Package ‘GRIN2’

January 20, 2025
Title Genomic Random Interval (GRIN)

Version 1.0

Description Improved version of 'GRIN' software that streamlines its use in practice to analyze ge-
nomic lesion data, accelerate its computing, and expand its analysis capabilities to answer addi-
tional scientific questions including a rigorous evaluation of the association of genomic le-
sions with RNA expression. Pounds, Stan, et al. (2013) <DOI:10.1093/bioinformatics/btt372>.

License GPL (>=3)
Encoding UTF-8
RoxygenNote 7.3.2

Imports biomaRt, circlize, ComplexHeatmap, data.table, dplyr,
EnsDb.Hsapiens.v75, ensembldb, forcats, GenomelnfoDb, ggplot2,
graphics, grDevices, grid, gridGraphics, Gviz, magrittr, stats,
stringr, survival, tibble, tidyselect, utils, writexl

Suggests knitr, rmarkdown

NeedsCompilation no

Maintainer Abdelrahman Elsayed <aelsayed@stjude.org>
Depends R (>=4.2.0)

LazyData true

VignetteBuilder knitr

URL https://github.com/abdel-elsayed87/GRIN2

BugReports https://github.com/abdel-elsayed87/GRIN2/issues

Author Abdelrahman Elsayed [aut, cre, cph]
(<https://orcid.org/0000-0002-8150-6825>),
Xueyuan Cao [aut],
Lakshmi Anuhya patibandla [aut],
Stanley Pounds [aut, cph]

Repository CRAN
Date/Publication 2024-11-19 12:30:36 UTC

https://doi.org/10.1093/bioinformatics/btt372
https://github.com/abdel-elsayed87/GRIN2
https://github.com/abdel-elsayed87/GRIN2/issues
https://orcid.org/0000-0002-8150-6825

2 Contents

Contents
alex.boxplots e 3
alex.pathway 4
alex.prep.sn.expr 6
alex.waterfall.plot e 7
alex.waterfall.prep L 9
clindata 11
compute.gw.coordinatesl 12
counthits e 13
default.grin.colors 15
exprdata e 16
find.genesn.overlaps 17
genomewide.loglOg.plot 18
genomewide.lsn.ploto 19
get.chrom.length 21
get.ensembl.annotation L.l e e 22
grin.assoc.Isn.outcome oL L e e e 24
grinbarplt 26
grinsn.boundaries 27
GUINONCOPIINEIMEX .+ . v v v v v v e e e e e e e e e e e e e e e e e 29
GUINLSTALS L e e e 30
grinstats.Isn.plot 33
hgl9.chrom.size e 34
hgl9.gene.annotation e e e 35
hgl9 cytoband 35
hg38_cytoband 36
KW.hitexpress 0 0 e e e e e 37
lesiondata 39
Isn.transcripts.ploto e 39
ONCO.PINEPIOPS « « v v v v e e e e e e e e e e e e e e e e e e e 42
orderindex.gene.data e 43
orderindex.dsn.data Lo 44
pathways e 45
prep.binary.lsn.mtx 46
prep.gene.dsn.data e e 47
prep.sn.type.matrix Lo 49
prob.hitso 50
top.alex.waterfall.plots 52
WHte. grin.XISX e 53

Index 55

alex.boxplots 3

alex.boxplots Prepare Box Plots of Expression Data by Lesion Groups

Description

Function return box plots for expression data by lesion groups for selected number of genes based
on a specified g-value of the kruskal-wallis test results.

Usage

alex.boxplots(out.dir, alex.data, alex.kw.results, q, gene.annotation)

Arguments
out.dir Path to the folder where the boxplots of selected genes based on the specified q
value of the KW results table will be added.
alex.data Output of the alex.prep.lsn.expr function. It’s a list of three data tables that in-

clude "row.mtch", "alex.expr" with expression data, "alex.Isn" with lesion data.
Rows of alex.expr, and "alex.lsn" matrices are ordered by gene ensembl IDs and
the columns are ordered by patient ID.

alex.kw.results
ALEX Kruskal-Wallis test results (output of the KW.hit.express function).

q minimum q value for a gene to be included in output PDF file of box plots.

gene.annotation
Gene annotation data either provided by the user or retrieved from ensembl
BioMart database using get.ensembl.annotation function included in the GRIN2.0
library. Data.frame should has four columns: "gene" which is the ensembl ID
of annotated genes, "chrom" which is the chromosome on which the gene is
located, "loc.start" which is the gene start position, and "loc.end" the gene end
position.

Value
Function return a PDF file with box plots for expression data by lesion groups for selected number
of genes based on a specified g-value of the kruskal-wallis test results (one gene per page).

Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org>and Stanley Pounds <stanley.pounds@stjude.org>

References

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023) Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

4 alex.pathway

See Also

alex.prep.lsn.expr(),KW.hit.express()

Examples

data(expr.data)
data(lesion.data)
data(hg19.gene.annotation)

prepare expression, lesion data and return the set of genes with both types of data available
ordered by gene IDs in rows and patient IDs in columns:
alex.data=alex.prep.lsn.expr(expr.data, lesion.data,

hg19.gene.annotation, min.expr=5, min.pts.lsn=5)

run KW test for association between lesion groups and expression level of the same gene:
alex.kw.results=KW.hit.express(alex.data, hgl9.gene.annotation, min.grp.size=5)

return boxplots for a list of top significant genes to a pre-specified folder using 'out.dir':
dir.create(resultsFolder <- file.path(tempdir(), "temp.out"))

boxplots=alex.boxplots(out.dir=resultsFolder,
alex.data, alex.kw.results,

1e-15, hgl19.gene.annotation)

unlink(resultsFolder, recursive = TRUE)

alex.pathway Associate Lesions with Expression Data on the Pathway Level

Description

Function compute the distance between subjects in the dataset based on the lesions that affect dif-
ferent genes assigned to the pathway of interest and return two panels of lesion and expression data
of ordered subjects based on the computed distances.

Usage

alex.pathway(alex.data, lsn.data, pathways, selected.pathway)

Arguments
alex.data output of the alex.prep.lsn.expr function. It’s a list of three data tables that in-
clude "row.mtch", "alex.expr" with expression data, "alex.lsn" with lesion data.
Rows of alex.expr, and "alex.lsn" matrices are ordered by gene ensembl IDs and
columns are ordered by patient ID.
lsn.data Lesion data in a GRIN compatible format. data.frame should has five columns

that include "ID" with patient ID, "chrom" which is the chromosome on which
the lesion is located, "loc.start” which is the lesion start position, "loc.end" the

alex.pathway 5

lesion end position and "Isn.type" which is the lesion type for example gain,
loss, mutation, fusion, etc...

pathways data.frame with three columns "gene.name" that has gene symbols, "ensembl.id"
with gene ensembl ID and "pathway" that has the pathway name.

selected. pathway
The pathway of interest.

Details

Function compute the distance between subjects in th dataset based on lesions affecting different
genes assigned to the pathway of interest and return two panels of lesion and expression data of
ordered subjects based on the computed distances. Function also return a data.frame with lesion
and expression data of the pathway genes ordered based on the hierarchical clustering analysis
(same order of the subjects in the lesion and expression panels of the figure).

Value

Function will return two panels figure of lesion and expression data of ordered subjects based on
the computed distances of lesions in all genes assigned to the pathway of interest. The function will
also return:

ordered.path.data
data.frame with lesion and expression data of the pathway genes ordered based
on the hiearchial clustering analysis (same order of the subjects in the lesion and
expression panels of the figure).

Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org> and Stanley Pounds <stanley.pounds@stjude.org>

See Also

alex.prep.lsn.expr(), stats::hclust()

Examples

data(expr.data)
data(lesion.data)
data(hg19.gene.annotation)
data(pathways)

prepare expression, lesion data and return the set of genes with both types of data available
ordered by gene IDs in rows and patient IDs in columns:
alex.data=alex.prep.lsn.expr(expr.data, lesion.data,

hg19.gene.annotation, min.expr=5,

min.pts.1lsn=5)

use lesions in all genes assigned to the jak_pathway as an example pathway:
alex.path=alex.pathway(alex.data, lesion.data, pathways, "Jak_Pathway")

extract expression and lesion data (same subjects order in the figure)
alex.path

6 alex.prep.Isn.expr

alex.prep.lsn.expr Prepare Lesion and Expression Data for Kruskal-Wallis Test

Description

The function prepares lesion and expression data matrices for the KW.hit.express function that runs
the kruskal-Wallis test for the association between lesion groups and expression level of each gene
with available lesion and expression data.

Usage

alex.prep.lsn.expr(
expr.mtx,
lsn.data,
gene.annotation,
min.expr = NULL,
min.pts.1lsn = NULL

)
Arguments
expr.mtx Normalized log2 transformed expression data provided by the user with genes
in rows and subjects in columns (first column "ensembl.ID" should be gene en-
sembl IDs).
lsn.data Lesion data in GRIN compatible format. Data frame should has five columns

that include "ID" with patient ID, "chrom" which is the chromosome on which
the lesion is located, "loc.start” which is the lesion start position, "loc.end" the
lesion end position and "Isn.type" which is the lesion type for example gain,
loss, mutation, fusion, etc...

gene.annotation
Gene annotation data either provided by the user or retrieved from ensembl
BioMart database using get.ensembl.annotation function included in the GRIN2.0
library. Data.frame should has four columns: "gene" which is the ensembl ID
of annotated genes, "chrom" which is the chromosome on which the gene is
located, "loc.start" which is the gene start position, and "loc.end" the gene end
position.

min.expr Minimum allowed expression level of the gene (the sum of expression level of
the gene in all patients; useful to exclude genes with very low expression)

min.pts.1lsn Minimum number of patients with any type of lesions in a certain gene otherwise
the gene will be excluded from the lesion matrix.

Details

The function use prep.Isn.type.matrix function to prepare the lesion matrix that has each gene rep-
resented in one row with all lesion types included. Next, the function will prepare lesion and
expression data matrices for the KW.hit.express function that runs the kruskal-Wallis test. It only

alex.waterfall.plot 7

keep genes with both lesion and expression data with rows ordered by ensembl ID and columns
ordered by patient’s ID.

Value

A list with the following components:
alex.expr Expression data with gene ensembl IDs as row names and patient IDs as column
names. Rows are ordered by ensembl ID and columns ordered by patient IDs.

alex.lsn Lesion data for genes in the expression data matrix with gene ensembl IDs as
row names and patient IDs as column names. Rows are ordered by ensembl ID
and columns ordered by patient IDs.

alex.row.mtch Data.frame of two columns with ensembl ID of genes in the expression and
lesion data matrices (ID should be the same in the two columns).

Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org>and Stanley Pounds <stanley.pounds@stjude.org>

References

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

See Also

KW.hit.express()

Examples

data(expr.data)
data(lesion.data)
data(hg19.gene.annotation)

prepare expression, lesion data and return the set of genes with both types of data available
ordered by gene IDs in rows and patient IDs in columns:
alex.data=alex.prep.lsn.expr(expr.data, lesion.data,

hg19.gene.annotation, min.expr=1,

min.pts.1lsn=5)

alex.waterfall.plot Prepare Waterfall Plot of Lesion and Expression Data

Description

Function return a waterfall plot for expression data by lesion groups of a selected gene.

