## Free Statistics

of Irreproducible Research!

Author's title
Author*Unverified author*
R Software Modulerwasp_hypothesisprop1.wasp
Title produced by softwareTesting Population Proportion - Critical Value
Date of computationSat, 02 May 2015 09:26:30 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2015/May/02/t143055522628wrutm06q91dfe.htm/, Retrieved Tue, 18 Jan 2022 22:56:58 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=279005, Retrieved Tue, 18 Jan 2022 22:56:58 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact176
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Testing Population Proportion - Critical Value] [NVS-S] [2015-05-02 08:26:30] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum

Post a new message

 Summary of computational transaction Raw Input view raw input (R code) Raw Output view raw output of R engine Computing time 0 seconds R Server 'Sir Maurice George Kendall' @ kendall.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 0 seconds \tabularnewline
R Server & 'Sir Maurice George Kendall' @ kendall.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=279005&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]0 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Maurice George Kendall' @ kendall.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=279005&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=279005&T=0

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Summary of computational transaction Raw Input view raw input (R code) Raw Output view raw output of R engine Computing time 0 seconds R Server 'Sir Maurice George Kendall' @ kendall.wessa.net

 Testing Population Proportion (normal approximation) Sample size 520 Sample Proportion 0.012 Null hypothesis 0.0068 Type I error (alpha) 0.05 1-sided critical value 0.0127278662587639 1-sided test Do not reject the Null Hypothesis 2-sided Confidence Interval(sample proportion) [ 0.00493651168591784 , 0.0190634883140822 ] 2-sided test Do not reject the Null Hypothesis

\begin{tabular}{lllllllll}
\hline
Testing Population Proportion (normal approximation) \tabularnewline
Sample size & 520 \tabularnewline
Sample Proportion & 0.012 \tabularnewline
Null hypothesis & 0.0068 \tabularnewline
Type I error (alpha) & 0.05 \tabularnewline
1-sided critical value & 0.0127278662587639 \tabularnewline
1-sided test & Do not reject the Null Hypothesis \tabularnewline
2-sided Confidence Interval(sample proportion) & [ 0.00493651168591784 , 0.0190634883140822 ] \tabularnewline
2-sided test & Do not reject the Null Hypothesis \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=279005&T=1

[TABLE]
[ROW][C]Testing Population Proportion (normal approximation)[/C][/ROW]
[ROW][C]Sample size[/C][C]520[/C][/ROW]
[ROW][C]Sample Proportion[/C][C]0.012[/C][/ROW]
[ROW][C]Null hypothesis[/C][C]0.0068[/C][/ROW]
[ROW][C]Type I error (alpha)[/C][C]0.05[/C][/ROW]
[ROW][C]1-sided critical value[/C][C]0.0127278662587639[/C][/ROW]
[ROW][C]1-sided test[/C][C]Do not reject the Null Hypothesis[/C][/ROW]
[ROW][C]2-sided Confidence Interval(sample proportion)[/C][C][ 0.00493651168591784 , 0.0190634883140822 ][/C][/ROW]
[ROW][C]2-sided test[/C][C]Do not reject the Null Hypothesis[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=279005&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=279005&T=1

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Testing Population Proportion (normal approximation) Sample size 520 Sample Proportion 0.012 Null hypothesis 0.0068 Type I error (alpha) 0.05 1-sided critical value 0.0127278662587639 1-sided test Do not reject the Null Hypothesis 2-sided Confidence Interval(sample proportion) [ 0.00493651168591784 , 0.0190634883140822 ] 2-sided test Do not reject the Null Hypothesis

