unintentionally clustered together)
seed random seed to set for reproducibility

trainSplitPermute 35

Value

a list of the top results. Each individual result contains $splitMap containing the random split
marked as integer 1, 2, 3 corresponding to train, val, test and $splitVec a vector marking each row
of x with its category. These two results are named by the levels of splitBy. $distribution a
table of the distribution of label in the split, and $score the split score (lower is closer to desired
probs)

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

making some dummy data
df <- data.frame(
species = sample(letters[1:5], prob=c(.4, .2, .1, .1, .2), 1e3, replace=TRUE),
site = sample(LETTERS[1:12], 1e3, replace=TRUE),
event = 1:7e3
)
try a split with n=3
split <- trainSplitPermute(df, probs=c(.7, .15, .15), n=3, label="species', splitBy='site')
assign the best split as the split cateogry
df$split <- split[[1]]$splitVec
distribution is not close to our desired .7, .15, .15 split because n is too low
round(table(df$species, df$split) /
matrix(rep(table(df$species), 3), nrow=5), 2)

rerun with higher n to get closer to desired distribution
split <- trainSplitPermute(df, probs=c(.7, .15, .15), n=1e3, label='species', splitBy='site')
df$split <- split[[1]]$splitVec
round(table(df$species, df$split) /
matrix(rep(table(df$species), 3), nrow=5), 2)

adding a new site that has significantly more detections than others
addSite <- data.frame(
species = sample(letters[1:5], 500, replace=TRUE),
site = rep(LETTERS[13], 500),
event = 1001:1500)
df$split <- NULL
df <- rbind(df, addSite)

now just splitting by site does not result in a balanced split for our number of species
it splits the sites to approx .7, .15, .15 but this does not result in balanced species
split <- trainSplitPermute(df, probs=c(.7, .15, .15), n=1e3, label='species', splitBy='site')
df$split <- split[[1]1]$splitVec
round(table(df$species, df$split) /

matrix(rep(table(df$species), 3), nrow=5), 2)

adding 'event' as a countCol fixes this

split <- trainSplitPermute(df, probs=c(.7, .15, .15), n=1e3, label='species',
splitBy='site', countCol='event')

df$split <- split[[1]1]$splitVec

36 updateUID

round(table(df$species, df$split) /
matrix(rep(table(df$species), 3), nrow=5), 2)

updateUID Update Detection UIDs

Description

Update the UIDs of detections in a Pamguard database. UIDs can become mismatched when re-
running data, this will attempt to re-associate the new UIDs in binary files with detections in the
database

Usage

updateUID(db, binaries, verbose = TRUE, progress = TRUE)

Arguments
db database file to update UIDs
binaries folder of binary files to use for updating
verbose logical flag to show summary messages
progress logical flag to show progress bars
Value

Same database as db, but with an additional column "newUID" added to each detection table with
updated UIDs if found. "newUID" will be -1 for any detections where no match was found

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

Not run:

not run because sample data does not exist
db <- 'MismatchedUid.sqlite3’

bin <- './BinaryFolder'

updateUID(db, bin)

End(Not run)

varSelect 37

varSelect Utility for Selecting Variables to Download

Description

Loops through the available variables in an edinfo object and asks whether or not each should be
downloaded, then stores the result for passing on to formatURL

Usage

varSelect(edinfo, select = NULL)

Arguments
edinfo a datalist, either from getEdinfo or created by erddapToEdinfo
select (optional) logical vector of which variables to select. If left as default NULL, user
will be prompted to select which variables to keep. If not NULL, can either be
a single TRUE to select all variables, or a logical vector of length equal to the
number of variables in edinfo. Can also be a vector of variable names to select.
Value

the same object as edinfo with an updated varSelect field

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

sstEdi <- getEdinfo()[['jplMURSST41']1]
Not run:

interactively select

sstEdi <- varSelect(sstEdi)

End(Not run)

select all variables

sstEdi <- varSelect(sstEdi, TRUE)

select the first two of four

sstEdi <- varSelect(sstEdi, c(TRUE, TRUE, FALSE, FALSE))

38 wignerTransform

wignerTransform Calculate the Wigner-Ville Transform of a Signal

Description

Calculates the Wigner-Ville transform a signal. By default, the signal will be zero-padded to the
next power of two before computing the transform, and creates an NxN matrix where N is the zero-
padded length. Note that this matrix can get very large for larger N, consider shortening longer
signals.

Usage

wignerTransform(signal, n = NULL, sr, plot = FALSE)

Arguments
signal input signal waveform
n number of frequency bins of the output, if NULL will be the next power of two
from the length of the input signal (recommended)
sr the sample rate of the data
plot logical flag whether or not to plot the result
Details
This code mostly follows Pamguard’s Java code for computing the Wigner-Ville and Hilbert trans-
forms.
Value

a list with three items. tfr, the real values of the wigner transform as a matrix with n rows and
number of columns equal to the next power of two from the length of the input signal. f and t the
values of the frequency and time axes.

