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Chapter 1

Introduction

1.1 R

R is a computer language for data analysis and modeling. R can be used as an object-oriented pro-
gramming language, or as a statistical environment within which lists of instructions can be performed
sequentially without user input.

We can interact with R by typing or pasting commands into a command line in the console, or by
writing them in a text editor! and submitting them to the console, using the source() command. The
command-line version of R provides us with two prompts, that is, two signals that it is ready for input.
They are: the caret

>

which means that R is ready for a new command, and the plus sign:

+

which means that R is waiting for you to finish the current command.

The exclusive use of a command-line interface (CLI) does make our learning curve steeper. However, it
also allows us to store collections of commands and run them without intervention. This simplifies many
operations and tasks, for example, communicating an analysis to another person, or making templates
for often-used graphics or reports. A principal advantage of the CLI is that it simplifies the development
and use of scripts. These allow us to keep a permanent, documented text record of the steps that we
have done.

Some time later, when you look back to your notes to figure out again how you did an analysis in
this workshop, you will be glad that you wrote scripts to perform them, instead of pointing and clicking
in menus. If for no other reason, you will be protected against change: when software changes, menus
change. The engines that read scripts change very slowly, if at all.

Some interaction with R can be done through menus for some operating systems, but this interaction
is mainly administrative. Users have written GUIs for R?, but we do not consider them here.

You can find and freely download the executables and source code at: http://www.r-project.org.

1.2 Hello World

The Hello world function is a touchstone of computer language exposition. It simply prints “Hello
World.” In R:

> hi.there <- function() {
+ cat("Hello World!\n")
+ }

T use emacs; other options are RStudio, WinEDT, vi, or R’s own text editor. I recommend that you do not use a word
processor! The specific problem with using a word-processor to write scripts is that they make all sorts of assumptions about
grammar and spelling that are not true for scripts. Some very clever word processors will quietly convert your ordinary
boring quotes into so-called “smart-quotes”, which are much better, unless the interpreter that you’re writing for really
does prefer ordinary ones.

2More can be learned about these undertakings at http://www.r-project.org/GUI
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This input has a few points worth discussing. Firstly, if the command is executed correctly, then all
you will see is another prompt. You won’t see any other feedback. This can be confusing to the novice!

Secondly, function() creates a new object in the random-access computer memory. The object is
called hi.there, and it contains the result of creating the function that we have defined.

e hi.there is the name of the new object; hereafter, if we wish to manipulate this object we can do
so by the name “hi.there”,

e <-is the assignment operator. This is how we tell R to name (or rename) the object, and

e function() tells R to create a function that will run the commands in the curly braces that follow.

> hi.there()
Hello World!

Our inclusion of Hello World in the icebreakeR is at least partially ironical, as the program bears
very little resemblence to the real functionality of R3. Maybe the following is more appropriate.

> 1+ 2

[11 3

1.3 Why R?

1. R runs on Windows, Mac-OS, and Unix variants (eg the BSD and Linux flavors)

. R provides a vast number of useful statistical tools, many of which have been painstakingly tested.
R produces publication-quality graphics in a variety of formats, including JPEG, postscript, eps,
pdf, and bmp, from a flexible and easily enhanced interface.

R plays well with IWTEX via the Sweave package.

R plays well with FORTRAN, C, and shell scripts.

R scales, making it useful for small and large projects.

R eschews the GUI.

w N

N ot

Anecdote: 1 was telecommuting from New Haven (CT) to Moscow (ID). I developed and trialled
simulation code on my laptop, ssh-ed into a FreeBSD server in Moscow and ran the full code inside
a screen* session. Any time I wanted to monitor progress I could log in to the session remotely, from

anywhere. When it had concluded, R sent me an email to let me know.

1.4 Why not R?

R cannot do everything.

R will not hold your hand.

The documentation can be opaque.

R can drive you crazy, or age you prematurely.

The contributed packages have been exposed to varying degrees of testing and analysis. Some are
probably unreliable.

6. There is no guarantee that it is worth more than you paid for it.

7. R eschews the GUI.

3This is also true for most other languages. So, I'm being precious.
4Screen is a very useful open-source terminal multiplexor for Unix-like systems. Try it today!

U W N
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Anecdote: I was developing a relatively large-scale data analysis that required numerous steps. One
of them was to run a third-party forest growth model (ORGANON) 180 times, each with a different
configuration, then scoop up the results and assimilate them. I had written code for R to do all this:
produce 180 configuration files, run a pre-processor 180 times, save the results, run the model 180 times,
import the simulations, and manipulate them as dataframes. As this had to run numerous times, and
required identifiable temporary files, I decided to include intermediate cleaning-up steps, which involved
deleting certain files. If you run such code as a script, and a command fails, then the script stops. This
is a feature. If you run such code by copying it from your document and then pasting it as as group
of commands to the console, and a command fails, the interpreter goes to the next command anyway.
The failed command was a change of directory. My code obediently deleted itself, and all its companion
scripts. This was a classic case of the power of one’s tools being exceeded by one’s incompetence. R is
very powerful.

1.5 The Open Source Ideal

R is free, as in: you can download the executables and the source code at no cost. However, this is not
the most important kind of freedom at stake in computer programming. There is also freedom as in lack
of constraints.

The phrase most commonly used to describe this particular principle of freedom is: think of free
speech, not free beer. You can make any alterations with only one obligation: any further distribution
must be under the identical license and must include the source code. But, you can still charge or be
charged a reasonable cost for its dissemination.

There are numerous flavors of “Open Source”, which are commonly bundled together, mistakenly.
The label refers to the license under which the code is released, or not, to the public domain. There are
at least three distinct licensing approaches to open source materials: GNU, BSD, and OSI.

R is released under the GNU license, which, loosely speaking, says that the source code is freely
available, and that you can modify it as you like, but if you distribute any modifications then they must
be accompanied by the modified source code and also distributed under the same license. A nominal fee
may be charged. This license means that R will always be available, and will always be open source.

It also means that if you make changes but do not distribute them, then you are under no obligation
to share the source code with anyone.

1.6 Using this Document

This document is in pdf format. The Acrobat Reader gives you the ability to copy any text to the
clipboard, by choosing the Select Text Tool, marking the text you want, and pressing Ctrl-c. You can
then paste it to the R console (in MS Windows) by right-clicking in the console and selecting the “Paste
commands only” option. This will save you a lot of tedious typing.

The R commands are printed in a slanting typewriter font. It can be a little misleading, for example
when the vertical bar | is used and appears to be a slash. Copying and pasting is safer than typing for
yourself. Also, commands that span more than one line are connected by means of a + sign. Do not type
this in if you are transcribing the code; it will create errors. The “Paste commands only” option takes
care of this detail; it also cleverly ignores any non-commands, for example, this paragraph.

Also, any text in this document can be copied and pasted into text documents.

If you do choose to type the commands in to the console, please note that I have been rather lazy
about an important convention: always conclude your input using the Return key.

The datasets quoted in this document can be found at the following link:
http://www.ms.unimelb.edu.au/~andrewpr/r-users/

Sometimes during this workshop you will come across labels or phrases that are unfamiliar to you.
Please use your local resources to find out more about them®. You only need to learn enough to satisfy
yourself that your undestanding is suitable for the context. If I want you to know more, then I will tell
you so at the time.

5e.g. http://www.google.com
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1.7 Being Organized

We will now set up the directory structure on our hard drive that we will use for the workshop. Create a
single directory, called, for example icebreakeR. This will be the directory that contains all the workshop
materials. Within this directory, create the following directories:

data
graphics
images
library
notes
output
scripts
src

sweave

We won’t necessarily use all of them.

The advantage of this structure is that R permits relative directory labelling, so I know that from the
script directory, the data are always in ../data, the graphics will be in ../graphics and the images
always in ../images. This structure makes writing reports straightforward as well.

File structure is ordinarily a matter of taste and convenience. I prefer to devote a single directory to
each project.

1.8 Getting Started

Different operating systems interact with R in different ways. Some will require that you double—click
the appropriate icon, some that you type R and press enter.

R has a huge number of add—on packages that offer different statistical and graphical tools. A small
handful of these packages are loaded into memory upon startup. We’ll go into this at greater length in
section A, but for the moment, it is enough to know that a reasonable amount of functionality is available,
and when we need more we can get it.

1.9 Stopping

Use Ctrl-C or Esc to stop processing. This will work just fine most of the time. You will rarely need to
ask your operating system to intercede.

Quit R altogether by typing the command qQ).

When you do so, R will ask you if you want to save your workspace. The workspace is described in
more detail in Section 4.3. Briefly, it contains all the objects that you created and did not delete in this
session, as well as any that you loaded from the last session, if there are any.

Generally, whether or not you choose to save the workspace depends on your workflow. Personally, I
almost never do it. I prefer to write scripts, which are a complete record of the analysis performed, and
if T need to recreate the analysis, I re-source the scripts.

In any case, if you choose to save the workspace then a compressed image of the objects, called .RData,
will be saved into your working directory. To easily access these objects again in a future session, use the
load function. If you have followed the workshop’s convention (and were once again using the scripts
directory as the working directory), you would type

> load(".RData")

1.10 Working Directory

The working directory is the location to and from which R writes and reads files by default.
On Windows, there is a menu item that allows for selecting the working directory, as well as the
command line. In the CLI versions of R one can use only the command line.

> getwd () # What is the working directory?
> setwd("C:/Temp") # Set this to be the working directory.

10
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This latter command has a few points worth discussing.

e setwd() is a function; we use functions to tell R what we want it to do, and

e "C:/Temp" is an argument for the function. Arguments are the main way that we tell R what to do
the function upon. In this case, we use the argument to tell R that we would like to use C:/Temp
as the working directory.

The forward slashes are used regardless of the underlying operating system. This is distracting in
Windows, but it is again a feature, as it provides a level of portability for our code.

If one wants to read or write to a different location, one must explicitly say so. Life is therefore much
easier if all the data and scripts for an analysis are kept in a single (frequently backed up!) location.

1.11 Conventions

There are many different ways to do things in R. There are no official conventions on how the language
should be used, but the following thoughts may prove useful in communicating with long-time R users.

1. Although the equals sign “=" does work for assignment, it is also used for other things, for example
in passing arguments. The arrow “<-” is only used for assignment. Please use it for assignment,
especially if you want to be able to ask experienced R users to read your code.

2. Spaces are cheap. Use spaces liberally between arguments and between objects and arithmetic
operators.

3. Call your objects useful names. Don’t call your model model, or your dataframe data.

4. You can terminate your lines with semi-colons, but don’t.

The following code is hard to read and understand. We don’t know what role the constant is playing,
the semi-colons are hanging around like dags, and the text is dense.

> constant=3.2808399;
> x=x*constant,;

The following code is easier to read and understand. The identities (and the units) of the variables
and the constant are obvious by our naming convention. The equations are spaced so that the distinction
between operators and variables is easily seen.

> feet_per_metre <- 3.2808399
> heights_m <- heights_ft / feet_per_metre

Coming back to this code years later, it will be obvious what we did and why we were doing it. Trust
me, you won’t remember otherwise.
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Chapter 2

Quickstart

Here is a list of points to get you going quickly.

Interaction: If you are reading about R from a pdf like this one, you can most easily execute the
commands by marking the text (as much as you want), copying it to the clipboard, and pasting to
the R console by using Right-click then selecting “Paste commands only”. R will ignore all the
non-R input.

Data Input: getting your data into R from a file is relatively easy. You need to do two things:

1. be sure that R knows where to find the data. Do this by storing the data in the data directory
and making the scripts directory the working directory. Then you know that the data will
be available at ../data. (Section 5.1.1).

2. be sure that R knows what type of data they are, by choosing the appropriate function to read
them — use read.csv for comma-delimited files (e.g. Section 5.1.1).

Data Structure: Use the str command to learn about the structure of the data object.

Plots: scatterplots of the data can be constructed using the plot () function — see Chapter 8.

12



Chapter 3

Showcase

The goal of this chapter is to provide a whirlwind tour of some of the capabilities of R, in a relatively
coherent workflow. You should study this chapter to get a sense of the kinds of things that R can do,
without worrying too much about how it does them.

Copy the code swatches you see here to the R console, and watch what happens. Try to relate what
you see to your day-to-day analysis challenges.

Don’t worry too much about the nitty-gritty of execution. Some of what you see will be familiar, some
will certainly not. Later on we will repeat these steps in a different context, and explain them more
carefully.

3.1 Getting Ready

Make sure that your directory structure is as laid out in Section 1.7, and the ufc.csv dataset is in the
data directory. Then, start R in the manner appropriate to your operating system. Finally, make that
directory your working directory, as follows. Select the Change dir... option from the File menu, and
navigate to the scripts directoty inside the workshop directory. Click OK. At this point, the code below
should work by Copy - Paste Commands Only without further intercession.

3.2 Data Input

First, we read the data in from a comma-delimited file. The data are stand inventory data on a 300 ha
parcel of the University of Idaho Experimental Forest, called the Upper Flat Creek stand. The sample
design was a systematic sample of 7 m?/ha BAF variable radius plots; diameter measured for all trees
and height for a subsample!. In the dataset, some plots are empty. Those plots are flagged by having
trees with missing diameters and blank species.

> ufc <- read.csv("../data/ufc.csv")
Let’s also input the sample design parameter and population size for later computation.
> ufc_baf <- 7

> ufc_area <- 300

3.3 Data Structure

Here we examine the str ()ucture of the data, check the first few rows, and count the missing values (na)
by column.

> str(ufc)
'data.frame': 637 obs. of 5 variables:
$ plot :int 1 223333333...

1If you don’t know what this means then don’t worry about it. Seriously.

13



©@®O icebreakeR

$ tree :int 1121234567 ...
$ species: Factor w/ 13 levels "","DF","ES","F",..: 1 2 12 11 6 11 11 11 11 11
$ dbh : int NA 390 480 150 520 310 280 360 340 260 ...

$ height : int NA 205 330 NA 300 NA NA 207 NA NA ...
> head(ufc)

plot tree species dbh height

1 1 1 NA NA
2 2 1 DF 390 205
3 2 2 WL 480 330
4 3 1 WC 150 NA
5 3 2 GF 520 300
6 3 3 wC 310 NA

> colSums (is.na(ufc))

plot tree species dbh height
0 0 0 10 246

3.3.1 Manipulation

Ah, some diameters are missing. Those correspond to empty plots. Also, many heights are missing; the
height attributes must have been subsampled. Next, obtain familiar units on our tree measurements (cm
for dbh and m for height, respectively).

Note that we append the units to the variable names to be sure that the reader can easily interpret
the statistics that we will later compute.

> ufc$height_m <- ufc$height/10
> ufc$dbh_cm <- ufc$dbh/10

We now examine the structure again, using the str function.

> str(ufc)

'data.frame': 637 obs. of 7 variables:

$ plot :int 1223333333 ...

$ tree :int 1121234567 ...

$ species : Factor w/ 13 levels "","DF","ES","F",..: 1 2 12 11 6 11 11 11 11 11
$ dbh : int NA 390 480 150 520 310 280 360 340 260 ...

$ height : int NA 205 330 NA 300 NA NA 207 NA NA ...

$ height_m: num NA 20.5 33 NA 30 NA NA 20.7 NA NA ...

$ dbh_cm : num NA 39 48 15 52 31 28 36 34 26 ...

We have created two more variables, which are now storred in our dataframe.

3.3.2 Data Summaries

Now we obtain some useful snapshots of the data.
> range (ufc$dbh_cm)

[1] NA NA

> range (ufc$height_m, na.rm=TRUE)

(11 0 48

Zero height is a problem, because trees are usually taller than 0 m. Let’s knock that observation out by
flagging it with an official R flag that means a missing value — NA.

> ufc$height_m[ufc$height_m < 0.1] <- NA
> range (ufc$height_m, na.rm=TRUE)

14
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[1] 3.4 48.0
How do the numbers of trees of each species look?
> table(ufc$species)

DF ES F FG GF HW LP PP SF WC WL WP
10 77 3 1 2 185 5 7 4 14 251 34 44

Here we see the species codes and the numbers of trees of each species. Possibly some of the codes are
erroneous. For example, the F(ir) and the FG(?) are probably intended to be GF (Grand fir). Let’s
make that change.

> ufc$species[ufc$species 7inj, c("F","FG")] <- "GF"
> ufc$species <- factor(ufc$species)
> table(ufc$species)

DF ES GF HWw LP PP SF WC WL WP
10 77 3188 5 7 4 14 2561 34 44

How many missing heights do we have for each species? We can count the number of trees that have
missing heights as follows.

> table(ufc$species[is.na(ufc$height_m)])

DF ES GF HWw LP PP SF WC WL WP
10 20 i1 70 0 4 2 4112 12 12

These following three summaries are using the standard graphical tools. (Figure 3.1, first three panels).

> boxplot(dbh_cm ~ species, data=ufc, ylab="Dbh (cm)")

> boxplot(height_m ~ species, data=ufc, ylab="Height (m)")

> scatter.smooth(ufc$dbh_cm, ufc$height_m)

> hist(ufc$dbh_cm, breaks=(0:50) * 2.5, col="darkseagreen3", main="")

We can also use more developed graphical tools. To do so we need to obtain access to an R package
that is installed with R, but not loaded by default: lattice.

> library(lattice)
The following code creates a histogram of tree diameters by species (Figure 3.2).

> histogram( ~ dbh_cm | species, data = ufc)

3.3.3 Conditional Estimates

We can easily obtain summary statistics of a variable of interest, conditional on some other variable. For
the data that we have, it is interesting to obtain summary statistics of the variables conditional on the
tree species. First, we get a tree count by species (compare with the output from the table function).

> tapply(ufc$dbh_cm, ufc$species, length)

DF ES GF HWw LP PP SF WC WL WP
10 77 3 188 5 7 4 14 261 34 44

Then we get the mean of the diameters at breast height (in cm!) by species.

> tapply(ufc$dbh_cm, ufc$species, mean)

DF ES GF HW LP
NA 38.37143 40.33333 35.20106 20.90000 23.28571
PP SF WwC WL WP

56.85000 13.64286 37.50757 34.00588 31.97273
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Figure 3.1: Simple summary plots of the UFC dataset.
3.4 Models

Let’s take a closer look at the relationship between height and diameter, using some simple modeling

tools. We start with linear regression (1m fits the linear model).

> hd_Im_1 <- 1lm(height_m ~ dbh_cm, data = ufc)
> summary (hd_1m_1)

Call:
lm(formula = height_m ~ dbh_cm, data = ufc)

Residuals:

Min 1Q Median 3Q Max
-27.5066 -2.8162 0.0805 2.6976 13.2052
Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 12.46781 0.53074 23.49

<2e-16 ***
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Figure 3.2: A histogram of tree diameters by species
dbh_cm 0.32067 0.01309 24.50 <2e-16 **x

Signif. codes:
0 'x*kx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.643 on 388 degrees of freedom

(247 observations deleted due to missingness)
Multiple R-squared: 0.6075, Adjusted R-squared: 0.6065
F-statistic: 600.5 on 1 and 388 DF, p-value: < 2.2e-16

The following graph provides a summary of the data and some information about the utility of a straight
line for expressing the relationship.

> scatter.smooth(ufc$dbh_cm, ufc$height_m)
> abline(hd_1m_1, col="red")

Now let’s fit a distinct line for each species, and then graphically compare the regression from the previous
model.
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> hd_I1m_2 <- lm(height_m ~ dbh_cm * species, data = ufc)

The following complicated code provides insight into the graphical flexibility (Figure 3.3). Examine the
graph carefully and try to interpret it.

> xyplot (height_m ~ dbh_cm | species,

+ panel=function(x, y, ...) {

+ panel.xyplot(x, y)

+ panel.abline(lm(y ~ x), col="blue")

+ panel.abline(hd_1m_1, col="darkgreen")
+ if (sum(!is.na(y)) > 2) {

+ panel.loess(x, y, span=1, col="red")
+ }

+ +,

+ subset = species != "",

+ xlab = "Dbh (cm)", ylab = "Height (m)",
+ data=ufc)

Recall that many of the trees were missing height measurements. Perhaps we should impute? those
missing heights. We could use a model for the imputation; let’s use a simple allometric® mixed-effects*
model (Robinson and Wykoff, 2004). We need to access the code in another R package, nlme.

> library(nlme)
> hd_Ime <- 1lme(I(log(height_m)) ~ I(log(dbh_cm)) * species,

+ random = ~ I(log(dbh_cm)) | plot,
+ na.action = na.exclude,
+ data = ufc)

> predicted_log_heights <- predict(hd_lme, na.action=na.exclude, newdata=ufc)

The next steps are, firstly, copy the predicted heights, and secondly, copy over the predicted heights with
the observed heights where they exist. If you have done this correctly then you will get no output!

> ufc$p_height_m[!is.na(ufc$dbh_cm)] <- exp(predicted_log_heights)
> ufc$p_height_m[!is.na(ufc$height_m)] <- ufc$height_m[!is.na(ufc$height_m)]

What are the characteristics of the new variable?
> summary (ufc$p_height_m)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
3.40 18.51 23.00 23.66 28.51 48.05 10

The new variable is defined as follows: for trees for which height was measured, their height is used. For
trees for which height was missing, the height that was predicted from the model was used. For empty
records, the height is missing.

3.5 Functions

Functions exist to compute tree volume from diameter and height, by species (Wykoff et al., 1982), for
this geographical area. They look complex, but are easy to use, and efficient. Here we keep the unit
conversions outside the function, but they could also be inside.

> vol_fvs_ni_bdft <- function(spp, dbh_in, ht_ft){

+  bf_params <-

+ data.frame(

+ Species = C(”w ll’ HWL"’ ”DF”, HGF”’ HWHH’ ”wC"’ ”LP”, HES”’
+ ”SF n , ”PP n , ”Hw”) ,

2If you don’t know what this means then don’t worry about it. Seriously.
3If you don’t know what this means then don’t worry about it. Seriously.
4If you don’t know what this means then don’t worry about it. Seriously.
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Figure 3.3: Scatterplot of tree heights and diameters by species. The green line is the overall line of best
fit, the blue line is the species-specific line of best fit, and the red line is a smoothed curve of best fit.

+ + F + o+t o+ o+

bO_small = c(26.729, 29.790, 25.332, 34.127, 37.314, 10.472,

8.059, 11.851, 11.403, 50.340, 37.314),

b1_small = c¢(0.01189, 0.00997, 0.01003, 0.01293, 0.01203,

0.00878, 0.01208, 0.01149, 0.01011, 0.01201, 0.01203),

bO_large = c(32.516, 85.150, 9.522, 10.603, 50.680, 4.064,

14.111, 1.620, 124.425, 298.784, 50.680),

bl_large = c(0.01181, 0.00841, 0.01011, 0.01218, 0.01306,

0.00799, 0.01103, 0.01158, 0.00694, 0.01595, 0.01306))

dimensions <- data.frame(dbh_in = dbh_in,
ht_ft = ht_ft,
species = as.character(spp),
this_order = 1:length(spp))

dimensions <- merge(y=dimensions, x=bf_params, all.y=TRUE, all.x=FALSE)
dimensions <- dimensions[order(dimensions$this_order, decreasing=FALSE),]

b0 <- with(dimensions, ifelse(dbh_in <= 20.5, bO_small, bO_large))
bl <- with(dimensions, ifelse(dbh_in <= 20.5, bl_small, bl_large))
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+  volumes_bdft <- b0 + bl * dimensions$dbh_in~2 * dimensions$ht_ft
+ return(volumes_bdft)

+ }

Having saved the function we can use it in our code like any other function. One small complication is
that the function was written for imperial units, so we have to take care of the unit conversion.

> cm_to_inches <- 1/2.54
> m_to_feet <- 3.281
> bd_ft_to_m3 <- 0.002359737

Now we can use the function that we wrote. What do you think we achieve by using with, below?

> ufc$vol_m3 <- with(ufc, vol_fvs_ni_bdft(species,
+ dbh_cm * cm_to_inches,
+ p_height_m * m_to_feet) * bd_ft_to_m3)

The following are examples of the construction of new variables. The variables are related to the analysis
of forest inventory. Look away if such things disturb you. But, do execute them. If the execution is
successful then you will get no feedback.

> ufc$g_ma2 <- ufc$dbh_cm~2*pi/40000
> ufc$tree_factor <- ufc_baf / ufc$g_ma2
> ufc$vol_m3_ha <- ufc$vol_m3 * ufc$tree_factor

We now have an estimate of the volume in cubic metres per hectare represented by each tree.

> str(ufc)

'data.frame': 637 obs. of 12 variables:

$ plot :int 1223333333 ...

$ tree :int 1121234567 ...

$ species : Factor w/ 11 levels "","DF","ES","GF",..: 1 210949999 9 ...
$ dbh : int NA 390 480 150 520 310 280 360 340 260 ...
$ height : int NA 205 330 NA 300 NA NA 207 NA NA ...

$ height_m :num NA 20.5 33 NA 30 NA NA 20.7 NA NA ...

$ dbh_cm : num NA 39 48 15 52 31 28 36 34 26 ...

$ p_height_m : num NA 20.5 33 13.8 30 ...

$ vol_m3 : num NA 0.4351 0.98 0.0575 1.3392 ...

$ g_ma2 :num NA 0.1195 0.181 0.0177 0.2124 ...

$ tree_factor: num NA 58.6 38.7 396.1 33 ...

$ vol_m3_ha : num NA 25.5 37.9 22.8 44.1 ...

3.6 Plot Level Processing

Our next step is to aggregate the tree—level volume estimates to the plot level. First, we construct a
dataframe (called ufc_plot that has the (known) plot locations. A dataframe will be defined more
formally later, for the moment, treat it as a receptacle to keep variables in.

ufc_plot <- as.data.frame(cbind(c(1:144), rep(c(12:1),12),
rep(c(1:12), rep(12,12))))
names (ufc_plot) = c("plot","north.n","east.n")
ufc_plot$north = (ufc_plot$north.n - 0.5) * 134.11
ufc_plot$east = (ufc_plot$east.n - 0.5) * 167.64

vV V.V + VvV

Then we can construct plot-level values for any of the measured characteristics, for example, merchantable
volume per hectare, by adding up the volumes per hectare of the trees within each plot. We know how
to do this.

> ufc_plot$vol_m3_ha <- tapply(ufc$vol_m3_ha, ufc$plot, sum, na.rm=TRUE)
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How does the sample look, spatially (Figure 3.4)?

contourplot (vol_m3_ha ~ east * north,

>
+ main = expression(paste("Volume (", m~3, "/ha)", sep="")),
+ xlab = "East (m)", ylab="North (m)",
+ region = TRUE,

+ col.regions = terrain.colors(11)[11:1],

+ data=ufc_plot)
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500 1000 1500
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Figure 3.4: Contour plot of plot-level volumes for UFC forest inventory data. The units are cubic meters
per hectare. 300 is quite a lot.

Pretty patchy. But, let’s save the plot data object for later (specifically, Section 8.6.1).
> save("ufc_plot", file="../images/ufc_plot.RData")
We can also compute total, confidence intervals, and so on.

> mean(ufc_plot$vol_m3_ha) * ufc_area
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[1] 44856.21

> (mean(ufc_plot$vol_m3_ha) + qt(c(0.025,0.975),

+ df = length(ufc_plot$vol_m3_ha) - 1) *

+  sd(ufc_plot$vol_m3_ha) / sqrt(length(ufc_plot$vol_m3_ha))) * ufc_area
[1] 39978.39 49734.04

Finally, let’s estimate the total volume and 95% confidence interval for each species. First, get the
plot-level estimates by species. As before, these commands should result in no output.

> vol_by_species <- tapply(ufc$vol_m3_ha, list(ufc$plot, ufc$species), sum)
> vol_by_species[is.na(vol_by_species)] <- 0

>

We can examine the distributions as follows:

> boxplot(as.data.frame(vol_by_species))

Now we can apply the wonders of vectorization!

> (totals <- apply(vol_by_species, 2, mean) * ufc_area)

DF ES GF Hw

0.0000 5303.6005 210.4520 17817.4133 479.8852

LP PP SF wC WL

453.5305 499.5319  913.3555 12686.8227 2540.6045
WP
3951.0148

> (ci_bars <- apply(vol_by_species, 2, sd) / sqrt(144) * 1.96 * ufc_area)

DF ES GF HW LP
0.0000 1538.9513 311.4001 3493.9574 645.3071 592.3508
PP SF wC WL WP

506.4334 703.1405 2464.3451 1333.0400 1623.2950

An augmented boxplot shows the variability in the data and the estimates of the mean volume per
hectare by plot (Figure 3.5). We add the overall estimate by species and the 95% confidence interval to
aid interpretation. Also note the use of expression and paste to construct the y-axis. The first level
represents the empty plots.

> boxplot(as.data.frame(vol_by_species),

+ ylab=expression(paste("Volume (", m~3, ha~-1, ")")))
> lines(1:11, (totals - ci_bars) / ufc_area, col="blue")

> lines(1:11, (totals + ci_bars) / ufc_area, col="blue")

> lines(1:11, totals / ufc_area, col="red")
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Chapter 4

Infrastructure

R provides several tools to help us keep organized and efficient. We showcase the simple and important
ones below. The complicated and important stuff, such as data analysis, environments, scoping, and so
on, will wait.

4.1 Getting Help

There are four main sources of assistance: the help files, the manuals, the R-help archive, and R-help
itself.

4.1.1 Locally

While working through this document, it is likely that you will find commands that are used in example
code which have been inadequately explained, or perhaps ignored completely. When you find such
commands, you should read about them in help().

The help files can be accessed using the help() command, which has ? as a prefix-style shortcut. We
can get help on commands this way; for example

> ?mean # Works! mean() is an R command
> help(mean) # Works! mean() is an R command

However, we can’t get information on concepts unless they have been specifically registered with the
help system.

> help(regression) # Fails! regression() is not an R command

This fails because “regression” isn’t an R command. If we want to know which commands refer to
regression, we use either of:

> ??regression
> help.search("regression")

The output from this command is long and confusing. We have to read through all the descriptions
of the functions that correspond to this call until we find the one that we want.

MASS::1m.ridge Ridge Regression

MASS::1gs Resistant Regression

MASS: :polr Ordered Logistic or Probit Regression

MASS: :rms.curv Relative Curvature Measures for Non-Linear
Regression

stats: :ksmooth Kernel Regression Smoother

stats::1lm Fitting Linear Models

stats::1lm.influence Regression Diagnostics
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Now we can try help(1m). It also tells us that the 1m() function is in the stats package. It doesn’t
tell us that the stats package is already loaded, but, it is. In passing, let me recommend the following
function, whic hwill tell you what version of the software you are using, and what packages are loaded.
It’s considered mandatory for reporting problems.

> gsessionInfo()

R version 3.1.1 (2014-07-10)
Platform: x86_64-apple-darwini3.1.0 (64-bit)

locale:
[1] C

attached base packages:
[1] stats graphics grDevices utils datasets methods  Dbase

loaded via a namespace (and not attached):
[1] tools_3.1.1

Note that the help command omits the parentheses that normally follow a function call. Also note
that the level of help provided about the different commands is variable. If you can think of a clearer
way to express something, then you can submit an improvement to the community.

I have found that the best way to get a feel for what information the commands are expecting is to try
out the examples that usually appear at the end of the help information. For most help files we can just
copy those example commands and paste them to the console, and see what happens. The commands
can then be altered to suit our needs. Furthermore, these examples are often miniature data analyses,
and provide pointers to other useful functions that we can try.

We can also access the files that are installed with R using a WWW browser. Again inside R, execute
the following command.

> help.start()

This opens a browser (or a window inside an existing browser) in to which help results will be sent,
and within which you can then point, click, and search for keywords. You may need to set the default
browser, depending on your operating system. That would be done by, for example,

> options(browser="firefox")

This browser also provides hyperlinked access to R’s manuals, which provide a great deal of very
useful information. The manuals are constantly under development, so check back regularly.

4.1.2 Remotely

There is a thriving community of programmers and users who will be happy to answer carefully-worded
questions and, in fact, may well have already done so. Questions and answers can be easily found from
inside R using the following commands:

> RSiteSearch("Bates Imer") # Douglas Bates on Ilmer
> RSiteSearch("{logistic regression}") # matches the exact phrase

If you don’t find an answer after a solid search, then you should consider asking the community,
using the email list R-help. There is a posting guide to help you write questions that are most likely
to obtain useful answers - it is essential reading! Point your browser to: http://www.r-project.org/
posting-guide.html

Details on joining the email list group can be found at: https://stat.ethz.ch/mailman/listinfo/
r-help. I recommend the digest option; emails arrive at a rate of up to 100 per day.
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4.2 Writing scripts

Using R effectively is as simple as writing scripts. We can write the scripts in any text editor - Winedt, MS
Wordpad, Open Office, vi, emacs, or Xemacs. Some editors, for example emacs and Xemacs, will make
our lives easier by providing us with syntactically aware tabbing, text colours, and command completion,
which are all delicious, as well as running R as a sub-process, which means that the R output is also a
manipulable buffer.

Regardless of our editor, we save the scripts to a known directory, and then either copy and paste
them into the R console, or read them in using the one of the following commands:

> source(file="C://path/to/filenameworkshop/scripts/file.R", echo=T)
> source(file="../scripts/file.R", echo=T)
> source("file.R", echo=TRUE) # If file.R is in working directory

Note the use of forward slashes to separate the directories. Also, the directory names are case-sensitive
and are permitted to contain blank spaces.

Writing readable, well-commented scripts is a really good habit to get into early; it just makes life
much easier in the future. Large projects are vastly simplified by rigorous script writing.

A key element of good script writing is commentary. In R the comment symbol is the # symbol.
Everything on a line after a # is ignored. Some editors will tab comments based on the number of #’s
used.