 Testing Population Proportion (Agresti-Coull method) Sample size 520 Sample Proportion 0.012 Null hypothesis 0.0068 Type I error (alpha) 0.05 Left 1-sided confidence interval [ 0.00808582762017565 , 1 ] Right 1-sided confidence interval [ 0 , 0.0209659849046116 ] 2-sided Confidence Interval(sample proportion) [ 0.00766610758070781 , 0.0234911415179757 ]

\begin{tabular}{lllllllll}
\hline
Testing Population Proportion (Agresti-Coull method) \tabularnewline
Sample size & 520 \tabularnewline
Sample Proportion & 0.012 \tabularnewline
Null hypothesis & 0.0068 \tabularnewline
Type I error (alpha) & 0.05 \tabularnewline
Left 1-sided confidence interval & [ 0.00808582762017565 , 1 ] \tabularnewline
Right 1-sided confidence interval & [ 0 , 0.0209659849046116  ] \tabularnewline
2-sided Confidence Interval(sample proportion) & [ 0.00766610758070781 , 0.0234911415179757 ] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=279005&T=2

[TABLE]
[ROW][C]Testing Population Proportion (Agresti-Coull method)[/C][/ROW]
[ROW][C]Sample size[/C][C]520[/C][/ROW]
[ROW][C]Sample Proportion[/C][C]0.012[/C][/ROW]
[ROW][C]Null hypothesis[/C][C]0.0068[/C][/ROW]
[ROW][C]Type I error (alpha)[/C][C]0.05[/C][/ROW]
[ROW][C]Left 1-sided confidence interval[/C][C][ 0.00808582762017565 , 1 ][/C][/ROW]
[ROW][C]Right 1-sided confidence interval[/C][C][ 0 , 0.0209659849046116  ][/C][/ROW]
[ROW][C]2-sided Confidence Interval(sample proportion)[/C][C][ 0.00766610758070781 , 0.0234911415179757 ][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=279005&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=279005&T=2

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Testing Population Proportion (Agresti-Coull method) Sample size 520 Sample Proportion 0.012 Null hypothesis 0.0068 Type I error (alpha) 0.05 Left 1-sided confidence interval [ 0.00808582762017565 , 1 ] Right 1-sided confidence interval [ 0 , 0.0209659849046116 ] 2-sided Confidence Interval(sample proportion) [ 0.00766610758070781 , 0.0234911415179757 ]

 Testing Population Proportion (Exact and Wilson method) Sample size 520 Sample Proportion 0.012 Null hypothesis 0.0068 Type I error (alpha) 0.05 Left 1-sided confidence interval(Exact method) [ 0.00534340125793669 , 1 ] Right 1-sided confidence interval(Exact method) [ 0 , 0.0232473625201441 ] 2-sided Confidence Interval(Exact method) [ 0.0045243329723074 , 0.0255713394822544 ] Left 1-sided confidence interval(Wilson method) [ 0.00629503133121229 , 1 ] Right 1-sided confidence interval(Wilson method) [ 0 , 0.022756781193575 ] 2-sided Confidence Interval(Wilson method) [ 0.00559115587998962 , 0.0255660932186939 ]

\begin{tabular}{lllllllll}
\hline
Testing Population Proportion (Exact and Wilson method) \tabularnewline
Sample size & 520 \tabularnewline
Sample Proportion & 0.012 \tabularnewline
Null hypothesis & 0.0068 \tabularnewline
Type I error (alpha) & 0.05 \tabularnewline
Left 1-sided confidence interval(Exact method) & [ 0.00534340125793669 , 1 ] \tabularnewline
Right 1-sided confidence interval(Exact method) & [ 0 , 0.0232473625201441  ] \tabularnewline
2-sided Confidence Interval(Exact method) & [ 0.0045243329723074 , 0.0255713394822544 ] \tabularnewline
Left 1-sided confidence interval(Wilson method) & [ 0.00629503133121229 , 1 ] \tabularnewline
Right 1-sided confidence interval(Wilson method) & [ 0 , 0.022756781193575  ] \tabularnewline
2-sided Confidence Interval(Wilson method) & [ 0.00559115587998962 , 0.0255660932186939 ] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=279005&T=3