8 alex.waterfall.plot

Usage
alex.waterfall.plot(waterfall.prep, lsn.data, lsn.clrs = NULL, delta = 0.5)

Arguments

waterfall.prep Output of the alex.waterfall.prep function. It’s a list of three data tables that
include "gene.lsn.exp" that has patient ID, lesion type that affect this gene if
any and expression level of the selected gene, "lsns" which is a data table with
all lesions affecting the gene of interest in a GRIN compatible format and "stats"
which is one row with the Kruskal-Wallis test result (output of the KW.hit.express

function).
lsn.data Lesion data in a GRIN compatible format.
lsn.clrs Assigned colors per lesion types. If not specified, colors will be automatically
assigned using default.grin.colors function.
delta Spacing argument for the waterfall plot.
Details

Function return a waterfall plot for expression data by lesion groups of a selected gene. This plot
offers a side by side graphical representation of lesion and expression data for each patient where
lesion groups are ordered alphabetically. For each lesion category, expression data is ordered from
the lowest to the highest with patient with the median expression of the gene in the middle of the
panel.

Value

Function return a waterfall plot for expression data by lesion groups of a selected gene.

Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org>and Stanley Pounds <stanley.pounds@stjude.org>

References

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

See Also

alex.prep.lsn.expr(),KW.hit.express(), alex.waterfall.prep()

Examples

data(expr.data)
data(lesion.data)
data(hg19.gene.annotation)

prepare expression, lesion data and return the set of genes with both types of data available
ordered by gene IDs in rows and patient IDs in columns:

alex.waterfall.prep 9

alex.data=alex.prep.lsn.expr(expr.data, lesion.data,
hg19.gene.annotation, min.expr=1, min.pts.1lsn=5)

run KW test for association between lesion groups and expression level of the same gene:
alex.kw.results=KW.hit.express(alex.data, hgl19.gene.annotation, min.grp.size=5)

To prepare lesion and expression data for a waterfall plot (WT1 gene):
WT1.waterfall.prep=alex.waterfall.prep(alex.data, alex.kw.results, "WT1", lesion.data)

waterfall plot of WT1 gene:
WT1.waterfall.plot=alex.waterfall.plot(WT1.waterfall.prep, lesion.data)

alex.waterfall.prep Prepare Lesion and Expression Data for Waterfall Plots

Description

Function prepares lesion and expression data of a selected gene for the alex.waterfall.plot function.

Usage

alex.waterfall.prep(alex.data, alex.kw.results, gene, lsn.data)

Arguments

alex.data output of the alex.prep.lsn.expr function. It’s a list of three data tables that in-
clude "row.mtch", "alex.expr" with expression data, "alex.lsn" with lesion data.
Rows of alex.expr, and "alex.Isn" matrices are ordered by the gene ensembl IDs
and columns are ordered by patient IDs.

alex.kw.results
ALEX Kruskal-Wallis test results (output of the KW.hit.express function).

gene Gene name or ensembl ID of the gene of interest.

lsn.data Lesion data in a GRIN compatible format. Object should has five columns that
include "ID" with patient ID, "chrom" which is the chromosome on which the
lesion is located, "loc.start" which is the lesion start position, "loc.end" the lesion
end position and "Isn.type" which is the lesion category for example gain, loss,
mutation, fusion, etc...

Details

Function prepares lesion and expression data of a selected gene for the alex.waterfall.plot function.
It return a data table with patient ID, lesion types that affect each patient if any and expression level
of the gene of interest. It also extract the kruskal-wallis test result and all lesions that affect the gene
of interest.

10 alex.waterfall.prep

Value

A list of four components:

gene.lsn.exp Data table with three columns("ID" with patient ID, "gene.name_lsn" has the
type of lesion affecting the patient which can be none, gain, mutation, multiple,
etc.. and "gene.name_expr" which has the expression level of the gene of interst
in this particular patient.

lsns Data table with all lesions affecting the gene of interst in a GRIN compatible
format extracted from the lesion data file.

stats One row with the Kruskal-Wallis test result for the gene of interst (output of the
KW.hit.express function).

gene.ID Gene name of the gene of interst.

Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org> and Stanley Pounds <stanley.pounds@stjude.org>

References

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

See Also

alex.prep.lsn.expr(),KW.hit.express()

Examples

data(expr.data)
data(lesion.data)
data(hg19.gene.annotation)

prepare expression, lesion data and return the set of genes with both types of data available
ordered by gene IDs in rows and patient IDs in columns:
alex.data=alex.prep.lsn.expr(expr.data, lesion.data,

hg19.gene.annotation, min.expr=1, min.pts.1lsn=5)

run KW test for association between lesion groups and expression level of the same gene:
alex.kw.results=KW.hit.express(alex.data, hgl19.gene.annotation, min.grp.size=5)

To prepare lesion and expression data for a waterfall plot (WT1 gene):
WT1.waterfall.prep=alex.waterfall.prep(alex.data, alex.kw.results, "WT1", lesion.data)

clin.data 11

clin.data Example T-ALL Dataset Clinical Data

Description

Clinical data file showing demographic and clinical outcomes of 265 newly diagnosed T-cell Acute
Lymphoblastic Leukemia (T-ALL) patients that was reported by Liu, Yu, et al. (2017).

Usage

clin.data

Format

clin.data:

A data frame with 265 rows and 11 columns:

ID Patient identifier

Sex Patient gender

Race Patient race

Age Days Patient age in days

WBC White Blood Cell (WBC) count

MRD29 Minimal Residual Disease (MRD) percentage

MRD.binary MRD as a categorical variable (0 if MRD<=0.1 or 1 if MRD>0.1)

os.time Overall survival time in years (time between diagnosis and either the last follow-up or
death)

os.censor Survival status (O=alive at the last follow-up or, 1=dead)
efs.time Event-free survival time in years

efs.censor Event indicator (O=censored without event or, 1=event)

Source

Data was extracted from the supplementary material tables of the published Liu, Yu, et al. (2017)
manuscript https://www.nature.com/articles/ng.3909#Sec27 and the publicly available clin-
ical data on TARGET database. The two files were merged and selected list of variables were kept
in the final clinical data file.

https://www.nature.com/articles/ng.3909#Sec27

12

compute.gw.coordinates

compute.gw.coordinates

Compute Genome-wide Coordinates

Description

The function assign plotting coordinates necessary for the genome-wide lesion plot.

Usage

compute.gw.coordinates(grin.res, scl = 1e+06)

Arguments

grin.res

scl

Details

GRIN results (output of the grin.stats function).

length of chromosome units in base pairs. Default is 1,000,000 which means
that each chromosome will be divided into multiple pieces each is 1 million
base pair in length.

The function divides each chromosome into multiple units based on the specified scl value. In
addition, it orders and adds two columns x.start and x.end to the chromosme size file (x.start for
chr2 is equal to x.end of chrl). Function also adds x.start and x.end columns to lesion and gene
annotation data files (x.start is the start position of the lesion or the gene divided by scl and x.end
is the end position of the lesion or the gene divided by scl taking into consideration that the start
position of the chromosomes is added consecutively based on the chromosomes length).

Value

Function return a list of GRIN results with the following changes to allow adding genome-wide
plotting coordinates:

gene.hits

gene.lsn.data

1lsn.data

No changes, a data table of GRIN results that includes gene annotation, number
of subjects and number of hits affecting each locus, p and FDR adjusted g-values
showing the probability of each locus to be affected by one or a constellation of
multiple types of lesions.

No changes, each row represent a gene overlapped by a certain lesion. Column
"gene" shows the overlapped gene ensembl ID, and ID column has the patient
ID

input lesion data with two additional columns (x.start and x.end). x.start is the
start position of the lesion divided by scl and x.end is the end position of the
lesion divided by scl taking into consideration that the start position of the chro-
mosomes is added consecutively based on the chromosomes length.

count.hits 13

gene.data input gene annotation data with two additional columns (x.start and x.end).
x.start is the start position of the gene divided by scl and x.end is the end posi-
tion of the gene divided by scl taking into consideration that the start position of
the chromosomes is added consecutively based on the chromosomes length.

chr.size data table showing the size of the 22 autosomes, in addition to X and Y chromo-
somes in base pairs with two additional columns (x.start and x.end). x.start is the
start position of the chromosome divided by scl and x.end is the end position of
the chromosome divided by scl taking into consideration that the start position
of the chromosomes is added consecutively based on the chromosomes length.

gene. index data.frame with overlapped gene-lesion data rows that belong to each chromo-
some in the gene.lsn.data table.

1sn.index data.frame that shows the overlapped gene-lesion data rows taht belong to each
lesion in the gene.lsn.data table.

Author(s)

Stanley Pounds <stanley.pounds@stjude.org>

References

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

See Also

grin.stats()

Examples

data(lesion.data)
data(hg19.gene.annotation)
data(hg19.chrom.size)

Run GRIN model using grin.stats function
grin.results=grin.stats(lesion.data,
hg19.gene.annotation,
hg19.chrom.size)
assign genomewide coordinates and prepare the results for the genomewide.lsn.plot function
genome. coord=compute.gw.coordinates(grin.results)

count.hits Count Gene Lesion Hits

Description

The function computes the number of hits affecting each gene by lesion category. It also compute
the number of subjects with a hit in each annotated gene by lesion category as well.

14 count.hits

Usage

count.hits(ov.data)

Arguments
ov.data a list of six data.frames that represent the output results of the find.gene.lsn.overlaps
function.
Details

The function use the output of the find.gene.Isn.overlaps function and return the number of unique
subjects affected by each lesion category in the provided list of annotated genes and regulatory
features (nsubj stats). It also count the number of hits affecting each loci per lesion category (nhits
stats). For example, if NOTCH1 gene was found affected by three different mutations in the same
subject, this patient will be considered as one subject in the nsubj stats but in the nhits stats for this
event will be counted as 3 mutations that affect NOTCH1 gene.

Value

A list with the following components:

lsn.data Input lesion data

1sn.index data.frame that shows the overlapped gene-lesion data rows taht belong to each
lesion in the gene.lsn.data table.

gene.data Input gene annotation data

gene.index data.frame with overlapped gene-lesion data rows that belong to each chromo-
some in the gene.lsn.data table.

nhit.mtx A data.frame with number of hits in each gene by lesion type (number of columns
will be equal to the number of lesion types in the Isn.type column).

nsubj.mtx A data.frame with number of affected subjects by lesion type in each annotated
gene.

gene.lsn.data Eachrow represent a gene overlapped by a certain lesion. Column "gene" shows
the overlapped gene and "ID" column has the patient ID.

glp.data data.frame ordered by gene and lesions start position. Gene start position is
coded as 1 in the cty column and gene end position is coded as 4. Lesion start
position is coded as 2 in the cty column and lesion end position is coded as 3.