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

clickWave <- createClickWave(signallLength = .05, clickLength = 1000, clicksPerSecond = 200,
frequency = 3e3, sampleRate = 10e3)
wt <- wignerTransform(clickWave@left, n = 1000, sr = 10e3, plot=TRUE)

writeAMWave 39

writeAMWave Write Amplitude Modulated Waveform

Description

Write a wave file for a synthesized amplitude modulated call

Usage

writeAMWave(
fileName,
outDir,
signallength,
modFrequency,
frequency,
sampleRate,
window = c(@.55, 0.45),
silence = c(0, 0),
gainFactor = 0.1

)

createAMWave (
signallength,
modFrequency,
frequency,
sampleRate,
window = c(0.55, 0.45),
silence = c(0, 0),
gainFactor = 0.1

)
Arguments
fileName name of the file to write. If missing, the file be named usign signalLength,
modFrequency, frequency, and sampleRate
outDir directory to write wave files to

signalLength length of signal to create in seconds

modFrequency modulation frequency in Hz of the amplitude modulation

frequency frequency of the AM call

sampleRate sample rate for the wave file to create

window window constants for applying the amplitude modulation. See details.
silence silence to pad before and after signal in seconds

gainFactor scaling factor between 0 and 1. Low numbers are recommended (default 0.1)

40 writeClickWave

Details

Amplitude modulated signals are modelled as an ideal sinusoid multiplied by a window function.
The window function is an offset sinusoid with frequency equal to the modulation frequency:

W = .5+ .45 x sin(2rm ft)

See example (writeAMWave) for a plot showing how this works.

Value

writeAMWave invisibly returns the file name, createAMWave returns a Wave class object

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

Visualisation of modelled AM wave

signal <- sin(2*pi*100*(1:1000)/1000)

window <- .55 + .45 * sin(2xpi*15%(1:1000)/1000)

oldMf <- par()$mfrow

par(mfrow=c(3,1))

plot(signal, type='1l")

plot(window, type='1l")

plot(window*signal, type='l"')

tmpFile <- file.path(tempdir(), 'tempWav.wav')

writeAMWave(tmpFile, signallength = 1, modFrequency = 1000,
frequency = 30000, sampleRate = 100000)

file.remove(tmpFile)

amWave <- createAMWave(signallength = 1, modFrequency = 1000,

frequency = 30e3, sampleRate = 100e3)
par (mfrow=0ldMf)

writeClickWave Write Click Waveform

Description

Write a wave file for a synthesized delphinid click

Usage

writeClickWave(
fileName,
outDir,
signallength,
clickLength,
clicksPerSecond,

writeClickWave 41

frequency,
sampleRate,
silence = c(0, 0),
gainFactor = 0.1

)

createClickWave(
signallength,
clickLength,
clicksPerSecond,
frequency,
sampleRate,
silence = c(0, 0),
gainFactor = 0.1

)
Arguments
fileName name of the file to write. If missing, the file be named usign signalLength,
clickLength, clicksPerSecond, frequency, and sampleRate
outDir directory to write wave files to

signallength length of signal to create in seconds

clickLength length of each click in microseconds

clicksPerSecond
number of clicks per second

frequency frequency of the clicks

sampleRate sample rate for the wave file to create

silence silence to pad before and after signal in seconds

gainFactor scaling factor between 0 and 1. Low numbers are recommended (default 0.1)
Details

This code is based on Matlab code by Julie Oswald (2004). Clicks are simulated as an exponentially
damped sinusoid.

Value

writeClickWave invisibly returns the file name, createClickWave returns a Wave class object

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

42 writeClickWave

Examples

tmpFile <- file.path(tempdir(), 'tempWav.wav')
writeClickWave(tmpFile, signallLength = 1, clickLength = 100, clicksPerSecond = 200,
frequency = 30000, sampleRate = 100000)
file.remove(tmpFile)
clickWave <- createClickWave(signallLength = 1, clickLength = 100, clicksPerSecond = 200,
frequency = 30e3, sampleRate = 100e3)

Index

+ datasets
erddapList, 12
hycomList, 18

addPgAnno, 2
addPgEvent, 3
addPgGps, 5

browseEdinfo, 6

createAMWave (writeAMWave), 39
createClickWave (writeClickWave), 40
createSSP, 7

dataToRanges, 8, 16
decimateWavFiles, 9
downloadEnv, 10

edinfoToURL, 11, 12,15
erddaplList, 12
erddapToEdinfo, 10, 11, 12, 37

fastReadWave, 13
findEchoTimes, 14
formatURL, 8, 11, 15, 37

getEdinfo, 10, 11,17, 37
getFigsharelnfo, 17

hamming, 27
hycomList, 18
hycomToEdinfo (erddapToEdinfo), 12

info, 13

matchEnvData, 7, 18
matchEnvData,data.frame-method
(matchEnvData), 18

ncToData, 19, 20

OlsonNames, 24, 26

43

peakTrough, 22

plotPresBar, 23

plotPresGrid, 25

processSoundtraplogs (soundtrapQAQC), 30
pwelch, 27

raytrace, 28
readGPXTrack, 29
readSpecAnno, 30

soundtrapQAQC, 30
squishList, 32
straightPath, 33
strptime, 5

trainSplitPermute, 34
updateUID, 36
varSelect, 37

Wave, 15, 27, 40, 41
WaveMC, 14, 15, 27
wignerTransform, 38
writeAMWave, 39
writeClickWave, 40

	addPgAnno
	addPgEvent
	addPgGps
	browseEdinfo
	createSSP
	dataToRanges
	decimateWavFiles
	downloadEnv
	edinfoToURL
	erddapList
	erddapToEdinfo
	fastReadWave
	findEchoTimes
	formatURL
	getEdinfo
	getFigshareInfo
	hycomList
	matchEnvData
	ncToData
	peakTrough
	plotPresBar
	plotPresGrid
	pwelch
	raytrace
	readGPXTrack
	readSpecAnno
	soundtrapQAQC
	squishList
	straightPath
	trainSplitPermute
	updateUID
	varSelect
	wignerTransform
	writeAMWave
	writeClickWave
	Index