Instructions can be delimited by line feeds or semi-colons. R is syntactically aware, so if you insert a
return before your parentheses or brackets are balanced, it will politely wait for the rest of the statement.

Script writing is a very powerful collaborative tool. It’s very nice to be able to send your code and a
raw data file to a cooperator, and know that they can just source() the code and run your analysis on
their machine.

4.3 Work Spaces

R uses the concept of workspaces to help us keep our objects organized. All the objects that we make,
whether directly or indirectly, are stored within a workspace. We can save, load, share, or archive these
workspaces. We can also list the contents of our workspace using 1s(), and clear items from it using
rm(). For example,

> test <- 1:10 # Create an object
> 1s(0) # List all objects in workspace
> save.image(file="../images/W-Shop.RData")
# Save all objects to a binary file in the images directory
> save(test, file="../images/test.RData")
# Save test to a binary file

> rm(test) # Delete the "test" object.

> 1s() # List the objects that we have
> rm(list=1s()) # Delete them all

> load(file="../images/W-Shop.RData") # Load them again

> 1s() # List the objects that we have

The binary files to which the save.image () command writes the objects in our workspace are readable
by R under all operating systems. They are considerably compressed when compared with, say, comma
delimited files.

Work spaces can be very useful. Data analyses can often be broken into chunks, some of which can
be very time-consuming, and others of which can be quite quick. It is inconvenient to repeat the time-
consuming chunks unnecessarily. The results of these chunks can be saved as binary images, and loaded
at will. For example, you may have a dataset of 20 megabytes that requires considerable cleaning and
manipulation before the proper analysis can begin. It would be tedious to repeat that process every time.
It’s much easier to do it once anmd save the work space in an image.

Work spaces also hide nefarious traps for the unwary. It is possible for one user, let’s say a student,
to construct a script containing numerous steps of analysis, and try to share it with another user, let’s
say a supervisor, only for the latter to find that the success of the script requires an object stored and
long forgotten in the first user’s workspace! This is a common pitfall for collaboration. My students and
I will, as much as possible, preface all our code with:
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> rm(1list=1s())

This ensures a clean workspace. rm() is the function to remove objects, and 1s() lists the objects in
your workspace.

4.4 History

R’s history facility keeps track of every command that we type in, even the dumb ones. This can be very
helpful, especially as one can access it through the up and down arrows. So, if we mistype a command
the remedy is as simple as hitting the up arrow, editing the command, and hitting Enter.

This is just fine for small problems; it is quick and effective. It rapidly becomes very inefficient,
though, when you want to repeat a number of commands with small alterations. It will drive you insane.
Write scripts. See Section 4.2.

It is sometimes useful after a session to save the history to a file, for subsequent conversion to a script.

> savehistory(file="History.txt") # History saved as a text document
> loadhistory(file="History.txt") # Text document loaded into History

We can then use this history as the basis for writing a script (see Section 4.2). Comments can be
inserted as we have seen above, and then the whole thing can be read in to R using the source command.
I almost never do this. I almost never develop scripts inside R. I prefer to use an external editor that is
optimized for script development - examples are emacs, Xemacs, and WinEdt.
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Chapter 5

Interface

5.1 Importing and Exporting Data

There is no better way to become familiar with a new program than to spend time with it using data that
you already know. It’s so much easier to learn how to interpret the various outputs when you know what
to expect! Importing and exporting data from R can seem a little confronting when you're accustomed
to Microsoft Wizards, but it’s easy to pick up, and there’s much more control and flexibility. Whole
manuals have been written on the topic, because there are so many different formats, but we’ll focus on
the simplest one: comma-delimited files.

Comma-delimited files have become the lingua franca of small-scale data communication: pretty
much every database can input and output them. They’re simply flat files, meaning that they can be
represented as a two-dimensional array; rows and columns, with no extra structure. The columns are
separated by commas and the rows are separated by line feeds and possibly carriage returns, depending
on your operating system. The column names and the row names may or may not be stored in the first
row and column respectively. It’s always a good idea to check!

Plot, Tree, Species, DBH, Height, Damage, Comment

1, 1, PiRa, 35.0, 22, O,

1, 2, PiRa, 12.0, 120, O, "Surely this can't be a real tree!"
1, 3, PiRa, 32.0, 20, O,

. and so on.
R provides a limited number of functions to interact with the operating system. I rarely use them, but
when I do they are invaluable. The command to obtain a list of the objects in a directory is list.files().
This can be most useful when you are writing a script that requires R to read in a number of files,
but at the time of writing you don’t know the names of the files

> list.files("../data")

[1] "DBT_Data_For_A_Robinson_20090702.csv"
[2] "DBT_Metadata_ec28_20090702.doc"

[3] "Sawlog_Data_For_A_Robinson_20090702.csv"
[4] "blowdown.txt"

[6] "ehc.csv"

[6] "gutten.csv"

[7] "hanford.csv"

[8] "ndvi.csv"

[9] "rugby.csv"

[10] "stage.csv"

[11] "ufc.csv"

[12] "wind-river.csv"

or, indeed, how many there will be.
> length(list.files("../data"))

[1] 12
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5.1.1 Import

R needs a few things to import data. Firstly, it has to know where they are, secondly, where you want
to put them, and finally, whether there are any special characteristics. I always start by examining the
data in a spreadsheet - Excel does fine - because I'd like to know several things:

1. Are the rows and columns consistent? Excel spreadsheets can be problematic to import, as users
often take advantage of their flexibility to include various things that R won’t understand.

2. Are the columns or rows labeled? Will the labels be easily processed?

3. Are any of the data missing? Are missing data explicitly represented in the data? If so, what
symbol(s) are used to represent the missing values?

4. Are there any symbols in the database that might make interpretation difficult?

We should also know the location of the file to be added. Then we can tell R how to load the data.
Assuming that the data are indeed appropriate and comma-delimited, we use the read.csv() command.
Note that we have to give R the object name - in this case, ufc - in order for it to store the data. Using
an absolute path (if we know it) looks like this.

> ufc <- read.csv(file="C://path/to/workshop/data/ufc.csv")
We can also read the file using a relative address.
> ufc <- read.csv(file="../data/ufc.csv")

Note the use of forward slashes to separate the directory names. The directory names are case sensitive
and are permitted to contain blank spaces. If you use read.csv() then R assumes that the first row will
be the column names; tell it otherwise by using the option header=FALSE. See ?read.csv for details.

Also note that you can call the object anything you want. An easily-recalled and distinct name will
prove to be very useful.

Other commands are useful when the data have a more general structure: read.fwf () reads in data
of fixed-width format, read.table() will accommodate a broader collection of arrays, and scan() will
read arbitrary text-based data files.

When the data are imported, a few other useful tools help us to check the completeness of the dataset
and some of its attributes. Use these regularly to be sure that the data have come in as you had intended.

> dim(ufc) # Reports the number of rows and columns
(1] 637 5

> names (ufc) # Lists the column names

[1] "plot" "tree" "species" "dbh" "height"

I prefer to always work with lower-case variable names. One way to ensure that the names are always
lower case is to enforce it.

> names (ufc) <- tolower (names (ufc))

> str(ufc) # Reports the structure of ufc

'data.frame': 637 obs. of b5 variables:

$ plot :int 1223333333 ...

$ tree :int 1121234567 ...

$ species: Factor w/ 13 levels "","DF","ES","F",..: 1 2 12 11 6 11 11 11 11 11
$ dbh : int NA 390 480 150 520 310 280 360 340 260 ...

$ height : int NA 205 330 NA 300 NA NA 207 NA NA ...

> head (ufc) # Prints the first 5 rows of ufc
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plot tree species dbh height
1 NA NA

1 1

2 2 1 DF 390 205

3 2 2 WL 480 330

4 3 1 WC 150 NA

5 3 2 GF 520 300

6 3 3 wC 310 NA

> ufc[1:5,] # Prints the first 5 rows of ufc

plot tree species dbh height

1 1 1 NA NA
2 2 1 DF 390 205
3 2 2 WL 480 330
4 3 1 WC 150 NA
5 3 2 GF 520 300

The last among the commands hints at one of the most useful elements of data manipulation in R:
subscripting. We’ll cover that in Section 6.3.

5.1.2 Export

Exporting data from R is less commonly done than importing, but fortunately it is just as straightforward.
Again we prefer to use the comma-delimited (csv) file format unless there is any reason not to.

> write.csv(ufc, file="C://path/to/filenameworkshop/output/file.csv")
> write.csv(ufc, file="../output/file.csv")

Exporting graphics is every bit as simple. Skipping ahead a little, we will use the plot() command
to create two-dimensional graphs of variables.

> plot(1:10,1:10) # ... or can do something more sophisticated ...

In Windows, we can right-click this graph to copy it to the clipboard, either as a bitmap, or as a
windows metafile. The latter file type is extremely useful as we can paste such files in to documents —
for example, MS Word — and they can be resized or edited subsequently.

Saving graphics in a more permanent file format is also possible. To save a graph as a pdf, for example,
we will write

> pdf("../graphics/fileName.pdf") # Opens a pdf device
> plot(1:10,1:10) # ... or can do something more sophisticated ...
> dev.off () # Closes the pdf device and saves the file

Similarly simple protocols are available for postscript (), jpeg() etc. You can learn more via

> 7?Devices
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Chapter 6

Data

Strategies for convenient data manipulation are the heart of the R experience. The object orientation
ensures that useful and important steps can be taken with small, elegant pieces of code.

6.1 Data: Objects and Classes

So, what does it mean to say that R is object oriented? Simply, it means that all interaction with R
is through objects. Data structures are objects, as are functions, as are scripts. This seems obscure
right now, but as you become more familiar with it you’ll realize that this allows great flexibility and
intuitiveness in communication with R, and also is occasionally a royal pain in the bum.

For the most part, object orientation will not change the way that we do things, except that it will
sometimes make them easier than we expect. However, an important consequence of object orientation is
that all objects are members of one or more classes. We will use this facility much later (in Section 15.5,
to be precise.)

We create objects and assign names to them using the left arrow: “<-”. R will guess what class we
want the object to be, which affects what we can do with it. We can change the class if we disagree with
R’s choice.

>a<-1 # Create an object "a" and

> # assign to it the value 1.
>a<-1.5 # Wipe out the 1 and make it 1.5 instead.
> class(a) # What class is it?

[1] "numeric"

> class(a) <- "character" # Make it a character
> class(a) # What class is it now?

[1] "character"
> a

[1] ny.5"

> a <- "Andrew" # Wipe out the 1.5 and make it "Andrew" instead.
> b <- a # Create an object "b" and assign to it

> # whatever is in object a.

> a <- ¢(1,2,3) # Wipe out the "Andrew" and make it a vector

> # with the values 1, 2, and 3.

> # Never make c an object!

> b <= ¢c(1:3) # Wipe out the "Andrew" and make it a vector

> # with the values 1, 2, and 3.

> b <- mean(a) # Assign the mean of the object a to the object b.
> 1s() # List all user-created objects

[1] "a" "b"
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> rm(b) # Remove b

A couple of points are noteworthy: we didn’t have to declare the variables as being any particular
class. R coerced them into whatever was appropriate. Also we didn’t have to declare the length of the
vectors. That is convenient for the user.

6.2 Classes of Data

There are two fundamental kinds of data: numbers and characters (anything that is not a number is a
character). There are several types of characters, each of which has unique properties. R distinguishes
between these different types of object by their class.

R knows what these different classes are and what each is capable of. You can find out what the
nature of any object is using the class() command. Alternatively, you can ask if it is a specific class
using the is.className () command. You can often change the class too, using the as.className ()
command. This process can happen by default, and in that case is called coercion.

6.2.1 Numeric

A number. Could be a integer or a real number. R can generally tell the difference between them using
context. We check by is.numeric() and change to by as.numeric(). R also handles complex numbers,
but they’re not important for this course. We can do all the usual things with numbers:

>ac<-2 # create variable a, assign the number 2 to it.
> class(a) # what is it?

[1] "numeric"

> is.numeric(a) # is it a number?

[1] TRUE

>b <-4 # create variable b, assign the number 4 to it.
>a+b # addition

[1] 6

>a-b # subtraction

[1] -2

>a *b # multiplication

[1] 8

>a/b # division

[1] 0.5

>a " b # exponentiation

[1] 16

> (a+b) "3 # parentheses

[1] 216

> a == # test of equality (returns a logical)
[1] FALSE

>ac<b # comparison (returns a logical)
[1] TRUE

> max(a,b) # largest

[1] 4

> min(a,b) # smallest

[11 2
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6.2.2 Character

A collection of one or more alphanumerics, denoted by double quotes. We check whether or not our object
is a character by is.character() and change to by as.character(). R provides numerous character
manipulation functions, including search capabilities.

> a <- "string" # create variable a, assign the value "string" to it.
> class(a) # what is it?

[1] "character"

> is.numeric(a) # is it a number?

[1] FALSE

> is.character(a) # is it a character?

[1] TRUE

> b <- "spaghetti" # create variable b, assign the value "spaghetti" to it.
> paste(a, b) # join the characters

[1] "string spaghetti"
> paste(a, b, sep="") # join the characters with no gap
[1] "stringspaghetti"

> d <- paste(a, b, sep="")
> substr(d, 1, 4) # subset the character

[1] "stri"

6.2.3 Factor

Factors represent categorical variables.

In practice, factors are not terribly different than characters, except they can take only a limited
number of values, which R keeps a record of, and R knows how to do very useful things with them. We
check whether or not an object is a factor by is.factor() and change it to a factor, if possible, by
factor(Q).

Even though R reports the results of operations upon factors by the levels that we assign to them,
R represents factors internally as an integer. Therefore, factors can create considerable heartburn unless
they’re closely watched. This means: whenever you do an operation involving a factor you must make
sure that it did what you wanted, by examining the output and intermediate steps. For example, factor
levels are ordered alphabetically by default. This means that if your levels start with numbers, as many
plot identifiers do, you might find that R thinks that plot 10 comes before plot 2. Not a problem, if you
know about it!

> a <- c("A","B","A","B") # create vector a
> class(a) # what is it?

[1] "character"

> is.character(a) # is it a character?
[1] TRUE

> is.factor(a) # is it a factor?

[1] FALSE

> a <- factor(a) # make it so

> levels(a) # what are the levels?
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[1] IlAlI llBII

> table(a) # what are the counts?
a

A B

2 2

v

a <- factor(c(”A", ”B", IIAII’ IIBH)’ 1evels=c(”B”, IIAII))
> # create a factor with different levels

Sometimes it will be necessary to work with a subset of the data, perhaps for convenience, or perhaps
because some levels of a factor represent irrelevant data. If we subset the data then it will often be
necessary to redefine any factors in the dataset, to let R know that it should drop the levels that are
missing.

There will be much more on factors when we start manipulating vectors (Section 6.3.1).

6.2.4 Logical

A special kind of factor, that has only two levels: True and False. Logical variables are set apart from
factors in that these levels are interchangeable with the numbers 1 and 0 (respectively) via coercion. The
output of several useful functions are logical (also called boolean) variables. We can construct logical
statements using the and (&), or (—), not (!) operators.

>ac<-2 # create variable a, assign the number 2 to it.
>b <-4 # create variable b, assign the number 4 to it.
>d<-a<x<hb # comparison
> class(d) # what is it?

[1] "logical"

> e <- TRUE # create variable e, assign the value TRUE to it.
>d+ e # what should this do?

[1] 2

>d & e # d AND e is True

[1] TRUE

>d | e # d OR e is also True

(1] TRUE

>d & le # d AND (NOT e) is not True

[1] FALSE

We can ask for the vector subscripts of all objects for which a condition is true via which().

6.2.5 Missing Data

The last and oddest kind of data is called a missing value (NA). This is not a unique class, strictly
speaking. They can be mixed in with all other kinds of data. It’s easiest to think of them as place holders
for data that should have been there, but for some reason, aren’t. Unfortunately their treatment is not
uniform in all the functions. Sometimes you have to tell the function to ignore them, and sometimes you
don’t. And, there are different ways of telling the function how to ignore them depending on who wrote
the function and what its purpose is.

There are a few functions for the manipulation of missing values. We can detect missing values by
is.na().

> a <- NA # assign NA to variable A
> is.na(a) # is it missing?
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[1] TRUE
> class(a) # what is it?

[1] "logical"

> a <- ¢(11,NA,13) # now try a vector
> mean(a) # agh!
[1] NA

> mean(a, na.rm=TRUE) # Phew! We've removed the missing value
[1] 12

> is.na(a) # is it missing?

[1] FALSE TRUE FALSE

We can identify the complete rows (ie rows that have no missing values) from a two-dimensional
object via the complete.cases() command.

6.3 Structures for Data

Having looked at the most important data types, let’s look at the mechanisms that we have for their
collective storage and manipulation. There are more than we cover here - some of which (matrix, list)
can be very useful.

6.3.1 Vector

A vector is a one-dimensional collection of atomic objects (atomic objects are objects which can’t be
broken down any further). Vectors can contain numbers, characters, factors, or logicals. All the objects
that we created earlier were vectors, although some were of length 1. The key to vector construction is
that all the objects must be of the same class. The key to vector manipulation is in using its subscripts.
The subscripts are accessed by using the square brackets [ ].

> a <- ¢(11,12,13) # a is a vector

> al1] # the first object in a

[1] 11

> al2] # the second object in a

[1]1 12

> al-2] # a, but without the second object
[1] 11 13

> alc(2,3,1)] # a, but in a different order

[1] 12 13 11

>a+1 # Add 1 to all the elements of a

[1] 12 13 14

> length(a) # the number of units in the vector a
[11 3

> order(c(a,b)) # return the indices of a and b in increasing order
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[11 4123
> c(a,b) [order(c(a,b))] # return a and b in increasing order
[1] 4 11 12 13

> a <- ¢c(11,NA,13) # a is still a vector
> a[lis.na(a)] # what are the elements of a that aren't missing?

[1] 11 13
> which(!is.na(a)) # what are the locations of the non-missing elements of a?
[11 13

Notice that in a['is.na(a)], for example, we were able to nest a vector inside the subscript mecha-
nism of another vector! This example also introduces a key facility in R for efficient processing: vector-
ization.

Vectorization

The concept underlying vectorization is simple: to make processing more efficient. Recall that in section
6.2.5, when we applied the is.na() function to the vector a it resulted in the function being applied to
each element of the vector, and the output itself being a vector, without the user needing to intervene.
This is vectorization.

Imagine that we have a set of 1,000,000 tree diameters and we need to convert them all to basal area.
In C or Fortran we would write a loop. The R version of the loop would look like this (wrapped in a
timer).

> diameters <- rgamma(n=1000000, shape=2, scale=20)

> basal.areas <- rep(NA, length(diameters))

> system.time(

+ for (i in 1:length(diameters)) {

+ basal.areas[i] <- diameters[i]~2 * pi / 40000
+ }

+

user system elapsed
1.597 0.013 1.613

That took just over three seconds on my quite old computer. However, if we vectorize the operation,
it becomes considerably faster.

> system.time(
+ basal.areas <- diameters~2 * pi / 40000

+ )

user system elapsed
0.009 0.002 0.012

It’s about 250 times faster. Of course, had we programmed this function in C or Fortran, the outcome
would have been much faster still. The R programming mantra might be: compile only if you need to,
loop only if you have to, and vectorize all the time.

Vectorization only works for some functions; e.g. it won’t work for mean (), because that would make
no sense; we want the mean of the numbers in the vector, not the mean of each individual unit. But,
when vectorization works it makes life easier, code cleaner, and processing time faster.

Note that pi is a single value, and not of length 10°, and R assumed that we would like it repeated
10° times. This is called recycling.
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Recycling

You may have noticed above that R provided a convenience for the manipulation of vectors. When we
typed

> a <- ¢(11,12,13)
>a + 1

[1] 12 13 14

R assumed that we wanted to add 1 to each element of a. This is called recycling, and is usually very
useful and occasionally very dangerous. R recycled 1 until it had the same length as a. interpreted the
function as:

>a+c(1, 1, 1)
[1] 12 13 14

For a further example, if we want to convert all the numbers in a vector from inches to centimetres,
we simply do

> (a <- a * 2.54)
[1] 27.94 30.48 33.02

Recycling can be dangerous because sometimes we want the dimensions to match up exactly, and
mismatches will lead to incorrect computations. If we fail to line up our results exactly - e.g. because
of some missing values - R will go ahead and compute the result anyway. The only way to be sure is to
watch for warnings, examine the output carefully, and keep in mind that most of the time this facility is
really helpful.

>a+ c(1, -1)

[1] 28.94 29.48 34.02

6.3.2 Dataframe

A dataframe is a powerful two-dimensional vector-holding structure. It is optimized for representing
multidimensional datasets: each column corresponds to a variable and each row corresponds to an ob-
servation. A dataframe can hold vectors of any of the basic classes of objects at any given time. So, one
column could be characters whilst another could be a factor, and a third be numeric.

We can still refer to the objects within the dataframe through their subscripts: using the square
brackets. Now there are two dimensions: row, and column. If either is left blank, then the whole
dimension is assumed. That is, test[1:10,] will grab the first ten rows of all the columns of dataframe
test, using the above-noted expansion that the colon fills in the integers. test[,c(2,5,4)] will grab all
the rows for only the second, fifth and fourth columns. These index selections can be nested or applied
sequentially. Negative numbers in the index selections denote rows that will be omitted.

Each column, or variable, in a dataframe has a unique name. We can extract that variable by means
of the dataframe name, the column name, and a dollar sign as: dataframe$variable.

A collection of columns can be selected by name by providing a vector of the column names in the
index specification. This is useful in dataframes in which the locations of the columns is uncertain or
dynamic, but the names are fixed.

If a comma-delimited file is read in using the commands in Section 5.1, R will assume that it is
meant to be a dataframe. The command to check is is.data.frame(), and the command to change it is
as.data.frame(). There are many functions to examine dataframes; we showcase some of them below.

> ufc <- read.csv("../data/ufc.csv") # ufc is a dataframe

> is.data.frame(ufc) # we hope

[1] TRUE

> dim(ufc) # the size of the dimensions (r,c)
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[1] 637 5

> names (ufc) # the labels of the columns
[1] "plot" "tree" "species" "dbh" "height"

> ufc$height[1:5] # first 5 heights

[1] ©NA 205 330 NA 300
> ufc$species[1:5] # first 5 species

[1] DF WL WC GF
Levels: DF ES F FG GF HW LP PP SF WC WL WP

> ufc[1:5, c(3,5)] # first 5 species and heights
species height

1 NA

2 DF 205

3 WL 330

4 wC NA

5 GF 300

> ufc[1:5, c("species", "height")] # first 5 species and heights again

species height

1 NA
2 DF 205
3 WL 330
4 wC NA
5 GF 300
> table(ufc$species)

DF ES F FG GF HW LP PP SF WC WL WP
10 77 3 1 2 185 5 7 4 14 251 34 44

The last command suggests that there are ten trees with blank species. Here, it’s vital to know about
the data recording protocol. The ten trees without species are blank lines to represent empty plots. Let’s
remove them, for the moment. Note that we also redefine the species factor, so that it will drop the now
empty level.

> ufc <- ufc[ufc$species != "",]
> ufc$species <- factor(ufc$species)

We can also create new variables within a dataframe, by naming them and assigning them a value.
Thus,

> ufc$dbh.cm <- ufc$dbh/10 # Dbh now in cm
> ufc$height.m <- ufc$height/10 # Height now in metres

Finally, if we want to construct a dataframe from already existing variables, which is quite common,
we use the data.frame() command, viz:

> temp <- data.frame (my.species=ufc$species,
+ my.dbh=ufc$dbh.cm)
> temp[1:5,]

my.species my.dbh

1 DF 39
2 WL 48
3 WwC 15
4 GF 52
5 WC 31
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Dataframes are the most useful data structures as far as we are concerned. We can use logical vectors
that refer to one aspect of the dataframe to extract information from the rest of the dataframe, or even
another dataframe. And, it’s possible to extract pretty much any information using the tools that we’ve
already seen.

> ufc$height.m[ufc$species=="LP"] # Heights of lodgepole pine

[1] 24.5 NA NA NA 16.0 25.0 NA

> mean(ufc$height.m[ufc$species=="LP"], na.rm=TRUE)

[1] 21.83333

> # Average height of lodgepole pine

Sapply

sapply () permits us to deploy a function upon each column in a dataframe. This is particularly useful
if we want to find column sums or means, for example, but has other useful applications.

> sapply(ufc[,4:7], mean, na.rm=TRUE)

dbh height dbh.cm height.m
356.56619 240.66496 35.65662 24.06650

Below, for example, we use sapply() to tell us the class of each of the columns in our dataframe.
> sapply(ufc, class)

plot tree species dbh height dbh.cm height.m
"integer" "integer" '"factor" "integer" "integer" "numeric" "numeric"
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6.3.3 Matrix (Array)

A matrix is simply a vector that has extra attributes, called dimensions. R provides specific algorithms
to enable us to treat the vector as though it were really two-dimensional. Many useful matrix operations
are available.

> (mat.1 <- matrix(c(1,0,1,1), nrow=2))

[,11 [,2]
[1,] 1 1
[2,] 0 1

> (mat.2 <- matrix(c(1,1,0,1), nrow=2))

[,11 [,2]
[1,] 1 0
[2,] 1 1

> solve(mat.1) # This inverts the matrix

(.11 [,2]
[1,] 1 -1
[2,] 0 1

> mat.1 7*J, mat.2 # Matrix multiplication

[,1]1 [,2]
[1,] 2 1
[2,] 1 1

> mat.1 + mat.2 # Matrix addition

[,11 [,2]
[1,] 2 1
[2,] 1 2

> t(mat.1) # Matrix transposition

[,11 [,2]
[1,] 10
[2,] 11

> det(mat.1) # Matrix determinant
[1] 1

There are also various functions of matrices, for example, qr() produces the QR decomposition,
eigen() produces the eigenvalues and eigenvectors of matrices, and svd() performs singular value de-
composition.

Arrays are one, two, or three-dimensional matrices.

Apply

Apply permits us to deploy a function upon each row or column in a matrix or array. This is particularly
useful if we want to find row or column sums or means, for example.

> apply(ufc[,4:7], 2, mean, na.rm=TRUE)

dbh height dbh.cm height.m
356.56619 240.66496 35.65662 24.06650
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6.3.4 List

A list is a container for other objects. Lists are invaluable for, for example, collecting and storing
complicated output of functions. Lists become invaluable devices as we become more comfortable with
R, and start to think of different ways to solve our problems. We access the elements of a list using the
double bracket, as below.

> (my.list <- list("one", TRUE, 3))

[[11]

[1] "one"

[[2]1]
[1] TRUE

[[3]1]
(11 3

> my.list[[2]]
(1] TRUE

If we use a single bracket then we extract the element, still wrapped in the list infrastructure.
> my.list[2]

[[1]1]
[1] TRUE

We can also name the elements of the list, either during its construction or post-hoc.
> (my.list <- list(first = "one", second = TRUE, third = 3))

$first
[1] "one"

$second
[1] TRUE

$third
[1] 3

> names (my.list)

[1] "first" "second" "third"
> my.list$second

[1] TRUE

> names(my.list) <- c("First element","Second element","Third element")
> my.list

$ First element’
[1] "one"

$ Second element"
[1] TRUE

$ Third element’
[1] 3

> my.list$ Second element”

41



©@®O icebreakeR

[1] TRUE

Note the deployment of backticks to print the nominated element of the list, even though the name
includes spaces.

The output of many functions is a list object. For example, when we fit a least squares regression,
the regression object itself is a list, and can be manipulated using list operations.

Above, we saw the use of tapply(), which conveniently allowed us to apply an arbitrary function
to all the elements of a grouped vector, group by group. We can use lapply() to apply an arbitrary
function to all the elements of a list.

6.4 Merging Data

It is often necessary to merge datasets that contain data that occupy different hierarchical scales; for
example, in forestry we might have some species-level parameters that we wish to merge with tree-level
measures in order to make predictions from a known model. We tackled exactly this problem in writing
the function that computes the bard-feet volume of a tree given its species, diameter and height. Let’s
see how this works on a smaller scale. First, we declare the dataframe that contains the species-level
parameters.

Recall that by adding the parentheses we are asking R to print the result as well as saving it.

> (params <- data.frame(species = c("WP", "WL"),

+ b0 = c(32.516, 85.150),

+ bl = ¢(0.01181, 0.00841)))
species bO bl

1 WP 32.516 0.01181

2 WL 85.150 0.00841

Then let’s grab the first three trees of either species from ufc that have non-missing heights. We’ll
only keep the relevant columns. Note that we can “stack” the index calls, and that they are evaluated
sequentially from left to right.

> (trees <- ufclufc$species Jinj, params$species& !is.na(ufc$height.m),][1:3,]1)

plot tree species dbh height dbh.cm height.m

3 2 2 WL 480 330 48.0 33
20 4 9 WP 299 240 29.9 24
26 5 6 WP 155 140 15.5 14

Now we merge the parameters with the species.

> (trees <- merge(trees, params))

species plot tree dbh height dbh.cm height.m b0 bl
1 WL 2 2 480 330 48.0 33 85.150 0.00841
2 WP 4 9 299 240 29.9 24 32.516 0.01181
3 WP 5 6 155 140 15.5 14 32.516 0.01181

There are many options for merging, for example, in how to deal with not-quite overlapping charac-
teristics, or column names that do not match.

We can now compute the volume using a vectorized approach, which is substantially more efficient
than using a loop. Also, note the use of with() to temporarily attach the dataframe to our search path.
This usage simplifies the code.

> (trees$volume <-
+ with(trees, b0 + bl * (dbh.cm/2.54)°2 * (height.m*3.281))%*0.002359737)

[1] 0.9682839 0.3808219 0.1243991
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6.5 Reshaping

Data

Longitudinal datasets often come in the wrong shape for analysis. When longitudinal data are kept in
a spreadsheet, it is convenient to devote a row to each object being measured, and include a column for
each time point, so that adding new measurements merely requires adding a column. From the point of
view of data analysis, however, it is easier to think of each observation on the object as being a row. R
makes this switch convenient. Again, we’ll see how this works on a small scale.

> (trees <- data.frame(tree =

+
+

dbh.1 =

c(1, 2), species
c(45, 52), dbh.2
ht.1 = ¢(30, 35), ht.2 = c(32, 36)))

tree species dbh.1 dbh.2 ht.1 ht.2

1 1 WH 45 50 30
2 2 WL 52 55 35
> (trees.long <- reshape(trees,
+ direction
+ varying =
+
+ v.names =
+ timevar =
+ idvar = "
+ )

tree species time dbh height
1.1 1 WH 1 45 30
2.1 2 WL 1 52 35
1.2 1 WH 2 50 32
2.2 2 WL 2 55 36

32
36

= "lOIlg",

c (nw "ML Il) ,
c(50, 55),

list(c("dbh.1","dbh.2"),
c("ht.1","ht.2")),
c("dbh", "height"),

"time" ,
tree"

The arguments are defined as follows:

direction tells R to go wide or go long,

varying is a list of vectors of column names that are to be stacked,

v.names is a vector of the new names for the stacked columns,

timevar is the name of the new column that differentiates between successive measurements on each

object, and

idvar is the name of the existing column that differentiates between the objects.

6.6 Sorting Data

R provides the ability to order the elements of objects. Sorting is vital for resolving merging operations,
for example, as we did in Chapter 3. Here are the top five trees by height.

> ufclorder (ufc$height.m, decreasing=TRUE),][1:5,]

plot tree species

413 78 3 WP
532 110 4 GF
457 88 3 WL
297 55 2 DF
378 68 1 GF

dbh height dbh.cm height.
48.
47.
42.
42.
42.

1030
812
708
998
780

480
470
425
420
420

103.0
81.2
70.8
99.8
78.0

O O o1 o o8

order () allows ordering by more than one vector, so, for example, to order by plot then species then

height, we would use

> ufclorder(ufc$plot, ufc$species, ufc$height.m),][1:5,]
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Related functions include sort () and rank(), but they only permit the use of one index.

1

0 O NN

DF
WL
GF
wC
WwC

dbh height dbh.cm height.
20.
33.
30.
20.
22.

390
480
520
360
380

205
330
300
207
225

39
48
52
36
38
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Chapter 7

Simple Descriptions

We have already seen a number of different data summary and analysis tools, but it is useful to consider
them in a more coordinated and holistic fashion. We start by reading and processing the data according
to our earlier strategy.

ufc <- read.csv("../data/ufc.csv")
ufc$height.m <- ufc$height/10
ufc$dbh.cm <- ufc$dbh/10

ufc$height .m[ufc$height.m < 0.1] <- NA
ufc$species[ufc$species jinj, c("F","FG")] <- "GF"
ufc$species <- factor(ufc$species)
ufc.baf <- 7

cm.to.inches <- 1/2.54

m.to.feet <- 3.281

bd.ft.to.m3 <- 0.002359737

ufc$g.ma2 <- ufc$dbh.cm”2*pi/40000
ufc$tree.factor <- ufc.baf / ufc$g.ma2
ufc$tree.factor[is.na(ufc$dbh.cm)] <- 0

VVVVVVVVVVVVYV

Here, we will drop the plots that have no trees, although we will keep track of them in the plot count.

> number.of.plots <- length(unique(ufc$plot))
ufc <- ufc[!is.na(ufc$dbh.cm),]
> ufc$species <- factor(ufc$species)

v

7.1 Univariate

In what follows we distinguish between summaries of continuous data, also called numerical, and cate-
gorical data. Ordinal data can be considered a special case of the latter for our purposes. I don’t see any
particular reason to further subdivide continuous data into interval and ratio data.

7.1.1 Numerical

Getting standard estimates of the location and spread of variables is very easy; these are obtained by
the following commands. Note the use of the argument na.rm=TRUE, which tells R to ignore the missing
values.

