Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationSat, 10 Nov 2012 15:06:36 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Nov/10/t1352578077ctn3ynew0iqegen.htm/, Retrieved Sat, 10 Dec 2022 04:27:15 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=187419, Retrieved Sat, 10 Dec 2022 04:27:15 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact80
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Classical Decomposition] [HPC Retail Sales] [2008-03-02 16:19:32] [74be16979710d4c4e7c6647856088456]
- RM D  [Classical Decomposition] [] [2012-11-10 17:21:33] [391561951b5d7f721cfaa4f5575ab127]
- RMP       [Decomposition by Loess] [] [2012-11-10 20:06:36] [7338cd26db379c04f0557b08db763c32] [Current]
Feedback Forum

Post a new message
Dataseries X:
617
614
647
580
614
636
388
356
639
753
611
639
630
586
695
552
619
681
421
307
754
690
644
643
608
651
691
627
634
731
475
337
803
722
590
724
627
696
825
677
656
785
412
352
839
729
696
641
695
638
762
635
721
854
418
367
824
687
601
676
740
691
683
594
729
731
386
331
706
715
657
653
642
643
718
654
632
731
392
344
792
852
649
629
685
617
715
715
629
916
531
357
917
828
708
858
775
785
1006
789
734
906
532
387
991
841
892
782
811
792
978
773
796
946
594
438
1023
868
791
760
779
852
1001
734
996
869
599
426
1138
1091
830
909




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Sir Maurice George Kendall' @ kendall.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Sir Maurice George Kendall' @ kendall.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=187419&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Maurice George Kendall' @ kendall.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=187419&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=187419&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Sir Maurice George Kendall' @ kendall.wessa.net







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal13210133
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 1321 & 0 & 133 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=187419&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]1321[/C][C]0[/C][C]133[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=187419&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=187419&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal13210133
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
1617637.49907785752816.7764659447189579.72445619775320.4990778575278
2614636.21466248565810.372510657387581.41282685695522.2146624856578
3647597.839331888213113.05947059563583.101197516157-49.1606681117872
4580590.938049210789-15.6760032933739584.73795408258510.9380492107891
5614620.49141025424521.1338790967424586.3747106490126.49141025424547
6636571.452170875564112.751923981864587.795905142572-64.547829124436
7388406.413061382605-219.630161018736589.21709963613118.4130613826047
8356447.312548154007-325.905063752496590.59251559848991.3125481540072
9639520.939355464386165.092712974768591.967931560846-118.060644535614
10753809.523522949766103.197365117209593.27911193302556.5235229497664
11611627.653084857921-0.24337716312347594.59029230520316.6530848579207
12639663.61099244549219.0702714489306595.31873610557824.6109924454917
13630647.17635414932916.7764659447189596.04717990595317.1763541493285
14586564.76437530070910.372510657387596.863114041904-21.2356246992911
15695679.261481226514113.05947059563597.679048177856-15.7385187734857
16552521.043925520061-15.6760032933739598.632077773313-30.9560744799394
17619617.28101353448721.1338790967424599.585107368771-1.71898646551313
18681648.581195390374112.751923981864600.666880627761-32.4188046096258
19421459.881507131984-219.630161018736601.74865388675238.8815071319838
20307335.69295117272-325.905063752496604.21211257977628.6929511727201
21754736.231715752433165.092712974768606.675571272799-17.7682842475673
22690667.446977596154103.197365117209609.355657286637-22.5530224038459
23644676.207633862649-0.24337716312347612.03574330047432.2076338626491
24643651.96101473420719.0702714489306614.9687138168628.96101473420731
25608581.32184972203116.7764659447189617.90168433325-26.6781502779687
26651670.48046928207310.372510657387621.1470200605419.4804692820733
27691644.54817361654113.05947059563624.39235578783-46.4518263834598
28627642.6823340339-15.6760032933739626.99366925947415.6823340338997
29634617.27113817213921.1338790967424629.594982731119-16.7288618278609
30731717.215953161071112.751923981864632.032122857065-13.7840468389293
31475535.160898035724-219.630161018736634.46926298301160.1608980357244
32337360.889945634446-325.905063752496639.0151181180523.8899456344459
33803797.346313772144165.092712974768643.560973253088-5.65368622785627
34722692.785467277035103.197365117209648.017167605756-29.2145327229654
35590527.770015204699-0.24337716312347652.473361958424-62.2299847953008
36724774.31665079242319.0702714489306654.61307775864750.3166507924226
37627580.47074049641216.7764659447189656.752793558869-46.5292595035882
38696723.4801254251410.372510657387658.14736391747327.4801254251398
39825877.398595128293113.05947059563659.54193427607752.3985951282929
40677708.147425490277-15.6760032933739661.52857780309731.1474254902768
41656627.35089957314121.1338790967424663.515221330117-28.6491004268595
42785793.664319691507112.751923981864663.5837563266288.66431969150722
43412379.977869695596-219.630161018736663.65229132314-32.0221303044038
44352368.387465498236-325.905063752496661.5175982542616.3874654982359
45839853.524381839852165.092712974768659.3829051853814.5243818398518
46729696.21548732391103.197365117209658.587147558881-32.7845126760897
47696734.451987230743-0.24337716312347657.79138993238138.4519872307426
48641603.11642559180819.0702714489306659.813302959261-37.883574408192
49695711.38831806913916.7764659447189661.83521598614216.3883180691394
50638602.52648504690810.372510657387663.101004295705-35.4735149530925
51762746.573736799101113.05947059563664.366792605269-15.4262632008994
52635622.710123357951-15.6760032933739662.965879935423-12.2898766420489
53721759.30115363768221.1338790967424661.56496726557638.3011536376816
