Package 'CFF'

January 20, 2025

Title Simple Similarity for User-Based Collaborative Filtering Systems

Version 1.0

Date 2020-02-25

Maintainer Farimah Houshmand Nanehkaran <hoshmandcomputer@gmail.com>

Description A simple, fast algorithm to find the neighbors and similarities of users in user-

based filtering systems, to break free from the complex computation of existing similarity formulas and the ability to solve big data.

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.0.2

NeedsCompilation no

Author Farimah Houshmand Nanehkaran [aut, cre]

(<https://orcid.org/0000-0003-1687-1719>, University=Islamic Azad University of Kashan,Kashan,Iran), Seyed Mohammad Reza Lajevardi [ctb] (<https://orcid.org/0000-0002-4744-2784>, University=Islamic Azad University of Kashan,Kashan,Iran), Mahmoud Mahlouji Bidgholi [ctb] (<https://orcid.org/0000-0001-8895-8501>, University=Islamic Azad University of Kashan,Kashan,Iran)

Repository CRAN

Date/Publication 2020-03-04 10:00:05 UTC

Contents

CFF-package	
Score_replace	
simple_predict	
simple_similarity	6

9

Index

CFF-package

Description

A simple, fast algorithm to find the neighbors and similarities of users in user-based filtering systems, to break free from the complex computation of existing similarity formulas and the ability to solve big data.

Details

The DESCRIPTION file:

Package:	CFF
Title:	Simple Similarity for User-Based Collaborative Filtering Systems
Version:	1.0
Date:	2020-02-25
Authors@R:	c(person(given="Farimah", family="Houshmand Nanehkaran", role = c("aut", "cre"), email="hoshmandcom
Maintainer:	Farimah Houshmand Nanehkaran < hoshmandcomputer@gmail.com>
Description:	A simple, fast algorithm to find the neighbors and similarities of users in user-based filtering systems, to brea
License:	GPL (>= 2)
Encoding:	UTF-8
RoxygenNote:	7.0.2
Author:	Farimah Houshmand Nanehkaran [aut, cre] (<https: 0000-0003-1687-1719="" orcid.org="">, University=Islamic A</https:>

Index of help topics:

CFF-package	Simple Similarity for User-Based Collaborative
	Filtering Systems
Score_replace	Replacing of Neighbor Users' Ratings on
	Non-Rated Items By The Active User
simple_predict	Prediction Unseen Items For The Active User
simple_similarity	Finding Neighbor Users And Their Similarity
	Values

User-Based Collaborative Filtering Systems

Author(s)

NA

Maintainer: Farimah Houshmand Nanehkaran <hoshmandcomputer@gmail.com>

CFF-package

References

Kumar, P., Kumar, V., & Thakur, R. S. (2019). A new approach for rating prediction system using collaborative filtering. Iran Journal of Computer Science, vol.2, no. 2, pp. 81-87.

Zhang, P., Zhang, Z., Tian, T., & Wang, Y. (2019). *Collaborative filtering recommendation algorithm integrating time windows and rating predictions*. Applied Intelligence, vol. 49, no. 8, pp. 3146-3157.

Gadekula, S. K., Rao, U. P., Vyas, R. K., Dontula, A. L., & Gaikwad, S. V. (2019). *Improved Pearson Similarity for Collaborative Filtering Recommendation System*. In 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 1047-1054, IEEE.