Measures of location

> mean (ufc$dbh.cm, na.rm=TRUE)
[1] 35.65662

> median(ufc$dbh.cm, na.rm=TRUE)

[1] 32.9
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Measures of spread

> sd(ufc$dbh.cm, na.rm=TRUE)
[1] 17.68945

> range(ufc$dbh.cm, na.rm=TRUE)
[1] 10 112

> IQR(ufc$dbh.cm, na.rm=TRUE)

[1] 23.45

Measures of skew

A skewness () function can be found in the moments package. Alternatively we can compare the data with
a known non-skewed dataset; the normal distribution (see Figure 7.1). These data are, not surprisingly,
positively skewed (i.e. they have a long right tail).

> qqnorm(ufc$dbh.cm, xlab = "Diameter (cm)")
> qqline (ufc$dbh.cm, col="darkgrey")

Normal Q-Q Plot

100
|

80
|
m%n ]

Sample Quantiles
60
1

40
|

o 000

-3 -2 -1 0 1 2 3

Diameter (cm)

Figure 7.1: Demonstration of normal quantile plot to assess skew. These data are, not surprisingly,
positively skewed (i.e. they have a long right tail).

7.1.2 Categorical

The most common data summary for categorical variables is tabulation. There are several ways that
data can be tabulated in R. Their difference is in how flexible the commands are and the kind of output
generated.

> table(ufc$species)

DF ES GF HWw LP PP SF WC WL WP
77 3 188 5 7 4 14 251 34 44

> tapply(ufc$species, ufc$species, length)
DF ES GF HWw LP PP SF WC WL WP
7 3 188 5 7 4 14 251 34 44
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> aggregate (x=1ist (count=ufc$species),

+ by=1ist (species=ufc$species),
+ FUN = length)
species count
1 DF 7
2 ES 3
3 GF 188
4 HW 5
5 LP 7
6 PP 4
7 SF 14
8 wC 251
9 WL 34
10 WP 44
These tables can be easily converted to figures (see Figure 7.2).
> plot(table(ufc$species), ylab="Raw Stem Count")
> plot(as.table(tapply(ufc$tree.factor/number.of.plots,
+ ufc$species,
+ sum)),
+ ylab="Stems per Hectare'")

250

250 —
200 —
200 —
= <4 -
€ 150 4 & 150
o |53
0 T
£ s
ol g
@ 1%2]
2 -
£ 100 g 100
7]
50 — 50
0 - 1 | | 1 ‘ ‘ 0 - ' | |
T T T T T T T T T 1 T T T T T T T T T 1
DF ES GF HW LP PP SF WC WL WP DF ES GF HW LP PP SF WC WL WP

Figure 7.2: Raw count of trees by species (left panel) and weighted by tree factor (right panel).

Continuous variates can also be converted into ordinal variates for further analysis using the cut ()
function. For example, here we cut the tree diameters into 20 cm classes, making a new factor that has
ordered levels.

> ufc$dbh.20 <- cut(ufc$dbh.cm, breaks=(0:6)*20)
> table(ufc$dbh.20)

(0,20] (20,40] (40,601 (60,80] (80,100] (100,120]
128 279 163 43 11 3

7.2 Multivariate

We will consider three cases that offer bivariate information; when there is conditioning on a categorical
variable (e.g. species), and also when there is more than one variable of interest, be they numerical or
categorical.
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7.2.1 Numerical/Numerical

We have already seen a scatterplot of two continuous variates, and we are not interested in formally
fitting models at this point. So, the correlation is a quick and useful summary of the level of agreement
between two continuous variates. Note that the na.rm argument that we have become accustomed to is
not used in this function, instead we use the use argument. See ?cor for more details.

> cor(ufc$dbh.cm, ufc$height.m, use="complete.obs")

[1] 0.7794116

7.2.2 Numerical/Categorical

We will most commonly be interested in obtaining summaries of the numerical variable conditioned upon
the categorical variable. We have seen how to do this in several ways. The main difference between
the tapply () and aggregate() functions is in the structure of the output. tapply() creates a named
list, and aggregate() creates a dataframe with the labels as a separate column. Also, aggregate () will
compute the nominated function for more than one variable of interest.

> tapply(ufc$dbh.cm, ufc$species, mean, na.rm=TRUE)

DF ES GF HW LP PP SF wC
38.37143 40.33333 35.20106 20.90000 23.28571 56.85000 13.64286 37.50757
WL WP

34.00688 31.97273

> aggregate(x = list(dbh.cm=ufc$dbh.cm, height.m=ufc$height.m),
+ by = list(species=ufc$species),
+ FUN = mean, na.rm = TRUE)

species dbh.cm height.m
DF 38.37143 25.30000
ES 40.33333 28.00000
GF 35.20106 24.34322
HW 20.90000 19.80000
LP 23.28571 21.83333
PP 56.85000 33.00000
SF 13.64286 15.41000
WC 37.50757 23.48777
WL 34.00588 25.47273
WP 31.97273 25.92500

© 00 ~NO O WN -
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7.2.3 Categorical/Categorical

Numerical and graphical cross-tabulations are useful for summarizing the relationship between more than
one categorical variable.

> table(ufc$species, ufc$dbh.20)

(0,20] (20,40] (40,60] (60,80] (80,100] (100,120]

DF 10 33 27 5 2 0
ES 0 2 1 0 0 0
GF 37 88 a7 12 4 0
HW 3 2 0 0 0 0
LP 2 5 0 0 0 0
PP 0 2 0 1 1 0
SF 14 0 0 0 0
wC 45 107 71 23 4 1
WL 4 19 10 1 0 0
WP 13 21 7 1 0 2

48



©@®0O icebreakeR

This table can be converted to a plot by calling the plot () function using the table function as the
sole argument. Here we use the code to sum the tree factors to get unbiased estimates. Note that we
need to replace the missing values with zeros.

> species.by.dbh <- as.table(tapply(ufc$tree.factor/number.of.plots,
+ list (ufc$dbh.20, ufc$species),
+ sum))

> species.by.dbh[is.na(species.by.dbh)] <- 0

> plot(species.by.dbh, main="Species by Diameter Class")

Species by Diameter Class

(0,20] (20,40] (40,60]  (60,880(100}120]

DF

GF

HW

PP

SF

wc

WL

wp

Figure 7.3: Species stems per hectare by 20 cm diameter class.
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Chapter 8
Graphics

One major selling point for R is that it has better graphics-producing capabilities than many of the
commercial alternatives. Whether you want quick graphs that help you understand the structure of your
data, or publication-quality graphics that accurately communicate your message to your readers, R will
suffice!.

The graphics are controlled by scripts, and start at a very simple level. If you have dbh.cm and
height.m in your ufc dataframe?, for example

> plot(ufc$dbh.cm, ufc$height.m)

will open a graphical window and draw a scatterplot of dbh against height for the Upper Flat Creek
data, labeling the axes appropriately. A small addition will provide more informative labels (see Figure
8.1). Also note that there is more than one way of calling a plot, sometimes the following construction
may be more convenient.

> plot(height.m ~ dbh.cm, data=ufc, xlab = "Diameter (cm)", ylab = "Height (m)")

The plot() command offers a wide variety of options for customizing the graphic. Each of the
following arguments can be used within the plot () statement, singly or together, separated by commas.
That is, the plot statement will look like

> plot(x, y, xlab="An axis label", ... )

e xlim=c(a,b) will set the lower and upper limits of the z-axis to be a and b respectively. Note that
we have to know a and b to make this work!

e ylim=c(a,b) will set the lower and upper limits of the y-axis to be a and b respectively. Note that
we have to know a and b to make this work!

e xlab="X axis label goes in here"
e ylab="Y axis label goes in here"
e main="Plot title goes in here"

e col="red" makes all the points red. This is specially attractive for overlaid plots.

8.1 Organization Parameters

From here we have great flexibility in terms of symbol choice, color, size, axis labeling, over-laying, etc.
We'll showcase a few of the graphical capabilities in due course. These options can be further studied
through 7par.

The cleanest implementation is to open a new set of parameters, create the graph, and restore the
original state, by means of the following simple but rather odd commands:

My brother is in marketing.
2You can check this by str(). If they are absent, the code to compute and add them is on page 14.
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Figure 8.1: Diameter/Height plot for all species of Upper Flat Creek inventory data. Each point represents
a tree.

> opar <- par( {parameter instructions go here, separated by commas} )
> plot( {plot instructions go here} )
> par (opar)

The reason that these work is that when the par () function is used to set a new parameter, it invisibly
returns the previous value of that parameter. So, the code

> opar <- par(las = 1)
changes the las parameter to 1 and store las = 0 in opar. Subsequent invocation of
> par (opar)

changes the las parameter to 0 again.

There are several options for affecting the layout of the graphs on the page. These can all be used in
conjunction with one another. There are many more than I note below, but these are the ones that I end
up using the most often. My most common par call is something like:

> opar <- par(mfrow=c(3,2), mar=c(4,4,1,1), las=1)
> plot( ...
> par (opar)

e par(mfrow=c(a,b)) where a and b are integers will create a matrix of plots on one page, with a
rows and b columns.

e par(mar=c(s,w,n,e)) will create a space of characters around the inner margin of the plot(s).
e par(oma=c(s,w,n,e)) will create a space of characters around the outer margin of the plot(s).
e par(las=1) rotates the y-axis labels to be horizontal rather than vertical.

e par(pty="s") forces the plot shape to be square. The alternative is that the plot shape is mutable,
which is the default, and is pty="m".
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e par (new=TRUE) when inserted between plots will plot the next one on the same place as the previous,
effecting an overlay. It will not match the axes unless forced to do so. Increasing the mar parameters
for the second plot will force it to be printed inside the first plot.

e Various character expansion factors may also be set.

You can also interrogate your last graph for details. For example,
> par("usr")
[1] 5.920 116.080 1.616 49.784

gives you the realized axis limits (compare with Figure 8.1).

8.2 Graphical Augmentation

A traditional plot, once created, can be augmented using any of a number of different tools.

The infrastructure of the plot can be altered. For example, axes may be omitted in the initial plot
call (axes = FALSE) and added afterwards using the axis () function, which provides greater control and
flexibility over the locations and format of the tickmarks, axis labels, and also the content. Note that
axis () only provides axis information within the portion of the range of the data, to reduce unnecessary
plot clutter. The usual plot frame can be added using the box() function. Text can be located in the
margins of the plot, to label certain areas or to augment axis labels, using the mtext () function. A
legend can be added using the legend() function, which includes a very useful legend location routine,
as shown below. Additions can also be made to the content of the plot, using the points(), 1ines(),
and abline() functions. A number of these different steps are shown in figure 8.2.

1. Start by creating the plot object, which sets up the dimensions of the space, but omit any plot
objects for the moment.

> par(las = 1, mar=c(4,4,3,2))
> plot(ufc$dbh.cm, ufc$height.m, axes=FALSE, xlab="", ylab="", type="n")

2. Next, we add the points. Let’s use different colours for different trees.

> points(ufc$dbh.cm, ufc$height.m, col="darkseagreend")
> points(ufc$dbh.cm[ufc$height.m < 5.0],
+ ufc$height.m[ufc$height.m < 5.0], col="red")

3. Add axes. These are the simplest possible calls, we have much greater flexibility than shown here.

> axis(1)
> axis(2)

4. Add axis labels using margin text (switching back to vertical for the y-axis).

> par(las=0)
> mtext("Diameter (cm)", side=1, line=3, col="blue")
> mtext ("Height (m)", side=2, line=3, col="blue")

5. Wrap the plot in the traditional frame.
> box()

6. Finally, add a legend.

> legend("bottomright",

+ c("A normal tree", "A weird tree'"),
+ col=c("darkseagreen3", "red"),

+ pch=c(1,1),

+ bty=”n”)
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Figure 8.2: Building a plot up by components.

8.3 Permanence

Producing more permanent graphics is just as simple. For example, to create the graphic as a pdf file,
which can be imported into various documents, we do the following:

> pdf(file="../graphics/graphic.pdf")

> plot(ufc$dbh.cm, ufc$height.m)

> abline(1m(height.m ~ dbh.cm, data=ufc), col="red")
> dev.off ()

This will place the pdf in your graphics directory. This is an especially good option if the graphics
that you want to produce would ordinarily cover more than one page, for example, if you are producing
graphs in a loop. The pdf format is well accepted on the Internet as well, so the graphics are portable.
Encapsulated postscript is also supported.

Under Windows, you can also copy directly from the plot window to the clipboard as either a metafile
or a bmp (bitmap) image. Either can then be pasted directly into a Word document, for example.
Alternatively using a similar approach to that noted above, one can create a JPEG image which can be
imported into Word documents. My experience has been that the vividness of the colour suffers using
JPEG, and some ameliorative action might be required.
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8.4 Upgrades

The joy of advanced graphics in R is that all the good images can be made using the tools that we’ve
already discussed. And, because the interface is scripted, it’s very easy to take graphics that were created
for one purpose and evolve them for another. Looping and judicious choice of control parameters can
create informative and attractive output. For example, Figure 8.3 is constructed by the following code.

opar <- par(oma=c(0,0,0,0), mar=c(0,0,0,0))

x1 <- rep(1:10, 10)

x2 <- rep(1:10, each=10)

x3 <- 1:100

interesting.colour.numbers <- c(1:152,253:259,362:657)

plot.us <- sample(interesting.colour.numbers, size=max(x3))

plot(x1, x2, col=colors()[plot.us], pch=20, cex=10, axes=F,
ylim=c(0,10), xlim=c(0, 10.5))

text (x1, x2-0.5, colors()[plot.us], cex=0.3)

text(x1+0.4, x2-0.4, plot.us, cex=0.5)

par (opar)

VVV+VVVVYVVY

Figure 8.3: A random plot of coloured dots.

8.5 Common Challenges

This section is devoted to showing how to solve common graphical challenges using R.

8.5.1 Error Bars

Often we are asked to provide graphs that have error bars. We can use the arrows () function to provide
the bars, and vectorization will keep the code simple for us. Figure 8.4 shows the mean and a 95%
confidence interval (unweighted!) for the tree diameters by species.

means <- tapply(ufc$dbh.cm, ufc$species, mean, na.rm=TRUE)
ses <- tapply(ufc$dbh.cm, ufc$species, sd, na.rm=TRUE) /
sqrt (tapply(!is.na(ufc$dbh.cm), ufc$species, sum))
ylim <- range(c(means + 1.96*ses, means - 1.96*ses))
par(las=1, mar=c(4,4,2,2))
plot(1:10, means, axes=FALSE, ylim=ylim, xlab="Species", ylab="Dbh (cm)")

vV V.V + VvV
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> axis(1, at=1:10, labels=levels(ufc$species))

> axis(2)
> arrows(1:10, means-1.96*ses, 1:10, means+1.96%*ses,
+ col="darkgrey", angle=90, code=3, length=0.1)
80 —
£ %07 |
S
<
=)
O ©
40 - o o
20 - ¢
J
[ T T T T T T T T 1
DF ES GF HW LP PP SF wc WL wp

Species

Figure 8.4: Means and 95% confidence intervals for the tree diameters, by species.

8.5.2 Colour graphics by groups

Integrating useful colour in another common challenge. There exist packages that contain functions to
do this quickly and easily (lattice, see Section 8.6.1, and car, to name just two) but it is worth seeing
how to do this with the tools available.

Using all the available species will make quite a mess, so let’s constrain ourselves to trees from the
four most common. The following code identifies the four most common species and constructs a smaller
dataframe that contains trees only of those species.

> top.four <- levels(ufc$species) [order(table(ufc$species),

+ decreasing=TRUE)] [1:4]
> ufc.small <- ufc[ufc$species Jinj, top.four,]

> ufc.small$species <- factor(ufc.small$species)

Now we can construct the plot using that smaller dataframe as follows (see Figure 8.5).

my.colours <- c("red","blue", "goldenrod", "darkseagreen4")
par(las=1, mar=c(4,4,3,2))
plot(ufc.small$dbh.cm, ufc.small$height.m,
xlab = "Dbh (cm)", ylab = "Height (m)",
col = my.colours[ufc.small$species])
legend("bottomright",
legend = levels(ufc.small$species),
col = my.colours,

+ + + 4+ +V++VVyY

1ty = rep(NULL, 4),
pch = rep(19, 4),
bty = ")
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Figure 8.5: A plot of height against diameter for trees of the four most common species, coloured by
species.

8.6 Contributions

Contributers to R have written packages that ease the construction of graphics. We will explore some of
them here. Documentation of these facilities is challenging because the code is under continuous review
and development.

8.6.1 Trellis

Trellis is a more formal tool for graphical virtuosity. Trellis allows great flexibility for producing con-
ditioning plots. The R implementation of trellis is called lattice, and is written mainly by Deepayan
Sankar.

We load the lattice package by means of the library function, which is explained in greater detail
in Appendix A.

> library(lattice)

The goal of lattice is to simplify the production of high-quality and simple graphics that permit
multi-dimensional data summaries.

We have already seen the use of these graphics in the Showcase chapter (Chapter 3), where we plotted
height against diameter for each species, as well as diameter distributions for each species. We can get
other useful graphics with a minimum of fuss, for example, focusing on the four most prolific species in
the ufc data (Figure 8.6).

ufc <- read.csv("../data/ufc.csv") # ufc is a dataframe
ufc$dbh.cm <- ufc$dbh/10 # Dbh now in cm
ufc$height.m <- ufc$height/10 # Height now in metres

ufc$height.m[ufc$height.m < 0.1] <- NA

ufc <- ufc[complete.cases(ufc),]

ufc$species[ufc$species Jinj, c("F","FG")] <- "GF"

ufc$species <- factor(ufc$species)

top.four <- levels(ufc$species) [order(table(ufc$species),
decreasing=TRUE)] [1:4]

+ VVVVVYVVYV

The panels in the following list refer directly to Figure 8.6 and do not necessarily correspond in
position to what you will see on your screen.

e Top left panel:
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> densityplot(~ dbh.cm | species, data=ufc,
+ subset=species Jinj, top.four)

e Top right panel:
> bwplot(dbh.cm ~ species, data=ufc, subset=species 7inj, top.four)
e Bottom left panel:

> histogram( ~ dbh.cm | species, data=ufc,
+ subset=species J}inj, top.four)

e Bottom right panel:

(The object that we are loading was created in the Showcase chapter.)

> load("../images/ufc_plot.RData")

contourplot (vol_m3_ha east * north,
main = expression(paste("Volume (", m~3, "/ha)", sep="")),

>
+
+ xlab "East (m)", ylab="North (m)",
+
+
+

region = TRUE,
col.regions = terrain.colors(11)[11:1],
data=ufc_plot)

Graphics produced by lattice are highly customizable. For example, if we were to wish to plot
the height against the predicted height for the six species with the largest number of trees, using the
mixed-effects imputation model from Chapter 3, and add some illustrative lines to the graphs, then we
could do it with the following code. First we fit a suitable model and extract the predictions, to be used
as imputations.

> library(nlme)

> hd.lme <- lme(I(log(height.m)) ~ I(log(dbh.cm)) * species,

+ random = ~ I(log(dbh.cm)) | plot,

+ data = ufc)

> ufc$p.height.m <- exp(predict(hd.lme, level=1))

> top.six <- levels(ufc$species) [order(table(ufc$species),

+ decreasing=TRUE)] [1:6]
>

library (MASS)

Then we construct the plot, adding a new function that will be executed inside each panel. This
version produces a scatterplot of the points, adds a blue 1:1 line, then a red linear regression line, fitted
to the data inside the panel, a purple robust linear regression line, again fitted to the data inside the
panel, and finally a black loess smooth.

> xyplot (height.m ~ p.height.m | species, data = ufc,
+ xlab="Predicted Height (m)",

+ ylab="Measured Height (m)",

+ panel = function(x, y) {

+ panel.xyplot(x, y)

+ panel.abline(0, 1, col="blue", 1ty=2)

+ panel.abline(Im(y ~ x), col="red")

+ panel.abline(rlm(y ~ x), col="purple")

+ panel.loess(x, y, col="black")

+ },

+ subset=species Jinj, top.six

+

)

If you are worried about the western larch panel (WL), try the same exercise using linear regression
instead of the mixed-effects imputation model! That would require the following change to the predicted
values:
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Figure 8.6: Example lattice plots, showing diameter information conditioned on species. The top left
panel shows the empirical density curves of the diameters, the top right panel shows box plots, the bottom
left shows histograms, and the bottom right shows.

> hd.1m <- 1m(I(log(height.m)) ~ I(log(dbh.cm)) * species,
+ data = ufc)
> ufc$p.height.m <- exp(predict (hd.lm))

We can change the order of the panels using the index. cond option. We can also add other commands
to each panel. ?xyplot is very helpful to us here, providing very detailed information about the various
options, and some attractive examples that we can adapt to our own uses.

Even though the code is quite mature, it is still under development to ease usage. For example, in
up-to-date versions of lattice, to obtain a trellis plot that has points, regression lines of best fit, and
smoothers superimposed, we need merely the following code:

> xyplot (height.m ~ p.height.m | species, data = ufc,
+ xlab = "Predicted Height (m)",

+ ylab = "Measured Height (m)",

+ type = c("p", "r", "smooth"),

+ subset = species /inj, top.six

+)
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Figure 8.7: A lattice plot of height against predicted height by species for the six species that have the
most trees. The blue dashed line is 1:1, the red solid line is the panel-level regression, the purple solid
line is a robust regression fit and the black curved line is a loess smooth.

8.6.2 Grammar of Graphics

The key reference is now in its second edition (Wilkinson, 2005). Hadley Wickham has developed tools
within R to realize some of the Grammar principles in an easily-usable format. The code is in version
2, and the original version is being phased out (“deprecated”) hence we use the ggplot2 package. This
package is still under heavy development, but it also looks like a promising contribution to simplify
statistical communication.

> library(ggplot2)

The differences between lattice and ggplot2 are mostly cosmetic. Publcation-quality graphics can be
easily constructed using each of them, with patience. I find that ggplot2’s ability to seamlessly add data
from a range of sources greatly eases the challenge of juxtaposing model predictions and observations,
but as we saw in the previous section, lattice has a somewhat more straightforward interface.

Getting Started
We trace some very simple developments in Figure 8.8.

1. Start by creating the plot space, and add points. Below, we identify the object to use, then pick
out the so-called aesthetic elements of the object, and then tell R how to display them.

> ggplot (ufc, aes(y = height.m, x = dbh.cm)) + geom_point ()

2. Now we add a smooth line and (automatically) standard error spaces. The standard error polygon
is attractive but its value is questionable, because it is point-wise, not curve-wise. So, it looks as
though it tells us something really useful, but sadly, it does not.

> ggplot(ufc, aes(y = height.m, x = dbh.cm)) + geom_point() +

+ stat_smooth(fill = "blue", alpha = 0.2,
+ colour = "darkblue", size = 2)
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Note that the geom_point and stat_smooth functions both know to take the x and y values from

the aes portion of the ggplot function call.

heightm

height.m

dbh.cm

60
dbh.cm

Figure 8.8: Building a plot up by ggplot2 components.

gplot: all-in-one

Building graphics interactively is useful but I tend not to do it, because my default approach to R coding
is to write blocks of code and then execute them. Happily, ggplot2 provides the gplot function, which
fits my needs nicely. gplot provides a convenient default system and neatens the interface (to my mind,
in any case). It has the advantage of not bothering the user with the identification of aesthetics, at least

in the first instance. See Figure 12.2 for an example of its usage.
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Chapter 9

Linear Regression

This chapter focuses on the R tools that can be used for fitting ordinary linear regression, in various
guises. I do not present the theory here as that has been covered much more effectively elsewhere.

9.1 Preparation

The data are forest inventory data from the Upper Flat Creek area of University of Idaho Experimental
Forest. They were collected as a systematic random sample of variable radius plots. We have measures
of diameter at breast height, 1.37 m, on all the sample trees and measures of height on a subset. Our
immediate goal is to construct a relationship between height and diameter to allow us to predict the
former from the latter. For the moment, we will ignore the mechanism by which trees were selected
for each phase of measurement, and assume that they were selected equal probability. Some plots had
no measured trees; to ensure that they are correctly accounted for an “empty” tree has been used to
represent them.
Read in the data, having examined it within a spreadsheet.

> rm(1ist=1s())
> ufc <- read.csv("../data/ufc.csv")

How big is it?

> dim(ufc)

[1] 637 5

What are the variable names?

> names (ufc)

[1] "plot" "tree" "species" "dbh" "height"

Let’s take a snapshot - I usually eyeball the first 100-200 observations and choose a few sets of 100 at
random. E.g. ufc[1:100,], and ufc[201:300,]. These square brackets are fabulously useful, permitting
great flexibility in data manipulation in a very simple format.

> ufc1:10, ]

plot tree species dbh height

1 1 1 NA NA
2 2 1 DF 390 205
3 2 2 WL 480 330
4 3 1 WC 150 NA
5 3 2 GF 520 300
6 3 3 wC 310 NA
7 3 4 WC 280 NA
8 3 5 WC 360 207
9 3 6 WC 340 NA
10 3 7 WC 260 NA
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Let’s do some unit conversion: diameter at 1.37 m converted to cm and height to meters.

> ufc$dbh.cm <- ufc$dbh/10
> ufc$height.m <- ufc$height/10

Now we’ll count the trees in each species, a few different ways
> table(ufc$species)

DF ES F FG GF HW LP PP SF WC WL WP
10 77 3 1 218 &5 7 4 14 251 34 44

> tapply(ufc$dbh.cm, ufc$species, length)

DF ES F FG GF HW LP PP SF WC WL WP
10 77 3 1 218 5 7 4 14 251 34 44

> aggregate (x=1ist (num.trees=ufc$dbh.cm),

+ by=1ist (species=ufc$species),
+ FUN=length)
species num.trees
1 10
2 DF 77
3 ES 3
4 F 1
5 FG 2
6 GF 185
7 Hw 5
8 LP 7
9 PP 4
10 SF 14
11 wC 251
12 WL 34
13 WP 44

Note the 10 non-trees that mark empty plots - we don’t need them for this purpose. Let’s clean them
up. Here, we do that by setting the species to be missing instead of its current value, which is a blank.
(It’s actually redundant with the following command, so you can ignore it if you wish).

> ufc$species[is.na(ufc$dbh)] <- NA
> ufc$species <- factor(ufc$species)

The F(ir) and the FG(?) are probably GF (Grand fir). Let’s make that change.

> ufc$species[ufc$species 7inj, c("F","FG")] <- "GF"
> ufc$species <- factor(ufc$species)
> table(ufc$species)

We redefined the species factor in order to drop the empty levels. Now, drop the trees with missing height
measures.

> ufc <- ufc[!is.na(ufc$height.m), ]

Graph the tree data (see Figure 8.1). It’s always informative. We see some evidence of curvature, and
some peculiar points. What might have caused those? Nonetheless, an encouraging plot - we should be
able to get a fix on the height within a fair range.

What kind of underlying variability do we have to work with?

> sd(ufc$height.m, na.rm=T)

[1] 7.491152
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Here’s the flexibility of tapply, showing us standard deviation by species:

> tapply(ufc$height.m, ufc$species, sd, na.rm = TRUE)

DF ES GF HW LP PP SF wC
6.633357 5.656854 7.610491 2.489980 5.057997 9.899495 3.656486 6.972851
WL WP

8.848308 9.177620

9.2 Fitting

Now let’s see if we can produce some kind of regression line to predict height as a function of diameter.
Note that R is object-oriented, so we can create objects that are themselves model fits.

yi = Bo+ B + &5 € ~N(0,0%) (9.1)
That is, y; ~ N(Bo + Bizi,0%). We will denote the predictions from this model by ¢;, that is,

9i = Bo + B1m;.
The parameters Sy and (; are (usually) estimated by the method of least squares (equivalently,
Maximum Likelihood), while o2 is estimated by

.o sum of squared residuals
g =
n—2

Using calculus, it is possible to find expressions for these estimates:

D Y G [T )

e Z?=1(~Tz' — )2
Bo = §-—piz
5 = \/2;1(% - 302 Bra;)?

These estimates can readily be obtained using a scientific calculator (which will give, at least, Bo and
B1), but it is even easier to use a statistical package which gives a lot more as well.

> hd.1m.1 <- lm(height.m ~ dbh.cm, data = ufc)

9.3 Diagnostics
First, let’s examine the model diagnostics (Figure 9.1).

> opar <- par(mfrow = c(2, 2), mar=c(4, 4, 3, 1), las=1)
> plot(hd.1m.1)
> par (opar)

The default plot statement produces four graphs when applied to a linear model (1m).

e The top left panel shows a plot of the residuals against the fitted values, with a smooth red curve
superimposed. Here we’re looking for evidence of curvature, non-constant variance (heteroscedas-
ticity), and outliers. Our plot shows the curvature that we’re concerned about, no evidence of
heteroscedasticity, and two points that are quite unalike the others.

e The top right panel shows a quantile plot of the standardized residuals against the normal distri-
bution. Here the ideal plot is a straight line, although modest departures from straightness are
usually acceptable (due to large-sample theory, see Section 15.2.1 for more on this topic), and out-
lying points are obvious. Departures from a straight line in this plot can indicate non-normality of
the residuals or non-constant variance.
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Figure 9.1: Diagnostic plots for the regression of diameter against height.

The bottom left panel shows the square root of the absolute residuals against the fitted values,
along with a smooth red line. Departures from a horizontal line signify heteroscedasticity.

The bottom right panel shows a plot of the leverage of the observations against the standardized
residuals. These are the two components of Cook’s Distance, a statistic that reports the overall
impact upon the parameter estimates of the observations (note that being a large residual or a high
leverage point alone is no guarantee of having a substantial impact upon the parameter estimates).
A reasonably well accepted rule of thumb is that Cook’s Distances greater that 1 should attract
our attention. Contours of these distances (isoCooks?) at 0.5 and 1.0 are added to the graph to
assist interpretation.

There are some worrying points, corresponding to the peculiar observations we noted earlier. However,

the diagnostics imply that they shouldn’t change things very much. None of the points are in the danger
zone of the Cook’s Distances, for example.

Let’s see how we might examine them. The easiest route is probably to use the residuals to locate

the offenders. It’s a bit tricky - in order to be able to match the residuals with the observations, first
we have to order them by the magnitude of the residual, then take the first two. The square brackets
provide access to subscripting, which is one of the engines of S convenience.
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> ufc[order(abs(residuals(hd.1lm.1)), decreasing=TRUE), ][1:2, ]

plot tree species dbh height dbh.cm height.m
415 78 5 WP 667 0 66.7 0.0
376 67 6 WL 575 34 57.5 3.4

It’s clear that they’re pretty odd looking trees! If we wish to exclude them from the model, we can
do so via

> hd.res.1 <- abs(residuals(hd.Ilm.1))

> hd.1m.la <- Im(height.m ~ dbh.cm, data = ufc,

+ subset = (hd.res.1 < hd.res.1[order(hd.res.1,

+ decreasing=TRUE)] [2]))

How did the estimates change? Here’s a nice little plot that shows that the estimates changed very
little. We can do this only because everything is about the same scale.

> opar <- par(las=1)

> plot(coef(hd.1m.1), coef(hd.lm.1la),

+ xlab="Parameters (all data)",

+ ylab="Parameters (without outliers)")

> text(coef(hd.1lm.1)[1]-2, coef(hd.1lm.1a)[1]-0.5,

+ expression(hat (beta) [0]), cex=2, col="blue")

> text(coef(hd.1lm.1) [2]+2, coef(hd.1lm.1la)[2]+0.5,

+ expression (hat (beta) [1]), cex=2, col="blue")

> points (summary(hd.1m.1)$sigma, summary(hd.lm.1la)$sigma)
> text (summary (hd.lm.1)$sigma+1, summary(hd.lm.la)$signma,
+ expression (hat (sigma) [epsilon]), cex=2, col="darkgreen")
> abline(0, 1, col="darkgrey")

> par (opar)
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Figure 9.2: Parameter estimate change as a result of dropping the outliers.

9.4 Other Tools

Other tools for examining regression models should be mentioned:

> 7influence.measures
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9.5 Examining the Model

Clearly, the peculiar observation doesn’t affect the model very strongly; the intercept and slope are largely
unchanged, and the variance of the residuals decreases slightly. Let’s take a look at the model summary.

> summary(hd.1lm.1)

Call:
lm(formula = height.m ~ dbh.cm, data = ufc)

Residuals:
Min 1Q Median 3Q Max
-33.526 -2.862 0.132 2.851 13.321

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 12.67570 0.56406 22.47 <2e-16 *xx*x
dbh.cm 0.31259 0.01388 22.52 <2e-16 *xxx

Signif. codes: O 'x%x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.941 on 389 degrees of freedom
Multiple R-squared: 0.566, Adjusted R-squared: 0.5649
F-statistic: 507.4 on 1 and 389 DF, p-value: < 2.2e-16

R first confirms the model that it has fitted, and then provides a 5-figure summary of the distribution
of the residuals (we want them to be normal, remember).

The next section, Coefficients, summarizes the parameter estimates for the model. In addition to
the parameter estimates, in the column labelled Estimate, there are other columns labelled Std Error,
t value and Pr(>|t|). The entries in the Std Error column are the standard errors of the estimates,
those in the t value column are the values of the estimates divided by their standard error, and the
values in the Pr(>[t|) column are the p-values for testing the hypothesis that the parameter is zero,
against the 2-sided alternative.

The output also has values for Residual Standard Error, Multiple R-squared, and Adjusted
R-squared.

Residual standard error, s The value of s is a measure of the variability of individual points as
they vary from the fitted model.

. \/ sum of (residuals)?