Author(s)

Stanley Pounds <stanley.pounds@stjude.org>

References
Pounds, Stan, et al. (2013) A genomic random interval model for statistical analysis of genomic
lesion data.

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

default.grin.colors 15

See Also

prep.gene.lsn.data(), find.gene.lsn.overlaps()

Examples

data(lesion.data)
data(hg19.gene.annotation)

prepare gene and lesion data for later computations:
prep.gene.lsn=prep.gene.lsn.data(lesion.data,
hg19.gene.annotation)

determine lesions that overlap each gene (locus):
gene.lsn.overlap=find.gene.lsn.overlaps(prep.gene.lsn)

count number of subjects affected by different types of lesions and number of hits that affect
each locus:
count.nsubj.nhits=count.hits(gene.lsn.overlap)

default.grin.colors Default GRIN Colors

Description

Function assigns default colors for each lesion group in the whole set of GRIN plots.

Usage

default.grin.colors(lsn.types)

Arguments

lsn.types Unique lesion types as specified in the lesion data file.

Details

The function specifies 10 colors for different lesion types. If the number of lesion types is more
than 10, the user will be asked to specify the colors manually.

Value

Function return a vector of colors assigned to each unique lesion type.

Author(s)

Stanley Pounds <stanley.pounds@stjude.org>

16 expr.data

References

Pounds, Stan, et al. (2013) A genomic random interval model for statistical analysis of genomic
lesion data.

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

Examples

data(lesion.data)

1sn.types=unique(lesion.data$lsn.type)
assign colors for different lesion categories using default.grin.colors function:
default.grin.colors(lsn.types)

expr.data Example T-ALL Dataset Gene Expression Data

Description

Gene expression data file showing log2 normalized expression level of 420 genes (rows) in 265
newly diagnosed T-cell Acute Lymphoblastic Leukemia (T-ALL) patients in columns that was re-
ported by Liu, Yu, et al. (2017).

Usage

expr.data

Format

expr.data:

A data frame with 420 rows and 265 columns:

gene Ensembl IDs of the list of 420 genes included in the dataset ...

Source

Data was extracted from the supplementary material tables of the published Liu, Yu, et al. (2017)
manuscript https://www.nature.com/articles/ng.3909#Sec27

https://www.nature.com/articles/ng.3909#Sec27

find.gene.lsn.overlaps 17

find.gene.lsn.overlaps
Find Gene Lesion Overlaps

Description

The function use the output of the prep.gene.Isn.data function to find lesion-gene overlaps.

Usage
find.gene.lsn.overlaps(gl.data)

Arguments
gl.data alist of five data.frames that represent the output results of the prep.gene.lsn.data
function.
Value

A list with the following components:

lsn.data Input lesion data
gene.data Input gene annotation data

gene.lsn.data data.frame ordered by gene and lesions start position. Gene start position is
coded as 1 in the cty column and gene end position is coded as 4. Lesion start
position is coded as 2 in the cty column and lesion end position is coded as 3.

gene.lsn.hits data.frame on which each row represent a gene overlapped by a certain lesion.
The data.frame has 11 columns that include "gene" with ensembl ID of the over-
lapped gene, "gene.chrom", "gene.loc.start" and "gene.loc.end" with data for the
chromosome on which the gene is located, start and end positions of the gene. In
addition, column "ID" has the ID of the patient with a lesion that overlapped this
gene, "lsn.chrom", "Isn.loc.start", "Isn.loc.end" and "Isn.type" have data for the

chromosome, lesion start, lesion end positions and the lesion type respectively.

gene.index data.frame that shows row start and row end for each chromosome in the gene.Isn.data
table
1sn.index data.frame that shows row start and row end for each lesion in the gene.Isn.data
table
Author(s)

Stanley Pounds <stanley.pounds@stjude.org>

References

Pounds, Stan, et al. (2013) A genomic random interval model for statistical analysis of genomic
lesion data.

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

18 genomewide.log10q.plot

See Also

prep.gene.lsn.data()

Examples

data(lesion.data)
data(hg19.gene.annotation)

prepare gene and lesion data for later computations:
prep.gene.lsn=prep.gene.lsn.data(lesion.data,
hg19.gene.annotation)

determine lesions that overlap each gene (locus):
gene.lsn.overlap=find.gene.lsn.overlaps(prep.gene.lsn)

genomewide.log10q.plot
Genomewide log10q Plot

Description

The function return a genome-wide plot based on -log(10) g-value of each of the evaluated anno-
tated genes or lesion boundaries on each chromosome. The plot is lesion type specific (gain, loss,
mutation, etc...).

Usage
genomewide.log1@qg.plot(
grin.res,
lsn.grps,
1sn.colors = NULL,
max.log1@q = NULL
)
Arguments
grin.res GRIN results evaluating annotated genes or lesion boundaries (output of the
grin.stats function using either lesion boundaries or annotated genes as a marker
input file).
lsn.grps Selected lesion groups to be added to the plot.
lsn.colors Colors assigned to each lesion group (if NULL, lesion colors will be assigned
automatically using default.grin.colors function).
max.logl@q Maximum log10 q value to be added to the plot. All boundaries or genes with

-log10 q smaller than this value will be set automatically to max.log10q.

genomewide.Isn.plot 19

Value

The function return a genome-wide plot based on -log(10) g-value of each of the evaluated annotated
genes or lesion boundaries to be affected by a certain type of lesions (gain, loss, mutation, etc...).

Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org> and Stanley Pounds <stanley.pounds@stjude.org>

See Also

grin.lsn.boundaries()

Examples

data(lesion.data)
data(hg19.gene.annotation)
data(hg19.chrom.size)

This analysis is lesion type specific. So, user should first data extract data for a specific
lesion group of interest for example gains from the lesion data file:
gain=lesion.datal[lesion.data$lsn. type=="gain",]
Return lesion boundaries for gains:
lsn.bound.gain=grin.lsn.boundaries(gain, hgl19.chrom.size)
Run GRIN analysis Using Lesion Boundaries as Markers Instead of the Gene Annotation File:
GRIN.results.gain.bound=grin.stats(gain, lsn.bound.gain, hg19.chrom.size)
Return genomewide -logl@qg plot for association between lesion boundaries and gain:
genomewide.log1@q.plot(GRIN.results.gain.bound, lsn.grps=c("gain"),

lsn.colors=c("gain” = "red"), max.logl@q = 10)

instead of lesion boundaries, users can also plot -log10q values for annotated genes using
genes annotation data as a marker data file:
grin.results=grin.stats(lesion.data,

hg19.gene.annotation,

hg19.chrom.size)

genomewide.log1@q.plot(grin.results, lsn.grps=c("gain"), lsn.colors=c("gain" = "red"),
max.loglog = 10)

User can run this same analysis for other lesion types such as mutations and deletions.

genomewide.lsn.plot Genome-wide Lesion Plot

Description

Function return a genomewide lesion plot for all lesion types affecting different chromosomes.

20 genomewide.Isn.plot

Usage

genomewide.lsn.plot(
grin.res,
ordered = FALSE,
pt.order = NULL,
1sn.colors = NULL,
max.logl@g = NULL

)
Arguments
grin.res GRIN results (output of the grin.stats function).
ordered By default the function will order the patient IDs alphabetically. However, users
can specify a certain patient’s order in the genomewide lesion plot by specifying
ordered=TRUE and pass a data frame with new patient’s order to the pt.order
argument.
pt.order data.frame of two columns "ID" that has patient IDs matching the unique IDs in
the lesion data file and "pts.order" that has the new patient’s order listed as num-
bers that range from 1:n.patients (Should be only specified if ordered=TRUE).
1sn.colors a vector of lesion colors (If not provided by the user, colors will be automatically
assigned using default.grin.colors function).
max.log10@q Maximum log10 q value for genes in the GRIN results table to be added to the
plot. If max.log10q=100 for example, all -log10q values>100, will be adjusted
to 100 in the plot.
Details

The function use the genome-wide plotting coordinates obtained from the compute.gw.coordinates
function and plot the whole set of lesions affecting subjects included in the dataset in the middle
panel of the figure. Two additional side panels show the number of affected subjects and -log10 q
value of each locus to be affected by all different types of lesions.

Value

The function return a genome-wide lesion plot (all chromosomes) in the middle panel. For each
locus, Panel on the left shows -log10 q value and the Panel on the right show the number of subjects
affected by all different types of lesions color coded by lesion category.

Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org>and Stanley Pounds <stanley.pounds@stjude.org>

References

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

get.chrom.length 21

See Also

compute.gw.coordinates()

Examples

data(lesion.data)
data(hg19.gene.annotation)
data(hg19.chrom.size)

Run GRIN model using grin.stats function

grin.results=grin.stats(lesion.data,
hg19.gene.annotation,
hg19.chrom.size)

prepare the genomewide lesion plot using genomewide.lsn.plot function with patient IDs ordered
alphabetically:
genomewide.plot=genomewide.lsn.plot(grin.results, max.logl10g=50)

To pass certain patients order to the genomewide.lsn.plot function, the user should specify
a certain patients order using the pt.order argument.

get.chrom.length Get Chromosome Length

Description
Retrieve chromosome size data from chr.info txt files available on the UCSC genome browser based
on the user specified genome assembly.

Usage

get.chrom.length(genome.assembly)

Arguments

genome.assembly
User can specify one of four supported genome assemblies that include "Hu-

man_GRCh38", "Human_GRCh37", "Mouse_ HGCm?39" and "Mouse_HGCm38".
Details
Based on the genome assembly specified by the user, the function will directly retrieve chromosome
size data from chr.info txt file available on the UCSC genome browser.
Value
A data table with the following two columns:

chrom column has the chromosome number denoted as 1, 2, X, Y, etc..

size column has the chromosome size in base pairs.

22 get.ensembl.annotation

Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org> and Stanley Pounds <stanley.pounds@stjude.org>

References
Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

See Also

circlize::read.chromInfo()

Examples

To retreive chromosome size data for hgl19 genome assembly:
hg19.chrom.size=get.chrom.length("Human_GRCh37")
"Human_GRCh38" can be used to retreive chromosome size data for hg38 genome assembly.

get.ensembl.annotation
Get Ensembl Gene and Regulatory Features Annotation Data

Description

Function directly retrieve gene and regulatory features annotation data from Ensembl BioMart
database based on the specified genome assembly.

Usage

get.ensembl.annotation(genome.assembly)

Arguments

genome.assembly

User can specify one of four genome assemblies that include "Human_GRCh38",
"Human_GRCh37", "Mouse_ HGCm39" and "Mouse_ HGCm38".