54854934.289014933404112.751923981864660.95906108473280.2890149334041
55418395.277006114849-219.630161018736660.353154903887-22.7229938851514
56367400.399255538256-325.905063752496659.5058082142433.3992555382558
57824824.248825500639165.092712974768658.6584615245930.2488255006391
58687615.135385982446103.197365117209655.667248900345-71.8646140175539
59601549.567340887027-0.24337716312347652.676036276097-51.4326591129732
60676684.41692391071219.0702714489306648.5128046403578.4169239107124
61740818.87396105066416.7764659447189644.34957300461778.8739610506636
62691730.39716359507910.372510657387641.23032574753439.397163595079
63683614.829450913919113.05947059563638.111078490451-68.1705490860807
64594567.920408866873-15.6760032933739635.755594426501-26.0795911331269
65729803.46601054070721.1338790967424633.40011036255174.466010540707
66731718.250281249618112.751923981864630.997794768517-12.7497187503818
67386363.034681844252-219.630161018736628.595479174484-22.9653181557484
68331361.176380583537-325.905063752496626.72868316895830.1763805835374
69706622.045399861799165.092712974768624.861887163433-83.9546001382008
70715702.22382821179103.197365117209624.578806671001-12.7761717882099
71657689.947650984555-0.24337716312347624.29572617856932.9476509845546
72653662.62537631116619.0702714489306624.3043522399039.62537631116629
73642642.91055575404416.7764659447189624.3129783012370.910555754043799
74643648.69152646041810.372510657387626.9359628821955.69152646041766
75718693.381581941216113.05947059563629.558947463153-24.6184180587835
76654690.16873583817-15.6760032933739633.50726745520436.1687358381697
77632605.41053345600321.1338790967424637.455587447255-26.5894665439972
78731709.562866822774112.751923981864639.685209195361-21.4371331772256
79392361.715330075268-219.630161018736641.914830943468-30.284669924732
80344370.877417776704-325.905063752496643.02764597579226.8774177767041
81792774.766826017117165.092712974768644.140461008116-17.2331739828835
82852954.063422543387103.197365117209646.739212339404102.063422543387
83649648.905413492432-0.24337716312347649.337963670692-0.0945865075682377
84629583.46819131609519.0702714489306655.461537234974-45.5318086839046
85685691.63842325602516.7764659447189661.5851107992566.63842325602479
86617555.36276774012210.372510657387668.264721602491-61.6372322598784
87715641.996196998644113.05947059563674.944332405726-73.0038030013563
88715763.603176725451-15.6760032933739682.07282656792348.6031767254507
89629547.66480017313821.1338790967424689.20132073012-81.3351998268623
909161019.10433431938112.751923981864700.143741698753103.104334319383
91531570.543998351351-219.630161018736711.08616266738539.5439983513506
92357315.101544316434-325.905063752496724.803519436061-41.8984556835657
93917930.386410820494165.092712974768738.52087620473813.3864108204942
94828803.684896249443103.197365117209749.117738633348-24.3151037505567
95708656.528776101166-0.24337716312347759.714601061957-51.4712238988338
96858932.15086733445619.0702714489306764.77886121661374.1508673344561
97775763.38041268401216.7764659447189769.843121371269-11.6195873159883
98785786.97391199892810.372510657387772.6535773436851.97391199892832
9910061123.47649608827113.05947059563775.4640333161117.47649608827
100789815.051530790703-15.6760032933739778.62447250267126.0515307907033
101734665.08120921401721.1338790967424781.784911689241-68.9187907859834
102906916.113868921504112.751923981864783.13420709663210.1138689215038
103532499.146658514713-219.630161018736784.483502504023-32.8533414852869
104387314.86306717701-325.905063752496785.041996575485-72.1369328229896
1059911031.30679637828165.092712974768785.60049064694840.3067963782839
106841791.26905182181103.197365117209787.533583060981-49.7309481781904
107892994.776701688109-0.24337716312347789.466675475014102.776701688109
108782751.34153666919.0702714489306793.588191882069-30.6584633309996
109811807.51382576615716.7764659447189797.709708289124-3.48617423384258
110792773.04162960943910.372510657387800.585859733174-18.9583703905606
1119781039.47851822715113.05947059563803.46201117722461.4785182271464
112773758.345290492298-15.6760032933739803.330712801076-14.654709507702
113796767.6667064783321.1338790967424803.199414424928-28.3332935216705
114946978.137430759859112.751923981864801.11064525827732.1374307598588
115594608.60828492711-219.630161018736799.02187609162514.6082849271103
116438403.086237854914-325.905063752496798.818825897582-34.9137621450861
11710231082.29151132169165.092712974768798.61577570353859.2915113216937
118868831.79659327477103.197365117209801.006041608021-36.2034067252305
119791778.847069650619-0.24337716312347803.396307512504-12.1529303493809
120760694.94418980897519.0702714489306805.985538742094-65.0558101910245
121779732.64876408359816.7764659447189808.574769971683-46.3512359164023
122852880.49105926483710.372510657387813.13643007777628.4910592648368
12310011071.2424392205113.05947059563817.69809018386970.242439220501
124734656.140073059279-15.6760032933739827.535930234095-77.8599269407208
1259961133.4923506189421.1338790967424837.37377028432137.492350618938
126869778.734493077548112.751923981864846.513582940587-90.2655069224516
127599561.976765421882-219.630161018736855.653395596854-37.0232345781185
128426313.380070634893-325.905063752496864.524993117603-112.619929365107
12911381237.51069638688165.092712974768873.39659063835199.5106963868808
13010911196.29500848095103.197365117209882.507626401842105.295008480949
131830768.62471499779-0.24337716312347891.618662165333-61.3752850022096
132909898.03801769250319.0702714489306900.891710858567-10.9619823074975

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 617 & 637.499077857528 & 16.7764659447189 & 579.724456197753 & 20.4990778575278 \tabularnewline
2 & 614 & 636.214662485658 & 10.372510657387 & 581.412826856955 & 22.2146624856578 \tabularnewline
3 & 647 & 597.839331888213 & 113.05947059563 & 583.101197516157 & -49.1606681117872 \tabularnewline
4 & 580 & 590.938049210789 & -15.6760032933739 & 584.737954082585 & 10.9380492107891 \tabularnewline