Suneaplained = Sresidual = 0 #study units — #things estimated
MS (residual) > [(fuel consumption), — (;)redicted consumption),]? 9.2)
n—
no s
_ Zimb e (9.3)

n—2

R? The quantity R? (which R prints as Multiple R-squared) is calculated as SS,cgression/SStotal
and is thus a measure of the variation explained by the model relative to the natural variation in the
response values.

The SS (sums of squares) quantities are computed as follows. Recall that the predictions from the
model are denoted ;.

SSregression = Z(gz - g)Q (94)
=1
SStotal - Z(yl - g)2 (95)
=1

We note in passing that there is a third such quantity.
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SSresidual = Z(yz - Q)Q (96)
i=1
and that for reasons that are not at all obvious, but are fundamentally Pythagorean,
Sstotal = Ssresidual + SSregression~ (97)

We see that already, there is a big difference between the marginal variability, which is 7.49 m, and
the conditional variability, which is 4.94 m. The model appears to be a useful one.
We can confirm this observation using the anova function, which provides a whole—model test.

> anova(hd.lm.1)

Analysis of Variance Table

Response: height.m

Df Sum Sq Mean Sq F value Pr(>F)

dbh.cm 1 12388.1 12388.1 507.38 < 2.2e-16 **x*
Residuals 389 9497.7 24.4
Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

9.6 Other Angles

The process of model interrogation is simplified if we realize that the model fit is an object, and the
summary of that model fit is a different object.

> names (hd.1lm.1)

[1] "coefficients" ‘"residuals" "effects" "rank"
[6] "fitted.values" "assign" "qr" "df .residual"
[9] "xlevels" "call" "terms" "model"

> names (summary (hd.Im.1))
[1] "call" "terms" "residuals" "coefficients"
[6] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

Some high-level functions, called methods, exist to enable the reliable extraction of model information,
for example, residuals() and fitted(). We can learn what methods are available for our object as
follows:

> class(hd.1lm.1)
[1]

n 1m|l

> methods(class = class(hd.1lm.1))

[1] addil.lm* alias.lmx anova. lmx case.names. lmx

[5] confint.lm cooks.distance.lm* deviance.lm* dfbeta.lm*

[9] dfbetas.lmx dropl.lm* dummy . coef .1lm effects.lm*
[13] extractAIC.1lm* family.lmx* formula.lm* hatvalues.lm*
[17] influence.lm* kappa.lm labels.lm* logLik.1lm*
[21] model.frame.lm* model .matrix.lm nobs. lm* plot.lm*

[25] predict.lm print.lm* proj.lmx qr.1lm*
[29] residuals.lm rstandard.lmx rstudent.lm* simulate.lmx*
[33] summary.lm variable.names.lm* vcov.lm*

Non-visible functions are asterisked
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We can also extract or otherwise manipulate the attributes of the objects by means of the $ sign:
> hd.1lm.1$call

Im(formula = height.m ~ dbh.cm, data = ufc)

> summary(hd.1lm.1)$sigma

[1] 4.941222

9.7 Other Models

We can add further complexity to our model as follows. Try these and see what you learn.

ufc)
ufc)

> hd.1m.2 <- lm(height.m ~ dbh.cm + species, data
> hd.1m.3 <- 1lm(height.m ~ dbh.cm * species, data

9.8 Collinearity

A common problem for fitting and interpreting regression models in observational studies is in collinearity
of predictor variables. When two predictor variables are correlated, it may be difficult to discern which
of them explains the variation of the response variable, if either.

A consequence of collinearity is that interval estimates of parameters can be much wider than they
would otherwise. Collinearity is a consequence of the structure and pattern of the design matrix, and
therefore reflects the data as they have been collected. If you want to avoid collinearity, then perform a
designed experiment.

We can detect and represent collinearity using the variance—inflation factor (VIF), for example as
provided in the car package by Professor John Fox.

One strategy for handling collinearity that only sometimes makes sense is to replace the offending
predictor variables, say x1 and xo, with statistically equivalent functions of them, for example, 3 = z1+x>
and x4 = 1 —x2, or, equivalently, their average and their difference. The substitution of these constructed
variables does not change the nature of the underlying space that the design matrix describes, but it does
change the description, because x3 and x4 are independent.

9.9 Weights

Although the sample trees may be considered to be a random sample, they are not selected with equal
probability, and they are clustered in location, because they are from a variable-radius plot sample. How
much difference to the parameter estimates does this sample design make? Here, we will assess the effect
of the sample weights. We will examine tools that illuminate the effect of clustering in the next chapter.

Recall that in a variable-radius plot, the probability of selection of a tree is proportional to its basal
area. We can fit a model that accomodates this effect as follows.

> hd.1m.5 <- lm(height.m ~ dbh.cm * species,
+ weights = dbh.cm™-2,
+ data = ufc)

Now we would like to know what effect this change has on our parameter estimates. To pull out estimates
of each slope and intercept we can use the estimable() function provided in the gmodels package, but
for certain models there is a simpler way to obtain them.

> unweighted <- coef (Im(height.m ~ dbh.cm * species - 1 - dbh.cm, data = ufc))
> weighted <- coef(lm(height.m ~ dbh.cm * species - 1 - dbh.cm,
+ weights = dbh.cm™-2, data = ufc))

We can now plot these estimates in various more or less informative ways. The following code constructs
Figure 9.3.

68



©@®O icebreakeR

par (mfrow=c(1,2), las=1, mar=c(4,4,3,1))

plot (unweighted[1:10], weighted[1:10], main="Intercepts", type="n",
xlab="Unweighted", ylab="Weighted")

abline(0, 1, col="darkgrey")

text (unweighted[1:10], weighted[1:10], levels(ufc$species))

plot (unweighted[11:20], weighted[11:20], main="Slopes", type='"n",
xlab="Unweighted", ylab="Weighted")

abline(0, 1, col="darkgrey")

text (unweighted[11:20], weighted[11:20], levels(ufc$species))
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Figure 9.3: Summary of effect of sample weights upon species—specific height—diameter parameter esti-
mates for UFC data.

The effect of weighting appears to be pretty substantial. This effect can be interpreted as telling us
that the smaller and the larger trees require different models.

9.10 Transformations

Sometimes the modeller has biological or statistical reasons to change the nature of the data that are
being modelled. Such transformations can either be done by creating a new variable in the dataframe
with the appropriate function, or by making the transformation inside the call to the model.

> ufc$log.height.m <- log(ufc$height.m)

> hd.1m.4a <- 1Im(log.height.m ~ dbh.cm * species, data = ufc,

+ subset=height.m > 0)

> hd.1m.4b <- 1m(I(log(height.m)) ~ dbh.cm * species, data = ufc,
+ subset=height.m > 0)

Note the use of the I() function used in the latter approach. This tells R to interpret the function
in the usual way, not in the context of the linear model. The difference becomes more obvious when
we think about the double-usage that R is placing upon our familiar operators. For example, * usually
means multiplication, but in the linear model it means include main effects and interaction. Likewise, +
usually means addition, but in the linear model it is used to punctuate the model statement.

In my experience, transformation is an over-used tool. I believe that it is best if possible to work in
the units that will make the most sense to the person who uses the model. Of course it is possible to
back-transform arbitrarily, but why do so if it is unnecessary?

There are certainly circumstances where transformation is called for, but quite often a more appro-
priate and satisfying strategy is available, whether that be fitting a generalized linear model, an additive
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model, or performing a small Monte-Carlo experiment on the residuals and placing trust in the Central
Limit Theorem.

9.11 Testing Specific Effects

R uses an algorithm to control the order in which terms enter a model. The algorithm respects hierarchy,
in that all intereactions enter the model after the main effects, and so on. However, sometimes we need
to change the order in which terms enter the model. This may be because we are interested in testing
certain terms with other terms already in the model. For example, using the npk dataset provided by
MASS (Venables and Ripley, 2002), imagine that N and P are design variables, and we wish to test the
effect of K in a model that already includes the N:P interaction.

> require (MASS)
> data (npk)
> anova(lm(yield ~ block + N * P + K, npk))

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)
block 5 343.29 68.659 4.3911 0.012954 =*
N 1 189.28 189.282 12.1055 0.003684 **
P 1 8.40 8.402 0.5373 0.475637
K 1 95.20 95.202 6.0886 0.027114 *
N:P 1 21.28 21.282 1.3611 0.262841
Residuals 14 218.90 15.636

Signif. codes: 0O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The preceding code fails, because of R’s effect order algorithm. To force the order, we must use the
terms function.

> anova(lm(terms(yield ~ block + N * P + K, keep.order = TRUE), npk))

Analysis of Variance Table

Response: yield
Df Sum Sq Mean Sq F value Pr(>F)

block 5 343.29 68.659 4.3911 0.012954 =*
N 1 189.28 189.282 12.1055 0.003684 x*x*
P 1 8.40 8.402 0.5373 0.475637
N:P 1 21.28 21.282 1.3611 0.262841
K 1 95.20 95.202 6.0886 0.027114 =*

Residuals 14 218.90 15.636

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Happily, we learn that the term order makes no difference in this case.

9.12 Other Ways of Fitting

We can also use other tools to fit the regression. For example, the following code fits the same regression
model using maximum likelihood, and provides estimates of the parameters and their asymptotic standard
erTors.

> normal.ll <- function(parameters, x, y) {

+  sum( dnorm(y,

+ parameters[1] + parameters[2] * x,
+ parameters[3],
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log = TRUE ))
}
good.fit <- optim(c(1, 1, 1),
normal.ll1,
hessian = TRUE,
control = list(fnscale=-1),
x = ufc$dbh.cm,
y = ufc$height.m)

+ + + + + VvV o+ o+

> good.fit$par

[1] 12.6781358 0.3127113 4.9327072
> sqrt(diag(solve(-good.fit$hessian)))
[1] 0.56309283 0.01385363 0.17661565

We can also fit a different error distribution by fitting a location-scale family. Recall that, for any pdf
f(x) and constants p and o > 0,

sleli) =21 (5*) 98)

g

is also a pdf (see e.g. Casella and Berger, 1990, p. 116). Here we will use exp(o) rather than o because
we know that exp(o) > 0

Here we're fitting a linear regression with errors described by a t-distribution with 3 degrees of freedom,
which provides robustness to outliers.

> t3.11 <- function(parameters, x, y) {

+ sum( dt((y - parameters[1] - x * parameters[2]) / exp(parameters[3]),
+ df = 3,

+ log = TRUE ) - parameters[3])

+ }

> good.fit.t <- optim(c(1, 1, 1),

+ t3.11,

+ hessian = TRUE,

+ control = list(fnscale=-1),

+ x = ufc$dbh.cm,

+ y = ufc$height.m)

> good.fit.t$par

[1] 12.1153235 0.3310526 1.2474535

> sqrt(diag(solve(-good.fit.t$hessian)))
[1] 0.52052602 0.01352119 0.04918994

The interpretation of the parameters p and o is left to the analyst. Don’t forget that the variance
of the ¢, is %5, so the reported scale parameter should not be interpreted as the conditional standard
deviation of the data.

Finally, we can use a non-linear model, by changing the mean function.

> normal.ll.nl <- function(parameters, x, y) {
+ sum( dnorm(y,

+ parameters[1] * x = parameters[2],
+ parameters[3],

+ log = TRUE ))

+}

> good.fit <- optim(c(1, 1, 1),

+ normal.ll.nl,

+ hessian = TRUE,

+ control = list(fnscale=-1),
+ x = ufc$dbh.cm,

+ y = ufc$height.m)

> good.fit$par
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[1] 4.4587482 0.4775113 4.7196199
> sqrt(diag(solve(-good.fit$hessian)))

[1] 0.33860126 0.02034234 0.16876952

All these parameter estimators are maximum likelihood estimators, conditional on the model, and
therefore are asymptotically normal, efficient estimators.

I include more about writing your own functions in Chapter 15.
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Chapter 10

Bootstrap

10.1 Introduction

We now take another big step in a different direction. Previously we have relied on theory such as
the Central Limit Theorem to provide us with a rationale to construct interval estimates. What if the
available sample is small and we are unwilling to take the plunge, and reluctant to transform the data to
make it more symmetric? What if we don’t know an appropriate estimator for the standard error of the
population parameter? What if we suspect that our estimator might be biased, and we’d like to correct
for it? When the data are sparse and our assumptions are uncertain, we can obtain a modest buffer by
using computer—intensive tools.

Computer—intensive tools can be used to augment the theory available for data analysis and modelling.
We will examine such a tool in this lab class: the bootstrap. It is not a panacea, but each can, when
used carefully, provide useful insight into data.

10.2 Bootstrap

Recall that the sampling distribution of a statistic is the distribution of the statistic that results from
the repeated process of taking a sample from a population using some fixed sampling prescription and
computing the statistic upon each random sample.

The bootstrap idea proposes that to learn about the sampling distribution of a statistic, we could
simulate the distribution from the available data.

This material will focus on the non—parametric bootstrap.

10.2.1 The Basic Idea

Imagine, for example, that we are interested in an interval estimate of the 50% trimmed mean of the
population from which the following twelve numbers were randomly selected. Note that while we might
reasonably expect the trimmed mean to follow the Central Limit Theorem, it is difficult to know what
to use as an estimate of its variance.

> trim.me <- ¢(0,1,2,3,4,6,8,10,10,12,13,15)
The point estimate is

> mean(trim.me, trim = 0.25)

[1] 6.833333

Now let’s treat the sample as a population, and resample from it, with replacement, and take the mean
again.

> trim.me.l <- sample(trim.me, size = 12, replace = TRUE)
> mean(trim.me.1, trim = 0.25)

[1] 3.333333
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Naturally, it’s very likely to be different. One iteration of this resample-and—estimate doesn’t help us
much. However, if we repeat the process, say, 1000 times, then we have a distribution that estimates the
sampling distribution of the population parameter (Figure 10.1).

> samp.dist <- sapply(1:999,

+ function(x) mean(sample(trim.me,
+ size = 12,

+ replace = TRUE),
+ trim = 0.25))

> par(las = 1, mar=c(4,4,1,1))

> plot(density(samp.dist), main="")

0.15

0.05

0.00 —

T T T T T T T
2 4 6 8 10 12 14

N =999 Bandwidth = 0.4487
Figure 10.1: Sampling Distribution of Trimmed Mean

This distribution suggests to us a simple way to estimate and correct for any bias in our original
estimator. We would estimate the bias in the original estimator by the difference between the original
estimator and the resampled estimator:

> mean(samp.dist) - mean(trim.me, trim = 0.25)

[1] 0.03503504

So an unbiased estimate (the original estimate, with the bias subtracted) would look like this:
> 2 * mean(trim.me, trim = 0.25) - mean(samp.dist)

[1] 6.798298

To obtain an interval estimate using this rationale, we would apply the following approach:

> 2 * mean(trim.me, trim = 0.25) - quantile(samp.dist, p = ¢(0.975, 0.025))

97.5Y 2.5Y
3.00000 10.34167

That is, to get the bias—corrected estimate for the lower interval, we add to the original estimate the
difference between the original estimate and the upper quantile, and wvice versa. This interval is called
the basic bootstrap.

The distribution in Figure 10.1 also suggests to us a simple and direct way to obtain a non—parametric
interval estimate of the trimmed mean. We could simply identify the 2.5% and 97.5% quantiles of the
estimated density.

> quantile(samp.dist, p = ¢(0.025, 0.975))
2.5% 97.5%
3.32500 10.66667
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This approach to constructing an interval estimate is called the percentile estimate.

Although the percentile estimate is intuitively satisfying, it fails to correct for any bias.

We can take our analysis a step further. For example, we may believe that the underlying sampling
distribution really should be normal. In that case, it would make more sense to estimate the standard
error of the estimate and construct normal confidence intervals, which are substantially more stable to
estimate than are the percentiles. We estimate the standard error using the standard deviation of the
sampling distribution.

> mean(samp.dist) + 1.96 * c(-1,1) * sd(samp.dist)
[1] 2.979398 10.757339

This approach to constructing an interval estimate is called the normal estimate. We can check to see
whether normality seems justified using a familiar tool, as follows (Figure 10.2).

> par(las=1)
> qqnorm(samp.dist, main="")
> qqline(samp.dist)

That distribution looks defensibly normal to me.

10

Sample Quantiles

Theoretical Quantiles

Figure 10.2: Normal quantile plot of estimated sampling distribution of 50% trimmed mean.

10.2.2 Formal Implementation

R provides access to this functionality via a package, boot. Using the functions in boot involves a bit
of a learning curve, because they are designed to provide great flexibility rather than a simple approach.
This learning curve is manifested as needing to know more about R functions and R objects.

In order to use the bootstrap within R, we need to write a function that will take at least two
arguments: the sample to be input, and an index, which will permute the sample. In the case of the
trimmed mean, we might write the function like this:

> trim.boot <- function(x, i) {
+ return(mean(x[i], trim = 0.25))

+ }
This function will permute the sample x using the index i, and return the 50% trimmed mean on the

permutation.
We invoke the bootstrap upon it as follows. First, we load the boot library.

(0]
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> library(boot)

Then we use the boot function, saving the outcome as an object. Here, we ask for 999 bootstrap replicates.
> trim.25 <- boot(trim.me, trim.boot, R = 999)

We can plot the bootstrap output to satisfy ourselves about the assumptions, as follows (Figure 10.3).

> par(las=1)
> plot(trim.25)
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Figure 10.3: Diagnostic graphs for 50% trimmed mean bootstrap.

These diagnostics suggest that the assumption of normality seems reasonable. Finally, we examine
the bootstrap object.

> trim.25

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = trim.me, statistic = trim.boot, R = 999)

Bootstrap Statistics :
original bias std. error
t1*x 6.833333 0.175342 2.005707

This object provides us with information about the call, and with estimates of the bias and standard
error of the estimator.
We now move to requesting interval estimates, as follows.

> boot.ci(trim.25, type=c("basic", "norm", "perc"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates

CALL :
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boot.ci(boot.out = trim.25, type = c("basic", "norm", "perc"))

Intervals :

Level Normal Basic Percentile
95% ( 2.727, 10.589 ) ( 2.833, 10.500 ) ( 3.167, 10.833 )
Calculations and Intervals on Original Scale

The estimates reported above differ from those computed earlier because the process is random and our
sample sizes are finite!

The multiplicity of estimates prompts us to ask: how can we choose amongst them? The recommen-
dation is: if the estimates are close, then use the basic estimate. If they are not close, then do not use
any of them — see below instead.

10.2.3 Improvements on the Theme

So far we have covered three types of bootstrap estimator: the basic estimate, the percentile estimate and
the normal estimate. There are many more, for example, the studentized bootstrap, and the accelerated,
bias—corrected bootstrap. It is also possible to improve upon some of these bootstraps by selecting a
suitable transformation for the data. The possibilities are manifold.

Without going into unnecessarily great detail about these other approaches, we note the following
points.

1. It is possible to use some characteristics of the estimated sampling distribution as a basis for
improving on the quality of the percentile interval estimate. For example, the distribution may
show that the estimator is biased, and the distribution itself might be skewed. This reasoning leads
to the an interval estimate called the accelerated, bias—corrected bootstrap.

> boot.ci(trim.25, type=c("bca"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates

CALL :
boot.ci(boot.out = trim.25, type = c("bca"))

Intervals :

Level BCa

95% ( 2.718, 10.333 )

Calculations and Intervals on Original Scale

2. If you can estimate the variance of the estimator for each bootstrap sample, then it is possible
to use a studentized bootstrap. The advantage of the studentized bootstrap is that it has better
properties as an estimator. Broadly speaking, all bootstrap estimators rely upon asymptotic theory,
and the studentized bootstrap gets there faster.

10.2.4 Diagnostics

In addition to the histogram and normal quantile plot noted above, we are often interested in knowing
the contribution that any one observation makes to the overall picture. We can obtain this information
from a bootstrap using the so-called jackknife—after—bootstrap tool (Figure 10.4).

> par(las=1, mar=c(4,4,1,1))
> jack.after.boot (trim.25)

The construction of the jackknife—after—bootstrap is as follows. For each observation, the bootstrap
samples that exclude that observation are identified, and their estimates gathered. The quantiles of these
estimates are then graphed as a sequence of points with the observation number underneath, at the xz—
location that corresponds to an estimate of their effect on the overall bootstrap estimate. The horizontal
dotted lines can be thought of as representing the overall bootstrap distribution. Sharp deviation from
these lines suggests a point that has substantial influence on the outcome.
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Figure 10.4: Jackknife-after—bootstrap graphical diagnostic tool.

For example, note that omission of points 10 and 11, on average, tend to shift the lower tail of
T* —t, which means that there are fewer large estimates from the bootstrap sample when those points
are omitted.

For this dataset no points stand out in particular, but see Exercise 2.

10.2.5 Extensions

We can construct hypothesis tests of the parameters of interest by inverting the confidence intervals that
we have computed. That is, if we start with a null hypothesis that a population parameter p = k, say,
then in order to test that null hypothesis with size «, we construct a 1 — « confidence interval for the
population parameter. If the interval does not include k then we reject the null hypothesis.

10.2.6 Wrap—up

A common question is: how many bootstrap replicates should we use? Mostly, bootstrap replicates are
really cheap. Then, we should think about doing thousands of them. If they are more expensive, then
however many our time can afford.

Despite its attractions, the bootstrap does not always work. In particular, we should be wary of
applying the bootstrap when there are data missing, when the data are dirty, and when the assumption
of independence is questionable. The bootstrap will give us an answer in any of these cases, but the
answer may well be misleading. Caveat computator!

Further reading: Efron and Tibshirani (1993) and Davison and Hinkley (1997).

10.3 A Case Study

We need a fairly challenging example. The following data are too good an example to pass up, and provide
a nice break from forestry. These data are from OzDASL: http://wuw.statsci.org/data/oz/rugby.
html. The following description is from Lee (1994). Rugby football is a popular quasi-amateur sport
widely played in the United Kingdom, France, Australia, New Zealand, South Africa, and elsewhere. It
is rapidly gaining popularity in the US, Canada, Japan and parts of Europe. Recently, some of the rules
of the game have been changed, with the aim of making play more exciting. In a study to examine the
effects of the rule changes, Hollings and Triggs (1993) collected data on some recent games.

Typically, a game consists of bursts of activity which terminate when points are scored, if the ball is
moved out of the field of play or if an infringement of the rules occurs. In 1992, the investigators gathered
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data on ten international matches which involved the New Zealand national team, the All Blacks. The
first five games studied were the last international games played under the old rules, and the second set
of five were the first internationals played under the new rules.

For each of the ten games, the data list the successive times (in seconds) of each passage of play in that
game. One interest is to see whether the passages were on average longer or shorter under the new rules.
(The intention when the rules were changed was almost certainly to make the play more continuous.)

> require(lattice)
> require (MASS)
> require(boot)
> require(nlme)

Read the data and make necessary adjustments.

> rugby <- read.csv("../data/rugby.csv")

> rugby$rules <- "New"

> rugby$rules[rugby$game < 5.5] <- "01d"

> rugby$game.no <- as.numeric(rugby$game)

> rugby$rules <- factor(rugby$rules)

> rugby$game <- factor (rugby$game)

> str(rugby)

'data.frame': 979 obs. of 4 variables:

$ game : Factor w/ 10 levels "i","2" 3" "4" . .: 1111111111
$ time :num 39.2 2.7 9.2 14.6 1.9 17.8 15.5 563.8 17.5 27.5 ...

$ rules : Factor w/ 2 levels "New","01ld": 2222222222 ...
$ game.no: num 1111111111

The following analysis is from the OzDASL website:
Can use one-way analysis of variance on this data to compare the ten games. A contrast

would then be relevant to compare the first five games to the second five.

Alternatively, one can pool the times for the first five games and the last five games together
and conduct a two-sample test.

The times are highly skew to the right. They need to be transformed to approximate sym-
metry; alternatively they could be treated as exponential or gamma distributed.
Figure 10.5 confirms that the data have substantial skew.
> densityplot(~ time | game, data=rugby, layout=c(5,2))

Assuming that the design choices made by the recommended analysis are reasonable, do we really
need to transform the data for the analysis? Here is the standard approach. Figure 10.6 reports the
important diagnostic; the qq probability plot of the standardized residuals.

> times.Im <- lm(time ~ rules, data=rugby)

\2

qqnorm(stdres (times.1m))
qqline(stdres(times.1lm))

v

v

boxcox(times.1m)

If we were to follow the strategy advocated by the website, (and many popular regression books!)
we’d now try something like a Box-Cox diagnostic, which gives us Figure 10.7. This seems to highly
recommend a transformation of about 0.2.

Effecting the transformation and performing the analysis gives us the normal probability plot for
residuals presented in Figure 10.8. Not perfect, but much better than in Figure 10.6.

> times.Im.2 <- 1m(I(time~0.2) ~ rules, data=rugby)

> qqnorm(as.numeric(stdres(times.1m.2)))
> qqline(as.numeric(stdres(times.1m.2)))
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Figure 10.5: Lattice density plot of the rugby times data, by game.
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Figure 10.6: Key diagnostic graph for ordinary
least squares regression upon rugby data: the qq
probability plot of the standardized residuals.

Figure 10.7: Box-Cox diagnostic test from MASS
(Venables and Ripley, 2002). Note the tight confi-
dence interval, which implies that a transformation

is recommended.

The null hypothesis that there is no difference between the new rules and old can now be tested.

> anova(times.lm.2)

Analysis of Variance Table

Response: I(time~0.2)
Df Sum Sq Mean Sq F value

rules 1

1.147 1.14666

Residuals 977 78.335 0.08018

Signif. codes: O

Vkokok !

0.001 ‘"*x'

0.01

Pr(OF)

l*l

0.05 '.

14.301 0.0001652 *x*x*

] 0.1 1 '

1
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Normal Q-Q Plot

Sample Quantiles

Theoretical Quantiles

Figure 10.8: Key diagnostic graph for ordinary least squares regression upon transformed rugby data:
the qq probability plot of the standardized residuals.

A highly significant Rules effect suggests that there is indeed a difference - for the transformed data.
Had we checked the model from the untransformed data, we would have concluded the same thing.

Regression books commonly advocate examination of the normal probability plot of the residuals,
in order to assess the cleavage of the model/data combination to the assumption of normality. If the
residuals are normal, then we can estimate confidence intervals, test parameters, conveniently, and do
whole-model tests, etc.

In fairness I should add that not all such books do so, for example Weisberg (2005) and Gelman and
Hill (2007) give this diagnostic a low priority.

Huber (1981) says (pp 159-160) that the sampling distribution of an arbitrary linear combination of
the parameter estimates from least-squares regression is asymptotically normal if A = max;(h;) — 0 as n
increases, where h; are the diagonal elements of the Hat matrix (i.e. the leverages). Therefore the above
condition of the normality of residuals is really too restrictive. That is, we ought to be able to perform
those estimations and tests under the circumstances that either of two cases holds:

1. the residuals are normally distributed, or
2. the sample size is large enough that we can invoke large-sample theory.

The standard qq normal plot regression diagnostic addresses case 1 but not case 2. Therefore the
diagnostic plot might imply that we have to transform, or use weights, or worry in some way, because the
residuals are non-normal. However, in some situations, we don’t have to worry because it is reasonable
to interpret the Central Limit Theorem as asserting that for a sufficiently large sample size, the sampling
distribution of a well-behaved estimate of a parameter can be treated as being normally distributed with
negligible error. The problem is in identifying what a suffificiently large sample size is, or perhaps more
immediately, whether the sample we have is sufficiently large.

I’d like to avoid transforming because it involves messing with what is often a perfectly good ab-
stract model. For example, I'd really rather not transform the rugby data, because the model loses the
measurement units, and therefore a substantial slice of the real-world meaning and interpretation and
utility. From this point of view, the Box-Cox diagnostic test, as in Figure 10.7, provides us with the
exact asymptotic inverse of good advice. As the sample size increases, the 95% CI for the parameter
that represents the optimal transformation narrows, making the transformation seem more urgent - when
really it is less urgent because of the large-sample theory.

To avoid this vexing problem, we could bootstrap the data, fit the model, obtain non-parametric
estimates of the sampling distributions of the parameter(s) of interest (be they estimates or test statistics),
and then either assess their normality, or just use the estimated distributions directly. Such an approach
will allow us to balance the effects of the underlying distribution of the parameters against large sample
theory, and let us know whether we really need to transform, apply weights, or whatever.
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So, we can write a function that will compute the parameter estimates from an arbitrary sample. For
this model it will simply be the difference between the means of the timings for the old and the new rules,
which doesn’t require a formal linear model fit, but we’ll keep the model anyway. We use a studentized
bootstrap. We will see how to attack this problem with a loop in Section 15.2.

> boot.1lm <- function(data, i) {

+ model.t <- coefficients(summary(lm(datal[i,2] ~ datal[i,3])))
+ c(model.t[2,1], model.t[2.2]"2)

+

This function extracts the estimate of the time difference between the two groups and its variance.
The bootstrap command is:

> boot.rugby <- boot(rugby, boot.lm, R=199)
> #boot.rugby <- boot(rugby, boot.lm, R=1999)

We can extract and assess the distribution of the bootstrapped simulations via the following code,
the output of which is presented in Figure 10.9:

> plot(boot.rugby)
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Figure 10.9: Key diagnostic graphs for bootstrap upon untransformed rugby data: the histogram and qq
probability plot of the simulated values.

This distribution appears to be acceptably normal. This diagnostic suggests that we can proceed with
the analysis of the bootstrap results (Davison and Hinkley, 1997).
To conclude, we can compare the bootstrap estimate of the standard error

> sd(boot.rugby$t[,1])
[1] 0.8510546
with the model-based estimate from the original, untransformed data:
> coefficients (summary(times.1m)) [2,2]
[1] 0.9038698

These also appear acceptably close. This result suggests that, in this case, an invocation of large-
sample theory for the initial model fit would have been reasonable. The transformation seems to have
been unnecessary, and has cost us an easily-interpretable model. It would also be interesting to know
whether the transformation costs power or size.

82



©@®O icebreakeR

1. In addition to providing estimators in its own right, bootstrapping is a useful way to see whether
or not the sample is suitable for large-sample theory. Consider the following datasets in the context
of a confidence interval for the mean.

e > data.l <- rexp(10)

e > data.2 <- rexp(100)

e > data.3 <- rcauchy(10)
e > data.4 <- rcauchy(100)

For each,

(a) Use a graphical tool to assess the suitability of the assumption that the population is normal.
(b) Compute the 95% confidence interval for the population mean using this sample.

(¢) Create a bootstrap for the population mean, and examine the usual graphical diagnostics.
What do they tell you?

(d) Compute the four kinds of intervals for the mean that we have introduced in this chapter.
What do they tell you?

2. Consider the following dataset in the context of a confidence interval for the mean.
> data.5 <- c(rexp(9), 7)

(a) Create a bootstrap for the population mean, and examine the usual graphical distributional
diagnostics. What do they tell you?

(b) Compute the four kinds of intervals for the mean that we have introduced in this chapter.
What do they tell you?

(c) Examine the jack—after—boot diagnostic. What does it tell you?
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Chapter 11

Modelling, but not as We Know It

We now spend some time exploring tools that will be useful when, for whatever reason, the world no
longer seems linear.

11.1 Non-linear models

This section focuses on the R tools that can be used for fitting non-linear regression, in various guises. As
before, I do not present the theory here as that has been covered much more effectively elsewhere. Rec-
ommended reading includes: Ratkowsky (1983), Gallant (1987), Bates and Watts (1988), and Seber and
Wild (2003). Our data are Norway spruce measurements from von Guttenberg (1915), kindly provided
by Professor Boris Zeide.

First we read and examine the data.

> gutten <- read.csv("../data/gutten.csv")
> str(gutten)

'data.frame': 1287 obs. of 8 variables:

$ Site :int 1111111111

$ Location: int 1111111111 ...

$ Tree :int 1111111111 ...

$ Age.base: int 10 20 30 40 50 60 70 80 90 100 ...

$ Height : num 1.2 4.2 9.3 14.9 19.7 23 25.8 27.4 28.8 30 ...

$ Diameter: num NA 4.6 10.2 14.9 18.3 20.7 22.6 24.1 25.5 26.5 ...
$ Volume : num 0.3 5 38 123 263 400 555 688 820 928 ...

$ Age.bh : num NA 9.67 19.67 29.67 39.67 ...

We check for missing values.

> colSums(is.na(gutten))

Site Location Tree Age.base  Height Diameter Volume

0 0 0 0 0 87 6
Age.bh
87

We will focus on fitting diameter growth models, and we should remove the unwanted columns and
rows. They will cause problems later, otherwise.

> gutten <- gutten[!is.na(gutten$Diameter),

+ c("Site", "Location", "Tree", "Diameter", "Age.bh")]
> names (gutten) <- c("site","location","tree","dbh.cm", "age.bh")

> gutten$site <- factor(gutten$site)

> gutten$location <- factor(gutten$location)

We should also construct a unique site/location/tree identifier.
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> gutten$tree.ID <- interaction(gutten$site, gutten$location, gutten$tree)

The lattice package provides us with an easy way to plot the data. (Figure 11.1). Note that these are
not particularly large trees!

> require(lattice)

> xyplot(dbh.cm ~ age.bh | tree.ID, type="1", data=gutten)
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Figure 11.1: Guttenberg’s diameter data.