Examples

```
ratings <- matrix(c( 2,</pre>
                           5, NaN, NaN,
                                           NaN,
                                                    4,
                    NaN, NaN, NaN,
                                      1,
                                            NaN,
                                                    5.
                   NaN, 4,
                                5, NaN,
                                            4,
                                                 NaN.
                     4, NaN, NaN,
                                      5, NaN,
                                                  NaN,
                                 2, NaN, NaN,
                     5, NaN,
                                                  NaN,
                    NaN,
                           1, NaN,
                                       4,
                                            2, NaN), nrow=6, byrow=TRUE)
active_users <- c(1:dim(ratings)[2])</pre>
time_all <- c(rep(NaN, length(active_users)))</pre>
ratings3 <- ratings</pre>
for (ac in 1:length(active_users))
{
 cat("=========", "\n","\n")
 ##1
 T1_start <- Sys.time()</pre>
 sim <- simple_similarity(ratings, max_score=5, min_score=1, ac)</pre>
 T1_end <- Sys.time()</pre>
          Similar Users =", sim$sim_index,
                                                                 "\n","\n")
 cat("
 cat("Similarity Values =", sim$sim_x,
                                                                 "\n","\n")
 ##2
 T2_start <- Sys.time()</pre>
 ratings2 <- Score_replace(ratings, sim_index= sim$sim_index, ac)</pre>
 T2_end <- Sys.time()</pre>
 cat(" Predicted Scores =", ratings2[,ac],
                                                                 "\n","\n")
 ##3
 T3_start <- Sys.time()
 predictedItems <- simple_predict(ratings, ratings2, ac)</pre>
 T3_end <- Sys.time()
 cat(" Predicted Items =", predictedItems,
                                                                "\n","\n")
 ##4
 time_all[ac] <- (T1_end - T1_start) + (T2_end - T2_start) + (T3_end - T3_start)
```

```
"\n","\n")
  cat("
                 Time =", time_all[ac],
  ##5
  ratings3[,ac] <- ratings2[,ac]</pre>
}
Mean_Time <- mean(time_all)</pre>
cat("====== Mean Time ======="",
                                                              "\n","\n")
cat("
             Mean Time =", Mean_Time,
                                                               "\n","\n")
                                                               "\n","\n")
cat("
           Full Matrix =",
print(ratings3)
```

·	Replacing of Neighbor Users' Ratings on Non-Rated Items By The Active User

Description

The ratings of each user that has more similar to the active user are directly replaced in his unseen items.

Usage

```
Score_replace(ratings, sim_index, ac)
```

Arguments

ratings	A rating matrix whose rows are items and columns are users.
sim_index	Descending sorted indexes based on similarity to the active user who is a vector of integers.
ac	The id of an active user as an integer $(1 \le ac \le length of users)$.

Details

The unseen items of the active user are filled by the ratings of the similar users, respectively. Each element remains unchanged after one placement.

Value

ratings2	A matrix the size of the original user-item matrix in which the active user's
	empty elements are filled.

Author(s)

Farimah Houshmand Nanehkaran

Maintainer: Farimah Houshmand Nanehkaran <hoshmandcomputer@gmail.com>

References

Gadekula, S. K., Rao, U. P., Vyas, R. K., Dontula, A. L., & Gaikwad, S. V. (2019). *Improved Pearson Similarity for Collaborative Filtering Recommendation System*. In 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 1047-1054, IEEE.

Examples

ratings <- matrix	(c(2,	5,	NaN,	NaN,	NaN,	4,
	NaN,	NaN,	NaN,	1,	NaN,	5,
	NaN,	4,	5,	NaN,	4,	NaN,
	4,	NaN,	NaN,	5,	NaN,	NaN,
	5,	NaN,	2,	NaN,	NaN,	NaN,
	NaN,	1,	NaN,	4,	2,	NaN),nrow=6,byrow=TRUE)
<pre>sim <- simple_similarity(ratings, max_score=5, min_score=1, ac=1)</pre>						
ratings2 <- Score	_replace	(ratin	gs, si	m_inde	ex= sim	\$sim_index, ac=1)

simple_predict Prediction Unseen Items For The Active User

Description

In the predicted items list, items with more scores replace in top of the list.

Usage

simple_predict(ratings, ratings2, ac)

Arguments

ratings	A rating matrix whose rows are items and columns are users.
ratings2	A matrix the size of the original user-item matrix in which the active user's empty elements are filled.
ac	The id of an active user as an integer $(1 \le ac \le length of users)$.

Details

Collaborative filtering is a recommender system for predicting the missing ratings that an active user might have given to an item. These ratings have been calculated and accumulate in a vector by this function.

Value

predictedItems A sorted vector of predicted items based on the scores.

Author(s)

Farimah Houshmand Nanehkaran

Maintainer: Farimah Houshmand Nanehkaran <hoshmandcomputer@gmail.com>

References

Song, B., Gao, Y., & Li, X. M. (2020, January). *Research on Collaborative Filtering Recommendation Algorithm Based on Mahout and User Model*. In Journal of Physics: Conference Series, Vol. 1437, no. 1, p. 012095, IOP Publishing.

Ramakrishnan, G., Saicharan, V., Chandrasekaran, K., Rathnamma, M. V., & Ramana, V. V. (2020). *Collaborative Filtering for Book Recommendation System*. In Soft Computing for Problem Solving, pp. 325-338, Springer, Singapore.