Details

Based on the genome assembly specified by the user, the function will directly retrieve gene and
regulatory features annotation data from ensembl BioMart database. Annotation data include ene-
sembl ID, the chromosome on which the gene is located, gene start and gene end position, gene
name, gene description, biotype, chromosome strand and chromosome band. Gene classes (bio-
types) include protein coding genes, long noncoding RNAs (IncRNAs), microRNAs (miRNAs),
small nuclear RNAs (snRNA), small nucleolar RNAs (snoRNA), immunoglobulins (IGs), T-cell re-
ceptors (TCRs) and pseudogens. Regulatory features data retrieved from Ensembl regulatory build
are categorized in 6 classes that include promoters, promoter flanking regions, predicted enhancers,
CTCEF binding sites, transcription factor (TF) binding sites and the open chromatin regions.Ensembl

get.ensembl.annotation 23

first imports publicly available data from different large epigenomic consortia such as ENCODE,
Roadmap Epigenomics and Blueprint. All high-throughput sequencing data sets are then uniformly
processed using the Ensembl Regulation Sequence Analysis (ERSA) pipeline to generate signal
tracks for enriched regions also referred to as annotated features or peaks. Segmentation data pro-
vide information about promoter, promoter flanking regions, enhancers and CTCF binding sites. If
TF binding probability is >0 in areas outside previously mentioned regions, it takes a label of TF
binding site. If any open chromatin region did not overlap with the above features, it takes a label
of unannotated open chromatin. users will also have the chance to use a list of experimentally ver-
ified enhancers/transcription start sites (TSS) using the CAGE (Cap Analysis of Gene Expression)
experiment on a multitude of different primary cells and tissues from the Functional Annotation of
the Mouse/Mammalian Genome (FANTOMS) project.

Value
A list of three components:

gene.annotation
A 9 columns data.frame with gene annotation data that include enesembl ID,
chromosome, gene start and gene end position, gene name, gene description,
biotype, chromosome strand, and chromosome band.
reg.annotation.predicted
A 5 columns data.frame with regulatory features annotation data directly re-
treived from Ensembl regulatory build that include enesembl ID, chromosome,
description(promoter, enhancer, etc..), feature start and end positions.
reg.annotation.validated
A 5 columns data.frame with regulatory features annotation data for experimen-
tally verified features retreived from FANTOMS project that include feature ID,
chromosome, description(enhancer, transcription start site (TSS)), feature start
and end positions.

Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org>and Stanley Pounds <stanley.pounds@stjude.org>

References

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

Zerbino, Daniel R., et al. (2015). The ensembl regulatory build.

Kinsella, Rhoda J., et al. (2011). Ensembl BioMarts: a hub for data retrieval across taxonomic
space.

See Also

biomaRt: :useEnsembl(), biomaRt: :getBM()

24 grin.assoc.Isn.outcome

Examples

Retrieve annotation data for human hgl19 genome assembly:
hg19.ann=get.ensembl.annotation("Human_GRCh37")

gene annotation data:

hg19.gene.annotation=hgl19.ann$gene.annotation

regulatory features annotation data retrieved from Ensembl regulatory build:
hg19.reg.annotation=hg19.ann$reg.annotation.predicted

regulatory features annotation data retrieved from FANTOM5 project:
hg19.fantom.annotation=hgl19.ann$reg.annotation.validated

"Human_GRCh38" can be used instead of "Human_GRCh37" to retrieve gene and regulatory features
annotation data for human hg38 genome assembly.

grin.assoc.1lsn.outcome
Associate Lesions with Clinical Outcomes

Description

The function run association analysis between the binary lesion matrix (output of prep.binary.Isn.mtx
function) and clinical outcomes of interest such as Minimal Residual Disease (MRD), Event-free
Survival (EFS) and Overall Survival (OS), etc...

Usage
grin.assoc.lsn.outcome(
lsn.mtx,
clin.data,
annotation.data,
clinvars,
covariate = NULL
)
Arguments
lsn.mtx Binary lesion matrix in which each type of lesions affecting certain gene is rep-
resented in a separate row for example ENSG00000148400_gain. If the gene
is affected by this specific type of lesion, patient entry will be coded as 1 or 0
otherwisw. This matrix is the output of the prep.binary.lsn.mtx function.
clin.data Clinical data table in which the first column "ID" should has the patient ID.

annotation.data
Gene annotation data either provided by the user or retrieved from ensembl
BioMart database using get.ensembl.annotation function included in the GRIN2.0
library. Data.frame should has four columns: "gene" which is the ensembl ID
of annotated genes, "chrom" which is the chromosome on which the gene is
located, "loc.start" which is the gene start position, and "loc.end" the gene end
position.

grin.assoc.Isn.outcome 25

clinvars Clinical outcome variables of interest (survival variables such as EFS and OS
should be first coded as survival objects using Surv function and added as new
columns to the clinical data file, binary variables such as MRD should be coded
as 0, 1).

covariate Covariates that the model will adjust for if any.

Details

The function run association analysis between the binary lesion matrix in which each type of lesions
affecting certain gene is represented in a separate row (output of prep.binary.lsn.mtx function) and
clinical outcomes.Function will run logistic regression models for association between each gene-
lesion pair with numeric variables such as MRD that should be coded as O if the patient is MRD-
negative and 1 if the patient is MRD positive. Function will also run COX-Proportional hazard
models for association between lesions and survival objects such as Event-free survival (EFS) and
oveall survival (OS). EFS and OS should be first coded as survival objects using Surv function and
added as new columns to the clinical data file. If specified, the models can be also adjusted for one
or a group of covariates such as risk group assignment, gender, age, etc...

Value

Function returns a results table that has gene annotation data, and multiple columns showing results
of the logistic regression model for association with binary variables such as MRD that include
odds.ratio, lower and upper 95 confidence interval (CI), model p and FDR adjusted q values, in
addition to the number of patients with/without lesion who experienced or did not experience the
event. Results table will also include results of COXPH models for association between lesions
with survival variables such as EFS, OS that include COXPH hazard ratio, lower and upper 95 CI,
model p and FDR adjusted q values, in addition to the number of patients with/without the lesion
who experienced or did not experience the event.

Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org> and Stanley Pounds <stanley.pounds@stjude.org>

References

Andersen, P. and Gill, R. (1982). Cox’s regression model for counting processes, a large sample
study.

Therneau, T., Grambsch, P. (2000) Modeling Survival Data: Extending the Cox Model.
Dobson, A. J. (1990) An Introduction to Generalized Linear Models.

See Also

stats::glm(), survival: :coxph()

Examples

data(lesion.data)
data(hg19.gene.annotation)
data(clin.data)

26 grin.barplt
prepare lesion data and find gene lesion overlaps:
gene.lsn=prep.gene.lsn.data(lesion.data, hgl19.gene.annotation)
gene.lsn.overlap= find.gene.lsn.overlaps(gene.lsn)

Prepare a binary lesion matrix for genes affected by a certain type of lesion in at least
5 subjects using prep.binary.lsn.mtx function:
lsn.binary.mtx=prep.binary.lsn.mtx(gene.lsn.overlap, min.ngrp=5)
Prepare EFS and OS survival objects and add two new columns to the clinical data file:
library(survival)
clin.data$EFS <- Surv(clin.data$efs.time, clin.data$efs.censor)
clin.data$0S <- Surv(clin.data$os.time, clin.data$os.censor)
define clinical outcome variables to be included in the analysis:
clinvars=c("MRD.binary"”, "EFS", "0S")
Run association analysis between lesions in the binary lesion matrix and clinical variables
in the clinvars object:
assc.outcomes=grin.assoc.lsn.outcome(lsn.binary.mtx,

clin.data,

hg19.gene.annotation,

clinvars)
to adjust the models for one or a group of covariates, user can specify one or a group
of covariates using the 'covariate' argument.

grin.barplt GRIN Bar Plot

Description
Function return a stacked bar plot with number of patients affected by all different types of lesions
in a pre-specified list of genes of interest.

Usage
grin.barplt(grin.res, count.genes, lsn.colors = NULL)

Arguments
grin.res GRIN results (output of the grin.stats function).
count.genes vector with gene names of a list of genes to be added to the bar plot.
1sn.colors Lesion colors (If not provided by the user, colors will be automatically assigned

using default.grin.colors function).

Details

Function will use the input list of gene names and extract the number of patients affected by all dif-
ferent types of lesions in those genes from the GRIN results table (output of the grin.stats function).

grin.Isn.boundaries 27

Value

Function return a stacked bar plot with number of patients affected by all different types of lesions
in the pre-specified list of genes of interest.

Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org> and Stanley Pounds <stanley.pounds@stjude.org>

See Also

grin.stats()

Examples

data(lesion.data)
data(hg19.gene.annotation)
data(hg19.chrom.size)

run GRIN analysis using grin.stats function

grin.results=grin.stats(lesion.data,
hg19.gene.annotation,
hg19.chrom.size)

specify a list of genes to be included in the bar plot (driver genes)

count.genes=as.vector(c("TAL1", "FBXW7", "PTEN", "IRF8","NRAS",
"BCL11B", "MYB", "LEF1","RB1", "MLLT3", "EZH2", "ETV6", "CTCF",
"JAKT", "KRAS", "RUNX1", "IKZF1", "KMT2A", "RPL11", "TCF7",
IIWT1 II, VIJ'AKZII’ IIJAK3II, IIFLT3II))

return the stacked barplot

grin.barplt(grin.results, count.genes)

grin.lsn.boundaries GRIN Evaluate Lesion Boundaries

Description

The function evaluates Copy number variations that include gain and deletions as boundaries based
on unique lesion start and end positions. This analysis is lesion type specific and covers the entire
genome.

Usage

grin.lsn.boundaries(lsn.data, chrom.size)

28 grin.Isn.boundaries

Arguments
lsn.data Lesion data file that should be limited to include either gain or deletions. If gains
are splitted to gain and amplifications based on the log2Ratio value of the CNV
segmentation file, the two categories can be included in the same data table,
same for homozygous and heterozygous deletions.
chrom.size Chromosize size table that should include two columns "chrom" with the chro-
mosome number and "size" with the chromosome size in base pairs.
Details

The function evaluates Copy number variations that include gain and deletions as boundaries and
return a table of ordered boundaries based on the unique start and end positions of different lesions
on each chromosome. If gains are splitted to gain and amplifications based on the log2Ratio value
of the CNV segmentation file, the two categories can be included in the same analysis, same for
homozygous and heterozygous deletions. Boundary will be the region between each unique start
and end positions where large size lesions will be splitted into multiple boundaries based on other
smaller size lesions that affect the same region in other patients if any. This analysis is meant
to cover the entire genome, so regions without any annotated genes or regulatory features will be
incuded will be assesed in the analysis. The first boundary for each chromosome will start from
the first nucleotide base on the chromosome till the start position of the first lesion that affect the
chromosome. Similarly, the last boundary will start from the end position of the last lesion that
affect the chromosome till the last base on the chromosome.