[TABLE]
[ROW][C]Testing Population Proportion (Exact and Wilson method)[/C][/ROW]
[ROW][C]Sample size[/C][C]520[/C][/ROW]
[ROW][C]Sample Proportion[/C][C]0.012[/C][/ROW]
[ROW][C]Null hypothesis[/C][C]0.0068[/C][/ROW]
[ROW][C]Type I error (alpha)[/C][C]0.05[/C][/ROW]
[ROW][C]Left 1-sided confidence interval(Exact method)[/C][C][ 0.00534340125793669 , 1 ][/C][/ROW]
[ROW][C]Right 1-sided confidence interval(Exact method)[/C][C][ 0 , 0.0232473625201441  ][/C][/ROW]
[ROW][C]2-sided Confidence Interval(Exact method)[/C][C][ 0.0045243329723074 , 0.0255713394822544 ][/C][/ROW]
[ROW][C]Left 1-sided confidence interval(Wilson method)[/C][C][ 0.00629503133121229 , 1 ][/C][/ROW]
[ROW][C]Right 1-sided confidence interval(Wilson method)[/C][C][ 0 , 0.022756781193575  ][/C][/ROW]
[ROW][C]2-sided Confidence Interval(Wilson method)[/C][C][ 0.00559115587998962 , 0.0255660932186939 ][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=279005&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=279005&T=3

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Testing Population Proportion (Exact and Wilson method) Sample size 520 Sample Proportion 0.012 Null hypothesis 0.0068 Type I error (alpha) 0.05 Left 1-sided confidence interval(Exact method) [ 0.00534340125793669 , 1 ] Right 1-sided confidence interval(Exact method) [ 0 , 0.0232473625201441 ] 2-sided Confidence Interval(Exact method) [ 0.0045243329723074 , 0.0255713394822544 ] Left 1-sided confidence interval(Wilson method) [ 0.00629503133121229 , 1 ] Right 1-sided confidence interval(Wilson method) [ 0 , 0.022756781193575 ] 2-sided Confidence Interval(Wilson method) [ 0.00559115587998962 , 0.0255660932186939 ]