After inspecting Figure 11.1, we shall use a simple non-linear model that passes through the origin and
provides an asymptote. Passing through the origin is reasonable as a starting point because, by definition,
dbh is zero until age at breast height is greater than 0. That may prove to be an ugly constraint however.
The model is then

yi = d1 X [1 —exp (—exp (¢p2) )] + €t (11.1)

where ¢, is the fixed, unknown asymptote and ¢, is the fixed, unknown scale (see Pinheiro and Bates,
2000), and the time until the tree reaches half its predicted maximum size g 5, is to.5 = log2/ exp ¢s.
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NB: it may seem peculiar that we adopt this model for which one of the parameters has a nice
interpretation but the other is only a function of a quantity that has a nice interpretation. We choose
this version because the parameterization of a non-linear model intimately affects its fittability'. Some
parameterizations are very difficult to fit around; Schabenberger and Pierce (2002) have a nice discussion
and demonstration of this point, and see also Ratkowsky (1983). The complicated part about it is that
the quality of the parameterization also depends on the data, so a version of a model what works well
for one dataset may work very poorly for another.

In order to fit a non-linear model we generally need to construct our own non-linear model function.
We can do this simply by constructing a function that produces the appropriate predictions given the
inputs. However, fitting the model turns out to be more efficient if we can also pass the first, and maybe
second derivatives to the function as well. Writing a function to pass the predictions and the derivatives
is simplified by using the deriv() function. NB: R provides some simple prepackaged models, about
which we learn more later.

Our use of deriv() requires three things: a statement of the function, a vector of parameter names
for which derivatives are required, and the template of the function call.

> diameter.growth <- deriv(~ asymptote * (1 - exp(-exp(scale) * x)),
+ c("asymptote", "scale"),
+ function(x, asymptote, scale){})

11.1.1 One tree

Having written the non-linear model as a function, we should try it out. We select a handy tree:
> handy.tree <- gutten[gutten$tree.ID == "1.1.1",]

In a departure from our earlier chapters, we also need to guess the starting estimates for the param-
eters. It’s a very modest pain in this case. Here we will use the highest value as an estimate of the
asymptote, and guess that the tree reaaches about half its maximum diameter by about 30 years.

> max (handy. tree$dbh.cm)
[11 29

> log(log (2) / 30)

[1] -3.76771

> handy.nls <- nls(dbh.cm ~ diameter.growth(age.bh, asymptote, scale),
+ start = list(asymptote=29, scale=-3.76771),

+ data = handy.tree)

We inspect the model object the usual way.
> summary (handy.nls)

Formula: dbh.cm ~ diameter.growth(age.bh, asymptote, scale)

Parameters:
Estimate Std. Error t value Pr(>|t])
asymptote 31.0175 0.4182 74.16 3.33e-16 **x*
scale -3.8366 0.0344 -111.52 < 2e-16 *x*x*
Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' " 1

Residual standard error: 0.4507 on 11 degrees of freedom

Number of iterations to convergence: 4
Achieved convergence tolerance: 4.943e-07

1Pardon me!
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Apart from the fact that we can’t guarantee to have found a global minimum, these are the least-
squares estimates. We should try a range of other starting points to be sure that we are happy with
these.

However, it might also be of interest? to make inference on these estimates. What is their underlying
population distribution? We can learn more about that with the handy profile() function, which
provides insight as to the shape of the parameter space on to which our data have been projected. Ideally
we want the distribution of the parameter estimates to be approximately normal; in order for this to be
true the objective function should be approximately quadratic close to the nominated minimum.

> opar <- par(mfrow=c(2,2), mar=c(4,4,2,1), las=1)
> plot(fitted(handy.nls), handy.tree$dbh.cm,
+ xlab = "Fitted Values", ylab = "Observed Values")
> abline(0, 1, col="red")
> plot(fitted(handy.nls), residuals(handy.nls, type="pearson"),
+ xlab = "Fitted Values", ylab = "Standardized Residuals")
> abline(h=0, col="red")
> plot(profile(handy.nls), conf=0.95)
> par(opar)
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Figure 11.2: Diagnostic and profile plots for simple asymptotic model with handy tree.

Figure 11.2 provides a useful graphical summary of the model performance, combining some informa-
tion about the residuals with some profile plots. The top-left frame is a plot of the fitted values against

20or it might not.
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the observed values, with a z = y line inposed. We’d like the points to be close to that line, and to not
show fanning or curvature. The top right panel is a plot of the standardized residuals against the fitted
values, with a y = 0 line imposed. As with OLS regression, we want to see no particular pattern, and no
influential outliers. The bottom panels show the profile plots, one for each parameter estimate. These
graphs provide information about the acceptability of the assumption of normality on the underlying
distribution of the parameter estimates. Our ideal scenario is for the blue solid lines to be straight,
and the vertical pink dashed lines to meet the x-axis at approximately the large-sample 95% confidence
interval. We can quickly compute the large-sample estimates using;:

> (my.t <- qt(0.975, summary(handy.nls)$df[2]))
[1] 2.200985

> coef (summary (handy.nls)) [,1:2] 7%*% matrix(c(1,-my.t,1,my.t), nrow=2)

[,1] [,2]
asymptote 30.096977 31.93802
scale -3.912319 -3.76088

and extract the profiled versions using:

> confint (handy.nls)

2.5% 97.5%
asymptote 30.147020 31.976346
scale -3.912546 -3.762685

Our diagnostics throw no substantial doubt on the validity of our model. But, the data appear to
have a modest kink that our model failed to capture. This might be true just of this tree, or a subset of
the trees, or of all the trees. We are naturally curious, but understandably reluctant to go through the
same process for every tree. We will need some more general tools.

11.2 Splines

We previously adopted the traditional approach to choosing and fitting models for which a linear model
seems unsuitable. Underlying our approach has been the unstated assumption that we are interested in
knowing the values of certain parameters, in our case the asymptote and the scale. What if we were only
interested in prediction? That is, what if our goal were to use the model for its outputs only, and the
parameter estimates, whatever they be, are irrelevant? Under these circumstances it might make more
sense to use a spline, or an additive model.

11.2.1 Cubic Spline

The bs () function produces the model matrix for a cubic spline, using B-spline basis. The B-spline basis
is appealing because the functions are local, inasumuch as they are zero in areas where they are not
wanted. See Wood (2006) for a very readable explanation?.

Here we use the function to fit a linear model that represents a cubic spline with one knot (df —
degree = 1). Note that we set the complexity of the model by this means.

> require(splines)
> handy.spline <- Im(dbh.cm ~ bs(age.bh, df=4, degree=3), data=handy.tree)
> summary (handy.spline)

Call:
Im(formula = dbh.cm ~ bs(age.bh, df = 4, degree = 3), data = handy.tree)

Residuals:
Min 1Q Median 3Q Max

3 Actually this is a great book for many reasaons, not least amongst which is the authors clarity and willingness to drop
into diagrams at any time.
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-0.136378 -0.053526 0.009092 0.045355 0.096675

Coefficients:
Estimate Std. Error t value
(Intercept) 4.55464 0.07893 57.71
bs(age.bh, df = 4, degree = 3)1 13.01407 0.17698 73.54
bs(age.bh, df = 4, degree = 3)2 20.74721 0.17750 116.88
bs(age.bh, df = 4, degree = 3)3 23.85037 0.16071 148.40
bs(age.bh, df = 4, degree = 3)4 24.43626 0.10916 223.85
Pr(>ltl)
(Intercept) 9.03e-12 **x*
bs(age.bh, df = 4, degree = 3)1 1.30e-12 **x*
bs(age.bh, df = 4, degree = 3)2 3.2le-14 **x*
bs(age.bh, df = 4, degree = 3)3 4.75e-15 *x*x*
bs(age.bh, df = 4, degree = 3)4 < 2e-16 **x
Signif. codes: O '*%x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.08531 on 8 degrees of freedom
Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999
F-statistic: 2.406e+04 on 4 and 8 DF, p-value: 2.386e-16

The model diagnostics are reported in Figure 11.3.

opar <- par(las=1, mfrow=c(2,2), mar=c(4,4,2,2))

plot(dbh.cm ~ age.bh, data=handy.tree)

curve (predict (handy.spline, data.frame(age.bh=x)),
from=10, to=140, add=TRUE)

plot (handy.spline, which=c(1,2,5))

par (opar)

vV V. + Vv vV

Overall the model looks good, as we might expect, with only one point of particularly high influence:

v

handy.tree["2",]

site location tree dbh.cm age.bh tree.ID
2 1 1 1 4.6 9.67 1.1.1

The first point measured. Otherwise the model seems fine, but the arbirtrary nature the selection of
the knot count is a bit of a concern.

11.2.2 Additive Model

The cubic splines are sufficiently flexible that the cautious analyst will worry about the possibility of
overfitting. It seems natural to try to rein in the number of knots, or degrees of freedom, that are
available to the model. For example, we could fit a sequence of models, and compare them by some
means, with a penalty for curviness. R has such a solution in the mgcv package (Wood, 2006), among
others. This packages uses so-called generalized cross-validation (GCV) to select the complexity of the
model, and conditional on the conplexity, reports suitable fit statistics.

GCV represents the expected prediction error variance, that is, the variance of the errors of predictions
of unobserved points. Loosely speaking, the square root of the GCV statistic is in the units of the response
variable, here, cm.

> library(mgcv)
> handy.gam <- gam(dbh.cm ~ s(age.bh), data=handy.tree)
> summary (handy.gam)

Family: gaussian
Link function: identity
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Figure 11.3: Graphical summary of the spline fit.

Formula:
dbh.cm ~ s(age.bh)

Parametric coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 21.56923 0.01325 1628 2.47e-12 *xx*

Signif. codes: O '**x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df F p-value
s(age.bh) 8.168 8.813 34827 <2e-16 **x*

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

R-sq. (adj) = 1  Deviance explained = 100%
GCV = 0.0077406 Scale est. = 0.0022818 n = 13

> sqrt(summary (handy.gam)$sp.criterion)
[1] 0.08798043

Figure 11.4 provides a summary of the model structure. The top left graph shows the predicted
curve, with a two standard-error shaded polygon superimposed. The other three are standard regression
diagnostic plots.

> par(las=1, mfrow=c(2,2), mar=c(4,4,2,1))

> plot(handy.gam, rug=FALSE, shade=TRUE)

> plot(predict (handy.gam), residuals (handy.gam))
> abline(h=0, col="springgreen3")
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> gqnorm(residuals (handy.gam))

> qqline(residuals (handy.gam), col="springgreen3")

> scatter.smooth(predict (handy.gam), sqrt(abs(residuals(handy.gam))))
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Figure 11.4: Diagnostic plots for generalized additive model for predicting diameter from age on a handy

tree.
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Chapter 12

Hierarchical Models

We now shift to the analysis of hierarchical data using mixed-effects models. These models are a natural
match for many problems that occur commonly in natural resources.

12.1 Introduction

Recall that for fitting a linear regression using the ordinary techniques that you might be familiar with,
you were required to make some assumptions about the nature of the residuals. Specifically, it was
necessary to assume that the residuals were

1. independent
2. identically distributed, and, more often than not,
3. normally distributed.

The assumption of constant variance (homoscedasticity) lives in the identically distributed assumption
(point 2, above). If these assumptions are true, or even defensible, then life is fine. However, more often
than not, we know they’re not true. This can happen in natural resources data collections because the
data may have a temporal structure, a spatial structure, or a hierarchical structure, or all three!. That
structure may or may not be relevant to your scientific question, but it’s very relevant to the data analysis
and modelling!

I mention several references. None are mandatory to purchase or read, but all will be useful at some
point or other. They are mentioned in approximate order of decreasing utility for this level.

12.1.1 Methodological

Pinheiro and Bates (2000) details model fitting in R and Splus, which both provide first-rate graphical
model discrimination and assessment tools through the libraries written by the authors. Good examples
are provided. Schabenberger and Pierce (2002) is a treasure-trove of sensible advice on understanding
and fitting the generalized and mixed-effects models that form the core of this class. There are copious
worked examples and there is plenty of SAS code. You are welcome to interact with the material however
you see fit. Finally, Fitzmaurice et al. (2004) and Gelman and Hill (2007) do a first-rate job of explaining
the practice of fitting mixed-effects models.

In addition to these books, there are numerous articles that try to explain various elements of these
topics in greater or lesser detail. In the past I have found Robinson (1991) (no relation!) and the
discussions that follow it particularly useful.

12.1.2 General

Venables and Ripley (2002) is a must-have if you're interested in working with R or Splus. The
three previous editions are now legendary in the R/S community for their thorough explication of
modern statistical practice, with generous examples and code. The R community has also generated
some excellent start-up documents. These are freely available for download at the R project website:

1“The first law of ecology is that everything is related to everything else.” ~— Barry Commoner, US biolo-
gist/environmentalist. The Closing Circle: Nature, Man, and Technology. New York : Knopf, 1971.
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http://www.r-project.org. Download and read any or all of them, writing code all the way. If you're
interested in a deeper exploration of the programming possibilities in R or S then Venables and Ripley
(2000) is very useful. Some larger-scale projects that I have been involved with have required calling C
programs from R; this reference was very helpful then.

12.2 Some Theory

Mixed effects models contain both fixed and random effects. The model structure is usually suggested
by the underlying design or structure of the data. I like to claim that random effects are suggested by
the design of a study, and fixed effects are suggested by the hypotheses, but this is not always true.

12.2.1 Effects

“Effects” are predictor variables in a linear or non-linear model®>. The discussion of fixed and random
effects can get a little confusing. “Random” and “fixed” aren’t normally held to be opposite to one
another, or even mutually exclusive (except by sheer force of habit!). Why not “stochastic” and “deter-
ministic”? Or, “sample” and “population”? Or, “local” and “global”’? These labels might tell more of
the story. Gelman and Hill (2007) decline to use random and fixed altogether.

There are different ways to look at these two properties. Unfortunately, it does affect the data analysis
and the conclusions that can be drawn. Modellers may disagree on whether effects should be fixed or
random, and the same effect can switch depending on circumstances. Certainly, statisticians haven’t
agreed on a strategy. Some will claim that it depends entirely on the inference, and some that it depends
entirely on the design.

As the statistical tools that are used to analyze such data become more sophisticated, and models
previously unthinkable become mainstream, the inadequacies of old vocabularies are increasingly obvious.

Random effects

Random effects are those whose levels are supposedly sampled randomly from a range of possible levels.
Generally, although not always, when random effects are considered it is of interest to connect the results
to the broader population. That is, the levels are assumed to be collectively representative of a broader
class of potential levels, about which we wish to say something. Alternatively, one might say that a
random effect is simply one for which the estimates of location are not of primary interest. Another
alternative is that one might say that a random effect is one that you wish to marginalize, for whatever
reason.

Fixed effects

Fixed effects are generally assumed to be purposively selected, and represent nothing other than them-
selves. If an experiment were to be repeated, and the exact same levels of an experimental effect were
purposively produced, then the effect is fixed. However, some effects which might vary upon reapplication
may also be fixed, so this is not definitive. Alternatively, one might say that a fixed effect is simply one
for which the estimates of location are of first interest. Another alternative is that one might say that a
fixed effect is one that you wish to condition on, for whatever reason.

Mixed-up effects

Some variables do not lend themselves to easy classification, and either knowledge of process and/or an
epistemological slant is required. These are common in natural resources. For example, if an experiment
that we feel is likely to be affected by climate is repeated over a number of years, would year be a fixed
or a random effect? It is not a random sample of possible years, but the same years would not recur
if the experiment were repeated. Likewise the replication of an experiment at known locations: some
would claim that these should be a fixed effect, others that they represent environmental variation, and
therefore they can be considered a random effect.

2The use of the label “effects” is a hang-over from experimental design, and no longer really suits the application, but
that’s how inertia goes.
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12.2.2 Model Construction

The process of model construction becomes much more complex now. We have to balance different
approaches and assumptions, each of which carries different implications for the model and its utility.
If we think about the process of fitting an ordinary regression as being like a flow chart, then adding
random effects adds a new dimension to the flow chart altogether. Therefore it’s very important to plan
the approach before beginning.

The number of potential strategies is as varied as the number of models we can fit. Here is one that
we will rely on in our further examples.

1. Choose the minimal set of fixed and random effects for the model.

(a) Choose the fixed effects that must be there. These effects should be such that, if they are not
in the model, the model has no meaning.

(b) Choose the random effects that must be there. These effects should be such that if they are
not in the model, then the model will not adequately reflect the design.

This is the baseline model, to which others will be compared.

2. Fit this model to the data using tools yet to be discussed, and check the assumption diagnostics.
Iterate through the process of improving the random effects, including;:

(a) a heteroskedastic variance structure (several candidates)
(b) a correlation structure (several candidates)

(c) extra random effects (e.g. random slopes)

3. When the diagnostics suggest that the fit is reasonable, consider adding more fixed effects. At each
step, re-examine the diagnostics to be sure that any estimates that you will use to assess the fixed
effects are based on a good match between the data, model, and assumptions.

A further layer of complexity is that it may well be that the assumptions will not be met in the
absence of certain fixed effects or random effects. In this case, a certain amount of iteration is inevitable.

It is important to keep in mind that the roles of the fixed and the random effects are distinct. Fixed
effects explain variation. Random effects organize unexplained variation. At the end of the day you will
have a model that surficially seems worse than an simple linear regression, by most metrics of model
quality. Our goal is to find a model/assumption combination that matches the diagnostics that we
examine. Adding random effects adds information, and improves diagnostic compatibility, but explains
no more variation!

The bottom line is that the goal of the analyst is to find the simplest model that satisfies the necessary
regression assumptions and answers the questions of interest. It is tempting to go hunting for more
complex random effects structures, which may provide a higher maximum likelihood, but if the simple
model satisfies the assumptions and answers the questions then maximizing the likelihood further is a
mathematical exercise - not a statistical one.

Example

In order to illuminate some of these questions, consider the Grand fir stem analysis data. These data are
plotted in Figures 12.1 and 12.2.

> rm(list = 1s())

> stage <- read.csv("../data/stage.csv")

> stage$Tree.ID <- factor(stage$Tree.ID)

> stage$Forest.ID <- factor(stage$Forest, labels = c("Kaniksu",

+ "Coeur d'Alene", "St. Joe", "Clearwater", "Nez Perce", "Clark Fork",
+ "Umatilla", "Wallowa", "Payette"))

> stage$HabType.ID <- factor(stage$HabType, labels = c("Ts/Pach",

+ "Ts/0Op", "Th/Pach", "AG/Pach", "PA/Pach"))

> stage$dbhib.cm <- stage$Dbhib * 2.54

> stage$height.m <- stage$Height / 3.2808399
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These habitat codes refer to the climax tree species, which is the most shade-tolerant species that

can grow on the site, and the dominant understorey plant, respectively. Ts refers to Thuja plicata and
Tsuga heterophylla, Th refers to just Thuja plicata, AG is Abies grandis, PA is Picea engelmanii and
Abies lasiocarpa, Pach is Pachistima myrsinites, and Op is the nasty Oplopanaz horridurn. Grand fir

is considered a major climax species for AG/Pach, a major seral species for Th/Pach and PA /Pach,

and a minor seral species for Ts/Pach and Ts/Op. Loosely speaking, a community is seral if there is
evidence that at least some of the species are temporary, and climaz if the community is self-regenerating
Daubenmire (1952).

> opar <- par(las=1)

> plot(stage$dbhib.cm, stage$height.m, xlab="Dbhib (cm)", ylab="Height (m)")

> par (opar)
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Figure 12.1: Al Stage’s Grand Fir stem analysis data: height (ft) against diameter (in). These were
dominant and co-dominant trees.

which I include below for reference, and portability.

>
+
>
>
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

colours <- c("deepskyblue", "goldenrod", "purple",

"orangered2", "seagreen")

par (mfrow=c(3,3), pty="m", mar=c(2, 2, 3, 1) + 0.1, las=1)
for (i in 1:length(levels(stage$Forest.ID))) {

thisForest <- levels(stage$Forest.ID) [i]
forestData <- stage[stage$Forest.ID==thisForest,]
plot(stage$dbhib.cm, stage$height.m, xlab = "", ylab = "",
main = thisForest, type="n")
theseTrees <- factor(forestData$Tree.ID)
legend ("topleft",
unique (as.character (forestData$HabType.ID)),
xjust=0, yjust=1, bty="n",
col=colours[unique (forestData$HabType)],
1lty=unique (forestData$HabType)+1)
for (j in 1:length(levels(theseTrees))) {
thisTree <- levels(theseTrees) [j]
lines (forestData$dbhib.cm[forestData$Tree.ID==thisTree],
forestData$height.m[forestData$Tree.ID==thisTree],
col=colours[forestData$HabType [forestData$Tree.ID==thisTreel],

An earlier version of this document required a reasonably fussy nested loop to produce Figure 12.2,
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lty=forestData$HabType [forestData$Tree. ID==thisTree]+1)
}

+
+
+ }
> mtext ("Height (m)", outer=T, side=2, line=2)
> mtext ("Diameter (cm)", outer=T, side=1, line=2)

However, application of Hadley Wickham’s powerful ggplot2 package simplifies this challenge. Thanks
are due to Charlotte Wickham for the code.

> library(ggplot2)

> gplot(dbhib.cm, height.m,

values = c("deepskyblue", "goldenrod",
"purple", "orangered2",
"seagreen")) +

scale_linetype_manual (name = "Habitat Type", values = c(1,2,4:6))

+ data = stage, group = Tree.ID,

+ geom = "line",

+ facets = ~ Forest.ID,

+ colour = HabType.ID,

+ linetype = HabType.ID,

+ xlab = "Diameter (cm)", ylab = "Height (m)"
+ )+

+ scale_colour_manual (name = "Habitat Type",
+

+

+

+

12.2.3 Dilemma

An easy way to approach the advantages to modelling that are offered by mixed-effects models is to think
about a simple example. Imagine that we are interested in constructing a height-diameter relationship
using two randomly selected plots in a forest, and that we have measured three trees on each. It turns out
that the growing conditions are quite different on the plots, leading to a systematic difference between
the height—diameter relationship on each (Figure 12.3).

The model is:

Yi = Bo + B1 X T + € (12.1)
where 5y and §; are fixed but unknown population parameters, and ¢; are residuals. The following

assumptions are required:
e The true relationship is linear.
e c; ~N(0,0%)
e The ¢; are independent.

> trees <- data.frame(plot=factor(c(1, 1, 1, 2, 2, 2)),
+ dbh.cm=c(30, 32, 35, 30, 33, 35),
+ ht.m=c(25, 30, 40, 30, 40, 50))

> plot(trees$dbh.cm, trees$ht.m, pch=c(1l, 19) [trees$plot], xlim=c (29, 36),
+ xlab="Diameter (cm)", ylab="Height (m)")
> abline(Im(ht.m ~ dbh.cm, data=trees), col="darkgrey")

If we fit a simple regression to the trees then we obtain a residual/fitted value plot as displayed in
Figure 12.4).

> case.model.1 <- Im(ht.m ~ dbh.cm, data=trees)

> plot(fitted(case.model.1), residuals(case.model.1), ylab="Residuals",
+ xlab="Fitted Values", pch=c(1, 19)[trees$plot])

> abline(h=0, col="darkgrey")
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Figure 12.2: Al Stage’s Grand Fir Stem Analysis Data: height (ft, vertical axes) against diameter (inches,
horizontal axes) by national forest. These were dominant and co-dominant trees.

If we fit a simple regression to the trees with an intercept for each plot then we obtain a residual/fitted

value plot as displayed in Figure 12.5.

> case.model.2 <- Im(ht.m ~ dbh.cm*plot, data=trees)
> plot(fitted(case.model.2), residuals(case.model.2),

+ xlab="Fitted Values", ylab="Residuals",

+ pch=c(1, 19) [trees$plot])
> abline(h=0, col="darkgrey")

These three figures (12.3—12.5) show the analyst’s dilemma. The residuals in Figure 12.4 clearly
show a correlation within plot; the plot conditions dictate that all the trees in the plot will have the same
sign of residual. This phenomenon is not seen in Figure 12.5. However, the model described by Figure
12.5 has no utility, because in order to use it we have to choose whether the tree belongs to plot 1 or
plot 2. If the tree belongs to neither, which is true of all of the unmeasured trees, then the model can
make no prediction. So, the dilemma is: we can construct a useless model that satisfies the regression

assumptions or a useful model that does not.
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Figure 12.5: Residual plot for
height-diameter model includ-
ing plot for three trees on two
plots (full and outline symbols).

sion.

12.2.4 Decomposition

The dilemma documented in section 12.2.3 has at least two solutions. One is the use of mixed-effects
models, the other, which we do not cover here, is explicit modeling of the correlation structure using
generalized least squares.

The mixed effects models approach is to decompose the unknown variation into smaller pieces, each of
which themselves satisfies the necessary assumptions. Imagine that we could take the six residual values
presented in Figure 12.4, which have the plot-level correlation structure, and decompose them into two
plot-level errors and size within-plot errors. That is, instead of:

Yij — :l)ij = éij (12.2)
we could try:

vij = ij = bi + & (12.3)

Then we merely need to assume that:
e The true relationship is linear.

o b, ~N(0,07)

e c;; ~N(0,0%)

e The ¢;; are independent.

However, when the time comes to use the model for prediction, we do not need to know the plot
identity, as the fixed effects do not require it.

This example illustrates the use of random effects. Random effects do not explain variation, that is
the role of the fixed effects. Random effects organize variation, or enforce a more complex structure upon
it, in such a way that a match is possible between the model assumptions and the diagnostics. In fact,
we would expect the overall uncertainty, measured as root mean squared error, to increase any time we
fit in any way other than by least squares.

12.3 A Simple Example

We start with a very simple and abstract example. First we have to load the package that holds the
mixed-effects code, nlme.

> library(nlme)
> library(lattice)

Now, we generate a simple dataset.
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> straw <- data.frame(y = c(10.1, 14.9, 15.9, 13.1, 4.2, 4.8, 5.8, 1.2),
+ x=c¢(1, 2, 3, 4, 1, 2, 3, 4),
+ group = factor(c(1, 1, 1, 1, 2, 2, 2, 2)))

Let’s plot the data (Figure 12.6).

colours = c("red", "blue")
plot(straw$x, straw$y, col = colours[straw$group])

VvV Vv

straw$y

T T T T T T T
1.0 15 2.0 2.5 3.0 3.5 4.0

straw$x

Figure 12.6: A simple dataset to show the use of mixed-effects models.

For each model below, examine the output using summary() commands of each model, and try to
ascertain what the differences are between the models, and whether increasing the complexity seems to
be worthwhile. Use anova() commands for the latter purpose.

Ordinary Least Squares

This model is just trying to predict y using x. Using algebra, we would write

Yi = Bo+ B1 X T + ¢ (12.4)

where 5y and §; are fixed but unknown population parameters, and ¢; are residuals. The following
assumptions are required:

e True relationship is linear.
e c; ~N(0,0%)
e The ¢; are independent.

Note that the values of 8y and £; that minimize the residual sum of squares are the least squares
estimates in any case, and are unbiased if assumption 1 is true. If assumptions 2 and 3 are true as well
then the estimates also have other desirable properties.

The model is fit using R with the following code:

> basic.1 <- 1m(y ~ x, data=straw)

Let’s let each group have its own intercept. In algebra,

Yi = Bor + Bo2 X gi + P1 X x; + & (12.5)

99



©@®O icebreakeR

where Bg1, Bo2, and B are fixed but unknown population parameters, g; is an indicator variable with
value 0 for group 1 and 1 for group 2, and ¢; are residuals. The same assumptions are required as for
model 12.4.

The model is fit using R with the following code:
> basic.2 <- Im(y ~ x + group, data=straw)

Let’s let each group have its own intercept and slope.

Yi = Bo1 + Po2 X gi + (Bi1 + Biz X gi) X i + € (12.6)

where 81, Bo2, 812, and (12 are fixed but unknown population parameters, g; is an indicator variable
with value 0 for group 1 and 1 for group 2, and ¢; are residuals. The same assumptions are required as
for model 12.4.

The model is fit using R with the following code:

> basic.3 <- Im(y ~ x * group, data=straw)

Mixed Effects

Now we need to convert the data to a grouped object - a special kind of dataframe that allows special
nlme () commands. The group will hereby be a random effect. One command that we can now use is
augPred, as seen below. Try it on a few models.

> straw.mixed <- groupedData(y ~ x | group, data=straw)

Now let’s fit the basic mixed-effects model that allows the intercepts to vary randomly between the
groups. We'll add a subscript for clarity.

Yij = Bo + boi + B1 X mij + € (12.7)

where 3y and 3, are fixed but unknown population parameters, the by; are two group-specific random
intercepts, and ¢;; are residuals. The following assumptions are required:

e True relationship is linear.
o by ~ N(0, 0?0)
e c;; ~N(0,0?)
e The ¢;; are independent.
The model is fit using R with the following code:
> basic.4 <- lme(y ~ x, random = “1 | group, data = straw.mixed)

The random syntax can be a little confusing. Here, we're instructing R to let each group have its
own random intercept. If we wanted to let each group have its own slope and intercept, we would write
random = x. If we wanted to let each group have its own slope but not intercept, we would write random
= x - 1.

We can examine the model in a useful graphic called an augmented prediction plot. This plot provides
a scatterplot of the data, split up by group, and a fitted line which represents the model predictions
(Figure 12.7). We should also check the regression diagnostics that are relevant to our assumptions, but
we have so few data here that examples aren’t useful. We will develop these ideas further during the case
study, to follow.

> plot(augPred(basic.4))

If we are satisfied with the model diagnostics then we can examine the structure of the model,
including the estimates, using the summary() function. The summary function presents a collection of
useful information about the model. Here we report the default structure for a summary.lme object. The
structure may change in the future, but the essential information will likely remain the same.

> summary(basic.4)
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Firstly, the data.frame object is identified, and fit statistics reported, including Akaike’s “An Infor-
mation Criterion”, Schwartz’s “Bayesian Information Criterion”, and the log likelihood.

Linear mixed-effects model fit by REML
Data: straw.mixed
AIC BIC logLik
43.74387 42.91091 -17.87193

The random effects structure is then described, and estimates are provided for the parameters. Here
we have an intercept for each group, and the standard deviation is reported, as well as the standard
deviation of the residuals within each group.

Random effects:

Formula: “1 | group
(Intercept) Residual

StdDev: 6.600769 2.493992

The fixed effects structure is next described, in a standard t-table arrangement. Estimated correlations
between the fixed effects follow.

Fixed effects: y 7 x
Value Std.Error DF  t-value p-value
(Intercept) 8.5 5.142963 5 1.6527437 0.1593
X 0.1 0.788670 5 0.1267958 0.9040
Correlation:
(Intr)
x -0.383

The distribution of the within-group residuals, also called the innermost residuals in the context of
strictly hierarchical models by Pinheiro and Bates (2000), is then described.

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.2484738 -0.4255493 0.1749470 0.6387985 1.0078956

Finally the hierarchical structure of the model and data is presented.

Number of Observations: 8
Number of Groups: 2

Next let’s fit a unique variance to each group. The model form will be the same as in equation 12.7,
but the assumptions will be different. Now, we will need to assume that

e True relationship is linear.

e bo; ~ N(0, agl)

o c1; ~N(0,00)

o 25 ~ N(0,07,)

o Cov(egp,€cq) =0fora#cord+#d

The model is fit using R with the following code:

> basic.5 <- Ime(y ~ x, random = ~1 | group,
+ weights = varIdent(form = ~1 | group),
+ data = straw.mixed)

The summary output is essentially identical to the previous in structure, with the addition of a new
section that summarizes the newly-added variance model. Here we show only the new portion.

> summary(basic.5)
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Variance function:
Structure: Different standard deviations per stratum
Formula: “1 | group
Parameter estimates:
2 1
1.000000 1.327843

Finally let’s allow for temporal autocorrelation within each group. Again, the model form will be the
same as in equation 12.7, but the assumptions will be different. Now, we will need to assume that

e True relationship is linear.

e boi ~N(0,07)

o €15~ N(0,07,)

o 625 ~ N(0,07,)

o Cov(€eap,€qc) =p forb#c

e The ¢;; are independent otherwise.

The model is fit using R with the following code:

> basic.6 <- Ime(y ~ x, random = ~1 | group,

+ weights = varIdent(form = 1 | group),
+ correlation = corAR1(),

+ data = straw.mixed)

The summary output is again essentially identical to the previous in structure, with the addition of
a new section that summarizes the newly-added correlation model. Here we show only the new portion.

> summary(basic.6)

Correlation Structure: AR(1)
Formula: ~1 | group
Parameter estimate(s):

Phi

0.8107325

We can summarize some of these differences in a graph (Figure 12.8).

opar <- par(las=1)
colours <- c("blue", "darkgreen", "plum")
plot(straw$x, straw$y)
for (g in 1:2) lines(straw$x[straw$group == levels(straw$group) [gl],
fitted(basic.1) [straw$group ==
levels (straw$group) [g]],
col = colours[1])
for (g in 1:2) lines(straw$x[straw$group == levels(straw$group) [gl],
fitted(basic.2) [straw$group ==
levels (straw$group) [g]],
col = colours[2])
for (g in 1:2) lines(straw$x[straw$group == levels(straw$group) [gl],
fitted(basic.4) [straw$group ==
levels(straw$group) [g]],
col = colours[3])
legend(2.5, 13, 1ty = rep(1, 3), col = colours,
legend = c("Mean Only", "Intercept Fixed", "Intercept Random"))
par (opar)

V+V+++V+H++EVEEEVVVY
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Figure 12.7: An augmented plot of the basic mixed- Figure 12.8: A sample plot showing the difference
effects model with random intercepts fit to the sam-  between basic.1 (single line), basic.2 (intercepts are
ple dataset. fixed), and basic.4 (intercepts are random).

12.3.1 The Deep End

There are numerous different representations of the linear mixed-effects model. We’ll adopt that suggested
by Laird and Ware (1982):

Y = XB+Zb+e
b ~ AN(0,D)
e ~ N(0O,R)

Here, D and R are preferably constructed using a small number of parameters, which will be estimated
from the data. We’ll think first about estimation using maximum likelihood.