Value

Function return a data.frame with five columns:

gene Ordered boundaries by unique start and end positions of different lesions on
each chromosome.
chrom Chromosome on which the bounday is located.
loc.start Boundary start position.
loc.end Boundary end position.
diff Boundary size in base pairs.
Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org> and Stanley Pounds <stanley.pounds@stjude.org>

Examples

data(lesion.data)
data(hg19.chrom.size)

This analysis is lesion type specific. So, user should first data extract data for a specific
lesion group of interest for example gains from the lesion data file:
gain=lesion.data[lesion.data$lsn.type=="gain",]

Return lesion boundaries for gains:

1sn.bound.gain=grin.lsn.boundaries(gain, hgl19.chrom.size)

grin.oncoprint.mtx 29

Run GRIN analysis Using Lesion Boundaries markers Instead of the gene annotation file:
GRIN.results.gain.bound=grin.stats(gain, lsn.bound.gain, hg19.chrom.size)

same analysis can be done for mutations, deletions and structural rearrangments.

grin.oncoprint.mtx GRIN OncoPrint Matrix

Description

Function use GRIN results table and prepare the lesion matrix that the user can pass to the oncoprint
function from ComplexHeatmap package to geneate an OncoPrint for a selcted list of genes.

Usage

grin.oncoprint.mtx(grin.res, oncoprint.genes)

Arguments

grin.res GRIN results (output of the grin.stats function).
oncoprint.genes
Vector of ensembl IDs for the selected list of genes to be added to the OncoPrint.

Details

Function will use the input list of ensembl IDs to prepare a data table of lesions that affect these
genes (each row is a gene and each column is a patient ID). This lesion matrix is compatible and
can be passed to oncoprint function in ComplexHeatmap library to prepare an OncoPrint for lesions
in the selected list of genes.

Value
Function uses the output results of grin.stats function and return data table of lesions that affect a
group of selected genes (each row is a gene and each column is a patient ID).

Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org> and Stanley Pounds <stanley.pounds@stjude.org>

References

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

See Also

grin.stats()

30 grin.stats

Examples

data(lesion.data)
data(hg19.gene.annotation)
data(hg19.chrom.size)

Run GRIN analysis using grin.stats function:

grin.results=grin.stats(lesion.data,
hg19.gene.annotation,
hg19.chrom.size)

specify a list of genes to be included in the oncoprint (driver genes):

oncoprint.genes=as.vector(c("ENSG00000148400", "ENSGOQ000171862", "ENSGO0Q0Q171843",
"ENSGQ0000156531", "ENSGO0000162367", "ENSGO0000096968",
"ENSG00000105639", "ENSGO0000118513","ENSG00000102974",
"ENSG00000133703"))

prepare the oncoprint lesion matrix:
oncoprint.mtx=grin.oncoprint.mtx(grin.results,
oncoprint.genes)

user can also specify a list of top significant genes in the GRIN constellation test:
for example: select genes affected by two types of lesion with g2.nsubj<@.01:
genes.const = grin.results$gene.hits[grin.results$gene.hits$g2.nsubj < 0.01, 1]
get ensembl.ids for this list of genes
selected. genes=as.vector(genes.const$gene)
oncoprint.mtx.const=grin.oncoprint.mtx(grin.results,

selected. genes)

grin.stats GRIN Statistics Output

Description

The function run the Genomic Random Interval (GRIN) analysis to determine whether a certain
locus has an abundance of lesions or a constellation of multiple types of lesions that is statistically
significant.

Usage

grin.stats(lsn.data, gene.data = NULL, chr.size = NULL, genome.version = NULL)

Arguments

lsn.data data.frame with lesion data prepared by the user in a GRIN compatible for-
mat. Object should has five columns that include "ID" with patient ID, "chrom"
which is the chromosome on which the lesion is located, "loc.start" which is the
lesion start position, "loc.end" the lesion end position and "lsn.type" which is
the lesion category for example gain, loss, mutation, fusion, etc... For Single
Nucleotide Variants (SNVs), loc.start will be the same as loc.end. For Copy

grin.stats 31

Number Alterations (CNAs) such as gain and deletions, loc.start and loc.end
should be the gain or deletion start and end positions respectively. For struc-
tural rearrangements such as inversions and translocations, each rearrangement
should be coded in two different lines, one line for chromosome A involved
in the translocation break-point and the second line for chromosome B break-
point. For inversions on the same chromosome, the two lines will include the
two breakpoints of the inversion. An example lesion data in a GRIN compatible
format can be found at the GRIN2.0 package data folder (lesion.data.rda).

gene.data data.frame with the gene annotation data either provided by the user or directly
retreived from ensembl BioMart database using get.ensembl.annotation func-
tion included in the GRIN2.0 library if the genome.version is specified. Object
should has four columns "gene" which is the ensembl ID of annotated genes
to which the lesion data will be overlapped, "chrom" which is the chromosome
on which the gene is located, "loc.start" which is the gene start position, and
"loc.end" the gene end position.

chr.size data.frame with the size of the 22 autosomes, in addition to X and Y chromo-
somes in base pairs. It should has two columns that include "chrom" with the
chromosome number and "size" for the size of the chromosome in base pairs.
Chromosome size data can be either provided by the user or directly retreived
from UCSC genome browser using get.chrom.length function included in the
GRIN2.0 library if genome.version is specified.

genome.version Genome assembly should be only specified if the user selected not to provide
gene annotation, chromosome size files, and directly retrieve those files from en-
sembl BioMart database, and UCSC genome browsers using get.ensembl.annotation
and get.chrom.length functions respectively. Currently, the function support
four genome assemblies that include "Human_GRCh38", "Human_GRCh37",
"Mouse_ HGCm39", and "Mouse_ HGCm38".

Details

The function run the Genomic Random Interval (GRIN) analysis and evaluates the probability of
each gene locus to be affected by different types of lesions based on a convolution of independent
but non-identical Bernoulli distributions to determine whether this locus has an abundance of lesions
that is statistically significant.In addition, FDR-adjusted q value is computed for each locus based
on Pounds & Cheng (2006) estimator of the proportion of tests with a true null (pi.hat). The function
also evaluates if a certain locus is affected by a constellation of multiple types of lesions and return
the GRIN results table.

Value

A list with the following components:

gene.hits data table of GRIN results that include gene annotation, number of subjects
affected by each lesion type for example gain, loss, mutation, etc.., and number
of hits affecting each locus. The GRIN results table will also include P and FDR
adjusted g-values showing the probability of each locus of being affected by one
or a constellation of multiple types of lesions.

lsn.data input lesion data

32

grin.stats

gene.data input gene annotation data

gene.lsn.data eachrow represent a gene overlapped by a certain lesion. Column "gene" shows
the overlapped gene ensembl ID and "ID"" column has the patient ID.

chr.size data table showing the size of the 22 autosomes, in addition to X and Y chromo-
somes in base pairs.

gene. index data.frame with overlapped gene-lesion data rows that belong to each chromo-
some in the gene.lsn.data table.

1sn.index data.frame that shows the overlapped gene-lesion data rows taht belong to each
lesion in the gene.lsn.data table.

Author(s)

Stanley Pounds <stanley.pounds@stjude.org>

References

Pounds, Stan, et al. (2013) A genomic random interval model for statistical analysis of genomic
lesion data.

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

See Also

prep.gene.lsn.data(), find.gene.lsn.overlaps(), count.hits(), prob.hits()

Examples

data(lesion.data)
data(hg19.gene.annotation)
data(hg19.chrom.size)

if gene annotation and chromosome size files will be provided by the user:
grin.results=grin.stats(lesion.data,

hg19.gene.annotation,

hg19.chrom.size)

to directly retrieve gene annotation and chromosome size files from Ensembl BioMart database,

and UCSC genome browsers using get.ensembl.annotation and get.chrom.length functions respectively,
users can select to specify certain genome assembly using the 'genome.version' argument:

"Human_GRCh37" can be used for the GRCH37 (hg19) genome assembly, and "Human_GRCh38" can be used

for the GRCH38 (hg38) genome assembly

grin.stats.Isn.plot 33

grin.stats.lsn.plot GRIN Statistics Lesions Plot

Description
Function return a plot with all types of lesions that spans either a gene or regulatory feature of
interest with GRIN statistics added.

Usage

grin.stats.lsn.plot(grin.res, feature = NULL, lsn.clrs = NULL, expand = 5e-04)

Arguments
grin.res GRIN results for genes or regulatory features (output of the grin.stats function)
feature Feature ensembl ID from Ensembl regulatory build or FANTOMS project. An
ensembl ID of a gene can be provided as well.
lsn.clrs Assigned colors per lesion types. If not specified, colors will be automatically
assigned using default.grin.colors function.
expand Controls ratio of the feature locus (start and end position) to the whole plot with
default value = 0.0005 (setting expand=0 will only plot the locus from the start
to the end position without any of the upstream or downstream regions of the
feature).
Details

Function return a plot with all lesions that affect either a gene regulatory feature of interest. Top
panel of the plot will has all different types of lesions affecting the loci color coded according to the
figure legend. Lower panel of the plot has all the GRIN statistics of the feature that include number
of subjects affected by each type of lesions, -log10 p, and —log10q values showing if the feature is
significantly affected by the corresponding lesion category. This plot has no panel for transcripts
table as regulatory features typically do not have this kind of information.

Value

Function return a plot with all types of lesions that spans either a gene or regulatory feature of
interest in addition to the locus GRIN statistics without adding the transcripts panel.

Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org>and Stanley Pounds <stanley.pounds@stjude.org>

References

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

34 hg19.chrom.size

See Also

grin.stats()

Examples

data(lesion.data)
data(hg19.gene.annotation)
data(hg19.chrom.size)

run GRIN analysis

grin.results=grin.stats(lesion.data,
hg19.gene.annotation,
hg19.chrom.size)

Plots showing different types of lesions and GRIN stats for a gene of interest (WT1):
grin.stats.lsn.plot(grin.results,
feature="ENSG00000184937")

same function can be used to plot lesion data and GRIN statistics of regulatory features
that typically do not have transcripts track to add to the plot.

hg19.chrom.size Chromosome Length Data File

Description

The file has the size of 22 autosomes in addition to X and Y chromosomes in base pairs directly
retrieved from chr.info txt files available on the UCSC genome browser using get.chrom.length
function and "Human-GRCh37" as a genome assembly option (hg19).

Usage

hg19.chrom.size

Format
hg19.chrom.size:
A data frame with 24 rows and 2 columns:

chrom The chromosome number.
size The chromosome length in base pairs.

Source

Chromosome size data directly retrieved from chr.info txt files available on the UCSC genome
browser using get.chrom.length function and "Human-GRCh37" as a genome assembly option
(hg19).

hg19.gene.annotation 35

hg19.gene.annotation Example Gene Annotation Data File

Description

The file has an example annotation data of 420 genes (same set of genes in the gene expression data
file) directly retrieved from Ensembl BioMart database using get.ensembl.annotation function and
"Human-GRCh37" as a genome assembly option (hg19).

Usage

hg19.gene.annotation

Format

hg19.gene.annotation:

A data frame with 420 rows and 9 columns:

gene Column has the gene ensembl ID

chrom The chromosome on which the gene is located
loc.start Gene start position in base pairs

loc.end Gene end position in base pairs

description Description of the gene name
gene.name Gene symbol

biotype Gene classes that include protein coding genes, long noncoding RNAs (IncRNAs), mi-
croRNAs (miRNAs), small nuclear RNAs (snRNA), small nucleolar RNAs (snoRNA), im-
munoglobulins (IGs), T-cell receptors (TCRs) and pseudogens.

chrom.strand The chromosome strand on which the gene is located forward (1) or reverse (-1).
chrom.band The chromosome band on which the gene is located.