Parameters (Session):
par1 = 520 ; par2 = 0.012 ; par3 = 0.0068 ; par4 = 0.05 ;
Parameters (R input):
par1 = 520 ; par2 = 0.012 ; par3 = 0.0068 ; par4 = 0.05 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)par2 <- as.numeric(par2)par3 <- as.numeric(par3)par4 <- as.numeric(par4)if (par2 < par3){ucv <- qnorm(par4)} else {ucv <- -qnorm(par4)}cv1 <- par3 + ucv * sqrt(par3 * (1-par3) / par1)cv2low <- par2 - abs(qnorm(par4/2)) * sqrt(par3 * (1-par3) / par1)cv2upp <- par2 + abs(qnorm(par4/2)) * sqrt(par3 * (1-par3) / par1)z21 <- qnorm(par4/2)^2 / par1z2 <- qnorm(par4/2)^2 / (2*par1)z24 <- qnorm(par4/2)^2 / (4*par1^2)cv2lowexact <- (par2 + z2 - abs(qnorm(par4/2)) * sqrt(par3 * (1-par3) / par1 + z24)) / (1 + z21)cv2uppexact <- (par2 + z2 + abs(qnorm(par4/2)) * sqrt(par3 * (1-par3) / par1 + z24)) / (1 + z21)z11 <- qnorm(par4)^2 / par1z1 <- qnorm(par4)^2 / (2*par1)z14 <- qnorm(par4)^2 / (4*par1^2)cv1lowexact <- (par2 + z1 - abs(qnorm(par4)) * sqrt(par3 * (1-par3) / par1 + z14)) / (1 + z11)cv1uppexact <- (par2 + z1 + abs(qnorm(par4)) * sqrt(par3 * (1-par3) / par1 + z14)) / (1 + z11)load(file='createtable')a<-table.start()a<-table.row.start(a)a<-table.element(a,'Testing Population Proportion (normal approximation)',2,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Sample size',header=TRUE)a<-table.element(a,par1)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Sample Proportion',header=TRUE)a<-table.element(a,par2)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Null hypothesis',header=TRUE)a<-table.element(a,par3)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Type I error (alpha)',header=TRUE)a<-table.element(a,par4)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'1-sided critical value',header=TRUE)a<-table.element(a,cv1)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'1-sided test',header=TRUE)if (par2 < par3){if (par2 < cv1){a<-table.element(a,'Reject the Null Hypothesis')} else {a<-table.element(a,'Do not reject the Null Hypothesis')}} else {if (par2 > cv1){a<-table.element(a,'Reject the Null Hypothesis')} else {a<-table.element(a,'Do not reject the Null Hypothesis')}}a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'2-sided Confidence Interval(sample proportion)',header=TRUE)dum <- paste('[',cv2low)dum <- paste(dum,',')dum <- paste(dum,cv2upp)dum <- paste(dum,']')a<-table.element(a,dum)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'2-sided test',header=TRUE)if ((par3 < cv2low) | (par3 > cv2upp)){a<-table.element(a,'Reject the Null Hypothesis')} else {a<-table.element(a,'Do not reject the Null Hypothesis')}a<-table.row.end(a)a<-table.end(a)table.save(a,file='mytable.tab')a<-table.start()a<-table.row.start(a)a<-table.element(a,'Testing Population Proportion (Agresti-Coull method)',2,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Sample size',header=TRUE)a<-table.element(a,par1)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Sample Proportion',header=TRUE)a<-table.element(a,par2)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Null hypothesis',header=TRUE)a<-table.element(a,par3)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Type I error (alpha)',header=TRUE)a<-table.element(a,par4)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Left 1-sided confidence interval',header=TRUE)dum <- paste('[',cv1lowexact)dum <- paste(dum,', 1 ]')a<-table.element(a,dum)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Right 1-sided confidence interval',header=TRUE)dum <- paste('[ 0 ,',cv1uppexact)dum <- paste(dum,' ]')a<-table.element(a,dum)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'2-sided Confidence Interval(sample proportion)',header=TRUE)dum <- paste('[',cv2lowexact)dum <- paste(dum,',')dum <- paste(dum,cv2uppexact)dum <- paste(dum,']')a<-table.element(a,dum)a<-table.row.end(a)a<-table.end(a)table.save(a,file='mytable.tab')library(Hmisc)re <- binconf(par2*par1,par1,par4,method='exact')re1 <- binconf(par2*par1,par1,par4*2,method='exact')rw <- binconf(par2*par1,par1,par4,method='wilson')rw1 <- binconf(par2*par1,par1,par4*2,method='wilson')a<-table.start()a<-table.row.start(a)a<-table.element(a,'Testing Population Proportion (Exact and Wilson method)',2,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Sample size',header=TRUE)a<-table.element(a,par1)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Sample Proportion',header=TRUE)a<-table.element(a,par2)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Null hypothesis',header=TRUE)a<-table.element(a,par3)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Type I error (alpha)',header=TRUE)a<-table.element(a,par4)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Left 1-sided confidence interval(Exact method)',header=TRUE)dum <- paste('[',re1[2])dum <- paste(dum,', 1 ]')a<-table.element(a,dum)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Right 1-sided confidence interval(Exact method)',header=TRUE)dum <- paste('[ 0 ,',re1[3])dum <- paste(dum,' ]')a<-table.element(a,dum)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'2-sided Confidence Interval(Exact method)',header=TRUE)dum <- paste('[',re[2])dum <- paste(dum,',')dum <- paste(dum,re[3])dum <- paste(dum,']')a<-table.element(a,dum)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Left 1-sided confidence interval(Wilson method)',header=TRUE)dum <- paste('[',rw1[2])dum <- paste(dum,', 1 ]')a<-table.element(a,dum)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Right 1-sided confidence interval(Wilson method)',header=TRUE)dum <- paste('[ 0 ,',rw1[3])dum <- paste(dum,' ]')a<-table.element(a,dum)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'2-sided Confidence Interval(Wilson method)',header=TRUE)dum <- paste('[',rw[2])dum <- paste(dum,',')dum <- paste(dum,rw[3])dum <- paste(dum,']')a<-table.element(a,dum)a<-table.row.end(a)a<-table.end(a)table.save(a,file='mytable.tab')