5 & 614 & 620.491410254245 & 21.1338790967424 & 586.374710649012 & 6.49141025424547 \tabularnewline
6 & 636 & 571.452170875564 & 112.751923981864 & 587.795905142572 & -64.547829124436 \tabularnewline
7 & 388 & 406.413061382605 & -219.630161018736 & 589.217099636131 & 18.4130613826047 \tabularnewline
8 & 356 & 447.312548154007 & -325.905063752496 & 590.592515598489 & 91.3125481540072 \tabularnewline
9 & 639 & 520.939355464386 & 165.092712974768 & 591.967931560846 & -118.060644535614 \tabularnewline
10 & 753 & 809.523522949766 & 103.197365117209 & 593.279111933025 & 56.5235229497664 \tabularnewline
11 & 611 & 627.653084857921 & -0.24337716312347 & 594.590292305203 & 16.6530848579207 \tabularnewline
12 & 639 & 663.610992445492 & 19.0702714489306 & 595.318736105578 & 24.6109924454917 \tabularnewline
13 & 630 & 647.176354149329 & 16.7764659447189 & 596.047179905953 & 17.1763541493285 \tabularnewline
14 & 586 & 564.764375300709 & 10.372510657387 & 596.863114041904 & -21.2356246992911 \tabularnewline
15 & 695 & 679.261481226514 & 113.05947059563 & 597.679048177856 & -15.7385187734857 \tabularnewline
16 & 552 & 521.043925520061 & -15.6760032933739 & 598.632077773313 & -30.9560744799394 \tabularnewline
17 & 619 & 617.281013534487 & 21.1338790967424 & 599.585107368771 & -1.71898646551313 \tabularnewline
18 & 681 & 648.581195390374 & 112.751923981864 & 600.666880627761 & -32.4188046096258 \tabularnewline
19 & 421 & 459.881507131984 & -219.630161018736 & 601.748653886752 & 38.8815071319838 \tabularnewline
20 & 307 & 335.69295117272 & -325.905063752496 & 604.212112579776 & 28.6929511727201 \tabularnewline
21 & 754 & 736.231715752433 & 165.092712974768 & 606.675571272799 & -17.7682842475673 \tabularnewline
22 & 690 & 667.446977596154 & 103.197365117209 & 609.355657286637 & -22.5530224038459 \tabularnewline
23 & 644 & 676.207633862649 & -0.24337716312347 & 612.035743300474 & 32.2076338626491 \tabularnewline
24 & 643 & 651.961014734207 & 19.0702714489306 & 614.968713816862 & 8.96101473420731 \tabularnewline
25 & 608 & 581.321849722031 & 16.7764659447189 & 617.90168433325 & -26.6781502779687 \tabularnewline
26 & 651 & 670.480469282073 & 10.372510657387 & 621.14702006054 & 19.4804692820733 \tabularnewline
27 & 691 & 644.54817361654 & 113.05947059563 & 624.39235578783 & -46.4518263834598 \tabularnewline
28 & 627 & 642.6823340339 & -15.6760032933739 & 626.993669259474 & 15.6823340338997 \tabularnewline
29 & 634 & 617.271138172139 & 21.1338790967424 & 629.594982731119 & -16.7288618278609 \tabularnewline
30 & 731 & 717.215953161071 & 112.751923981864 & 632.032122857065 & -13.7840468389293 \tabularnewline
31 & 475 & 535.160898035724 & -219.630161018736 & 634.469262983011 & 60.1608980357244 \tabularnewline
32 & 337 & 360.889945634446 & -325.905063752496 & 639.01511811805 & 23.8899456344459 \tabularnewline
33 & 803 & 797.346313772144 & 165.092712974768 & 643.560973253088 & -5.65368622785627 \tabularnewline
34 & 722 & 692.785467277035 & 103.197365117209 & 648.017167605756 & -29.2145327229654 \tabularnewline
35 & 590 & 527.770015204699 & -0.24337716312347 & 652.473361958424 & -62.2299847953008 \tabularnewline
36 & 724 & 774.316650792423 & 19.0702714489306 & 654.613077758647 & 50.3166507924226 \tabularnewline
37 & 627 & 580.470740496412 & 16.7764659447189 & 656.752793558869 & -46.5292595035882 \tabularnewline
38 & 696 & 723.48012542514 & 10.372510657387 & 658.147363917473 & 27.4801254251398 \tabularnewline
39 & 825 & 877.398595128293 & 113.05947059563 & 659.541934276077 & 52.3985951282929 \tabularnewline
40 & 677 & 708.147425490277 & -15.6760032933739 & 661.528577803097 & 31.1474254902768 \tabularnewline
41 & 656 & 627.350899573141 & 21.1338790967424 & 663.515221330117 & -28.6491004268595 \tabularnewline
42 & 785 & 793.664319691507 & 112.751923981864 & 663.583756326628 & 8.66431969150722 \tabularnewline
43 & 412 & 379.977869695596 & -219.630161018736 & 663.65229132314 & -32.0221303044038 \tabularnewline
44 & 352 & 368.387465498236 & -325.905063752496 & 661.51759825426 & 16.3874654982359 \tabularnewline
45 & 839 & 853.524381839852 & 165.092712974768 & 659.38290518538 & 14.5243818398518 \tabularnewline
46 & 729 & 696.21548732391 & 103.197365117209 & 658.587147558881 & -32.7845126760897 \tabularnewline
47 & 696 & 734.451987230743 & -0.24337716312347 & 657.791389932381 & 38.4519872307426 \tabularnewline
48 & 641 & 603.116425591808 & 19.0702714489306 & 659.813302959261 & -37.883574408192 \tabularnewline
49 & 695 & 711.388318069139 & 16.7764659447189 & 661.835215986142 & 16.3883180691394 \tabularnewline
50 & 638 & 602.526485046908 & 10.372510657387 & 663.101004295705 & -35.4735149530925 \tabularnewline
51 & 762 & 746.573736799101 & 113.05947059563 & 664.366792605269 & -15.4262632008994 \tabularnewline
52 & 635 & 622.710123357951 & -15.6760032933739 & 662.965879935423 & -12.2898766420489 \tabularnewline
53 & 721 & 759.301153637682 & 21.1338790967424 & 661.564967265576 & 38.3011536376816 \tabularnewline
54 & 854 & 934.289014933404 & 112.751923981864 & 660.959061084732 & 80.2890149334041 \tabularnewline
55 & 418 & 395.277006114849 & -219.630161018736 & 660.353154903887 & -22.7229938851514 \tabularnewline
56 & 367 & 400.399255538256 & -325.905063752496 & 659.50580821424 & 33.3992555382558 \tabularnewline
57 & 824 & 824.248825500639 & 165.092712974768 & 658.658461524593 & 0.2488255006391 \tabularnewline
58 & 687 & 615.135385982446 & 103.197365117209 & 655.667248900345 & -71.8646140175539 \tabularnewline
59 & 601 & 549.567340887027 & -0.24337716312347 & 652.676036276097 & -51.4326591129732 \tabularnewline
60 & 676 & 684.416923910712 & 19.0702714489306 & 648.512804640357 & 8.4169239107124 \tabularnewline
61 & 740 & 818.873961050664 & 16.7764659447189 & 644.349573004617 & 78.8739610506636 \tabularnewline
62 & 691 & 730.397163595079 & 10.372510657387 & 641.230325747534 & 39.397163595079 \tabularnewline
63 & 683 & 614.829450913919 & 113.05947059563 & 638.111078490451 & -68.1705490860807 \tabularnewline
64 & 594 & 567.920408866873 & -15.6760032933739 & 635.755594426501 & -26.0795911331269 \tabularnewline