Source

Data was directly retrieved from Ensembl BioMart database using get.ensembl.annotation function
and "Human-GRCh37" as a genome assembly option (hg19).

hg19_cytoband GRCh37 Chromosome Cytobands

Description
The dataset has the start and end positions in base pairs of all 22 autosomes in addition to X and Y
chromosome cytobands for Human-GRCh37 (hg19) genome assembly.

Usage
hg19_cytoband

36 hg38_cytoband

Format

hg19_cytoband:

A data frame with 862 rows and 5 columns:

chrom The chromosome number.

chromStart The cytoband start position on the chromosome in base pairs.
chromEnd The cytoband end position on the chromosome in base pairs.
name The cytoband name.

gieStain The coloring scheme of the cytobands.

Source

The Chromosome cytobands data file was downloaded from the UCSC genome browser for GRCh37
genome assembly https://hgdownload. soe.ucsc.edu/goldenPath/hg19/database/.

hg38_cytoband GRCh38 Chromosome Cytobands

Description

The dataset has the start and end positions in base pairs of all 22 autosomes in addition to X and Y
chromosome cytobands for Human-GRCh38 (hg38) genome assembly.

Usage
hg38_cytoband

Format

hg38_cytoband:

A data frame with 1,549 rows and 5 columns:

chrom The chromosome number.

chromStart The cytoband start position on the chromosome in base pairs.
chromEnd The cytoband end position on the chromosome in base pairs.
name The cytoband name.

gieStain The coloring scheme of the cytobands.

Source

The Chromosome cytobands data file was downloaded from the UCSC genome browser for GRCh38
genome assembly https://hgdownload. soe.ucsc.edu/goldenPath/hg38/database/.

https://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/

KW.hit.express 37

KW.hit.express Associate Lesion with Expression Data Using Kruskal-Wallis Test

Description

Function uses Kruskal-Wallis test to evaluate the association between lesion groups and expression
level of the same corresponding gene.

Usage

KW.hit.express(alex.data, gene.annotation, min.grp.size = NULL)

Arguments

alex.data output of the alex.prep.lsn.expr function. It’s a list of three data tables that in-
clude "row.mtch", "alex.expr" with expression data, "alex.Isn" with lesion data.
Rows of alex.expr, and "alex.lsn" matrices are ordered by gene ensembl IDs and
columns are ordered by patient ID.

gene.annotation
Gene annotation data either provided by the user or retrieved from ensembl
BioMart database using get.ensembl.annotation function included in the GRIN2.0
library. Data.frame should has four columns: "gene" which is the ensembl ID
of annotated genes, "chrom" which is the chromosome on which the gene is
located, "loc.start" which is the gene start position, and "loc.end" the gene end
position.

min.grp.size Minimum number of subjects in a lesion group to be included in the KW test
(there should be at least two groups with number of patients > min.grp.size) to
run the KW test for a certain gene.

Details

The function uses the ensembl IDs in each row of the row.mtch file and run the Kruskal-Wallis test
for association between lesion groups of the gene in the "hit.row" column with expression level of
the gene in the "expr.row" column. IDs in the two columns should be the same if the KW test will be
used to evaluate association between lesion groups and expression level of the same corresponding
gene. If the same patient is affected with multiple types of lesions in the same gene for example gain
AND mutations, the entry will be denoted as "multiple" and patients without any type of lesions
will be coded as "none".

Value
A data table with multiple columns that include:
gene ensembl ID of the gene of interest.

gene.name Gene name of the gene of interest.

p.KW Kruskal-Wallis test p-value.

38 KW.hit.express

g.KW Kruskal-Wallis test FDR adjusted g-value.

_n.subjects Multiple columns with number of subjects with each type of lesion affecting
the gene, number of subjects without any lesion and number of subjects with
multiple types of lesions.

_mean Multiple columns with mean expression level of the gene in subjects with each
type of lesion, mean expression in subjects without any lesion and mean expres-
sion in subjects with multiple types of lesions.

_median Multiple columns with median expression of the gene in subjects with each type
of lesion, median expression in subjects without any lesion and median expres-
sion in subjects with multiple types of lesions.

_sd Multiple columns with standard deviation of the expression level of the gene
in subjects with each type of lesion, standard deviation in subjects without any
lesion and standard deviation in subjects with multiple types of lesions.

Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org>and Stanley Pounds <stanley.pounds@stjude.org>

References

Myles Hollander and Douglas A. Wolfe (1973), Nonparametric Statistical Methods. New York:
John Wiley & Sons. Pages 115-120.

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

See Also

alex.prep.lsn.expr()

Examples

data(expr.data)
data(lesion.data)
data(hg19.gene.annotation)

prepare expression, lesion data and return the set of genes with both types of data available
ordered by gene IDs in rows and patient IDs in columns:
alex.data=alex.prep.lsn.expr(expr.data, lesion.data,

hg19.gene.annotation, min.expr=1, min.pts.1lsn=5)

run Kruskal-Wallis test for association between lesion groups and expression level of the
same corresponding gene:
alex.kw.results=KW.hit.express(alex.data, hgl9.gene.annotation, min.grp.size=5)

lesion.data 39

lesion.data Example T-ALL Dataset Lesion Data

Description

Lesion data file showing copy number variations, single nucleotide variations and structrual rear-
rangments affecting 265 newly diagnosed T-cell Acute Lymphoblastic Leukemia (T-ALL) patients
that was reported by Liu, Yu, et al. (2017).

Usage

lesion.data

Format

lesion.data:

A data frame with 6,887 rows and 5 columns:

ID patient identifier for the patient affected by the genomic lesion
chrom the chromosome on which the lesion is located

loc.start the lesion start position in base pairs

loc.end the lesion end position in base pairs

Isn.type the lesion type for example gain, loss, mutation, fusion, etc...

Source

extracted from the supplementary material tables of the published Liu, Yu, et al. (2017) manuscript
https://www.nature.com/articles/ng.3909#Sec27

lsn.transcripts.plot Lesions Gene Transcripts Plot

Description

Function prepare a plot with all types of lesions that spans either a gene or a region of interest.

Usage

lsn.transcripts.plot(
grin.res,
genome,
gene = NULL,
transTrack = TRUE,
Isn.clrs = NULL,
chrom = NULL,

https://www.nature.com/articles/ng.3909#Sec27

40

Isn.transcripts.plot

plot.start = NULL,
plot.end = NULL,
lesion.grp = NULL,
spec.lsn.clr = NULL,
extend.left = NULL,
extend.right = NULL,
expand = 5e-04,
hg38.transcripts = NULL,
hg19.cytoband = NULL,
hg38.cytoband = NULL

Arguments

grin.res

genome

gene

transTrack

Isn.clrs

chrom

plot.start
plot.end

lesion.grp

spec.lsn.clr

extend. left

extend.right

expand

GRIN results (output of the grin.stats function).

either "hg19" or "hg38" genome assemblies can be specified based on the genome
assembly that has been used to prepare the lesion data.

Gene name of interest.

In case of plots that span large genomic region such as a chromosome band or the
whole chromosome, this argument should be specified as 'FALSE’ to exclude
the transcripts track from the plot.

Lesion colors for the regional gene plot (If not provided by the user, colors will
be automatically assigned using default.grin.colors function).

chromosome number (should be only specified in the locus plots where plot.start
and plot.end for the locus of interest are specified).

start position of the locus of interest.
end position of the locus of interest.

lesion group of interest (should be only specified in locus plots when chrom,
plot.start, plot.end are specified).

color assigned to the lesion of interest (should be specified when chrom, plot.start,
plot.end and lesion.grp are specified).

specified number will be used to manually align the left side of the gene tran-
scripts track directly retrieved from ensembl database with the gene lesions track
if needed.

specified number will be used to manually align the right side of the gene tran-
scripts track directly retrieved from ensembl database with the gene lesions track
if needed.

Controls ratio of the gene locus (start and end position) to the whole plot with
default value = 0.0005 (setting expand=0 will only plot the gene locus from the
start to the end position without any of the upstream or downstream regions of
the gene).

hg38.transcripts

transcripts data retrieved from annotation hub for hg38 version 110 (should be
only specified if genome="hg38").

Isn.transcripts.plot 41

hg19.cytoband hgl9 chromosome bands start and end data in base pair (should be only specified
if genome="hg19").

hg38.cytoband hg38 chromosome bands start and end data in base pair (should be only specified
if genome="hg38").

Details

Function return a plot with all lesions that affect either a gene or a region of interest. Top panel of
the regional gene plot has the transcripts track with all transcripts annotated to the gene of interest
directly retrieved from ensembl database. The middle panel will has all different types of lesions
affecting the gene color coded according to the figure legend. Lower panel of the plot has all the
GRIN statistics of the gene that include number of subjects affected by each type of lesions, -log10
p, and —log10q values showing if the gene is significantly affected by the corresponding lesion cat-
egory. If a certain locus is specified, only transcripts track and the lesion panel will be returned
(GRIN results panel will not be added to the plot). In case of plots that span large genomic re-
gion such as a chromosome band or the whole chromosome and by specifying transTrack=FALSE,
transcripts track will not be added to the plot as well.

Value

Function will return either a gene plot with the transcripts track, lesions panel and GRIN statistic
for the gene of interest, a plot with all lesions and transcripts aligned to a certain locus of interest if
chrom, plot.start and plot.end were specified or a plot with all lesions affecting a region of interest
without the transcripts track.

Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org> and Stanley Pounds <stanley.pounds@stjude.org>

References

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

See Also

grin.stats()

Examples

data(lesion.data)
data(hg19.gene.annotation)
data(hg19.chrom.size)
data(hg19_cytoband)
data(hg38_cytoband)

run GRIN analysis using grin.stats function

grin.results=grin.stats(lesion.data,
hg19.gene.annotation,
hg19.chrom.size)

42

onco.print.props

Plots showing different types of lesions affecting a gene of interest with a transcripts

track that show all the gene transcripts retrieved from Ensembl (hgl19 genome assembly):

WT1.gene.plot=1sn.transcripts.plot(grin.results, genome="hgl19", gene="WT1",
hg19.cytoband=hg19_cytoband)

Plots showing different types of lesions affecting a region of interest with a transcripts

track added to the plot:

locus.plot=1sn.transcripts.plot(grin.results, genome="hg19", hg19.cytoband=hg19_cytoband,
chrom=9, plot.start=21800000, plot.end=22200000,
lesion.grp = "loss"”, spec.lsn.clr = "blue")

Plots Showing Different Types of Lesions Affecting a region of Interest without plotting the
transcripts track (this will allow plotting a larger locus of the chromosome such as a
chromosome band (should specify transTrack = FALSE):
noTranscripts=1lsn.transcripts.plot(grin.results, genome="hg19", transTrack = FALSE,
hg19.cytoband=hg19_cytoband, chrom=9, plot.start=19900000,
plot.end=25600000, lesion.grp = "loss”, spec.lsn.clr = "blue")

Plots Showing Different Types of Lesions Affecting the whole chromosome:

chrom.plot=1sn.transcripts.plot(grin.results, genome="hgl19", transTrack = FALSE,
hg19.cytoband=hg19_cytoband, chrom=9, plot.start=1,
plot.end=141000000)

for GRCh38 (hg38) genome assembly, users should first call the AnnotationHub() web resource then
specify ah[["AH113665"]] to retrieve the human hg38 gene transcripts. This formal class

EnsDb object should be called afterwards in the 'hg38.transcripts' argument to return gene and

regional plots.

onco.print.props Oncoprint proportions

Description

The function order lesion types based on their average size and assign the proportion of the onco-
print rectangle that should be color filled based on the average size of each lesion type.