12.3.2 Maximum Likelihood

Recall that the principle behind maximum likelihood was to find the suite of parameter estimates that were
best supported by the data. This began by writing down the conditional distribution of the observations.
For example the pdf for a single observation from the normal distribution is:

, 1 ()
f il po®) = i

Soif Y N (1, V) then by definition:

=

_IvID

FOY [ V) = RV
(2m)

e

S

|

So in terms of the linear model Y = X3, the conditional joint density is

_1
F(Y[X,8,V)= ﬁe—%(Y—Xﬁ)’V*I(Y—Xm
(2m)%

Reversing the conditioning and taking logs yields:

ol

(Y - XB)' V(Y — Xp) (12.8)

LG VIY.X) =g (V]) ~ Din(er) - 5
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Notice that the parameters we're interested in are now embedded in the likelihood. Solving for those
parameters should be no more difficult than maximizing the likelihood. In theory. Now, to find 8 we
take the derivative of £ (8, V | y,X) with regards to 3:

dL d 1 _
a3~ dp —i(y—XB)/V 'y —XB)
this leads to, as we’'ve seen earlier

Bure = (XlV*lX)_1 X'vVly

but this only works if we know V!
Otherwise, we have to maximize the likelihood as follows. First, substitute

(X'VIX)IX'vly

for B in the likelihood. That is, remove all the instances of 3, and replace them with this statement.
By this means, 8 is profiled out of the likelihood. The likelihood is now only a function of the data and
the covariance matrix V. This covariance matrix is itself a function of the covariance matrices of the
random effects, which are structures that involve hopefully only a few unknown parameters, and that are
organized by the model assumptions.

Maximize the resulting likelihood in order to estimate ‘7, and then calculate the estimate of the fixed
effects via:

« N -1 N
Barie = (X’V*lx) X'V-ly (12.9)

After some tedious algebra, which is well documented in Schabenberger and Pierce (2002), we also get
the BLU Ps.

by = DZ'V (Y - XB) (12.10)

where D is the covariance matrix of the random effects.

12.3.3 Restricted Maximum Likelihood

It was noted earlier that maximum likelihood estimators of covariance parameters are usually negatively
biased. This is because in profiling out the fixed effects, we're effectively pretending that we know them,
and therefore we are not reducing the degrees of freedom appropriately. Restricted or Residual Maximum
Likelihood will penalize the estimation based on the model size, and is therefore a preferred strategy.
ReM L is not unbiased, except under certain circumstances, but it is less biased than maximum likelihood.

Instead of maximizing the conditional joint likelihood of Y we do so for an almost arbitrary linear
transformation of Y, which we shall denote K. It is almost arbitrary inasmuch as there are only two
constraints: K must have full column rank, or else we would be creating observations out of thin air, and
K must be chosen so that E[KY] = 0.

The easiest way to guarantee that these hold is to ensure that [K'X] = 0, and that K has no more
than n — p independent columns, where p is the number of independent parameters in the model. Notice
that we would like K to have as many columns as it can because this will translate to more realizations
for fitting the model. This removes the fixed effects from consideration and in so doing also penalizes
the estimation for model size. So, the likelihood is restricted by the fixed effects being set to 0, thus,
restricted maximum likelihood. Finally, notice that having a 0 column in K doesn’t actually add any
information to the problem.

So, briefly, ReM L involves applying M L, but replacing Y with KY, X with 0, Z with K'Z, and V
with K'VK.
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12.4 Case Study

Recall our brutal exposition of the mixed-effects model:

Y — XB+Zb+e
b ~ N(0,D)
e ~ N(0,R)

D and R are covariance matrices, constructed using a small number of parameters, and the structure
of which is suggested by what is known about the data and can be tested by comparing nested models.

12.4.1 Stage Data

A brief synopsis: a sample of 66 trees was selected in national forests around northern and central Idaho.
According to Stage (pers. comm. 2003), the trees were selected purposively rather than randomly. Stage
(1963) notes that the selected trees “... appeared to have been dominant throughout their lives” and “. ..
showed no visible evidence of crown damage, forks, broken tops, etc.” The habitat type and diameter at
4’6” were also recorded for each tree, as was the national forest from which it came. Each tree was then
split, and decadal measures were made of height and diameter inside bark at 4’6”.

First, eyeball the data in your spreadsheet of choice. Then import the data as follows:

> rm(list = 1s())
> stage <- read.csv("../data/stage.csv")
> dim(stage)

[1] 542 7
> names (stage)

[1] "Tree.ID" "Forest" "HabType" "Decade" "Dbhib"  "Height"
[7] IlAgell

> sapply(stage, class)

Tree.ID Forest  HabType Decade Dbhib Height

"integer" "integer" "integer" "integer" "numeric" "numeric"
Age
"integer"

Some cleaning will be necessary. Let’s start with the factors.

stage$Tree.ID <- factor(stage$Tree.ID)

stage$Forest.ID <- factor(stage$Forest, labels = c("Kan",
”Cd IA”’ ”stJOG H, IICWH’ ”NPH’ ”CF”’
”Uma”, "wall H, ”Ptte”))

stage$HabType.ID <- factor(stage$HabType, labels = c("Ts/Pach",
"Ts/Op", "Th/Pach", "AG/Pach", "PA/Pach"))

+ VvV + + VvV

The measurements are all imperial (this was about 1960, after all).

> stage$dbhib.cm <- stage$Dbhib * 2.54
stage$height.m <- stage$Height / 3.2808399
> str(stage)

v

'data.frame': 542 obs. of 11 variables:

$ Tree.ID : Factor w/ 66 levels "1","2" "3","4" .. : 1111122222 ...
$ Forest :int 4444444444

$ HabType :int 5555555555 ...

$ Decade :int 0123401234 ...

$ Dbhib :num 14.6 12.4 8.8 7 4 20 18.8 17 15.9 14 ...
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$ Height :num 71.4 61.4 40.1 28.6 19.6 ...

$ Age : int 55 45 35 25 15 107 97 87 77 67 ...

$ Forest.ID : Factor w/ 9 levels "Kan","Cd'A","StJoe",..: 4 4 4 4 4 4 4 444 ...
$ HabType.ID: Factor w/ 5 levels "Ts/Pach","Ts/Op",..: 6 5655555555 ...

$ dbhib.cm : num 37.1 31.5 22.4 17.8 10.2 ...

$ height.m : num 21.76 18.71 12.22 8.72 5.97 ...

Height from Diameter

The prediction of height from diameter provides useful and inexpensive information. It may be that the
height /diameter relationship differs among habitat types, or climate zones, or tree age. Let’s examine
the height/diameter model of the trees using a mixed-effects model. We’ll start with a simple case, using
only the oldest measurement from each tree that provides one.

> stage.old <- stagel[stage$Decade == 0, ]

Note that this code actually drops a tree, but we can afford to let it go for this demonstration.

To establish a baseline of normalcy, let’s first fit the model using ordinary least squares. We drop the
sole observation from the Ts/Op habitat type. It will cause trouble otherwise (the leverage will prove to
be very high).

> hd.1lm.1 <- Im(height.m ~ dbhib.cm * HabType.ID,
+ data = stage.old,
+ subset = HabType.ID != "Ts/Op")

Formally, I think it is good practice to examine the diagnostics upon which the model is predicated
before examining the model itself, tempting though it may be, so see Figure 12.9. The graph of the
residuals vs. fitted values plot (top left) seems good. There is no suggestion of heteroskedasticity. The
Normal Q-Q plot suggests a little wiggle but seems reasonably straight. There seem to be no points of
egregious influence (bottom left; all Cook’s Distances j 1).

> opar <- par(mfrow=c(2,2), mar=c(4, 4, 4, 1))
> plot(hd.1lm.1)
> par (opar)

So, having come this far, we should examine the model summary.

> summary(hd.lm.1)

Call:

lm(formula = height.m ~ dbhib.cm * HabType.ID, data = stage.old,
subset = HabType.ID != "Ts/0p")

Residuals:
Min 1Q Median 3Q Max

-10.3210 -2.1942 0.2218 1.7992  7.9437

Coefficients:

Estimate Std. Error t value Pr(>[t])
(Intercept) 8.33840 4.64118 1.797 0.0778
dbhib.cm 0.58995 0.08959 6.585 1.67e-08
HabType.IDTh/Pach 2.42652 5.78392 0.420 0.6764
HabType . IDAG/Pach 0.29582 5.13564 0.058 0.9543
HabType.IDPA/Pach 0.02604 5.962756 0.004 0.9965
dbhib.cm:HabType.IDTh/Pach -0.03224 0.10670 -0.302 0.7637
dbhib.cm:HabType.IDAG/Pach -0.08594 0.10116 -0.850 0.3992
dbhib.cm:HabType.IDPA/Pach -0.10322 0.11794 -0.875 0.3852
(Intercept) .
dbhib.cm *kk
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Figure 12.9: Regression diagnostics for the ordinary least squares fit of the Height/Diameter model with
habitat type for Stage’s data.

HabType.IDTh/Pach
HabType . IDAG/Pach
HabType.IDPA/Pach
dbhib.cm:HabType.IDTh/Pach
dbhib.cm:HabType.IDAG/Pach
dbhib.cm:HabType.IDPA/Pach

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.551 on 56 degrees of freedom
Multiple R-squared: 0.8748, Adjusted R-squared: 0.8591
F-statistic: 55.89 on 7 and 56 DF, p-value: < 2.2e-16

For comparison: the following quantities are in metres. The first is the standard deviation of the
height measures. The second is the standard deviation of the height measures conditional on the diameter
measures and the model.
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> sd(stage.old$height.m)
[1] 9.468042
> summary(hd.1lm.1)$sigma
[1] 3.551062

It’s also interesting to know how much variation is explained by the habitat type information. We
can assess this similarly. Here we will not worry about diagnostics, although it should be done.

> summary(lm(height.m ~ dbhib.cm, data = stage.old,

+ subset = HabType.ID != "Ts/Op"))$sigma
[1] 4.10135
Not much!

Mixed effects

Based on our knowledge of the locations of national forests, it seems reasonable to believe that there will
be similarities between trees that grow in the same forest relative to the population of trees.

However, we’d like to create a model that doesn’t rely on knowing the national forest, that is, a model
that can plausibly be used for trees in other forests. This is acceptable as long as we are willing to believe
that the sample of trees that we are using is representative of the conditions for which we wish to apply
the model. In the absence of other information, this is a judgement call. Let’s assume it for the moment.

Then, based on the above information, national forest will be a random effect, and habitat type a
fixed effect. That is, we wish to construct a model that can be used for any forest, that might be more
accurate if used correctly within a named national forest, and provides unique estimates for habitat type.
We can later ask how useful the knowledge of habitat type is, and whether we want to include that in
the model.

So, we’ll have two random effects: national forest and tree within national forest. We have one baseline
fixed effect: diameter at breast height inside bark, with to potential additions: age and habitat type.
The lowest-level sampling unit will be the tree, nested within national forest.

It is convenient to provide a basic structure to R. The structure will help R create useful graphical
diagnostics later in the analysis. Note that you only need to call a package once per session, but it doesn’t
hurt to do it more often. Here we will scatter them liberally to remind you what packages you should be
using.

> library(nlme)
> stage.old <- groupedData(height.m ~ dbhib.cm | Forest.ID,
+ data = stage.old)

Now, let’s look to our model.

Yij = Bo + boi + 1 X @45 + €35 (12.11)

yi; is the height of tree j in forest ¢, x;; is the diameter of the same tree. By and f; are fixed but
unknown parameters and bg; are the forest-specific random and unknown intercepts. Later we might see
if the slope also varies with forest. So, in matrix form,

Y =X +bZ +e (12.12)

Y is the column of tree heights, X will be the column of diameters, with a matrix of Os and 1s to
allocate the observations to different habitat types, along with a column for the ages, if necessary. (
will be a vector of parameter estimates. Z will be a matrix of Os and 1s to allocate the observations to
different forests. b will be a vector of means for the forests and trees within forests. Finally, we’ll let D
be a 9 x 9 identity matrix multiplied by a constant o7, and R be a 66 x 66 identity matrix multiplied by
a constant o2.

> hd.Ilme.1 <- Ilme(height.m ~ dbhib.cm, random = ~1 | Forest.ID,
+ data = stage.old)
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Automatic functions are available to extract and plot the different pieces of the model. 1 prefer
to extract them and choose my own plotting methods. I recommend that you do the same. For the
pre-programmed versions see Pinheiro and Bates (2000).

A quick burst of jargon: for hierarchical models there is more than one level of fitted values and
residuals. Pinheiro and Bates (2000) adopt the following approach: the outermost residuals and fitted
values are conditional only on the fixed effects, the innermost residuals and fitted values are conditional
on the fixed and all the random effects, and there are as many levels between these extremes as are
necessary. S0, in a two-level model like this,

e the outermost residuals are the residuals computed from the outermost fitted values, which are
computed from only the fixed effects. Let’s refer to them as rg.

ro = yij — Bo — P1 X wij (12.13)

e the innermost residuals are the residuals computed from the innermost fitted values, which are
computed from the fixed effects and the random effects. Let’s refer to them as rq.

r1=yij — Bo — boi — 1 x wij (12.14)

Furthermore, the mixed-effects apparatus provides us with three kinds of innermost and outermost
residuals:

1. response residuals, simply the difference between the observation and the prediction;

2. Pearson residuals, which are the response residuals scaled by dividing by their standard deviation;
and

3. normalized residuals, which are the Pearson residuals pre-multiplied by the inverse square-root of
the estimated correlation matrix from the model.

The key assumptions that we’re making for our model are that:

1. the model structure is correctly specified;

2. the random effects are normally distributed;

3. the innermost residuals are normally distributed;

4. the innermost residuals are homoscedastic within and across the groups; and

5. the innermost residuals are independent within the groups.

Notice that we’re not making any assumptions about the outermost residuals. However, they are
useful for summarizing the elements of model performance.

We should construct diagnostic graphs to check these assumptions. Note that in some cases, the
assumptions are stated in an untenably broad fashion. Therefore the sensible strategy is to check for the
conditions that can be interpreted in the context of the design, the data, and the incumbent model. For
example, there are infinite ways that the innermost residuals could fail to have constant variance. What
are the important ways? The situation most likely to lead to problems is if the variance of the residuals
is a function of something, whether that be a fixed effect or a random effect.

Rather than trust my ability to anticipate what the programmers meant by the labels etc., I want to
know what goes into each of my plots. The best way to do that is to put it there myself. To examine
each of the assumptions in turn, I have constructed the following suite of graphics. These are presented
in Figure 12.10.

1. A plot of the outermost fitted values against the observed values of the response variable. This
graph allows an overall summary of the explanatory power of the model.

(a) How much of the variation is explained?
(b) How much remains?

(c) Is there evidence of lack of fit anywhere in particular?
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2. A plot of the innermost fitted values against the innermost Pearson residuals. This graph allows a

check of the assumption of correct model structure.

(a) Is there curvature?
(b) Do the residuals fan out?

3. a qg-plot of the estimated random effects, to check whether they are normally distributed with

constant variance.

(a) Do the points follow a straight line, or do they exhibit skew or kurtosis?

(b) Are any outliers evident?

4. a qqg-plot of the Pearson residuals, to check whether they are normally distributed with constant

variance.

(a) Do the points follow a straight line, or do they exhibit skew or kurtosis?

(b) Are any outliers evident?

5. a notched boxplot of the innermost Pearson residuals by the grouping variable, to see what the

within-group distribution looks like.

(a) Do the notches intersect 07

(b) Is there a trend between the medians of the within-group residuals and the estimated random

effect?

6. a scatterplot of the variance of the Pearson residuals within the forest against the forest random

effect.

(a) Is there a distinct positive or negative trend?

NB: I do not tend to use any of the widely-available statistical tests for homoskedasticity, normality,

ete, for diagnostics. T like (Box, 1953): “... to make preliminary tests on variances is rather like putting
to sea in a rowing boat to find out whether conditions are sufficiently calm for an ocean liner to leave
port”.

VVVVVVV4+YVVVYV+++VVYV+++VVYyV

We use the following code to produce Figure 12.10. Of course there is no need to pack all the graphical
diagnostics into one figure.

opar <- par(mfrow = c(3, 2), mar = c(4, 4, 3, 1), las = 1, cex.axis = 0.9)
#### Plot 1
plot(fitted(hd.lme.1, level=0), stage.old$height.m,
xlab = "Fitted Values (height, m.)",
ylab = "Observed Values (height, m.)",
main = "Model Structure (I)")
abline(0, 1, col = "blue")
#### Plot 2
scatter.smooth(fitted(hd.lme.1), residuals(hd.lme.1, type="pearson"),
xlab = "Fitted Values",
ylab "Innermost Residuals',
main = "Model Structure (II)")
abline(h = 0, col = "red")
#### Plot 3
ref.forest <- ranef(hd.Ilme.1)[[1]]
ref.var.forest <- tapply(residuals(hd.lme.l, type="pearson", level=1),
stage.old$Forest.ID, var)
qqunorm(ref.forest, main="@-Q Normal - Forest Random Effects")
qqline(ref.forest, col="red")
#### Plot 4
qqnorm(residuals(hd.lme.1, type='"pearson"), main="@-( Normal - Residuals")
qqline(residuals(hd.lme.1, type="pearson"), col="red")
#### Plot 5
boxplot (residuals(hd.lme.1, type="pearson", level=1)

stage.old$Forest.ID,
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ylab = "Innermost Residuals", xlab = "National Forest",
notch=T, varwidth = T, at=rank(ref.forest))
axis (3, labels=format(ref.forest, dig=2), cex.axis=0.8,
at=rank (ref.forest))
abline (h=0, col="darkgreen")
#### Plot 6
plot(ref.forest, ref.var.forest, xlab="Forest Random Effect",
ylab="Variance of within-Forest Residuals")
abline(lm(ref.var.forest ~ ref.forest), col="purple")
par (opar)
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Figure 12.10: Selected diagnostics for the mixed-effects fit of the Height/Diameter ratio against habitat
type and national forest for Stage’s data.

Cross-reference these against Figure 12.10. In fact, all of these residual diagnostics look good.
But, let’s accept the model as it stands for the moment, and go on to examine the summary. Refer
to Section 12.3 for a detailed description of the output that follows.

> summary(hd.lme.1)

Linear mixed-effects model fit by REML
Data: stage.old
AIC BIC loglik
376.6805 385.253 -184.3403
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Random effects:

Formula: ~1 | Forest.ID
(Intercept) Residual

StdDev: 1.151405 3.937486

Fixed effects: height.m ~ dbhib.cm
Value Std.Error DF  t-value p-value
(Intercept) 6.58239 1.7763571 55 3.705556  5e-04
dbhib.cm 0.57036 0.0335347 55 17.008062  0e+00
Correlation:
(Intr)
dbhib.cm -0.931

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.912156622 -0.70233393 0.04308139 0.81189065 1.99133843

Number of Observations: 65
Number of Groups: 9

1. Here we have the overall metrics of model fit, including the log likelihood (recall that this is the
quantity we’re maximizing to make the fit), and the AIC and BIC statistics. The fixed effects are
profiled out of the log-likelihood, so that the log-likelihood is a function only of the data and two
parameters: o7 and o?.

2. The formula reminds us of what we asked for: that the forest be a random effect, and that a unique
intercept be fit for each level of Forest. The square roots of the estimates of the two parameters
are also here.

3. Another metric of model quality is RMSE, which is the estimate of the standard deviation of the
response residuals conditional on only the fixed effects. Note that 3.94 is not theRMSE; it is instead
an estimate of the standard deviation of the response residuals conditional on the fixed and the
random effects. Obtaining the RMSE is relatively easy because the random effects and the residuals

are assumed to be independent.
RMSE = /o7 + 02 =4.1

The last metric of model quality we can get here is the intra-class correlation. This is the variance
of the random effect divided by the sum of the variances of the random effects and the residuals.

o
= —"2+—=0.0788
p o7 + o2

so about 7.9 % of the variation in height (that isn’t explained by diameter) is explained by forest.
Not very much.

4. Now we have a reminder of the fixed effects model and the estimates of the fixed effects. We have
several columns:

the value of the estimate,

its standard error (not identical here because of the lack of balance),

the degrees of freedom (simply mysterious for various reasons),

the t-value associated with the significance test of the null hypothesis that the estimate is 0
against the two-tailed alternative that it is not 0, which is really rather meaningless for this
model, and

(e) the p-value associated with that rather meaningless test.
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5. This is the correlation matrix for the estimates of the fixed effects. It is estimated from the design
matrix. This comes from the covariance matrix of the fixed effects, which can be estimated by

(X'V1x)-1

6. Information about the within-group residuals. Are they symmetric? Are there egregious outliers?
Compare these values to what we know of the standard normal distribution, for which the median
should be about 0, the first quartile at —0.674, and the third at 0.674.

7. And finally, confirmation that we have the correct number of observations and groups. This is a
useful conclusion to draw; it comforts us that we fit the model that we thought we had!

A compact summary of the explanatory power of the model can be had from:
> anova(hd.lme.1)

numDF denDF  F-value p-value
(Intercept) 1 55 2848.4436 <.0001
dbhib.cm 1 55 289.2742 <.0001

Deeper design

Let’s now treat the Grand fir height/diameter data from Stage (1963) in a different way. We actually
have numerous measurements of height and diameter for each tree. It seems wasteful to only use the
largest.

Let’s still assume that the national forests represent different, purposively selected sources of climatic
variation, and that habitat type represents a randomly selected treatment of environment (no, it’s prob-
ably not true, but let’s assume that it is). This is a randomized block design, where the blocks and the
treatment effects are crossed. This time we're interested in using all the data. Previously we took only
the first measurement. How will the model change? As always, we begin by setting up the data.

> library(nlme)
> stage <- groupedData(height.m ~ dbhib.cm | Forest.ID/Tree.ID, data = stage)

Let’s say that, based on the above information, national forest will be a random effect, and habitat
type a candidate fixed effect. So, we’ll have anywhere from one to three fixed effects (dbhib, age, and
habitat) and two random effects (forest and tree within forest). The response variable will now be the
height measurement, nested within the tree, possibly nested within habitat type. Let’s assume, for the
moment, that the measurements are independent within the tree (definitely not true). Now, let’s look to
our model. A simple reasonable candidate model is:

Yijk = Bo + boi + boij + B1 X xijk + €ijk (12.15)

Yi;k is the height of tree j in forest ¢ at measurement k, x;;;, is the diameter of the same tree. 5y and
[1 are fixed but unknown parameters, by; are the forest-specific random and unknown intercepts, and
boi; are the tree-specific random and unknown intercepts. Later we might see if the slope also varies with
forest. So, in matrix form, we have:

Y =BX +bZ +¢ (12.16)

Y is the vector of height measurements. The basic unit of Y will be a measurement within a tree
within a forest. It has 542 observations.

X will be a matrix of Os, 1s, and diameters, to allocate the observations to different national forests
and different tree diameters at the time of measurement.

B will be a vector of parameter estimates.

Z will be a matrix of 0s and 1s to allocate the observations to different forests, and trees within
forests.

e b will be a vector of means for the forests and the trees.
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e D will be a block diagonal matrix comprising a 9 x 9 identity matrix multiplied by a constant O’?,
and then a square matrix for each forest, which will be a diagonal matrix with variances on the
diagonals.

e R will now be a 542 x 542 identity matrix multiplied by a constant o2.

> hd.Ilme.3 <- lme(height.m ~ dbhib.cm,
+ random = ~1 | Forest.ID/Tree.ID,
+ data = stage)

Now, the key assumptions that we’re making are that:
1. the model structure is correctly specified
the tree and forest random effects are normally distributed,
the tree random effects are homoscedastic within the forest random effects.

2.

3.

4. the inner-most residuals are normally distributed,

5. the inner-most residuals are homoscedastic within and across the tree random effects.
6.

the innermost residuals are independent within the groups.

We again construct diagnostic graphs to check these assumptions. To examine each of the assumptions
in turn, I have constructed the earlier suite of graphics, along with some supplementary graphs.

1. an extra qg-plot of the tree-level random effects, to check whether they are normally distributed
with constant variance.

(a) Do the points follow a straight line, or do they exhibit skew or kurtosis?

(b) Are any outliers evident?

2. a notched boxplot of the tree-level random effects by the grouping variable, to see what the within-
group distribution looks like.

(a) Do the notches intersect 07

(b) Is there a trend between the medians of the within-group residuals and the estimated random
effect?

3. a scatterplot of the variance of the tree-level random effects within the forest against the forest
random effect.

(a) Is there a distinct positive or negative trend?

4. an autocorrelation plot of the within-tree errors.

As a rule of thumb, we need four plots plus three for each random effect. Cross-reference these against
Figures 12.11, 12.12, and 12.13. Each graphic should ideally be examined separately in its own frame.
Here’s the code:

> opar <- par(mfrow = c(1, 3), mar = c(4, 4, 3, 1), las = 1,
+ cex.axis = 0.9)

> plot(fitted(hd.lme.3, level=0), stage$height.m,

+ xlab = "Fitted Values", ylab = "Observed Values",

+ main "Model Structure (I)")

> abline(0, 1, col = "gray")

>  scatter.smooth(fitted(hd.lme.3), residuals(hd.Ilme.3, type="pearson"),
+

+

>

>

>

+

main = "Model Structure (II)",

xlab "Fitted Values", ylab
abline(h = 0, col = "gray")

acf.resid <- ACF(hd.lme.3, resType = "normal")
plot(acf.resid$laglacf.resid$lag < 10.5],
acf.resid$ACF [acf.resid$lag < 10.5],

"Innermost Residuals")
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+ type="b", main="Autocorrelation",
+ xlab="Lag", ylab="Correlation")
> stdv <- gnorm(1 - 0.01/2)/sqrt(attr(acf.resid, "n.used"))
> lines(acf.resid$laglacf.resid$lag < 10.5],
+ stdv[acf.resid$lag < 10.5],
+ col="darkgray")
> lines(acf.resid$laglacf.resid$lag < 10.5],
+ -stdv[acf.resid$lag < 10.5],
+ col="darkgray")
> abline(0,0,col="gray")
> par (opar)
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Figure 12.11: Selected overall diagnostics for the mixed-effects fit of the Height and Diameter model for
Stage’s data.

> opar <- par(mfrow = c(1, 3), mar = c(4, 4, 3, 1), las = 1,

+ cex.axis = 0.9)

> ref.forest <- ranef(hd.lme.3, level=1, standard=T)[[1]]

> ref.tree <- ranef(hd.lme.3, level=2, standard=T)[[1]]

> ref.tree.frame <- ranef (hd.lme.3, level=2, augFrame=T, standard=T)
> ref.var.tree <- tapply(residuals(hd.lme.3, type="pearson", level=1),
+ stage$Tree.ID, var)

> ref.var.forest <- tapply(ref.tree, ref.tree.frame$Forest, var)

> qqnorm(ref.forest, main = "QF plot: Forest")

> gqline(ref.forest)

> qgqnorm(ref.tree, main = "QQ plot: Tree")

> gqline(ref.tree)

>  qqnorm(residuals(hd.lme.3, type="pearson"), main="QQ plot: Residuals")
> qqline(residuals(hd.lme.3, type="pearson"), col="red")

> par (opar)

> opar <- par(mfrow = c(2, 2), mar = c(4, 4, 3, 1), las = 1,

+ cex.axis = 0.9)

> boxplot(ref.tree ~ ref.tree.frame$Forest,

+ ylab = "Tree Effects", xlab = "National Forest",
+ notch=T, varwidth = T, at=rank(ref.forest))

> axis(3, labels=format (ref.forest, dig=2), cex.axis=0.8,
+ at=rank (ref.forest))

> abline (h=0, col="darkgreen")

> boxplot(residuals (hd.lme.3, type="pearson", level=1) ~ stage$Tree.ID,
+ ylab = "Innermost Residuals", xlab = "Tree",

+ notch=T, varwidth = T, at=rank(ref.tree))

> axis(3, labels=format(ref.tree, dig=2), cex.axis=0.8,
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Figure 12.12: Selected quantile-based diagnostics for the mixed-effects fit of the Height and Diameter
model for Stage’s data.

at=rank(ref.tree))
abline (h=0, col="darkgreen")
plot(ref.forest, ref.var.forest, xlab="Forest Random Effect",
ylab="Variance of within-Forest Residuals")
abline(1lm(ref.var.forest ~ ref.forest), col="purple")
plot(ref.tree, ref.var.tree, xlab="Tree Random Effect",
ylab="Variance of within-Tree Residuals")
abline(1m(ref.var.forest ~ ref.forest), col="purple")
> par (opar)

VvV + VvV + VvV Vv +

Everything in these figures look good except for the residual plots and the correlation of the within-
tree residuals, which show an unacceptably strong signal. At this point one might think that the next
step is to try to fit an autocorrelation function to the within-tree residuals, but the kink in the residual
plot suggests that it seems more valuable to take a look at a different diagnostic first.

The augmented prediction plot overlays the fitted model with the observed data, at an optional level
within the model. It is constructed using xyplot () from lattice graphics, and accepts arguments that are
relevant to that function, for further customization. This allows us to sort the trees by national forest,
to help us pick up any cluster effects.

> trees.in.forests <- aggregate(x=list(measures=stage$height.m),
+ by=1list (tree=stage$Tree.ID, forest=stage$Forest.ID), FUN=length)
> panel.order <- rank(as.numeric(as.character(trees.in.forests$tree)))

> plot(augPred(hd.lme.3), index.cond=1list(panel.order))

The augmented prediction plot (Figure 12.14) shows that a number of the trees have curvature in
the relationship between height and diameter that the model fails to pick up, whilst others seem pretty
linear. It also shows that the omission of a random slope appears to be problematic.

At this point we have several options, each of which potentially leads to different resolutions for our
problem, or, more likely, to several further approaches, and so on. How we proceed depends on our goal.
We can:

—_

add a quadratic fixed effect;

2. add a quadratic random effect;

3. add quadratic fixed and random effects;

4. correct the model by including a within-tree correlation; and

5. switch to non-linear mixed-effects models and use a more appropriate functional form.

Since we do not believe that the true relationship between height and diameter could reasonably be
a straight line, let’s add a fixed and a random quadratic diameter effect, by tree, and see how things go.
For a start this will increase the number of diagnostic graphs that we want to look at to about 22! We’ll
show only a sample here.
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Figure 12.13: Selected random-effects based diagnostics for the mixed-effects fit of the Height and Diam-
eter model for Stage’s data.

> hd.1lme.4 <- Ilme(height.m ~ dbhib.cm + I(dbhib.cm"2),
~ dbhib.cm + I(dbhib.cm"2) | Tree.ID,
stage)

+ random
+ data

> opar <- par(mfrow = c(1, 3), mar = c(4, 4, 3, 1), las = 1,
+ cex.axis = 0.9)

> plot(fitted(hd.lme.4, level=0), stage$height.m,

+ xlab = "Fitted Values", ylab = "Observed Values",

+ main = "Model Structure (I)")

> abline(0, 1, col = "gray")

> scatter.smooth(fitted(hd.1lme.4), residuals(hd.lme.4, type="pearson"),
+ main = "Model Structure (II)",

+ xlab "Fitted Values", ylab
> abline(0, 0, col = "gray")

> acf.resid <- ACF(hd.lme.4, resType = "n")
> plot(acf.resid$laglacf.resid$lag < 10.5],

"Innermost Residuals")
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Figure 12.14: Height against diameter by tree, augmented with predicted lines.
+ acf.resid$ACF[acf.resid$lag < 10.5],
+ type="b", main="Autocorrelation",
+ xlab="Lag", ylab="Correlation")
> stdv <- gnorm(1 - 0.01/2)/sqrt(attr(acf.resid, "n.used"))
> lines(acf.resid$laglacf.resid$lag < 10.5],
+ stdv[acf.resid$lag < 10.5],
+ col="darkgray")
> lines(acf.resid$laglacf.resid$lag < 10.5],
+ -stdv[acf.resid$lag < 10.5],
+ col="darkgray")
> abline(0,0,col="gray")
> par (opar)

This has improved the model somewhat, but it looks like we do need to include some accounting
for the within-tree correlation. Pinheiro and Bates (2000) detail the options that are available. Also,
we’ll use update () because that starts the model fitting at the most recently converged estimates, which
speeds up fitting considerably. Finally, we need to use a different fitting engine, for greater stability.
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Figure 12.15: Selected diagnostics for the mixed-effects fit of the Height and Diameter model for Stage’s
data.

> hd.1lme.5 <- update(hd.lme.4, correlation = corCAR1(),
+ control = lmeControl (opt="optim"))

> opar <- par(mfrow = c(1, 3), mar = c(4, 4, 3, 1), las = 1,
+ cex.axis = 0.9)

> plot(fitted(hd.lme.5, level=0), stage$height.m,
+ xlab = "Fitted Values", ylab = "Observed Values",
+ main = "Model Structure (I)")

> abline(0, 1, col = "gray")

>  scatter.smooth(fitted(hd.1lme.5), residuals(hd.lme.5, type="pearson"),
+ main = "Model Structure (II)",

+ xlab = "Fitted Values", ylab = "Innermost Residuals")
> abline(0, 0, col = "gray")

> acf.resid <- ACF(hd.lme.5, resType = "n")
> plot(acf.resid$laglacf.resid$lag < 10.5],

+ acf.resid$ACF [acf.resid$lag < 10.5],

+ type="b", main="Autocorrelation",

+ xlab="Lag", ylab="Correlation")

> stdv <- gnorm(1 - 0.01/2)/sqrt(attr(acf.resid, "n.used"))
> lines(acf.resid$laglacf.resid$lag < 10.5],

+ stdv[acf.resid$lag < 10.5],

+ col="darkgray")

> lines(acf.resid$laglacf.resid$lag < 10.5],

+ -stdv[acf.resid$lag < 10.5],

+ col="darkgray")

> abline(0,0,col="gray")

> par (opar)

The correlation is small now.