65 & 729 & 803.466010540707 & 21.1338790967424 & 633.400110362551 & 74.466010540707 \tabularnewline
66 & 731 & 718.250281249618 & 112.751923981864 & 630.997794768517 & -12.7497187503818 \tabularnewline
67 & 386 & 363.034681844252 & -219.630161018736 & 628.595479174484 & -22.9653181557484 \tabularnewline
68 & 331 & 361.176380583537 & -325.905063752496 & 626.728683168958 & 30.1763805835374 \tabularnewline
69 & 706 & 622.045399861799 & 165.092712974768 & 624.861887163433 & -83.9546001382008 \tabularnewline
70 & 715 & 702.22382821179 & 103.197365117209 & 624.578806671001 & -12.7761717882099 \tabularnewline
71 & 657 & 689.947650984555 & -0.24337716312347 & 624.295726178569 & 32.9476509845546 \tabularnewline
72 & 653 & 662.625376311166 & 19.0702714489306 & 624.304352239903 & 9.62537631116629 \tabularnewline
73 & 642 & 642.910555754044 & 16.7764659447189 & 624.312978301237 & 0.910555754043799 \tabularnewline
74 & 643 & 648.691526460418 & 10.372510657387 & 626.935962882195 & 5.69152646041766 \tabularnewline
75 & 718 & 693.381581941216 & 113.05947059563 & 629.558947463153 & -24.6184180587835 \tabularnewline
76 & 654 & 690.16873583817 & -15.6760032933739 & 633.507267455204 & 36.1687358381697 \tabularnewline
77 & 632 & 605.410533456003 & 21.1338790967424 & 637.455587447255 & -26.5894665439972 \tabularnewline
78 & 731 & 709.562866822774 & 112.751923981864 & 639.685209195361 & -21.4371331772256 \tabularnewline
79 & 392 & 361.715330075268 & -219.630161018736 & 641.914830943468 & -30.284669924732 \tabularnewline
80 & 344 & 370.877417776704 & -325.905063752496 & 643.027645975792 & 26.8774177767041 \tabularnewline
81 & 792 & 774.766826017117 & 165.092712974768 & 644.140461008116 & -17.2331739828835 \tabularnewline
82 & 852 & 954.063422543387 & 103.197365117209 & 646.739212339404 & 102.063422543387 \tabularnewline
83 & 649 & 648.905413492432 & -0.24337716312347 & 649.337963670692 & -0.0945865075682377 \tabularnewline
84 & 629 & 583.468191316095 & 19.0702714489306 & 655.461537234974 & -45.5318086839046 \tabularnewline
85 & 685 & 691.638423256025 & 16.7764659447189 & 661.585110799256 & 6.63842325602479 \tabularnewline
86 & 617 & 555.362767740122 & 10.372510657387 & 668.264721602491 & -61.6372322598784 \tabularnewline
87 & 715 & 641.996196998644 & 113.05947059563 & 674.944332405726 & -73.0038030013563 \tabularnewline
88 & 715 & 763.603176725451 & -15.6760032933739 & 682.072826567923 & 48.6031767254507 \tabularnewline
89 & 629 & 547.664800173138 & 21.1338790967424 & 689.20132073012 & -81.3351998268623 \tabularnewline
90 & 916 & 1019.10433431938 & 112.751923981864 & 700.143741698753 & 103.104334319383 \tabularnewline
91 & 531 & 570.543998351351 & -219.630161018736 & 711.086162667385 & 39.5439983513506 \tabularnewline
92 & 357 & 315.101544316434 & -325.905063752496 & 724.803519436061 & -41.8984556835657 \tabularnewline
93 & 917 & 930.386410820494 & 165.092712974768 & 738.520876204738 & 13.3864108204942 \tabularnewline
94 & 828 & 803.684896249443 & 103.197365117209 & 749.117738633348 & -24.3151037505567 \tabularnewline
95 & 708 & 656.528776101166 & -0.24337716312347 & 759.714601061957 & -51.4712238988338 \tabularnewline
96 & 858 & 932.150867334456 & 19.0702714489306 & 764.778861216613 & 74.1508673344561 \tabularnewline
97 & 775 & 763.380412684012 & 16.7764659447189 & 769.843121371269 & -11.6195873159883 \tabularnewline
98 & 785 & 786.973911998928 & 10.372510657387 & 772.653577343685 & 1.97391199892832 \tabularnewline
99 & 1006 & 1123.47649608827 & 113.05947059563 & 775.4640333161 & 117.47649608827 \tabularnewline
100 & 789 & 815.051530790703 & -15.6760032933739 & 778.624472502671 & 26.0515307907033 \tabularnewline
101 & 734 & 665.081209214017 & 21.1338790967424 & 781.784911689241 & -68.9187907859834 \tabularnewline
102 & 906 & 916.113868921504 & 112.751923981864 & 783.134207096632 & 10.1138689215038 \tabularnewline
103 & 532 & 499.146658514713 & -219.630161018736 & 784.483502504023 & -32.8533414852869 \tabularnewline
104 & 387 & 314.86306717701 & -325.905063752496 & 785.041996575485 & -72.1369328229896 \tabularnewline
105 & 991 & 1031.30679637828 & 165.092712974768 & 785.600490646948 & 40.3067963782839 \tabularnewline
106 & 841 & 791.26905182181 & 103.197365117209 & 787.533583060981 & -49.7309481781904 \tabularnewline
107 & 892 & 994.776701688109 & -0.24337716312347 & 789.466675475014 & 102.776701688109 \tabularnewline
108 & 782 & 751.341536669 & 19.0702714489306 & 793.588191882069 & -30.6584633309996 \tabularnewline
109 & 811 & 807.513825766157 & 16.7764659447189 & 797.709708289124 & -3.48617423384258 \tabularnewline
110 & 792 & 773.041629609439 & 10.372510657387 & 800.585859733174 & -18.9583703905606 \tabularnewline
111 & 978 & 1039.47851822715 & 113.05947059563 & 803.462011177224 & 61.4785182271464 \tabularnewline
112 & 773 & 758.345290492298 & -15.6760032933739 & 803.330712801076 & -14.654709507702 \tabularnewline
113 & 796 & 767.66670647833 & 21.1338790967424 & 803.199414424928 & -28.3332935216705 \tabularnewline
114 & 946 & 978.137430759859 & 112.751923981864 & 801.110645258277 & 32.1374307598588 \tabularnewline
115 & 594 & 608.60828492711 & -219.630161018736 & 799.021876091625 & 14.6082849271103 \tabularnewline
116 & 438 & 403.086237854914 & -325.905063752496 & 798.818825897582 & -34.9137621450861 \tabularnewline
117 & 1023 & 1082.29151132169 & 165.092712974768 & 798.615775703538 & 59.2915113216937 \tabularnewline
118 & 868 & 831.79659327477 & 103.197365117209 & 801.006041608021 & -36.2034067252305 \tabularnewline
119 & 791 & 778.847069650619 & -0.24337716312347 & 803.396307512504 & -12.1529303493809 \tabularnewline
120 & 760 & 694.944189808975 & 19.0702714489306 & 805.985538742094 & -65.0558101910245 \tabularnewline
121 & 779 & 732.648764083598 & 16.7764659447189 & 808.574769971683 & -46.3512359164023 \tabularnewline
122 & 852 & 880.491059264837 & 10.372510657387 & 813.136430077776 & 28.4910592648368 \tabularnewline
123 & 1001 & 1071.2424392205 & 113.05947059563 & 817.698090183869 & 70.242439220501 \tabularnewline
124 & 734 & 656.140073059279 & -15.6760032933739 & 827.535930234095 & -77.8599269407208 \tabularnewline