Usage

onco.print.props(lsn.data, clr = NULL, hgt = NULL)

Arguments
lsn.data data.frame with 5 columns including "ID" which is the subject identifier, "chrom"
which is the chromosome on which the lesion is located, "loc.start" with lesion
start position, "loc.end"” which is the lesion end position), and "Isn.type" which
is the lesion category for example gain, mutation, etc..).
clr Lesion colors (If not provided by the user, colors will be automatically assigned

using default.grin.colors function).

order.index.gene.data 43

hgt Manually assign the proportion of the oncoprint rectangle that should be color
filled for each lesion group.

Details

Some patients might be affected by two or more lesion types in the same gene for example gain
AND mutations. To get all lesion types represented in the same rectangle in the oncoprint, this
function order lesion types based on the average size of each type and assign the proportion of the
oncoprint rectangle that should be color filled based on the average size of each lesion type. Color
filled proportion of the oncoprint rectangles can be also specified by the user for each lesion type
based on the hgt parameter.

Value

Function return a list of three lists specifying the color assigned to each lesion type, the proportion
of the rectangle that should be color filled in the oncoprint based on the average size of each lesion
type, and the legend parameters.

Author(s)

Lakshmi Patibandla <LakshmiAnuhya.Patibandla@stjude.org>, Abdelrahman Elsayed <abdelrahman.elsayed@stjude
and Stanley Pounds <stanley.pounds@stjude.org>

References

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

Examples

data(lesion.data)

onco.props=onco.print.props(lesion.data, hgt = c("gain"=4, "loss"=3, "mutation”=2, "fusion"=1))
if hgt argument is not specified, the lesion category "mutation” for single point mutations will
be assigned size=1 because it has the smallest average lesion size and will have the smallest

proportion of the filled oncoprint rectangles 1/4=0.25

order.index.gene.data Order Index Gene Data

Description
This function order and index gene annotation data by chromosome on which the gene is located,
gene start, and end positions.

Usage

order.index.gene.data(gene.data)

44 order.index.Isn.data

Arguments
gene.data data.frame with gene annotation data either provided by the user or retrieved
from ensembl BioMart database using get.ensembl.annotation function included
in the GRIN2.0 library. data.frame should has four columns that include "gene"
which is the ensembl ID of the annotated genes to which the lesion data will
be overlapped, "chrom" which is the chromosome on which the gene is located,
"loc.start" which is the gene start position, and "loc.end" the gene end position.
Value

A list with the following components:

gene.data Input gene annotation data

gene. index data.frame with two columns of ordered row start and row end based on the
number of genes annotated to each chromosome.

Author(s)

Stanley Pounds <stanley.pounds@stjude.org>

References

Pounds, Stan, et al. (2013) A genomic random interval model for statistical analysis of genomic
lesion data.

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

Examples

data(hg19.gene.annotation)

ordered.genes=order.index.gene.data(hg19.gene.annotation)

order.index.lsn.data Order Index Lesion Data

Description

This function order and index lesion data by lesion type, the chromosome on which the lesion is
located , and subject.

Usage

order.index.lsn.data(lsn.data)

pathways

Arguments

1sn.data

Value

45

data.frame with lesion data prepared by the user in a GRIN compatible format.
The data.frame should has five columns that include "ID" which is a column
with id of the patient affected by the lesion, "chrom" which is the chromo-
some on which the lesion is located, "loc.start" which is the lesion start posi-
tion, "loc.end" the lesion end position and "Isn.type" which is the lesion type for
example gain, loss, mutation, fusion, etc...

A list with the following components:

1sn.data

Isn.index

Author(s)

Input lesion data

data.frame with row start and row end for each type of lesions affecting each
subject on a certain chromosome. For example, if a certain patient is affected
by 1 deletion on chromosome 5, row start wil be equal to row end for loss on
chromosome 5. However, if the patient is affected by 4 deletions, difference
between row.start and row.end will be 3.

Stanley Pounds <stanley.pounds@stjude.org>

References

Pounds, Stan, et al. (2013) A genomic random interval model for statistical analysis of genomic

lesion data.

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

Examples

data(lesion.data)

ordered.lsn=order.index.lsn.data(lesion.data)

pathways

List of Genes Annotated to a Group of Pathways

Description

The dataset has a list of genes annotated to a group of different pathways.

Usage

pathways

46 prep.binary.Isn.mtx

Format
pathways:
A data frame with 121 rows and 3 columns:

gene.name Gene symbol.
ensembl.id Gene ensembl ID.
pathway The pathway to which the gene is annotated.

Source

Data was extracted from the supplementary material tables of the published Liu, Yu, et al. (2017)
manuscript https://www.nature.com/articles/ng.3909#Sec27

prep.binary.lsn.mtx Prepare Binary Lesion Matrix

Description
Prepares a lesion matrix with each gene affected by a certain type of lesion as a row and each patient
as a column.

Usage

prep.binary.lsn.mtx(ov.data, min.ngrp = 0)

Arguments
ov.data list of six data.frames that represent the output results of the find.gene.lsn.overlaps
function.
min.ngrp if specified, rows with number of patients affected by a specific type of lesion
that’s less than the specified number will be discarded (default is O; function will
return all genes affected by a lesion in at least one patient), for example if only
one patient is affected by gain in MYB gene.
Details

The function uses the output results of the find.gene.lsn.overlaps function and create a binary lesion
matrix with each gene affected by certain lesion type as a row and each patient as a column. Row-
names are labelled as gene.ID_lesion.type (for example: ENSG00000118513_gain for gains affect-
ing MYB gene). The entry for each patient in the table will be denoted as 1 if the patient is affected
by this specific type of lesion in the gene, for example gain in MYB gene (ENSG00000118513) or
0 otherwise.

Value

The function returns a binary lesion matrix with each row labelled as gene.ID_lesion.type and each
column is a patient. Entry for each patient in the table will be denoted as 1 if the gene is affected by
this specific type of lesion or O otherwise.

https://www.nature.com/articles/ng.3909#Sec27

prep.gene.Isn.data 47

Author(s)

Stanley Pounds <stanley.pounds@stjude.org>

References

Pounds, Stan, et al. (2013) A genomic random interval model for statistical analysis of genomic
lesion data.

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

See Also

prep.gene.lsn.data(), find.gene.lsn.overlaps()

Examples

data(lesion.data)
data(hg19.gene.annotation)

prepare gene and lesion data for later computations:
prep.gene.lsn=prep.gene.lsn.data(lesion.data,
hg19.gene.annotation)

determine lesions that overlap each gene (locus):
gene.lsn.overlap=find.gene.lsn.overlaps(prep.gene.lsn)

prepare the lesion binary matrix with a minimum of 5 patients affected by the lesion to be
included in the final matrix:
lsn.binary.mtx=prep.binary.lsn.mtx(gene.lsn.overlap, min.ngrp=5)

prep.gene.lsn.data Prepare Gene and Lesion Data

Description

This function prepare gene and lesion data for later GRIN computations.

Usage

prep.gene.lsn.data(lsn.data, gene.data, mess.freq = 10)

Arguments

lsn.data data.frame with lesion data prepared by the user in a GRIN compatible format.
The data.frame should has five columns that include "ID" which is the patient
ID, "chrom" which is the chromosome on which the lesion is located, "loc.start"
which is the lesion start position, "loc.end" the lesion end position and "lsn.type"
which is the lesion type for example gain, loss, mutation, fusion, etc...

48 prep.gene.Isn.data

gene.data gene annotation data with four required columns: "gene" has ensembl ID, "chrom"
which is chromosome on which the gene is located, "loc.start" gene start posi-
tion, "loc.end" which is the gene end position

mess. freq message frequency: display message every mess.freq”th lesion block (default is
10).

Details
This function order and index gene and lesion data for later computations. Output of this function
is used to ovelap gene and lesion data using find.gene.lsn.overlaps function.

Value
A list with the following components:

lsn.data Input lesion data.
gene.data Input gene annotation data.

gene.lsn.data data.frame ordered by gene and lesions start positions. Gene start position is
coded as 1 in the cty column and gene end position is coded as 4. Lesion start
position is coded as 2 in the cty column and lesion end position is coded as 3.

gene. index data.frame that shows row start and row end for each chromosome in the gene.lsn.data
table.
1sn.index data.frame that shows row start and row end for each lesion in the gene.lsn.data
table.
Author(s)

Stanley Pounds <stanley.pounds@stjude.org>

References

Pounds, Stan, et al. (2013) A genomic random interval model for statistical analysis of genomic
lesion data.

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

See Also

order.index.gene.data(), order.index.1lsn.data()

Examples

data(lesion.data)
data(hg19.gene.annotation)

prepare gene and lesion data for later computations:
prep.gene.lsn=prep.gene.lsn.data(lesion.data,
hg19.gene.annotation)

prep.Isn.type.matrix 49

prep.lsn.type.matrix Prepare Lesion Type Matrix

Description
The function prepare a lesion matrix with all types of lesions affecting certain gene as a row and
each patient as a column.

Usage

prep.lsn.type.matrix(ov.data, min.ngrp = 0)

Arguments
ov.data list of six data.frames that represent the output results of the find.gene.lsn.overlaps
function.
min.ngrp if specified, rows with number of patients affected by all different types of le-
sions that’s less than the specified number will be discarded (default is 0; will
return all genes affected by any type of lesions in at least one patient).
Details

The function returns a lesion matrix with each row as a gene and each column is a patient. If a gene
is affected by one type of lesions in a certain patient, the entry will be labelled by lesion type (for
example: gain OR mutation). However, if the same gene is affected by more than one type of lesions
in a certain patient (for example: gain AND mutation), the entry will be labelled as "multiple". If
the gene is not affected by any lesion, the entry for this patient will be labelled as "none".
Value

The function returns a lesion matrix with all types of lesions affecting certain gene as a row and
each patient as a column.

Author(s)

Stanley Pounds <stanley.pounds@stjude.org>

References

Pounds, Stan, et al. (2013) A genomic random interval model for statistical analysis of genomic
lesion data.