Another element of the model that we have control over is the variance of the random effects. We
haven’t seen any red flags for heteroskedasticity in the model diagnostics, so we haven’t worried about
it. However, such situations are common enough to make an example worthwhile.

Two kinds of heteroskedasticity are common and worthy of concern: firstly, that the variance of the
response variable is related to the response variable, and secondly, that the conditional variance of the
observations varied within one or more stratum. Some combination of the two conditions is also possible.

We can detect these conditions by conditional residual scatterplots of the following kind. The first is
a scatterplot of the innermost Pearson residuals against the fitted values stratified by habitat type. The
code to create this graphic is part of the nlme package.

> plot(hd.lme.5, resid(.) ~ fitted(.) | HabType.ID, layout=c(1, 5))
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Figure 12.16: Selected diagnostics for the mixed-effects fit of the Height and Diameter model for Stage’s
data.

The second is a quantile plot of the innermost Pearson residuals against the normal distribution,
stratified by habitat type. This code is provided by the lattice package, and we found a template under
>
?qqmath.

> qgmath(~ resid(hd.lme.5) | stage$HabType.ID,

prepanel = prepanel.qqmathline,

panel = function(x, ...) {
panel.qgmathline(x, distribution = gnorm)
panel.qgmath(x, ...)
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Figure 12.17: Innermost Pearson residuals against Figure 12.18: Quantile plots of innermost Pearson
fitted values by habitat type. residuals against the normal distribution, by habi-
tat type.

There seems little evidence in either of figures 12.17 and 12.18 to suggest that the variance model is
inadequate.

Had the variance model seemed inadequate, we could have used the weights argument in a call to
update with one of the following approaches:
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e weights = varIdent(form = 1 | HabType.ID) This option would allow the observations within
each habitat type to have their own variance.

e weights = varPower() This option would fit a power function for the relationship between the
variance and the predicted mean, and estimate the exponent.

e weights = varPower(form = dbhib.cm | HabType.ID) This option would fit a power function
for the relationship between the variance and the diameter uniquely within each habitat type, and
estimate the exponent.

e weights = varConstPower () This option would fit a power function with a constant for the rela-
tionship between the variance and the predicted mean, and estimate the exponent and constant.

Other options are available; the function is fully documented in Pinheiro and Bates (2000).

Then, let’s accept the model as it stands for the moment. This is the baseline model, as it provides
predictions of height from diameter, and satisfies the regression assumptions. Other options may later
prove to be better fitting, for example it may be that including habitat type or age in the model obviates
our use of the quadratic diameter term. Whether or not this makes for a better model in terms of actual
applications will vary!

> plot(augPred(hd.lme.5), index.cond=list(panel.order))

> summary (hd.lme.5)

Linear mixed-effects model fit by REML
Data: stage
AIC BIC logLik
1945.521 1992.708 -961.7604

Random effects:
Formula: “dbhib.cm + I(dbhib.cm™2) | Tree.ID
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
(Intercept)  0.0007992447 (Intr) dbhb.c
dbhib.cm 0.1844016124 -0.243
I(dbhib.cm~2) 0.0030927949 -0.175 -0.817
Residual 1.4223449956

Correlation Structure: Continuous AR(1)
Formula: ~“1 | Tree.ID
Parameter estimate(s):
Phi
0.6660391
Fixed effects: height.m ~ dbhib.cm + I(dbhib.cm"2)
Value Std.Error DF  t-value p-value
(Intercept) -0.4959656 0.25444240 474 -1.949226 0.0519

dbhib.cm 0.8918030 0.02985028 474 29.875871 0.0000
I(dbhib.cm”~2) -0.0032310 0.00052633 474 -6.138857 0.0000
Correlation:

(Intr) dbhb.c
dbhib.cm -0.514
I(dbhib.cm"2) 0.417 -0.867

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max
-2.799939334 -0.482647581 -0.008763721 0.414566863 3.384428017
Number of Observations: 542

Number of Groups: 66
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Figure 12.19: Height against diameter by tree, augmented with predicted lines.

12.4.2 Extensions to the model

We can try to extend the baseline model to improve its performance, based on our knowledge of the
system. For example, it might be true that the tree age mediates its diameter - height relationship in
a way that has not been captured in the model. We can formally test this assertion, using the anova
function, or we can examine it graphically, using an added-variable plot, or we can try to fit the model
with the term included and see what effect that has on the residual variation.

An added-variable plot is a graphical summary of the amount of variation that is uniquely explained
by a predictor variable. It can be constructed in R as follows. Here, we need to decide what level of
residuals to choose, as there are several. We adopt the outermost residuals.

age.lme.1 <- lme(Age ~ dbhib.cm, random = 1 | Forest.ID/Tree.ID,
data = stage)

res.Age <- residuals(age.lme.l, level = 0)

res.HD <- residuals(hd.lme.5, level = 0)

scatter.smooth(res.Age, res.HD, xlab = "Variation unique to Age",

>
+
>
>
>
+ ylab = "Variation in Height after all but Age")

122



©@®O icebreakeR

Variation in Height after all but Age

o %,
o

-10

9

T T T T T
-40 -20 0 20 40

Variation unique to Age
Figure 12.20: Added-variable plot for Age against the ratio of Height over Diameter.

In order to assess whether we would be better served by adding habitat type to the model, we can
construct a graphical summary, thus:

> xyplot (stage$height.m ~ fitted(hd.lme.5, level=0) | HabType.ID,
+ xlab="Predicted height (m)",

+ ylab="0Observed height (m)",

+ data=stage,

+ panel = function(x, y, subscripts) {

+ panel.xyplot(x, y)

+ panel.abline(0, 1)

+ panel.abline(1m(y ~ x), 1ty=3)

+
+

)

Neither of figures 12.20 or 12.21 suggest that significant or important improvements would accrue
from adding these terms to the model.

The incumbent model represents the best compromise so far. It seems to have addressed most of
our major concerns in terms of model assumptions. It may be possible to find a better model with
further searching. However, there comes a point of diminishing returns. Note finally that although the
presentation of this sequence of steps seems fairly linear, in fact there were numerous blind-alleys followed,
much looping, and retracing of steps. This is not a quick process! Introducing random effects to a fixed
effects model increases the number of diagnostics to check and possibilities to follow.

12.5 The Model

Let’s examine our final model.

Yijk = Bo + boi + bosj (12.17)
+ (81 + b1i + biij) X Tijk (12.18)
+ (B2 + b2 + baij) x x?jk (12.19)
+€ijk (12.20)

In matrix form, it is still:
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Figure 12.21: Plot of predicted height against observed height, by habitat type. The solid line is 1:1, as

predicted by the model. The dotted line is the OLS line of best fit within habitat type.

Y — XB+Zb+e
b ~ N(0,D)
e ~ N(0O,R)

Here’s the structure.

e Y is the vector of height measurements. It has 542 observations.

e X is a 3 x 542 matrix of 1s, diameters and squared diameters.

e (3 is a vector of length three: it has an intercept, a slope for the linear diameter term, and a slope
for the quadratic diameter term.

e 7 is a 225 x 542 unit brute. See below.

e b is a vector of intercepts, and slopes for diameter and diameter squared for each forest, then for
each tree. It will be 27 + 198 = 225 elements long. See below. The predictions can be obtained by
ranef (hd.1lme.5).

e D will be a block diagonal matrix comprising 9 3 x 3 identical matrices, followed by 66 3 x 3 identical
matrices. Each matrix will express the covariance between the 3 random effects within forest or
within tree. See below.

e R will now be a 542 x 542 symmetric matrix for which the off diagonals are 0 between trees, and
a geometric function of the inter-measurement time within trees.
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12.5.1 Z

The only role of Z is to allocate the random effects to the appropriate element. This can be somewhat
complicated. Our Z can be divided into two independent sections; a 27 x 542 matrix Z¢ associated
with the forest level effects, and a 198 x 542 matrix Z; associated with the tree-level effects. In matrix
nomenclature:

Z = [Z¢ | Z4) (12.21)

Now, Zg¢ allocates the random intercept and two slopes to each observation from each forest. There
are 9 forests, so any given row of Zg will contain 24 zeros, a 1, and the corresponding dbhib and dbhib?.
For example, for the row corresponding to measurement 4 on tree 2 in forest 5, we’ll have

Z; = (0,0,0,0,0,0,0,0,0,1,ds4, d254,0,0,0,....) (12.22)

Similarly, Z allocates the random intercept and two slopes to each observation from each tree. There
are 66 trees, so any given row of Z; will contain 195 zeros, a 1, and the corresponding dbhib and dbhib?.
It will have the same fundamental pattern as above.

12.5.2 b

The purpose of b is to contain all the predicted random effects. Thus it will be 225 units long, which
corresponds to 3 for each level of forest (intercept, slope for diameter, and slope for diameter squared)
and 3 for each level of tree (intercept, slope for diameter, and slope for diameter squared).

b = (bs10, br1d, bpraz: b20, brads braaz, - - -, be10, berd, beiaz, be2os bezd, braaz, - - )’ (12.23)

The combination of b and Z serves to allocate each random effect to the appropriate unit and mea-
surement.

12.5.3 D

Finally, D dictates the relationships between the different random effects within the levels of forest and
tree. We’ve assumed that the random effects will be independent between habitat types and trees. So,
there are only two sub-matrices to this matrix, called D¢ and Dyg.

0§f0 Obfod  Obf0d2
D¢ = | obfoa aﬁfd Obfdd2 (12.24)
2
Obfod2  Obfdd2  Oppao

Ugto Obt0a  Obt0d2
D¢ = | Owod Obg  Obtda (12.25)
Obtod2  Obtdd2  Opyao
Then the structure of D is simply 9 repetitions of Dg, laid on a diagonal line, followed by 66 repetitions
of D¢ laid on the same diagonal, and zeros everywhere else.
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12.6 Wrangling

We observed earlier that the use of the control argument was a key tool for the modeller. This element
can introduce a little culture shock. Having ourselves come from traditions of model fitting for which
exact solutions were easily obtained,and convergence was unequivocal, it was surprising, not to say
disheartening, to find that algorithms sometimes quit before convergence. Probably we display our
naivete.

The statistical tools that we have been discussing in this chapter are too complicated to admit exact
solutions. Accordingly, we have to try to maximize the likelihood, for example, by iterative means. It
is necessary and correct that the authors of the code we use will have put in checks, to halt the code in
situations where they deem continuing unprofitable.

In any case, bitter experience, and ruthless experimentation have taught us that the code authors
do not necessarily have exactly our problem in mind when they are choosing the default parameters for
their software. In such cases, it is necessary to roll up our sleeves and plunge our arms into the organs
of our analysis. Most of the fitting tools that we use have control arguments that will report or modify
the process of model fitting. Experimenting with these will often lead to model configurations that fit
reliably.

In short, don’t be reluctant to experiment. Any or all of the following strategies might be necessary
to achieve a satisfactory fit of your model to your data.

12.6.1 Monitor

In order to be better informed about the progress of model fitting, we use the msVerbose argument. It
provides a brief, updating description of the progress of the model fit. It will also point out problems
along the way, which help the user decide what is the best thing to do next.

12.6.2 Meddle

This strategy involves adjusting the fitting tool.

If the model is failing to converge, then often all that is required is an increase in the number of
allowable iterations. The mixed-effects model fitting algorithms in 1me use a hybrid optimization scheme
that starts with the EM algorithm and then changes to Newton—Raphson (Pinheiro and Bates, 2000,
p. 80). The latter algorithm is implemented with two loops, so we have three iteration caps. We have
found that increasing both maxIter and msMaxIter is a useful strategy. If we are feeling patient, we will
increase them to about 10000, and monitor the process to see if the algorithm still wishes to search. We
have occasionally seen iteration counts in excess of 8000 for models that subsequently converged.

We have also had success with changing the optimization algorithm. That is, models that have
failed to converge with nlminb, by getting caught in a singular convergence, have converged successfully
using Nelder-Mead in optim. The default is to use nlminb, but it may be worth switching to optim,
and within optim, choosing between Nelder-Mead, BFGS, and L-BFGS-B. Each of these algorithms has
different properties, and different strengths and weaknesses. Any might lead more reliably to a satisfactory
solution.

12.6.3 Modify

This strategy involves changing the relationship between the model and the data.

The update function fits a new model using the output of an old model as a starting point. This
is an easy way to set the starting points for parameter estimates, and should be in common use for
iterative model building in any case, due to its efficiency. Try dropping out components of the model
that complicate it, fitting a smaller, simpler model, and then using update to fit the full model.

Alternatively, a number of the model components permit the specification of a starting point. For
example, if we provide the corAR1 function with a suitable number then the algorithm will use that
number as a starting point. Specifying this value can help the algorithm converge speedily, and sometimes,
at all. Experimenting with subsets of the full model to try to find suitable starting points can be profitable,
for example if one has a correlation model and a variance model.

We can also think about how the elements in the data might be interacting with the model. Is the
dataset unbalanced, or are there outliers, or is it too small? Any of these conditions can cause problems
for fitting algorithms. Examining the data before fitting any model is standard practice. Be prepared to
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temporarily delete data points, or augment under-represented portions, in order to provide the update
function with a reasonable set of starting values.

12.6.4 Compromise

Sometimes a model involves a complicated hierarchy of random effects. It is worth asking whether or
not such depth is warranted, and whether a superficially more complex, but simpler model, might suffice.
The case study in this chapter serves as a good example: although model fit benefited by allowing each
individual tree to have a random slope, there was no need to allow each national forest to have a random
slope. Including a slope for each forest made the model unnecessarily complicated, and also made fitting
the model much harder. Specifying the smaller model was a little less elegant, however.

Finally, sometimes no matter what exigencies we try, a model will not converge. There is a point in
every analysis where we must decide to cut our losses and go with the model we have. If we know that
the model has shortcomings, then it is our responsibility to draw attention to those shortcomings. For
example, if we are convinced that there is serial autocorrelation in our residuals, but cannot achieve a
reasonable fit using the available resources, then providing a diagnostic plot of that autocorrelation is
essential. Furthermore, it is important to comment on the likely effect of the model shortcoming upon
inference and prediction. If we are fortunate enough to be able to fit a simpler model that does include
autocorrelation, for example, we might demonstrate what effect the inclusion of that portion of the model
has upon our conclusions. We would do this by fitting three models: the complex model, the simple model
with the autocorrelation, and the simple model without the autocorrelation. If the difference between
the latter two models is modest, then we have some modest degree of indirect evidence that perhaps
our conclusions will be robust to misspecification of the complex model. It is not ideal, but we must be
pragmatic.

12.7 Appendix - Leave-One-Out Diagnostics

Another important question is whether there are any outliers or high-influence points. In a case like this
it is relatively easy to see from the diagnostics that no point is likely to dominate the fit in this way.
However, a more formal examination of the question is valuable. To date, there is little peer-reviewed
development of the problem of outlier and influence detection. Schabenberger (2005) provides an overview
of the extensive offerings available in SAS, none of which are presently available in R. Demidenko and
Stukel (2005) also provide some alternatives.

The simplest thing, in the case where a model fit is relatively quick, is to refit the model dropping each
observation one by one, and collecting the results in a vector for further analysis. This is best handled
by using the update() function.

> all.betas <- data.frame(labels=names(unlist (hd.lme.1$coefficients)))
> cook.0 <- cook.1 <- rep(NA, dim(stage.old)[1])

> p.sigma.0 <- length(hd.lme.1$coefficients$fixed) *

+ var (residuals(hd.1lme.1, level=0))

> p.sigma.l <- length(hd.lme.1$coefficients$fixed) *

+ var (residuals(hd.lme.1, level=1))

> for (i in 1:dim(stage.old)[1]) {

+ try({ hd.lme.n <- update(hd.lme.l, data = stage.old[-i,])

+ new.betas <- data.frame(labels=names(unlist(hd.lme.n$coefficients)),
+ coef=unlist (hd.lme.n$coefficients))

+ names (new.betas) [2] <- paste("obs", i, sep=".")

+ all.betas <- merge(all.betas, new.betas, all.x = TRUE)

+ cook.0[i] <- sum((predict(hd.lme.1l, level=0, newdata=stage.old) -

+ predict (hd.1lme.n, level=0, newdata=stage.old))"2) /
+ p.sigma.0

+ cook.1[i] <- sum((predict(hd.lme.1, level=1, newdata=stage.old) -

+ predict (hd.lme.n, level=1, newdata=stage.old))"2) /
+ p.sigma.l

+ »)

+ }
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We can then examine these results with graphical diagnostics (Figures 12.22 and 12.23). The Cook’s
Distances presented here are only approximate.

> all.betas <- t(all.betas[,-1])

> len.all <- length(unlist (hd.lme.1$coefficients))

> len.fixed <- length(hd.lme.1$coefficients$fixed) # 2

> len.ran <- length(hd.lme.1$coefficients$random$Forest.ID) # 9

> opar <- par(mfrow=c(len.all, 1), oma=c(2,0,1,0), mar=c(0,4,0,0), las=1)
> for (i in 1:len.fixed) {

+ plot(all.betas[,i], type="1", axes=F, xlab="", ylab="")

+  text(length(all.betas[,i])-1, max(all.betas[,i], na.rm=T),
+ names (unlist (hd.lme.1$coefficients)) [i],

+ adj=c(1,1), col="red")

+ axis(2)

+  box()

+ }

> for (i in (len.fixed+1):(len.all)) {

+ plot(all.betas[,i], type="1", axes=F, xlab="", ylab="")

+ text (length(all.betas[,i])-1, max(all.betas[,i], na.rm=T),
+ names (unlist (hd.lme.1$coefficients)) [i],

+ adj=c(1,1), col="red")

+ axis(2)

+  box()

+ }

> axis(1)

> par (opar)

> cook <- data.frame(id=stage.old$Tree.ID, fixed=cook.0, forest=cook.1)
> influential <- apply(cook[,2:3], 1, max) > 1

> plot(cook$fixed, cook$forest, type="n",

+ xlab="0Outermost (Fixed effects only)",

+ ylab="Innermost (Fixed effects and random effects)")

> points(cook$fixed[!influential], cook$forest[!influentiall)
> if(sum(influential) > 0)

+ text (cook$fixed[influential], cook$forest[influentiall,

+ cook$id[influential], col="red", cex=0.85)

And, what about the removal of entire forests? We can compute the effects similarly.
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Figure 12.22: The parameter estimates for the fixed effects and predictions for the random effects resulting
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Figure 12.23: Cook’s Distances for outermost and innermost residuals. Values greater than 1 appear in
red and are identified by the tree number. The corresponding observations bear further examination.
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Chapter 13

Nonlinear Mixed Effects

13.1 Many Units

In Section 11.1, we fit a nice non—linear model to a single tree. It would be good to be able to fit the same
model to a collection of trees with minimal fuss. The nlme package again provides us with a way forward.
Firstly, we can use the groupedData structure to simplify the problem of fitting a model to many trees,
and secondly, we can use a so—called self-starting function, which provides its own starting values for any
data that are presented to it. This self-starting function is one of the prepackaged functions mentioned
earlier, and its adoption simplifies our approach considerably.

> gutten <- read.csv("../data/gutten.csv")

> gutten <- gutten[!is.na(gutten$Diameter),

+ c("Site","Location", "Tree", "Diameter", "Age.bh")]

> names (gutten) <- c("site","location", "tree","dbh.cm", "age.bh")

> gutten$site <- factor(gutten$site)

> gutten$location <- factor(gutten$location)

> gutten$tree.ID <- interaction(gutten$site, gutten$location, gutten$tree)
> diameter.growth <- deriv(~ asymptote * (1 - exp(-exp(scale) * x)),

+ c("asymptote", "scale"),

+ function(x, asymptote, scale){})

v

require (nlme)
gutten.d <- groupedData(dbh.cm

v

age.bh | tree.ID, data=gutten)
The relevant self-starting function is called SSasympOrig.

> gutten.nlsList <-
nlsList(dbh.cm ~ SSasympOrig(age.bh, asymptote, scale), data = gutten.d)

+

We are now in a position to speculate as to whether or not the kink observed in the residuals for
tree 1.1.1 is repeated in the other trees (Figure 13.1). These results suggest that there certainly is a
systematic lack of fit across the board. We may need to adopt a more flexible function.

> plot(gutten.nlsList, residuals(., type="pearson") ~ fitted(.) | tree.ID)

We could print out all the parameter estimates but it is more useful to construct a graphical summary
(Figure 13.2). Note that the intervals are based on large-sample theory.

> plot(intervals(gutten.nlsList), layout=c(2,1))

We can extract and manipulate the coefficient estimates with a little bit of digging. The digging
follows, and may be skipped. First we try to find what functions are available to manipulate objects of
the class of the object that we have just created.

> methods(class=class(gutten.nlsList))
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Figure 13.1: Plot of residuals against fitted values from non-linear models as fit to each tree.

[1] formula.nlsList* nlme.nlsList

[4] update.nlsListx*

summary.nlsListx*

Non-visible functions are asterisked

| OFN
N

A summary method is available. Let’s find out what functions are available to manipulate summary

objects.

> methods (class=class (summary(gutten.nlsList)))

[1] coef.summary.nlsList*

Non-visible functions are asterisked

A coef method is available. What does its output look like?

> str(coef (summary (gutten.nlsList)))
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Figure 13.2: Interval plot for diameter prediction model fitted to Guttenberg data.

num [1:107, 1:4, 1:2] 18.7 21.4 27.6 26.5 44.5
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- attr(*, "dimnames")=List of 3

..$ : chr [1:107] "5.5.32" "4.5.36" "5.5.33" "5.7.12"

..$ : chr [1:4] "Estimate" "Std. Error" "t value" "Pr(>|t|)"
..$ : chr [1:2] "asymptote" "scale"

It is an array. We can extract its elements in the following way.

> asymptote <- coef (summary(gutten.nlsList))[,"Estimate", "asymptote"]
> half.age <- log(2) /
+  exp(coef (summary (gutten.nlsList)) [, "Estimate", "scale"])

So, back to the exercise. Figure 13.3 shows a scatterplot of the estimated parameters for each tree:
the estimated asymptote on the y-axis and the estimated age at which the tree reaches half its maximum
diameter on the z-axis, with a loess smooth added to describe the mean of the pattern. There is clearly
a relationship between the asymptote and the estimated age at which half the asymptote is reached.

> opar <- par(las=1, mar=c(4,4,1,1))
> scatter.smooth(half.age, asymptote, xlab="Age", ylab="Asymptote")
> par(opar)

Asymptote

T T T
50 100 150

Age

Figure 13.3: Plot of the estimated age at which the tree reaches half its maximum diameter against the
estimated tree-level maximum diameter.

This approach provides us with a convenient way to think about fitting data to many different objects.
But, what practical use does the model have? Not much. This model is analogous to the linear model
that includes one intercept for each plot: the model assumptions are (probably) satisfied, but the model
isn’t really useful.

We could also try to fit the model to all the trees at once, that is, ignoring the differences between
trees.

> (gutten.nls <- nls(dbh.cm ~ diameter.growth(age.bh, asymptote, scale),
+ start = list(asymptote=50, scale=-5),
+ data = gutten))

Nonlinear regression model
model: dbh.cm ~ diameter.growth(age.bh, asymptote, scale)
data: gutten
asymptote scale
38.56 -4.20
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residual sum-of-squares: 39130

Number of iterations to convergence: 5
Achieved convergence tolerance: 3.027e-06

This model has diagnostics reported in Figure 13.4, and constructed as follows.

> opar <- par(mfrow=c(2,2), mar=c(4,4,2,1), las=1)

> plot(fitted(gutten.nls), gutten$dbh.cm,

+ xlab="Fitted Values", ylab="Observed Values")

> abline(0, 1, col="red")

> plot(fitted(gutten.nls), residuals(gutten.nls, type="pearson"),
+ xlab="Fitted Values", ylab="Standardized Residuals")

> abline(h=0, col="red")

> plot(profile(gutten.nls), conf=0.95)

> par (opar)

Observed Values
Standardized Residuals

m

37 38 39 40 41 -4.30 -4.25 -4.20 -4.15 -4.10

asymptote scale

Figure 13.4: Profile plots for simple asymptotic model with all data.

How does the model seem? Here are the approximate large-sample 95% confidence interval estimates.

> (my.t <- qt(0.975, summary(gutten.nls)$df[2]))
[1] 1.961946

> coef (summary (gutten.nls)) [,1:2] }*} matrix(c(1,-my.t,1,my.t), nrow=2)

[,1] [,2]
asymptote 36.522095 40.593577
scale -4.300579 -4.099923

Compare them with these:
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> confint(gutten.nls)

2.5% 97.5%
asymptote 36.626648 40.816835
scale -4.306002 -4.100122

They seem just fine. It’s a shame about the diagnostics.

13.2 Hierarchical Resolution

We now focus on fitting the same kinds of models to hierarchical data. This direction produces simplifi-
cations and complications, but sadly more of the latter than the former.

We start with the non-linear mixed effects model that generalizes our earlier non-linear model (Equa-
tion 11.1. We will start with allowing each tree to have a random asymptote and scale. That is, for
diameter measure t in tree ¢

Yit = (¢1 + ¢i1) x [1 —exp (—exp (o2 + di2) )] + €3¢ (13.1)

where ¢, is the fixed, unknown asymptote and ¢5 is the fixed, unknown scale, and

L] ([0) 5 o)) 152

The process of fitting and critiquing these models is well documented in Pinheiro and Bates (2000).
Given that we have already used nlsList (), the easiest approach both from the point of view of typing,
and of having sensible starting points, is:

> gutten.nlme.0 <- nlme(gutten.nlsList)
> summary(gutten.nlme.O )

Nonlinear mixed-effects model fit by maximum likelihood
Model: dbh.cm ~ SSasympOrig(age.bh, asymptote, scale)
Data: gutten.d

AIC BIC logLik
3627.763 3658.304 -1807.882

Random effects:

Formula: list(asymptote ~ 1, scale ~ 1)

Level: tree.ID

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
asymptote 12.2386790 asympt
scale 0.4191592 -0.596

Residual 0.7092730

Fixed effects: list(asymptote ~ 1, scale ~ 1)
Value Std.Error DF t-value p-value

asymptote 40.19368 1.2164375 1092 33.04212 0
scale -4.20333 0.0417687 1092 -100.63355 0
Correlation:

asympt
scale -0.613

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-4.50181460 -0.51490231 -0.03653829 0.44912909 3.96736354

Number of Observations: 1200
Number of Groups: 107

If we wanted to construct this model from scratch, then we would need to do this:
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> gutten.nlme.0 <- nlme(dbh.cm ~ SSasympOrig(age.bh, asymptote, scale),
+ fixed = asymptote + scale " 1,

+ random = asymptote + scale " 1,

+ start = c(asymptote=50, scale=-5),

+ data = gutten.d)

As with the linear mixed-effects models, we have a wide arrray of different diagnostic plots that we
can deploy, and the functions to obtain those diagnostics are pretty much identical. Here we will focus
on examining the within-tree autocorrelation (Figure 13.5).

> plot(ACF(gutten.nlme.0, form = ~1|tree.ID), alpha=0.01)

The figure shows that there is substantial within-tree autocorrelation, which suggests systematic lack
of fit. At this point we have two options: we can try a different mean function, or we can try to model
the autocorrelation. In general we should try them in that order. For the moment, though, we will focus
on modeling the autocorrelation. After some experimentation, I arrived at:

> gutten.nlme.1l <- update(gutten.nlme.O,
+ correlation = corARMA(p=1, gq=2))

This produces residuals with autocorrelation pattern presented in Figure 13.6.
> plot(ACF(gutten.nlme.1, resType="n", form="1|tree.ID), alpha=0.01)

This is clearly superior to the preceding model, but still needs some tinkering. Perhaps too much lack
of fit?

0.8 1 r
0.5 4 = 0.6 - -
S 5
g g
I °© 044 r
5 5
g g
5 | beeedeeeee--- =1
< ‘ <
0.0 0.2 L
| |
7777777 \ J T T
-0.5 1 - -0.2 4 -
T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
Lag Lag
Figure 13.5: Autocorrelation of within-tree resid- Figure 13.6: Autocorrelation of within-tree resid-
uals from non-linear mixed-effects model. uals from non-linear mixed-effects model with ex-

plicit autocorrelation model.

Because we constructed the model from a groupedData object, we can use the augmented prediction
plots as a very useful summary of the model behaviour. This graphic is presented in Figure 13.7.

> plot(augPred(gutten.nlme.1))
We can get the approximate 95% confidence intervals of the estimates from the following call:

> intervals(gutten.nlme.1)
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Figure 13.7: von Guttenberg’s diameter data with asymptotic model passing through origin fitted,
within-tree autocorrelation accommodated. Here the tree-level models (Equation 13.1) are plotted.

Approximate 95% confidence intervals

Fixed effects:

lower est. upper
asymptote 36.477415 38.649228 40.821040
scale -4.203257 -4.119012 -4.034767

attr(,"label")
[1] "Fixed effects:"

Random Effects:
Level: tree.ID

lower est. upper
sd (asymptote) 8.9052436 10.5142650 12.4140084
sd(scale) 0.3233464 0.3855330 0.4596794

cor (asymptote,scale) -0.6724177 -0.5225909 -0.3316239

[elole/ale)

ORNWAUT
[elols/ale)

and
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Correlation structure:
lower est. upper
Phil 0.7554941 0.8217240 0.8713289
Thetal 0.2946767 0.4007533 0.5084188
Theta2 0.5612775 0.6827430 0.7754167
attr(,"label")
[1] "Correlation structure:"

Within-group standard error:
lower est. upper
1.292455 1.524285 1.797699

138



Chapter 14

Showcase: equivalence tests

14.1 Introduction

Model validation and environmental monitoring are essential components of the management and protec-
tion of biodiversity and natural resources. Yet, validation and monitoring are poorly served by traditional,
established statistical tools.

Equivalence tests, described in detail below, are a relatively new branch of statistics. Equivalence
tests are ideal for demonstrating that predictions from a model conform to field observations, or that
field observations conform to legislated norms. Equivalence tests are more appropriate for these tasks
than the traditional hypothesis tests.

A characteristic of the traditional hypothesis tests is that they start from the position that two things
are the same, and try to prove otherwise (that is, they are designed to split). Equivalence tests start from
the position that two things are different, and try to prove that they are the same. That is, equivalence
tests are designed to lump.

The goal of both validation and monitoring is to compare measurements with some expectation,
whether those be from model predictions, as in the case of a model validation exercise, or from a nominal
standard, as in the case of environmental or natural resource monitoring. In each case, it is desirable to
be able to conclude that the predictions and the observations are the same, or that the field observations
meet the required standard.

Of course, we can never conclude that these quantities are identical, instead we wish to conclude that
they are sufficiently similar that differences are irrelevant.

Various authors have recommended the use of equivalence tests instead of the traditional hypoth-
esis tests for specific situations, for example in environmental management (McBride, 1999), biology
(Parkhurst, 2001), ecology (Dixon and Pechmann, 2005), medical studies (see Berger and Hsu, 1996,
among many others), psychology (Rogers et al., 1993), and model validation (Robinson and Froese,
2004).

Some equivalence tests are available in R via the equivalence package.

> library(equivalence)

14.2 TOST 1

A popular equivalence test is an intersection—union test called the TOST, for Two-One-Sided Tests, which
can be used to try to assess the equivalence between the means of two populations based only on a sample
from each (Schuirmann, 1981; Westlake, 1981). The TOST is applied as follows.

1. Choose

(a) a test statistic, for example, the mean of the differences between the samples,

(b) a size, which is essentially the probability of a false positive for the test, e.g. « = 0.05, and

(¢) a region of similarity, which is a span of numbers within which we think that if the two
population means are this far apart then we can treat them as though they were the same.

2. Compute the statistic and two one-sided confidence intervals, one lower and one upper, each with
nominal coverage equal to 1 — a.
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3. If the overlap of the two intervals computed in step 2 is inside the region determined in step lc
then conclude that the means of the populations are statistically similar.

This test is easy to apply and interpret, although it is not the most powerful available (Berger and
Hsu, 1996; Wellek, 2003). Here, we run the TOST in R using the equivalence package.

We have a dataset of height and diameter measurements taken from the University of Idaho Experi-
mental Forest (UIEF). In the summer of 1991, a stand examination was made of the Upper Flat Creek
unit of the UTEF. 144 plots were located on a square grid, with north-south inter-plot distance of 134.11
m and east-west inter-plot distance of 167.64 m. A 7.0 m?/ha BAF variable-radius plot was installed
at each plot location. Every tree in the plot was measured for species and diameter at 1.37 m (dbh),
recorded in mm, and a subsample of trees was measured for height, recorded in dm. The inventory data
are stored in the ufc object, which is provided by the equivalence package.

Our goal is to assess whether the Prognosis height—diameter model is suitable for this stand. We will
assume that the sampling units are the trees, and we will ignore the clustering in the sample design for
the purposes of this demonstration, this point is discussed further below.

> data(ufc)

> str(ufc, strict.width = "cut")

'data.frame': 633 obs. of 10 variables:

$ Plot :int 1 223333333...

$ Tree :int 1121234567 ...

$ Species : Factor w/ 13 levels "","DF","ES","F",..: 1 2 12 11 6..
$ Dbh : int NA 390 480 150 520 310 280 360 340 260 ...
$ Height : int NA 205 330 NA 300 NA NA 207 NA NA ...

$ Height.ft : num NA 67.3 108.3 NA 98.4 ...

$ Dbh.in : num NA 15.35 18.9 5.91 20.47 ...

$ Height.ft.p: num NA 83.5 107.3 44.2 106.1 ...