125 & 996 & 1133.49235061894 & 21.1338790967424 & 837.37377028432 & 137.492350618938 \tabularnewline
126 & 869 & 778.734493077548 & 112.751923981864 & 846.513582940587 & -90.2655069224516 \tabularnewline
127 & 599 & 561.976765421882 & -219.630161018736 & 855.653395596854 & -37.0232345781185 \tabularnewline
128 & 426 & 313.380070634893 & -325.905063752496 & 864.524993117603 & -112.619929365107 \tabularnewline
129 & 1138 & 1237.51069638688 & 165.092712974768 & 873.396590638351 & 99.5106963868808 \tabularnewline
130 & 1091 & 1196.29500848095 & 103.197365117209 & 882.507626401842 & 105.295008480949 \tabularnewline
131 & 830 & 768.62471499779 & -0.24337716312347 & 891.618662165333 & -61.3752850022096 \tabularnewline
132 & 909 & 898.038017692503 & 19.0702714489306 & 900.891710858567 & -10.9619823074975 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=187419&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]617[/C][C]637.499077857528[/C][C]16.7764659447189[/C][C]579.724456197753[/C][C]20.4990778575278[/C][/ROW]
[ROW][C]2[/C][C]614[/C][C]636.214662485658[/C][C]10.372510657387[/C][C]581.412826856955[/C][C]22.2146624856578[/C][/ROW]
[ROW][C]3[/C][C]647[/C][C]597.839331888213[/C][C]113.05947059563[/C][C]583.101197516157[/C][C]-49.1606681117872[/C][/ROW]
[ROW][C]4[/C][C]580[/C][C]590.938049210789[/C][C]-15.6760032933739[/C][C]584.737954082585[/C][C]10.9380492107891[/C][/ROW]
[ROW][C]5[/C][C]614[/C][C]620.491410254245[/C][C]21.1338790967424[/C][C]586.374710649012[/C][C]6.49141025424547[/C][/ROW]
[ROW][C]6[/C][C]636[/C][C]571.452170875564[/C][C]112.751923981864[/C][C]587.795905142572[/C][C]-64.547829124436[/C][/ROW]
[ROW][C]7[/C][C]388[/C][C]406.413061382605[/C][C]-219.630161018736[/C][C]589.217099636131[/C][C]18.4130613826047[/C][/ROW]
[ROW][C]8[/C][C]356[/C][C]447.312548154007[/C][C]-325.905063752496[/C][C]590.592515598489[/C][C]91.3125481540072[/C][/ROW]
[ROW][C]9[/C][C]639[/C][C]520.939355464386[/C][C]165.092712974768[/C][C]591.967931560846[/C][C]-118.060644535614[/C][/ROW]
[ROW][C]10[/C][C]753[/C][C]809.523522949766[/C][C]103.197365117209[/C][C]593.279111933025[/C][C]56.5235229497664[/C][/ROW]
[ROW][C]11[/C][C]611[/C][C]627.653084857921[/C][C]-0.24337716312347[/C][C]594.590292305203[/C][C]16.6530848579207[/C][/ROW]
[ROW][C]12[/C][C]639[/C][C]663.610992445492[/C][C]19.0702714489306[/C][C]595.318736105578[/C][C]24.6109924454917[/C][/ROW]
[ROW][C]13[/C][C]630[/C][C]647.176354149329[/C][C]16.7764659447189[/C][C]596.047179905953[/C][C]17.1763541493285[/C][/ROW]
[ROW][C]14[/C][C]586[/C][C]564.764375300709[/C][C]10.372510657387[/C][C]596.863114041904[/C][C]-21.2356246992911[/C][/ROW]
[ROW][C]15[/C][C]695[/C][C]679.261481226514[/C][C]113.05947059563[/C][C]597.679048177856[/C][C]-15.7385187734857[/C][/ROW]
[ROW][C]16[/C][C]552[/C][C]521.043925520061[/C][C]-15.6760032933739[/C][C]598.632077773313[/C][C]-30.9560744799394[/C][/ROW]
[ROW][C]17[/C][C]619[/C][C]617.281013534487[/C][C]21.1338790967424[/C][C]599.585107368771[/C][C]-1.71898646551313[/C][/ROW]
[ROW][C]18[/C][C]681[/C][C]648.581195390374[/C][C]112.751923981864[/C][C]600.666880627761[/C][C]-32.4188046096258[/C][/ROW]
[ROW][C]19[/C][C]421[/C][C]459.881507131984[/C][C]-219.630161018736[/C][C]601.748653886752[/C][C]38.8815071319838[/C][/ROW]
[ROW][C]20[/C][C]307[/C][C]335.69295117272[/C][C]-325.905063752496[/C][C]604.212112579776[/C][C]28.6929511727201[/C][/ROW]
[ROW][C]21[/C][C]754[/C][C]736.231715752433[/C][C]165.092712974768[/C][C]606.675571272799[/C][C]-17.7682842475673[/C][/ROW]
[ROW][C]22[/C][C]690[/C][C]667.446977596154[/C][C]103.197365117209[/C][C]609.355657286637[/C][C]-22.5530224038459[/C][/ROW]
[ROW][C]23[/C][C]644[/C][C]676.207633862649[/C][C]-0.24337716312347[/C][C]612.035743300474[/C][C]32.2076338626491[/C][/ROW]
[ROW][C]24[/C][C]643[/C][C]651.961014734207[/C][C]19.0702714489306[/C][C]614.968713816862[/C][C]8.96101473420731[/C][/ROW]
[ROW][C]25[/C][C]608[/C][C]581.321849722031[/C][C]16.7764659447189[/C][C]617.90168433325[/C][C]-26.6781502779687[/C][/ROW]
[ROW][C]26[/C][C]651[/C][C]670.480469282073[/C][C]10.372510657387[/C][C]621.14702006054[/C][C]19.4804692820733[/C][/ROW]
[ROW][C]27[/C][C]691[/C][C]644.54817361654[/C][C]113.05947059563[/C][C]624.39235578783[/C][C]-46.4518263834598[/C][/ROW]
[ROW][C]28[/C][C]627[/C][C]642.6823340339[/C][C]-15.6760032933739[/C][C]626.993669259474[/C][C]15.6823340338997[/C][/ROW]
[ROW][C]29[/C][C]634[/C][C]617.271138172139[/C][C]21.1338790967424[/C][C]629.594982731119[/C][C]-16.7288618278609[/C][/ROW]
[ROW][C]30[/C][C]731[/C][C]717.215953161071[/C][C]112.751923981864[/C][C]632.032122857065[/C][C]-13.7840468389293[/C][/ROW]
[ROW][C]31[/C][C]475[/C][C]535.160898035724[/C][C]-219.630161018736[/C][C]634.469262983011[/C][C]60.1608980357244[/C][/ROW]
[ROW][C]32[/C][C]337[/C][C]360.889945634446[/C][C]-325.905063752496[/C][C]639.01511811805[/C][C]23.8899456344459[/C][/ROW]
[ROW][C]33[/C][C]803[/C][C]797.346313772144[/C][C]165.092712974768[/C][C]643.560973253088[/C][C]-5.65368622785627[/C][/ROW]
[ROW][C]34[/C][C]722[/C][C]692.785467277035[/C][C]103.197365117209[/C][C]648.017167605756[/C][C]-29.2145327229654[/C][/ROW]
[ROW][C]35[/C][C]590[/C][C]527.770015204699[/C][C]-0.24337716312347[/C][C]652.473361958424[/C][C]-62.2299847953008[/C][/ROW]
[ROW][C]36[/C][C]724[/C][C]774.316650792423[/C][C]19.0702714489306[/C][C]654.613077758647[/C][C]50.3166507924226[/C][/ROW]
[ROW][C]37[/C][C]627[/C][C]580.470740496412[/C][C]16.7764659447189[/C][C]656.752793558869[/C][C]-46.5292595035882[/C][/ROW]
[ROW][C]38[/C][C]696[/C][C]723.48012542514[/C][C]10.372510657387[/C][C]658.147363917473[/C][C]27.4801254251398[/C][/ROW]
[ROW][C]39[/C][C]825[/C][C]877.398595128293[/C][C]113.05947059563[/C][C]659.541934276077[/C][C]52.3985951282929[/C][/ROW]
[ROW][C]40[/C][C]677[/C][C]708.147425490277[/C][C]-15.6760032933739[/C][C]661.528577803097[/C][C]31.1474254902768[/C][/ROW]
[ROW][C]41[/C][C]656[/C][C]627.350899573141[/C][C]21.1338790967424[/C][C]663.515221330117[/C][C]-28.6491004268595[/C][/ROW]
[ROW][C]42[/C][C]785[/C][C]793.664319691507[/C][C]112.751923981864[/C][C]663.583756326628[/C][C]8.66431969150722[/C][/ROW]