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

See Also

prep.gene.lsn.data(), find.gene.lsn.overlaps()

50 prob.hits

Examples

data(lesion.data)
data(hg19.gene.annotation)

prepare gene and lesion data for later computations:
prep.gene.lsn=prep.gene.lsn.data(lesion.data,
hg19.gene.annotation)

determine lesions that overlap each gene (locus):
gene.lsn.overlap=find.gene.lsn.overlaps(prep.gene.lsn)

prepare the lesion matrix with a minimum of 5 patients affected by any type of lesion in the
gene to be included in the final matrix
lsn.type.mtx=prep.lsn.type.matrix(gene.lsn.overlap, min.ngrp=5)

prob.hits Find Probablity of Locus Hit

Description
The function evaluates the probability of a locus to be affected by one or a constellation of multiple
types of lesions.

Usage

prob.hits(hit.cnt, chr.size = NULL)

Arguments
hit.cnt output results of the count.hits function with number of subjects and number of
hits affecting each locus.
chr.size data.frame with the size of the 22 autosomes, in addition to X and Y chromo-
somes in base pairs. The data.frame should has two columns "chrom" with the
chromosome number and "size" for the size of the chromosome in base pairs.
Details

The function computes p-value for the probability of each locus (gene or regulatory feature) to
be affected by different types of lesions based on a convolution of independent but non-identical
Bernoulli distributions to determine whether a certain locus has an abundance of lesions that is sta-
tistically significant.In addition, FDR-adjusted q value is computed for each locus based on Pounds
& Cheng (2006) estimator of the proportion of tests with a true null (pi.hat). The function also
evaluates if a certain locus is affected by a constellation of multiple types of lesions and computes a
p and adjusted q values for the locus to be affected by one type of lesions (p1), two types of lesions
(p2), etc...

prob.hits 51

Value
A list with the following components:

gene.hits data table of GRIN results that include gene annotation, number of subjects
affected by each lesion type for example gain, loss, mutation, etc.., and number
of hits affecting each locus. The GRIN results table will also include P and FDR
adjusted g-values showing the probability of each locus of being affected by one
or a constellation of multiple types of lesions.

lsn.data input lesion data
gene.data input gene annotation data

gene.lsn.data eachrow represent a gene overlapped by a certain lesion. Column "gene" shows
the overlapped gene ensembl ID and "ID"" column has the patient ID.

chr.size data table showing the size of the 22 autosomes, in addition to X and Y chromo-
somes in base pairs.

gene.index data.frame with overlapped gene-lesion data rows that belong to each chromo-
some in the gene.lsn.data table.

1sn.index data.frame that shows the overlapped gene-lesion data rows taht belong to each
lesion in the gene.lsn.data table.
Author(s)

Stanley Pounds <stanley.pounds@stjude.org>

References

Pounds, Stan, et al. (2013) A genomic random interval model for statistical analysis of genomic
lesion data.

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

See Also

prep.gene.lsn.data(), find.gene.lsn.overlaps(), count.hits()

Examples

data(lesion.data)
data(hg19.gene.annotation)
data(hg19.chrom.size)

prepare gene and lesion data for later computations:
prep.gene.lsn=prep.gene.lsn.data(lesion.data,

hg19.gene.annotation)

determine lesions that overlap each gene (locus):
gene.lsn.overlap=find.gene.lsn.overlaps(prep.gene.lsn)

count number of subjects affected by different types of lesions and number of hits that affect

52 top.alex.waterfall.plots

each locus:
count.subj.hits=count.hits(gene.lsn.overlap)

compute the probability of each locus to be affected by one or a constellation of multiple
types of lesion
hits.prob=prob.hits(count.subj.hits, hgl19.chrom.size)

top.alex.waterfall.plots
Waterfall Plots for Lesion and Expression Data of Top Significant
Genes

Description
Function return waterfall plots for top significant genes in the KW results table based on the speci-
fied q value.

Usage

top.alex.waterfall.plots(out.dir, alex.data, alex.kw.results, g, lsn.data)

Arguments
out.dir Path to the folder where the waterfall plots of selected genes based on the spec-
ified q value of the KW results table will be added.
alex.data output of the alex.prep.lsn.expr function. It’s a list of three data tables that in-

clude "row.mtch", "alex.expr" with expression data, "alex.lsn" with lesion data.
Rows of alex.expr, and "alex.lsn" matrices are ordered by gene ensembl IDs and
columns are ordered by patient ID.

alex.kw.results
ALEX Kruskal-Wallis test results (output of the KW.hit.express function).

q Maximum allowed KW g-value threshold for a gene to be plotted based on the
output of the KW.hit.express function.

lsn.data Lesion data in a GRIN compatible format.

Details

Function will return waterfall plots for top significant genes in the KW results table based on the
user specified g-value threshold of the KW test.The plots will be added to the user specified outdir
folder.

Value

Function will return waterfall plots for top significant genes in the KW results table.

Author(s)

Abdelrahman Elsayed <abdelrahman.elsayed@stjude.org>and Stanley Pounds <stanley.pounds@stjude.org>

write.grin.xIsx 53

References

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

See Also

alex.prep.lsn.expr(),KW.hit.express(), alex.waterfall.prep(), alex.waterfall.plot()

Examples

data(expr.data)
data(lesion.data)
data(hg19.gene.annotation)

prepare expression, lesion data and return the set of genes with both types of data available
ordered by gene IDs in rows and patient IDs in columns:
alex.data=alex.prep.lsn.expr(expr.data, lesion.data,

hg19.gene.annotation, min.expr=5,

min.pts.1lsn=5)

run KW test for association between lesion groups and expression level of the same gene:
alex.kw.results=KW.hit.express(alex.data, hgl19.gene.annotation, min.grp.size=5)

return waterfall plots for a list of top significant genes to a pre-specified folder:
dir.create(resultsFolder <- file.path(tempdir(), "temp.out"))

waterfall.plts=top.alex.waterfall.plots(out.dir=resultsFolder,
alex.data, alex.kw.results,

1e-15, lesion.data)

unlink(resultsFolder, recursive = TRUE)

write.grin.xlsx Write GRIN Results

Description

The function Write GRIN results to an excel file with multiple sheets that include GRIN results,
lesion data, gene annotation data, chromosome size, gene-lesion overlap and methods paragraph.

Usage

write.grin.xlsx(grin.result, output.file)

Arguments

grin.result output results of the grin.stats function.

output.file output file name ".xIsx".

54 write.grin.xIsx

Value

This function return an excel file with seven sheets that include:

gene.hits data table of GRIN results that include gene annotation, number of subjects
affected by each lesion type for example gain, loss, mutation, etc.., and number
of hits affecting each locus. The GRIN results table will also include P and FDR
adjusted g-values showing the probability of each locus of being affected by one
or a constellation of multiple types of lesions.

gene.lsn.data eachrow represent a gene overlapped by a certain lesion. Column "gene" shows
the overlapped gene ensembl ID and "ID"" column has the patient ID.

lsn.data input lesion data
gene.data input gene annotation data
chr.size data table showing the size of the 22 autosomes, in addition to X and Y chromo-

somes in base pairs.
interpretation provides some details about the content of each sheet in the output excel file and
interpretation of each column in the "gene.hits" GRIN results table.
method.paragraph
include a paragraph that explains the GRIN model and cite some references.

Author(s)

Stanley Pounds <stanley.pounds@stjude.org>

References

Pounds, Stan, et al. (2013) A genomic random interval model for statistical analysis of genomic
lesion data.

Cao, X., Elsayed, A. H., & Pounds, S. B. (2023). Statistical Methods Inspired by Challenges in
Pediatric Cancer Multi-omics.

See Also

grin.stats()

Examples

data(lesion.data)
data(hg19.gene.annotation)
data(hg19.chrom.size)

to directly retreive gene annotation and chromosome size files from Ensembl BioMart database,
UCSC genome browsers and run the GRIN analysis:
grin.results=grin.stats(lesion.data,

hg19.gene.annotation,

hg19.chrom.size)

"

Write GRIN results in to an excel sheet ".x1sx" using write.grin.xlsx function.

Index

* datasets grin.assoc.lsn.outcome, 24
clin.data, 11 grin.barplt, 26
expr.data, 16 grin.lsn.boundaries, 27
hg19.chrom.size, 34 grin.lsn.boundaries(), 19
hg19.gene.annotation, 35 grin.oncoprint.mtx, 29
hg19_cytoband, 35 grin.stats, 30
hg38_cytoband, 36 grin.stats(), 13, 27,29, 34,41, 54
lesion.data, 39 grin.stats.lsn.plot, 33

pathways, 45
hg19.chrom.size, 34

alex.boxplots, 3 hg19.gene.annotation, 35
alex.pathway, 4 hg19_cytoband, 35
alex.prep.lsn.expr, 6 hg38_cytoband, 36
alex.prep.lsn.expr(),4, 5,8, 10, 38, 53

alex.waterfall.plot, 7 KW.hit.express, 37
alex.waterfall.plot(), 53 KW.hit.express(),4,7, 8, 10,53
alex.waterfall.prep, 9)

alex.waterfall.prep(), 8, 53 lesion.data, 39

lsn.transcripts.plot, 39
biomaRt: :getBM(), 23

biomaRt: :useEnsembl (), 23 onco.print.props,42
order.index.gene.data, 43

circlize::read.chromInfo(), 22 order.index.gene.data(), 48

clin.data, 11 order.index.1lsn.data, 44

compute.gw.coordinates, 12 order.index.lsn.data(), 48

compute.gw.coordinates(), 2/

count.hits, 13 pathwa¥5,45

count.hits(), 32, 51 prep.binary.lsn.mtx, 46
prep.gene.lsn.data, 47

default.grin.colors, 15 prep.gene.lsn.data(), 15, 18, 32,47,49, 51
prep.lsn.type.matrix, 49

expr.data, 16 prob.hits, 50

prob.hits(), 32
find.gene.lsn.overlaps, 17

find.gene.lsn.overlaps(), 15, 32,47, 49, stats::glm(), 25
51 stats::hclust(), 5

survival::coxph(), 25
genomewide.log1@q.plot, 18

genomewide.lsn.plot, 19 top.alex.waterfall.plots, 52
get.chrom.length, 21) .
get.ensembl.annotation, 22 write.grin.xlsx, 53

55

	alex.boxplots
	alex.pathway
	alex.prep.lsn.expr
	alex.waterfall.plot
	alex.waterfall.prep
	clin.data
	compute.gw.coordinates
	count.hits
	default.grin.colors
	expr.data
	find.gene.lsn.overlaps
	genomewide.log10q.plot
	genomewide.lsn.plot
	get.chrom.length
	get.ensembl.annotation
	grin.assoc.lsn.outcome
	grin.barplt
	grin.lsn.boundaries
	grin.oncoprint.mtx
	grin.stats
	grin.stats.lsn.plot
	hg19.chrom.size
	hg19.gene.annotation
	hg19_cytoband
	hg38_cytoband
	KW.hit.express
	lesion.data
	lsn.transcripts.plot
	onco.print.props
	order.index.gene.data
	order.index.lsn.data
	pathways
	prep.binary.lsn.mtx
	prep.gene.lsn.data
	prep.lsn.type.matrix
	prob.hits
	top.alex.waterfall.plots
	write.grin.xlsx
	Index