$ Height.m : num NA 20.5 33 NA 30 NA NA 20.7 NA NA ...

$ Height.m.p : num NA 25.4 32.7 13.5 32.3 ...

The height predictions have already been computed for the trees. Hence our goal is to perform an
equivalence test on the two variables: measured (Height.m) and predicted (Height.m.p) heights, both
expressed in metres. Let’s check these data first.

> lapply(ufc[,c("Height.m", "Height.m.p")], summary)

$Height.m
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.0 18.7 24.0 24.0 29.0 48.0 248
$Height.m.p
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
8.921 20.100 25.240 24.260 28.980 46.350 18

Our test involves computing a confidence interval for the differences of two means. We’ll need to
invoke the central limit theorem (CLT) in order to compute the confidence interval. Sometimes we have
to do this on blind faith, but here we have a sample of differences that we can assess for proximity to
normality. We provide the qg-norm plot in Figure 14.1, using the following code.

> error.hats.m <- ufc$Height.m - ufc$Height.m.p
> qqnorm(error.hats.m)
> qqline(error.hats.m)

The plot shows good agreement with our needs in order to invoke the CLT, but also shows that two
of the observations differ quite substantially from the predictions. Let’s drill down and inspect the trees.

> subset (ufc, error.hats.m < -15,
+ select = c(Plot, Tree, Species, Dbh, Height.m, Height.m.p))
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Figure 14.1: QQ norm plot of the treee height prediction errors, in metres.

Plot Tree Species Dbh Height.m Height.m.p
372 67 6 WL 575 3.4  34.45379
411 78 5 WP 667 0.0 40.69514

The output shows that the two trees in question have very small heights for their diameters (recall that
the diameters are measured in mm). We could quite reasonably exclude them from further consideration,
and then feel comfortable with our use of the CLT.

> ufc.nice <- subset(ufc, error.hats.m > -15)

We use 2 metres as our region of indifference; that is, we’ll say that if the average height of the
predictions is demonstrably within 2 metres of the average height of the observations, then the null
hypothesis should be rejected. Here, we save the test object that the function creates for subsequent
examination.

> fvs.test <- tost(x = ufc.nice$Height.m.p,
+ y = ufc.nice$Height.m,
+ epsilon = 2)

The returned object is a list of objects, so we’ll dig around it here.
> str(fvs.test)

List of 9

$ mean.diff: num 0.412

$ se.diff : num 0.511

$ alpha : num 0.05

$ ci.diff : atomic [1:2] -0.429 1.254
..— attr(x, "conf.level")= num 0.9

$ daf : Named num 738
..— attr(*, "names")= chr "df"
$ epsilon : num 2
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$ result : chr "rejected"

$ p.value : num 0.000982

$ check.me : atomic [1:2] -1.18 2
..— attr(x, "conf.level")= num 0.998

The object comprises the following pieces:

mean.diff is the difference between the sample means,

se.diff is the estimated standard error of the difference between the sample means,

alpha is the nominated size of the test,

ci.diff is the estimated (1 —«) confidence interval of the difference between the population means,
df is the number of degrees of freedom used for the calculation,

epsilon is the nominated region of similarity,

result is the outcome of the hypothesis test — the null hypothesis is either rejected or not rejected,
p-value reports 1 minus the coverage of the largest possibly interval that will result in rejection of
the null hypothesis, and

9. check.me reports the largest possibly interval that will result in rejection of the null hypothesis.
As much as anything, it is produced to cross-check the reported p-value.

S BRI o e

Here, the outcome of the hypothesis test is:
> fvs.test$result
[1] "rejected"
with p-value
> fvs.test$p.value
[1] 0.0009824095

We conclude that there is strong evidence to support the use of the FVS height—diameter model in
this stand.

The rationale behind the interpretation of the p-value is the same as that that underpins the connection
between confidence intervals and traditional (splitting) hypothesis tests: the p-value is 1 minus the
coverage of the largest possible interval that includes the null hypothesis value.

14.3 Equivalence plot

Robinson et al. (2005) suggested an extension of the TOST that could be used to identify components of
lack-of-fit, and provide an integrated summary of the relationship between two variables along with the
necessary information to make inference. For want of a better name it is presently termed an “equivalence
plot”.

The equivalence plot involves making a scatterplot of the raw data, and imposing graphical images
on the plot that summarize two TOST-based tests: a test on the intercept (equivalent to a test on the
sample mean) and a test on the slope. The plot is called using the following code:

> ufc.ht <- ufc.nice[!is.na(ufc.nice$Height),]

> equivalence.xyplot (ufc.ht$Height.m ~ ufc.ht$Height.m.p,
+ alpha=0.05, b0.ii=1, bl1.ii=0.1,
b0.absolute = TRUE,

xlab="Predicted height (m)",
ylab="Measured height (m)")

+ + +

and is shown in Figure 14.2. We are comparing field measurements of tree height against predictions
from models published by Wykoff et al. (1982). Here the test rejects the null hypothesis of difference
from the intercept to 0 and the slope to 1. The mean of the model predictions is close to the mean of the
height measurements, and the tall trees are predicted to be taller than the short trees. We can use this
model for the population from which the sample came with some confidence.

It is worth noting that the quality of the match between the data and the model here is quite
extraordinary, and we would normally not expect the test to clear quite so high a bar.
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Figure 14.2: TOST embedded in a regression framework. The TOST for the intercept is carried out by
assessing whether the (grey) intercept error bar is inside the grey rectangle, which represents a region of
similarity of £1m of the mean. The TOST for the slope is carried out by assessing whether the (black)
slope error bar is inside the dotted rays, which represent a region of similarity of =10% of the slope.
Here, the slope and intercept error bars are coincident, owing to the large sample size. The test rejects
the null hypothesis of difference from the intercept to 0 and the slope to 1.
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Chapter 15

Programming

One of R’s greatest strengths is its extensibility. In fact, many of the tools that we’ve been enjoying were
created by other people. R can be extended by writing functions using the R language (Section 15.1) or
other languages such as C and Fortran (Section 15.6). Being comfortable writing functions is very useful,
as it adds an entirely new dimension to efficient and enjoyable programming.

15.1 Functions

The topic of writing functions in R deserves its own workshop, so we’ll merely skim the surface. We
declare a function in the following way.

> my.function <- function(arguments) {

+ F

We then put R commands between the braces {}. Unless we use an explicit return() command, R
will return the outcome of the last statement in the braces. If the function is only one line long, then the
braces may be omitted. Here’s a function that might be useful for NASA:

> cm.to.inches <- function(data) {
+ data / 2.54
+ }

We can now call that function just like any other.
> cm.to.inches(25)
[1] 9.84252
> cm.to.inches(c (25, 35, 45))
[1] 9.84252 13.77953 17.71654

It’s even vectorized (cf Section 6.3.1)! Of course this is trivial. But as far as R is concerned now, this
function is just like any other.

Functions can be used in many different ways. One useful example is to gather together function calls
that we often use. This function opens a file a field data, and optionally solves some common problems
and imputes height measurements.

get.field.data <- function(file = "../data/ufc.csv",
clean = TRUE,
impute = FALSE) {

if (clean) {
field$dbh.cm <- field$dbh/10
field$height.m <- field$height/10

>
+
+
+ field <- read.csv(file)
+
+
+
+ field$height.m[field$height.m < 0.1] <- NA

144



©@®O icebreakeR

+ field$species[field$species /inj, c("F","FG")] <- "GF"
+ field$species <- factor(field$species)

+ if (impute) {

+ require (nlme)

+ hd.lme <- lme(I(log(height.m)) ~ I(log(dbh.cm)) * species,
+ random = ~ I(log(dbh.cm)) | plot,

+ data = field)

+ field$p.height.m <- exp(predict(hd.lme, level=1))

+ }

+ }

+ return(field)

+ }

More sophisticated versions would include error checking and reporting, more cleaning, and so on.
Most likely a function like this will grow organically.

15.2 Flow Control

R provides access to a number of control structures for programming - if (), for(), and while(), for
example. Take some time to look these up in the help system. In general it is best to avoid these functions
if at all possible, as many problems that can be solved using these functions can be solved more quickly
and with tighter code using vectorization (see section 6.3.1).

15.2.1 A Case Study

For the sake of example, though, imagine that we are interested in estimating how close to normally-
distributed are the parameter estimates for a linear regression, and what the empirical joint distribution
might look like. Let’s do it now with an explicit loop. First we get the data.

> rugby <- read.csv("../data/rugby.csv")

> rugby$rules <- "New"

> rugby$rules[rugby$game < 5.5] <- "01d"

> rugby$game.no <- as.numeric(rugby$game)

> rugby$rules <- factor (rugby$rules)

> rugby$game <- factor (rugby$game)

> str(rugby)

'data.frame': 979 obs. of 4 variables:

$ game : Factor w/ 10 levels "1","2","3","4" ,.: 1111111111
$ time :num 39.2 2.7 9.2 14.6 1.9 17.8 15.5 53.8 17.5 27.5 ...

$ rules : Factor w/ 2 levels "New","0ld": 2222222222 ...
$ game.no: num 1111111111

Looping

Then we construct the loop.

> reps <- 200 # Choose a number of replicates

> differences <- rep(NA, reps) # Prepare a receptacle

> (n <- nrow(rugby)) # Find the sample size

[11 979

> system.time ({ # Just to keep time

+ for (i in 1:reps) { # Execute once for each value of i
+ new.index <- sample(l:n, replace=TRUE) # Sample the index

+ differences[i] <- # Fit the model, extract the estimate.
+ coef (Im(time [new.index] ~ rules[new.index], data=rugby))[2]
+ F

+ 3}
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user system elapsed
0.463 0.008 0.476

Finally, we can examine the mean, standard error, and distribution of the parameter estimates (Fig-
ure 15.1).

> mean(differences)

[1] 3.438229

> sd(differences)

[1] 0.913485

> qqnorm(differences, main="QQ plot of Estimates")
> qqline(differences)

QQ plot of Estimates

Sample Quantiles

Theoretical Quantiles

Figure 15.1: Normal quantile plot of random parameter estimates from loop.

15.2.2 Looping on other things

The for() is more generic than one might suspect, given its simplicity. The range of values to take the
index from doesn’t have to be sequential, or in any order, or even numbers. This can be very useful when
you wish to, for example, read in a large number of files for later operations.

> (file.names <- list.files("../data")) # Read all the file names

[1]
(2]
(3]
(4]
(5]
(el
7]
(8]
(9]
[10]
[11]
[12]

"DBT_Data_For_A_Robinson_20090702.csv"
"DBT_Metadata_ec28_20090702.doc"
"Sawlog_Data_For_A_Robinson_20090702.csv"
"blowdown.txt"
"ehc.csv"
"gutten.csv"
"hanford.csv"
"ndvi.csv"
"rugby.csv"
"stage.csv"
"ufc.csv"
"wind-river.csv
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> (f.c <- nchar(file.names))
[1] 36 30 39 12 7 1011 8 9 9 7 14

> (file.names <- # Select the csv files
+ file.names[substr(file.names, f.c-3, f.c) == ".csv"])

[1] "DBT_Data_For_A_Robinson_20090702.csv"
[2] "Sawlog_Data_For_A_Robinson_20090702.csv"
[3] "ehc.csv"

[4] "gutten.csv"

[5] "hanford.csv"

[6] "ndvi.csv"

[7] "rugby.csv"

[8] "stage.csv"

[9] "ufc.csv"

[10] "wind-river.csv"

> for (my.file in file.names) {
+ in.file <- read.csv(paste("../data", my.file, sep="/"))
+ cat (paste("File", my.file, "has", nrow(in.file), "rows.\n", sep=" "))

+ }

File DBT_Data_For_A_Robinson_20090702.csv has 2319 rows.
File Sawlog_Data_For_A_Robinson_20090702.csv has 4821 rows.
File ehc.csv has 488 rows.

File gutten.csv has 1287 rows.

File hanford.csv has 9 rows.

File ndvi.csv has 62 rows.

File rugby.csv has 979 rows.

File stage.csv has 542 rows.

File ufc.csv has 637 rows.

File wind-river.csv has 5933 rows.

15.3 Scoping

When writing functions in some languages, we have to pass or declare all the variables that will be used
in the function. This is called a scoping rule, and it means that the language always knows where to
look to find its variables. R has a more relaxed approach: it will first look in the local function, and if
it doesn’t find what it’s looking for, it will go up a level - in to the calling environment - and look there
instead, and so on. This has two important consequences. Firstly, we don’t have to pass all the variables
that we might want to use. This makes code neater and easier to read in many cases. However, secondly,
you may find upstream variables affecting downstream results if you have a mistake in your code, and
you’ll never know about it. So, whenever I develop code I make a habit of saving the script, deleting all
the objects, and running it all again, perhaps several times. Scoping is important - it can save you a lot
of hassle, but it can cost a lot of time if you’re not careful.

> x <- pi

> radius.to.area <- function(radius) {
+ X * radius~2

+ }

>

radius.to.area(4)

[1] 50.26548

15.4 Debugging
Advice that pertains to debugging in general is useful for R also. That is, profile your code using simple

inputs where you are confident that you know what the answer should be, provide generous commenting
and ensure that you examine the intermediate steps.
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Also, use browser () inside your functions. browser() will stop the processing, and allow you to
inspect all the objects in, and in some cases out, of your function. See ?browser for more information.
You can use

> eval (expression(function()),
+ envir = sys.frame(n),
+ enclos = NULL)

to execute function() in relative environment n, which might, for example, be the environment from
which your function has been called. For example, to list the objects that are one level up, you might do
the following.

> rm(list=1s())
> 1s()

character (0)

x <- 2

l1s.up <- function() {
eval (expression(1ls()), envir = sys.frame(-1), enclos=NULL)
}

1s.up()

vV + + Vv Vv

[1] "1S.11p" Nyt

This example is not particularly useful in and of itself, but shows how to construct commands that
operate in different environments, and such commands are very useful when debugging inside a browser.

15.5 S3 Classes and Objects

It is not mandatory to apply the principles of object-oriented programming when writing R code, but

doing so can have advantages. Here I briefly demonstrate the use of S3-style classes. Briefly, we will

create a class, which is a specific type of object, and we will write functions that apply specifically to

that class. The functions will replace so-called generic functions, such as print (), plot (), and mean().
Note that there is no such class as inventory.

> methods(class="inventory")
no methods were found

Let us invent one. Let’s say that the inventory class is a 1ist, with certain extra attributes. To
start we write a function that creates the class from a file and extra information.

> inventory <- function(file = "../data/ufc.csv",

+ clean = TRUE,

+ impute = FALSE,

+ design = c("VRP","FAP"),

+ weight = NULL,

+ area = NULL

+ ) 1

+ data <- read.csv(file)

+ if (clean) {

+ data$dbh.cm <- data$dbh/10

+ data$height.m <- data$height/10

+ data$height.m[data$height.m < 0.1] <- NA

+ data$species[data$species 7inj, c("F","FG")] <- "GF"
+ data$species <- factor(data$species)

+ if (impute) {

+ require(nlme)

+ hd.lme <- 1me(I(log(height.m)) ~ I(log(dbh.cm)) * species,
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random = ~ I(log(dbh.cm)) | plot,
na.action=na.exclude,
data = data)
predicted.log.heights <-
predict (hd.lme, na.action=na.omit, newdata=data)
data$p.height.m[!is.na(data$dbh.cm)] <- exp(predicted.log.heights)
data$p.height.m[!is.na(data$height.m)] <-
data$height.m[!is.na(data$height.m)]
} else {
data$p.height.m <- data$height.m
}
}
results <- list(data = data,
design = design,
weight = weight,
area = area)
class(results) <- "inventory"
return(results)

}

+ o+ + F+t +F o+t R+ o+ 4+

The class will assume that there are only two kinds of inventories; variable-radius plots (VRP), in
which case the weight argument will be interpreted as the BAF, and fixed-area plots (FAP), in which
case the weight argument will be interpreted as the plot size in hectares. Notice the assumptions that
the function is making about the format of the data, and what data are being included.

Now we write a print function that will be used for all objects of class inventory. We will assume
that the goal of printing the inventory is a description of the data. Printing can then be invoked in one
of two ways.

> print.inventory <- function(x) str(x)

Now we can try it out, e.g.

> ufc <- inventory(file = "../data/ufc.csv",
+ clean = TRUE,
+ impute = TRUE,
+ design = "VRP",
+ weight = 7,
+ area = 300)
> ufc
List of 4
$ data :'data.frame': 637 obs. of 8 variables:
..$ plot : int [1:637] 1 223333333 ...
..$ tree : int [1:637] 1121234567 ...
..$ species : Factor w/ 11 levels "","DF","ES","GF",..: 12109499999 ...
..$ dbh : int [1:637] NA 390 480 150 520 310 280 360 340 260 ...
..$ height : int [1:637] NA 205 330 NA 300 NA NA 207 NA NA ...
..$ dbh.cm : num [1:637] NA 39 48 15 52 31 28 36 34 26 ...
..$ height.m : num [1:637] NA 20.5 33 NA 30 NA NA 20.7 NA NA ...

..$ p.height.m: num [1:637] NA 20.5 33 13.8 30 ...
$ design: chr "VRP"

$ weight: num 7

$ area : num 300

- attr(*, "class")= chr "inventory"

Now we can start to think about how we interact with inventory data. For example, we might decide
that a plot of inventory data should always produce a set of four panels, thus:

> plot.inventory <- function(inventory, ...) {
+ plot(inventory$data$dbh.cm, inventory$data$height.m,
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main="Height v. Diameter",
xlab="Dbh (cm)", ylab="Height (m)", ...)
require (MASS)
truehist (inventory$data$dbh.cm, h=5, x0=0, xlab="Dbh (cm)",
main="Diameter Distribution (unweighted)", ...)

boxplot(dbh.cm ~ species, data=inventory$data, ylab="Dbh (cm)",
varwidth=TRUE)

boxplot (height.m ~ species, data=inventory$data, xlab="Height (m)",
varwidth=TRUE)

+ + + + + + F o+ o+ o+

}

Note firstly that we had to extract the data from two layers of infrastructure, using a sequence of $
signs, and secondly, that it was very easy to do so. The role of the three dots in the argument list is
to alert the function that it may receive other arguments, and if it does it should expect to pass those
arguments on to the plot () and boxplot() functions unaltered.

We then use this function as follows, to create Figure 15.2:

> par(mfrow=c(2,2), mar=c(4,4,3,1), las=1)
> plot(ufc, col="seagreen3")

In brief, then, to write a function, say fu(), that will be automatically invoked to replace an existing
generic function fu() when applied to an object of class bar, we need merely call the function fu.bar.

Non-generic functions can also be written, but don’t require the trailing object name. For example,
we wish to compute a volume for all the trees, but to have options amongst our many volume functions.

> compute.tree.volume <- function(inventory, vol.function) {

+  tree.volume.m3 <- do.call(vol.function, list(inventory$data$species,

+ inventory$data$dbh.cm,

+ inventory$data$p.height.m))
+ return(tree.volume.m3)

+}

Again, note that we are making important assumptions about what information will be available to
the function, and how it will interact with it. For example, we are assuming that there will be a variable
called p.height.m available for each tree. We will use the northerm Idaho FVS volume function from
Wykoff et al. (1982), but with the unit conversions inside the function rather than outside.

> vol.fvs.ni.m3 <- function(spp, dbh.cm, ht.m){

+ dbh.in <- dbh.cm / 2.54

+ ht.ft <- ht.m * 3.281

+  bf.params <-

+ data.frame(

+ species = c("WP", "WL", "DF", "GF", "WH", "WC", "LP", "ES",
+ "SF", "PP", "HW"),

+ b0.small = c(26.729, 29.790, 25.332, 34.127, 37.314, 10.472,
+ 8.059, 11.851, 11.403, 50.340, 37.314),

+ bl.small = c¢(0.01189, 0.00997, 0.01003, 0.01293, 0.01203,
+ 0.00878, 0.01208, 0.01149, 0.01011, 0.01201, 0.01203),

+ b0.large = c(32.516, 85.150, 9.522, 10.603, 50.680, 4.064,
+ 14.111, 1.620, 124.425, 298.784, 50.680),

+ b1l.large = c(0.01181, 0.00841, 0.01011, 0.01218, 0.01306,

+ 0.00799, 0.01103, 0.01158, 0.00694, 0.01595, 0.01306)

+ )

+ dimensions <- data.frame(dbh.in = dbh.in,

+ ht.ft = ht.ft,

+ species = as.character(spp),

+ this.order = 1:length(spp))

+ dimensions <- merge(y=dimensions, x=bf.params, all.y=TRUE, all.x=FALSE)

+ dimensions <- dimensions[order(dimensions$this.order, decreasing=FALSE),]
+ b0 <- with(dimensions, ifelse(dbh.in <= 20.5, b0.small, b0.large))
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Figure 15.2: Summary graphic for an inventory object.

bl <- with(dimensions, ifelse(dbh.in <= 20.5, bl.small, bl.large))
volumes.bf <- b0 + bl * dimensions$dbh.in"2 * dimensions$ht.ft
volumes.m3 <- volumes.bf * 0.002359737

return(volumes.m3)

Now we can compute and save the tree-level volumes in the ufc inventory object as follows:

> ufc$data$vol.m3 <- compute.tree.volume (ufc, vol.fvs.ni.m3)

Note that adding a column to the data attribute of the object hasn’t changed the object’s class.

> class(ufc)

[1] "inventory"

Finally, we write a mean function that produces a mean per hectare of a single nominated attribute,
rather than the mean of the attribute.
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> mean.inventory <- function(inventory, attribute, ...) {
+ data <- inventory$datal, names(inventory$data) == attribute]
+ if (inventory$design == "VRP") {

+ tree.factor <- inventory$weight * 40000 /

+ (inventory$data$dbh.cm ~ 2 * pi)

+ }else {

+ tree.factor <- 1 / inventory$weight

+ F

+ total <- sum(data * tree.factor, na.rm = TRUE)

+ mean <- total / length(unique(inventory$data$plot))

+  return(mean)

+ }

> mean(ufc, "vol.m3")

[1] 149.5207

We are starting to build a nice little collection of class-specific functions for our new class.
> methods(class="inventory")
[1] mean.inventory plot.inventory print.inventory

There is a final caveat. What if more than one author writes a set of functions that require an
inventory class, and the class definitions are incompatible? This is one of the problems that S4 classes
are designed to sidestep. Coverage of S4 classes is beyond this workshop, but see Chambers (1998) for
much background information.
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15.6 Other languages

Just an anecdote here, with some instructions on how to compile and run your own programs in a
Unix environment. I was working with Robert Froese, my first doctoral student, on developing tests of
equivalence for model validation. We were using Forest Inventory and Analysis (FIA) data to validate
the diameter engine of the Forest Vegetation Simulator (FVS) by species. That amounts to 41000 tree
records for 10 species. The best-represented is Douglas-fir, with 12601 observations, the least is white
pine, with 289, and the average is 3725.

> (n <- tapply(species, species, length))

ABGR ABLA LAOC OTHE PICO PIEN PIMO PIPO PSME THPL TSHE
3393 4532 3794 1629 6013 3251 289 2531 12601 2037 909

This will all matter shortly.

We were applying the sign rank test. We'd love to have used the paired t-test: it’s simple and
straightforward, and doesn’t require any devious looping. But unfortunately, the prediction errors were
far from normal; they were quite badly skewed. So we decided to use this non-parametric test. The
problem, or should I say challenge, or even opportunity, was that calculating the metric requires a
double loop across the data sets.

U, = (Z>_1§ Z I,(D; + D;) (15.1)

i=1 j=i+1

where I (z) is an indicator function that takes value 1 if > 0 and 0 otherwise. That’s

> sum(choose(n,?2))
[1] 133017037

more than 100 million operations. But that’s not all! In order to estimate the variance of the metric we
had to implement a triple loop across the datasets. And at each of those combinations we have to do
about seven things.

-1
. n R . . .
U??+ = <2) {2(n - 2)[qf(273) - U—?—) + U+ - U-?—} (15.2)
where

—1n—2 n—1 n

. n 1
qf(2’3) = <3) Z Z Z g [I”Lk + Iijjjk + Izkjgk] (153)

i=1 j=i+1 k=j+1

for which, say, I;; = I+(D; + D;). That’s now

> sum(choose(n,3))*7
[1] 2.879732e+12

about 2.9 trillion operations! Well, I expect that this will take some time. So I wrote up a script,

n <- length(diffs)
cat("This is the sign rank test for equivalence.\n")
zeta <- 0
for (i in 1:(n-1)) {
for (j in (i+1):n) {
zeta <- zeta + ((diffs[i] + diffs[j]) > 0)
}
}
Uplus <- zeta / choose(n, 2)
cat ("UPlus ", Uplus, ". \n")
zeta <- 0
for (i in 1:(n-2)) {
for (j in (i+1):(m-1)) {
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for (k in (j+1):n) {
IJpos <- ((diffs[i] + diffs[j]) > 0)
IKpos <- ((diffs[i] + diffs[k]) > 0)
JKpos <- ((diffs[j] + diffs[k]) > 0)
zeta <- zeta + IJpos*IKpos + IJpos*JKpos + IKpos*JKpos
}
}
cat ("Triple loop. We have ", n-2-i, "iterations left from ", n,". \n")
}
ql123 <- zeta / 3 / choose(n, 3)

fired up my remote server and waited. All night. By which point it hadn’t even got through maybe 10%
of the first species (a smallish one!). T didn’t want to wait that long. It seemed like this was absolutely
the case that the dynamical loading of compiled code was designed for.

15.6.1 Write

The code has to be modular, and written so that all communication is through the passed arguments.
So, in C it must always be type void, and in Fortran it must be a subroutine. Here’s the example:

void signRankSum(double *a, int *na, double *zeta)

{
int i, j, k, m;
int IJpos, IKpos, JKpos;
zetal[0] = ((alil + al[jl) > 0);
zetal[1l] = 0;
for (i = 0; i < *na-2; i++) {
for (j = i+l; j < *na-1; j++) {
zetal[0] += ((al[i] + a[j]) > 0);
for (k = j+1; k < #*na; k++) {
IJpos = ((alil + aljl) > 0);
IKpos = ((al[il + alkl) > 0);
JKpos = ((alj] + alkl) > 0);
zeta[1l] += (IJpos*IKpos + IJpos*JKpos + IKpos*JKpos);
}
}
}
for (m = 0; m < *na-1; m++)
zetal[0] += ((a[m] + a[*na-1]) > 0);
}

Basically all I did was take the triple loop and convert it to C code. Note that I passed the length of
the object as well, rather than trusting C (well, trusting me) to figure it out. Do in R what you can do
well in R.

e Also notice that C indexes differently than R: the first element of an array is element 0, not element
1! That can bite your bum.

e Also note the use of pointers. These are documented elsewhere. For simple problems, they’re easy
to figure out.

e [ also figured out how to nest the double loop inside the triple loop, which accounts for some
performance enhancement.

e Finally, notice that the arguments are the inputs and the outputs, and this subroutine doesn’t care
how long they are.

15.6.2 Compile

Compilation for Linux or BSD is easy. Simply be on a Linux or BSD box, create the above file (called
e.g. signRankSum.c) and in the same directory as the file, type:
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$ R CMD SHLIB signRankSum.c

It will compile and link the code, and create an object that you can link to in the R session (see below).
If it can’t, it will present reasonably helpful error messages.

On Windows, the tools that we need to develop software are a little more scattered. Refer to the
available resources for advice on this point. Briefly, one needs to:

e Install Unix-like command-line tools for compilation and linking, e.g. MinGW and some others.
e Edit your PATH variable so that these are visible to the OS.
e Write appropriate code in appropriately named directories.

e In the DOS shell, execute: R CMD SHLIB signRankSum.c

15.6.3 Attach
In the body of the function that I'm writing to apply the test, I added the following call:

dyn.load("~/Rosetta/Programming/r/signRankSum/signRankSum.so")
signRankSum <- function(a)
.C("signRankSum",
as.double(a),
as.integer(length(a)),
zeta = double(2))$zeta

This tells R where to find the library. Note that I included the full path to the *.so object, and
in the declaration of the function I named the C subroutine and the arguments. I tell it that when I
signRankSum(a), it should know that a points to a double-precision array, that it will need the length
of a, which is an integer, and zeta, which is a size two, double-precision array for the output. Then the
$zeta at the end tells it to return that array.

15.6.4 Call

Later in the function it’s time to call the routine. That’s easy:

zeta <- signRankSum(diffs)

Uplus <- zeta[l] / choose(n, 2)
cat("UPlus ", Uplus, ". \n")

q123 <- zeta[2] / 3 / choose(n, 3)

Note that we’re back in R, now, so the first element is referred to as 1.

15.6.5 Profit!

The following output reports a comparison of the code using C first and the code in pure R, second.

> test <- rnorm(1000)

> system.time(sgnrk(test, 1imit=1000))

This is the sign rank test for equivalence.
Starting. Actual: 1000 . Used: 1000 .

UPlus 0.484042 .

VarUplus is calculated: 0.0003321017

Levels are calculated: 0.2397501 and 0.76025 , ncp is 203.9437
Cutoff: 12.63603

Value computed: -0.8756727 .

Finished. Outcome: dissimilarity is rejected.
[1] 3.882812 0.000000 3.906250 0.000000 0.000000
> system.time(sgnrk.old(test, 1imit=1000))

This is the sign rank test for equivalence.
Starting. Actual: 1000 . Used: 1000 .
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UPlus 0.484042 .

VarUplus is calculated: 0.0003321017

Levels are calculated: 0.2397501 and 0.76025 , ncp is 203.9437
Cutoff: 12.63603

Value computed: -0.8756727 .

Finished. Outcome: dissimilarity is rejected.

[1] 5092.87500 14.27344 5120.23438 0.00000 0.00000

>

Yes, that’s four seconds compared to nearly an hour and a half. And the time to complete the test for
all species and all data was:

[1] 9605.687500 5.367188 9621.734375 0.000000 0.000000

less than 3 hours, instead of 169 days.
This example was quite extreme, requiiring a triple-loop across a large dataset. However, moving to
C can make substantial gains even under more modest circumstances.
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Appendix A

Extensibility

One notable thing about R is how quickly it loads. This is because much of its functionality is kept in
the background, ignored, until it is explicitly asked for. There are three layers of functions in R:

1. those that are loaded by default at startup (base),

2. those that are loaded on to your hard drive upon installation but not explicitly loaded into RAM
when R is run, and

3. those that are available on the Internet, which have to be installed before they can be loaded.

A function in the base package, such as mean(), is always available. A function in one of the loaded
packages, such as the linear mixed-effects model fitting tool 1lme(), can only be used by first loading
the package. We load the package using the require() command. help.search() will tell you which
package to load to use a command, or to get more help on it.

> require(nlme)

If we need to find out what kinds of packages are installed, R will tell us, but, characteristically, in
the most general fashion. We need to work with the output to get the information that we want.

> installed.packages () # Blurts output all over the screen
> sessionInfo() # Learn about the current state of your session.

R version 3.1.1 (2014-07-10)
Platform: x86_64-apple-darwini3.1.0 (64-bit)

locale:
[1] C

attached base packages:
[1] stats graphics grDevices utils datasets methods  Dbase

other attached packages:
[1] nlme_3.1-117

loaded via a namespace (and not attached):

[1] grid_3.1.1 lattice_0.20-29 tools_3.1.1
> ip <- installed.packages() # Save the output as an object!
> class(ip) # It is a matrix

[1] "matrix"

> ip <- as.data.frame(ip) # Now it is a dataframe
> names (ip) # These are the variable names
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[1] "Package" "LibPath" "Version"
[4] "Priority" "Depends" "Imports"
[7] "LinkingTo" "Suggests" "Enhances"
[10] "License" "License_is_F0SS" "License_restricts_use"
[13] "OS_type" "MD5sum" "NeedsCompilation"
[16] "Built"
> length(ip$Package) # And the packages are numerous
[1] 220

> head (ip$Package)

ADGofTest AER AGD COUNT Formula GGally
ADGofTest AER AGD COUNT  Formula GGally
220 Levels: ADGofTest AER AGD COUNT Formula GGally GWRM Hmisc ... zoo

Your package names will differ from mine. To find out what kinds of packages are available, use
> available.packages () # Blurts output all over the screen

A function in an as-yet unloaded package is inaccessible until the package is downloaded and installed.
This is very easy to do if one is connected to the Internet, and has administrator (root) privileges. Let’s
say, for example, that through searching on the R website we determine that we need the wonderful
package called “equivalence”. Then we simply install it using the Packages menu or by typing:

> install.packages("equivalence")

After it has been installed then we can load it during any particular session using the require (equivalence)
command, as above.

If we do not have sufficient privileges to install packages then we are required to provide more infor-
mation to R. Specifically, we need to download and install the package to a location in which we do have
write privileges, and then use the library command to attach it to our session.

Let’s install equivalence, using a folder called “library”. The download.packages() command below
will grab the appropriate version for your operating system and report the version number, which we
save in the object called get.equivalence. We can use its output in the subsequent steps.

> (get.equivalence <- download.packages("equivalence",

+ destdir="../library",

+ repos="http://cran.stat.sfu.ca/"))
> install.packages(get.equivalence[1,2], repos=NULL, lib="../library")

> library(equivalence, lib.loc="../library")

Ah, equivalence needs boot. Ok,

(get.boot <- download.packages("boot",
destdir="../library",
repos="http://cran.stat.sfu.ca/"))
install.packages(get.boot[1,2], repos=NULL, 1ib="../library")
library(boot, 1lib.loc="../library")
library(equivalence, 1ib.loc="../library")

vV V.V + + V

The equivalence package is now available for your use. Please note again the use of forward slashes
as directory delimiters is platform independent.
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