[ROW][C]43[/C][C]412[/C][C]379.977869695596[/C][C]-219.630161018736[/C][C]663.65229132314[/C][C]-32.0221303044038[/C][/ROW]
[ROW][C]44[/C][C]352[/C][C]368.387465498236[/C][C]-325.905063752496[/C][C]661.51759825426[/C][C]16.3874654982359[/C][/ROW]
[ROW][C]45[/C][C]839[/C][C]853.524381839852[/C][C]165.092712974768[/C][C]659.38290518538[/C][C]14.5243818398518[/C][/ROW]
[ROW][C]46[/C][C]729[/C][C]696.21548732391[/C][C]103.197365117209[/C][C]658.587147558881[/C][C]-32.7845126760897[/C][/ROW]
[ROW][C]47[/C][C]696[/C][C]734.451987230743[/C][C]-0.24337716312347[/C][C]657.791389932381[/C][C]38.4519872307426[/C][/ROW]
[ROW][C]48[/C][C]641[/C][C]603.116425591808[/C][C]19.0702714489306[/C][C]659.813302959261[/C][C]-37.883574408192[/C][/ROW]
[ROW][C]49[/C][C]695[/C][C]711.388318069139[/C][C]16.7764659447189[/C][C]661.835215986142[/C][C]16.3883180691394[/C][/ROW]
[ROW][C]50[/C][C]638[/C][C]602.526485046908[/C][C]10.372510657387[/C][C]663.101004295705[/C][C]-35.4735149530925[/C][/ROW]
[ROW][C]51[/C][C]762[/C][C]746.573736799101[/C][C]113.05947059563[/C][C]664.366792605269[/C][C]-15.4262632008994[/C][/ROW]
[ROW][C]52[/C][C]635[/C][C]622.710123357951[/C][C]-15.6760032933739[/C][C]662.965879935423[/C][C]-12.2898766420489[/C][/ROW]
[ROW][C]53[/C][C]721[/C][C]759.301153637682[/C][C]21.1338790967424[/C][C]661.564967265576[/C][C]38.3011536376816[/C][/ROW]
[ROW][C]54[/C][C]854[/C][C]934.289014933404[/C][C]112.751923981864[/C][C]660.959061084732[/C][C]80.2890149334041[/C][/ROW]
[ROW][C]55[/C][C]418[/C][C]395.277006114849[/C][C]-219.630161018736[/C][C]660.353154903887[/C][C]-22.7229938851514[/C][/ROW]
[ROW][C]56[/C][C]367[/C][C]400.399255538256[/C][C]-325.905063752496[/C][C]659.50580821424[/C][C]33.3992555382558[/C][/ROW]
[ROW][C]57[/C][C]824[/C][C]824.248825500639[/C][C]165.092712974768[/C][C]658.658461524593[/C][C]0.2488255006391[/C][/ROW]
[ROW][C]58[/C][C]687[/C][C]615.135385982446[/C][C]103.197365117209[/C][C]655.667248900345[/C][C]-71.8646140175539[/C][/ROW]
[ROW][C]59[/C][C]601[/C][C]549.567340887027[/C][C]-0.24337716312347[/C][C]652.676036276097[/C][C]-51.4326591129732[/C][/ROW]
[ROW][C]60[/C][C]676[/C][C]684.416923910712[/C][C]19.0702714489306[/C][C]648.512804640357[/C][C]8.4169239107124[/C][/ROW]
[ROW][C]61[/C][C]740[/C][C]818.873961050664[/C][C]16.7764659447189[/C][C]644.349573004617[/C][C]78.8739610506636[/C][/ROW]
[ROW][C]62[/C][C]691[/C][C]730.397163595079[/C][C]10.372510657387[/C][C]641.230325747534[/C][C]39.397163595079[/C][/ROW]
[ROW][C]63[/C][C]683[/C][C]614.829450913919[/C][C]113.05947059563[/C][C]638.111078490451[/C][C]-68.1705490860807[/C][/ROW]
[ROW][C]64[/C][C]594[/C][C]567.920408866873[/C][C]-15.6760032933739[/C][C]635.755594426501[/C][C]-26.0795911331269[/C][/ROW]
[ROW][C]65[/C][C]729[/C][C]803.466010540707[/C][C]21.1338790967424[/C][C]633.400110362551[/C][C]74.466010540707[/C][/ROW]
[ROW][C]66[/C][C]731[/C][C]718.250281249618[/C][C]112.751923981864[/C][C]630.997794768517[/C][C]-12.7497187503818[/C][/ROW]
[ROW][C]67[/C][C]386[/C][C]363.034681844252[/C][C]-219.630161018736[/C][C]628.595479174484[/C][C]-22.9653181557484[/C][/ROW]
[ROW][C]68[/C][C]331[/C][C]361.176380583537[/C][C]-325.905063752496[/C][C]626.728683168958[/C][C]30.1763805835374[/C][/ROW]
[ROW][C]69[/C][C]706[/C][C]622.045399861799[/C][C]165.092712974768[/C][C]624.861887163433[/C][C]-83.9546001382008[/C][/ROW]
[ROW][C]70[/C][C]715[/C][C]702.22382821179[/C][C]103.197365117209[/C][C]624.578806671001[/C][C]-12.7761717882099[/C][/ROW]
[ROW][C]71[/C][C]657[/C][C]689.947650984555[/C][C]-0.24337716312347[/C][C]624.295726178569[/C][C]32.9476509845546[/C][/ROW]
[ROW][C]72[/C][C]653[/C][C]662.625376311166[/C][C]19.0702714489306[/C][C]624.304352239903[/C][C]9.62537631116629[/C][/ROW]
[ROW][C]73[/C][C]642[/C][C]642.910555754044[/C][C]16.7764659447189[/C][C]624.312978301237[/C][C]0.910555754043799[/C][/ROW]
[ROW][C]74[/C][C]643[/C][C]648.691526460418[/C][C]10.372510657387[/C][C]626.935962882195[/C][C]5.69152646041766[/C][/ROW]
[ROW][C]75[/C][C]718[/C][C]693.381581941216[/C][C]113.05947059563[/C][C]629.558947463153[/C][C]-24.6184180587835[/C][/ROW]
[ROW][C]76[/C][C]654[/C][C]690.16873583817[/C][C]-15.6760032933739[/C][C]633.507267455204[/C][C]36.1687358381697[/C][/ROW]
[ROW][C]77[/C][C]632[/C][C]605.410533456003[/C][C]21.1338790967424[/C][C]637.455587447255[/C][C]-26.5894665439972[/C][/ROW]
[ROW][C]78[/C][C]731[/C][C]709.562866822774[/C][C]112.751923981864[/C][C]639.685209195361[/C][C]-21.4371331772256[/C][/ROW]
[ROW][C]79[/C][C]392[/C][C]361.715330075268[/C][C]-219.630161018736[/C][C]641.914830943468[/C][C]-30.284669924732[/C][/ROW]
[ROW][C]80[/C][C]344[/C][C]370.877417776704[/C][C]-325.905063752496[/C][C]643.027645975792[/C][C]26.8774177767041[/C][/ROW]
[ROW][C]81[/C][C]792[/C][C]774.766826017117[/C][C]165.092712974768[/C][C]644.140461008116[/C][C]-17.2331739828835[/C][/ROW]
[ROW][C]82[/C][C]852[/C][C]954.063422543387[/C][C]103.197365117209[/C][C]646.739212339404[/C][C]102.063422543387[/C][/ROW]
[ROW][C]83[/C][C]649[/C][C]648.905413492432[/C][C]-0.24337716312347[/C][C]649.337963670692[/C][C]-0.0945865075682377[/C][/ROW]
[ROW][C]84[/C][C]629[/C][C]583.468191316095[/C][C]19.0702714489306[/C][C]655.461537234974[/C][C]-45.5318086839046[/C][/ROW]
[ROW][C]85[/C][C]685[/C][C]691.638423256025[/C][C]16.7764659447189[/C][C]661.585110799256[/C][C]6.63842325602479[/C][/ROW]
[ROW][C]86[/C][C]617[/C][C]555.362767740122[/C][C]10.372510657387[/C][C]668.264721602491[/C][C]-61.6372322598784[/C][/ROW]
[ROW][C]87[/C][C]715[/C][C]641.996196998644[/C][C]113.05947059563[/C][C]674.944332405726[/C][C]-73.0038030013563[/C][/ROW]
[ROW][C]88[/C][C]715[/C][C]763.603176725451[/C][C]-15.6760032933739[/C][C]682.072826567923[/C][C]48.6031767254507[/C][/ROW]
[ROW][C]89[/C][C]629[/C][C]547.664800173138[/C][C]21.1338790967424[/C][C]689.20132073012[/C][C]-81.3351998268623[/C][/ROW]
[ROW][C]90[/C][C]916[/C][C]1019.10433431938[/C][C]112.751923981864[/C][C]700.143741698753[/C][C]103.104334319383[/C][/ROW]
[ROW][C]91[/C][C]531[/C][C]570.543998351351[/C][C]-219.630161018736[/C][C]711.086162667385[/C][C]39.5439983513506[/C][/ROW]