Examples

```
ratings <- matrix(c( 2,</pre>
                                                        4,
                              5,
                                  NaN,
                                        NaN,
                                               NaN,
                                         1,
                     NaN, NaN, NaN,
                                               NaN,
                                                        5.
                            4,
                     NaN,
                                                 4,
                                    5, NaN,
                                                     NaN,
                       4, NaN,
                                          5,
                                 NaN,
                                               NaN,
                                                     NaN,
                                    2,
                       5, NaN,
                                        NaN,
                                               NaN,
                                                     NaN,
                     NaN,
                              1,
                                  NaN,
                                           4,
                                                 2,
                                                     NaN), nrow=6, byrow=TRUE)
sim <- simple_similarity(ratings, max_score=5, min_score=1, ac=1)</pre>
ratings2 <- Score_replace(ratings, sim_index= sim$sim_index, ac=1)</pre>
predictedItems <- simple_predict(ratings, ratings2, ac=1)</pre>
```

simple_similarity Finding Neighbor Users And Their Similarity Values

Description

Steps of calculating the similarity of one user to an active user :

- 1- Calculating the difference between the desired user ratings with the active user in common items.
- 2- Calculating the similarity value for each common item.
- 3- Calculating the mean value of similarities.

Usage

```
simple_similarity(ratings, max_score=5, min_score=1, ac)
```

Arguments

ratings	A rating matrix whose rows are items and columns are users.
max_score	The maximum range of ratings.
min_score	The minimum range of ratings.
ас	The id of an active user as an integer ($1 \le ac \le lengthofusers$).

Details

The similarity of the active user with other users is obtained by the following formulas :

$$dif_{(u_i,j)} = |r_{(u_a,j)} - r_{(u_i,j)}|$$

$$sim_{dif_{(u_i,j)}} = \frac{-dif_{(u_i,j)}}{max_s core - min_s core} + 1$$

$$sim_{(u_a,u_j)} = \frac{\sum_{j=1}^{N_j} sim_{(dif_{(u_i,j)})}}{N_j}$$

j is the row number for the items and i is the column number for the users in the ratings matrix.

 u_i is a *i*th column user and u_a is an active user.

 $r_{(u_a,j)}$ is the rating of active user in the *jth* row and $r_{(u_i,j)}$ is the rating of the *ith* user in the *jth* row.

 $dif_{(u_i,j)}$ is the difference of the rating for the *ith* user with the active user in the *jth* row.

 $sim_{dif_{(u_i,j)}}$ is the similarity of the *i*th user with the active user in the *j*th row.

 $sim_{(u_a,u_i)}$ is the similarity of the user i, with the active user.

 N_j is the number of common items.

For example, suppose active user ratings are: {2, nan, 3, nan, 5} and one user ratings are: {3, 4, nan, nan, 1} then for ratings between 1 and 5:

dif={1, nan, nan, nan, 4} and

 $sim(dif) = \{\frac{-1}{5-1} + 1, nan, nan, nan, \frac{-4}{5-1} + 1\} = \{0.75, nan, nan, nan, 0\}$

and mean of sim(dif) is sim=0.375.

Value

An object of class "simple_similarity", a list with components:

call	The call used.
sim_x	Neighboring user similarity values in descending order.
<pre>sim_index</pre>	Number of columns for neighboring users in descending order of similarity.

Author(s)

Farimah Houshmand Nanehkaran Maintainer: Farimah Houshmand Nanehkaran <hoshmandcomputer@gmail.com>

References

Mongia, A., & Majumdar, A. (2019). *Matrix completion on multiple graphs: Application in collaborative filtering*. Signal Processing, vol. 165, pp. 144-148.

Hong, B., & Yu, M. (2019). A collaborative filtering algorithm based on correlation coefficient. Neural Computing and Applications, vol. 31, no. 12, pp. 8317-8326.

Examples

ratings <- matrix(c(2,</pre> 4, 5, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, 5, 4, NaN, 5, NaN, 4, NaN, 4, NaN, NaN, 5, NaN, NaN, 2, NaN, NaN, 5, NaN, NaN, NaN),nrow=6,byrow=TRUE)#items*users NaN, 1, NaN, 4, 2,

sim <- simple_similarity(ratings, max_score=5, min_score=1, ac=1)</pre>

Index

* Collaborative Filtering CFF-package, 2 * Prediction simple_predict, 5 * Similarity simple_similarity, 6 * replacement Score_replace, 4

CFF-package, 2

Score_replace, 4
simple_predict, 5
simple_similarity, 6