[ROW][C]92[/C][C]357[/C][C]315.101544316434[/C][C]-325.905063752496[/C][C]724.803519436061[/C][C]-41.8984556835657[/C][/ROW]
[ROW][C]93[/C][C]917[/C][C]930.386410820494[/C][C]165.092712974768[/C][C]738.520876204738[/C][C]13.3864108204942[/C][/ROW]
[ROW][C]94[/C][C]828[/C][C]803.684896249443[/C][C]103.197365117209[/C][C]749.117738633348[/C][C]-24.3151037505567[/C][/ROW]
[ROW][C]95[/C][C]708[/C][C]656.528776101166[/C][C]-0.24337716312347[/C][C]759.714601061957[/C][C]-51.4712238988338[/C][/ROW]
[ROW][C]96[/C][C]858[/C][C]932.150867334456[/C][C]19.0702714489306[/C][C]764.778861216613[/C][C]74.1508673344561[/C][/ROW]
[ROW][C]97[/C][C]775[/C][C]763.380412684012[/C][C]16.7764659447189[/C][C]769.843121371269[/C][C]-11.6195873159883[/C][/ROW]
[ROW][C]98[/C][C]785[/C][C]786.973911998928[/C][C]10.372510657387[/C][C]772.653577343685[/C][C]1.97391199892832[/C][/ROW]
[ROW][C]99[/C][C]1006[/C][C]1123.47649608827[/C][C]113.05947059563[/C][C]775.4640333161[/C][C]117.47649608827[/C][/ROW]
[ROW][C]100[/C][C]789[/C][C]815.051530790703[/C][C]-15.6760032933739[/C][C]778.624472502671[/C][C]26.0515307907033[/C][/ROW]
[ROW][C]101[/C][C]734[/C][C]665.081209214017[/C][C]21.1338790967424[/C][C]781.784911689241[/C][C]-68.9187907859834[/C][/ROW]
[ROW][C]102[/C][C]906[/C][C]916.113868921504[/C][C]112.751923981864[/C][C]783.134207096632[/C][C]10.1138689215038[/C][/ROW]
[ROW][C]103[/C][C]532[/C][C]499.146658514713[/C][C]-219.630161018736[/C][C]784.483502504023[/C][C]-32.8533414852869[/C][/ROW]
[ROW][C]104[/C][C]387[/C][C]314.86306717701[/C][C]-325.905063752496[/C][C]785.041996575485[/C][C]-72.1369328229896[/C][/ROW]
[ROW][C]105[/C][C]991[/C][C]1031.30679637828[/C][C]165.092712974768[/C][C]785.600490646948[/C][C]40.3067963782839[/C][/ROW]
[ROW][C]106[/C][C]841[/C][C]791.26905182181[/C][C]103.197365117209[/C][C]787.533583060981[/C][C]-49.7309481781904[/C][/ROW]
[ROW][C]107[/C][C]892[/C][C]994.776701688109[/C][C]-0.24337716312347[/C][C]789.466675475014[/C][C]102.776701688109[/C][/ROW]
[ROW][C]108[/C][C]782[/C][C]751.341536669[/C][C]19.0702714489306[/C][C]793.588191882069[/C][C]-30.6584633309996[/C][/ROW]
[ROW][C]109[/C][C]811[/C][C]807.513825766157[/C][C]16.7764659447189[/C][C]797.709708289124[/C][C]-3.48617423384258[/C][/ROW]
[ROW][C]110[/C][C]792[/C][C]773.041629609439[/C][C]10.372510657387[/C][C]800.585859733174[/C][C]-18.9583703905606[/C][/ROW]
[ROW][C]111[/C][C]978[/C][C]1039.47851822715[/C][C]113.05947059563[/C][C]803.462011177224[/C][C]61.4785182271464[/C][/ROW]
[ROW][C]112[/C][C]773[/C][C]758.345290492298[/C][C]-15.6760032933739[/C][C]803.330712801076[/C][C]-14.654709507702[/C][/ROW]
[ROW][C]113[/C][C]796[/C][C]767.66670647833[/C][C]21.1338790967424[/C][C]803.199414424928[/C][C]-28.3332935216705[/C][/ROW]
[ROW][C]114[/C][C]946[/C][C]978.137430759859[/C][C]112.751923981864[/C][C]801.110645258277[/C][C]32.1374307598588[/C][/ROW]
[ROW][C]115[/C][C]594[/C][C]608.60828492711[/C][C]-219.630161018736[/C][C]799.021876091625[/C][C]14.6082849271103[/C][/ROW]
[ROW][C]116[/C][C]438[/C][C]403.086237854914[/C][C]-325.905063752496[/C][C]798.818825897582[/C][C]-34.9137621450861[/C][/ROW]
[ROW][C]117[/C][C]1023[/C][C]1082.29151132169[/C][C]165.092712974768[/C][C]798.615775703538[/C][C]59.2915113216937[/C][/ROW]
[ROW][C]118[/C][C]868[/C][C]831.79659327477[/C][C]103.197365117209[/C][C]801.006041608021[/C][C]-36.2034067252305[/C][/ROW]
[ROW][C]119[/C][C]791[/C][C]778.847069650619[/C][C]-0.24337716312347[/C][C]803.396307512504[/C][C]-12.1529303493809[/C][/ROW]
[ROW][C]120[/C][C]760[/C][C]694.944189808975[/C][C]19.0702714489306[/C][C]805.985538742094[/C][C]-65.0558101910245[/C][/ROW]
[ROW][C]121[/C][C]779[/C][C]732.648764083598[/C][C]16.7764659447189[/C][C]808.574769971683[/C][C]-46.3512359164023[/C][/ROW]
[ROW][C]122[/C][C]852[/C][C]880.491059264837[/C][C]10.372510657387[/C][C]813.136430077776[/C][C]28.4910592648368[/C][/ROW]
[ROW][C]123[/C][C]1001[/C][C]1071.2424392205[/C][C]113.05947059563[/C][C]817.698090183869[/C][C]70.242439220501[/C][/ROW]
[ROW][C]124[/C][C]734[/C][C]656.140073059279[/C][C]-15.6760032933739[/C][C]827.535930234095[/C][C]-77.8599269407208[/C][/ROW]
[ROW][C]125[/C][C]996[/C][C]1133.49235061894[/C][C]21.1338790967424[/C][C]837.37377028432[/C][C]137.492350618938[/C][/ROW]
[ROW][C]126[/C][C]869[/C][C]778.734493077548[/C][C]112.751923981864[/C][C]846.513582940587[/C][C]-90.2655069224516[/C][/ROW]
[ROW][C]127[/C][C]599[/C][C]561.976765421882[/C][C]-219.630161018736[/C][C]855.653395596854[/C][C]-37.0232345781185[/C][/ROW]
[ROW][C]128[/C][C]426[/C][C]313.380070634893[/C][C]-325.905063752496[/C][C]864.524993117603[/C][C]-112.619929365107[/C][/ROW]
[ROW][C]129[/C][C]1138[/C][C]1237.51069638688[/C][C]165.092712974768[/C][C]873.396590638351[/C][C]99.5106963868808[/C][/ROW]
[ROW][C]130[/C][C]1091[/C][C]1196.29500848095[/C][C]103.197365117209[/C][C]882.507626401842[/C][C]105.295008480949[/C][/ROW]
[ROW][C]131[/C][C]830[/C][C]768.62471499779[/C][C]-0.24337716312347[/C][C]891.618662165333[/C][C]-61.3752850022096[/C][/ROW]
[ROW][C]132[/C][C]909[/C][C]898.038017692503[/C][C]19.0702714489306[/C][C]900.891710858567[/C][C]-10.9619823074975[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=187419&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=187419&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
1617637.49907785752816.7764659447189579.72445619775320.4990778575278
2614636.21466248565810.372510657387581.41282685695522.2146624856578
3647597.839331888213113.05947059563583.101197516157-49.1606681117872
4580590.938049210789-15.6760032933739584.73795408258510.9380492107891
5614620.49141025424521.1338790967424586.3747106490126.49141025424547
6636571.452170875564112.751923981864587.795905142572-64.547829124436
7388406.413061382605-219.630161018736589.21709963613118.4130613826047
8356447.312548154007-325.905063752496590.59251559848991.3125481540072
9639520.939355464386165.092712974768591.967931560846-118.060644535614
10753809.523522949766103.197365117209593.27911193302556.5235229497664
11611627.653084857921-0.24337716312347594.59029230520316.6530848579207
12639663.61099244549219.0702714489306595.31873610557824.6109924454917
13630647.17635414932916.7764659447189596.04717990595317.1763541493285
14586564.76437530070910.372510657387596.863114041904-21.2356246992911
15695679.261481226514113.05947059563597.679048177856-15.7385187734857
16552521.043925520061-15.6760032933739598.632077773313-30.9560744799394
17619617.28101353448721.1338790967424599.585107368771-1.71898646551313
18681648.581195390374112.751923981864600.666880627761-32.4188046096258
19421459.881507131984-219.630161018736601.74865388675238.8815071319838
20307335.69295117272-325.905063752496604.21211257977628.6929511727201
21754736.231715752433165.092712974768606.675571272799-17.7682842475673
22690667.446977596154103.197365117209609.355657286637-22.5530224038459
23644676.207633862649-0.24337716312347612.03574330047432.2076338626491
24643651.96101473420719.0702714489306614.9687138168628.96101473420731
25608581.32184972203116.7764659447189617.90168433325-26.6781502779687
26651670.48046928207310.372510657387621.1470200605419.4804692820733
27691644.54817361654113.05947059563624.39235578783-46.4518263834598
28627642.6823340339-15.6760032933739626.99366925947415.6823340338997
29634617.27113817213921.1338790967424629.594982731119-16.7288618278609
30731717.215953161071112.751923981864632.032122857065-13.7840468389293
31475535.160898035724-219.630161018736634.46926298301160.1608980357244
32337360.889945634446-325.905063752496639.0151181180523.8899456344459
33803797.346313772144165.092712974768643.560973253088-5.65368622785627
34722692.785467277035103.197365117209648.017167605756-29.2145327229654
35590527.770015204699-0.24337716312347652.473361958424-62.2299847953008
36724774.31665079242319.0702714489306654.61307775864750.3166507924226
37627580.47074049641216.7764659447189656.752793558869-46.5292595035882
38696723.4801254251410.372510657387658.14736391747327.4801254251398
39825877.398595128293113.05947059563659.54193427607752.3985951282929
40677708.147425490277-15.6760032933739661.52857780309731.1474254902768
41656627.35089957314121.1338790967424663.515221330117-28.6491004268595
42785793.664319691507112.751923981864663.5837563266288.66431969150722
43412379.977869695596-219.630161018736663.65229132314-32.0221303044038
44352368.387465498236-325.905063752496661.5175982542616.3874654982359
45839853.524381839852165.092712974768659.3829051853814.5243818398518
46729696.21548732391103.197365117209658.587147558881-32.7845126760897
47696734.451987230743-0.24337716312347657.79138993238138.4519872307426
48641603.11642559180819.0702714489306659.813302959261-37.883574408192
49695711.38831806913916.7764659447189661.83521598614216.3883180691394
50638602.52648504690810.372510657387663.101004295705-35.4735149530925
51762746.573736799101113.05947059563664.366792605269-15.4262632008994
52635622.710123357951-15.6760032933739662.965879935423-12.2898766420489
53721759.30115363768221.1338790967424661.56496726557638.3011536376816
54854934.289014933404112.751923981864660.95906108473280.2890149334041
55418395.277006114849-219.630161018736660.353154903887-22.7229938851514
56367400.399255538256-325.905063752496659.5058082142433.3992555382558
57824824.248825500639165.092712974768658.6584615245930.2488255006391
58687615.135385982446103.197365117209655.667248900345-71.8646140175539
59601549.567340887027-0.24337716312347652.676036276097-51.4326591129732
60676684.41692391071219.0702714489306648.5128046403578.4169239107124
61740818.87396105066416.7764659447189644.34957300461778.8739610506636
62691730.39716359507910.372510657387641.23032574753439.397163595079
63683614.829450913919113.05947059563638.111078490451-68.1705490860807
64594567.920408866873-15.6760032933739635.755594426501-26.0795911331269
65729803.46601054070721.1338790967424633.40011036255174.466010540707
66731718.250281249618112.751923981864630.997794768517-12.7497187503818
67386363.034681844252-219.630161018736628.595479174484-22.9653181557484
68331361.176380583537-325.905063752496626.72868316895830.1763805835374
69706622.045399861799165.092712974768624.861887163433-83.9546001382008
70715702.22382821179103.197365117209624.578806671001-12.7761717882099
71657689.947650984555-0.24337716312347624.29572617856932.9476509845546
72653662.62537631116619.0702714489306624.3043522399039.62537631116629
73642642.91055575404416.7764659447189624.3129783012370.910555754043799
74643648.69152646041810.372510657387626.9359628821955.69152646041766
75718693.381581941216113.05947059563629.558947463153-24.6184180587835
76654690.16873583817-15.6760032933739633.50726745520436.1687358381697
77632605.41053345600321.1338790967424637.455587447255-26.5894665439972
78731709.562866822774112.751923981864639.685209195361-21.4371331772256
79392361.715330075268-219.630161018736641.914830943468-30.284669924732
80344370.877417776704-325.905063752496643.02764597579226.8774177767041
81792774.766826017117165.092712974768644.140461008116-17.2331739828835
82852954.063422543387103.197365117209646.739212339404102.063422543387
83649648.905413492432-0.24337716312347649.337963670692-0.0945865075682377
84629583.46819131609519.0702714489306655.461537234974-45.5318086839046
85685691.63842325602516.7764659447189661.5851107992566.63842325602479
86617555.36276774012210.372510657387668.264721602491-61.6372322598784
87715641.996196998644113.05947059563674.944332405726-73.0038030013563
88715763.603176725451-15.6760032933739682.07282656792348.6031767254507
89629547.66480017313821.1338790967424689.20132073012-81.3351998268623
909161019.10433431938112.751923981864700.143741698753103.104334319383
91531570.543998351351-219.630161018736711.08616266738539.5439983513506
92357315.101544316434-325.905063752496724.803519436061-41.8984556835657
93917930.386410820494165.092712974768738.52087620473813.3864108204942
94828803.684896249443103.197365117209749.117738633348-24.3151037505567
95708656.528776101166-0.24337716312347759.714601061957-51.4712238988338
96858932.15086733445619.0702714489306764.77886121661374.1508673344561
97775763.38041268401216.7764659447189769.843121371269-11.6195873159883
98785786.97391199892810.372510657387772.6535773436851.97391199892832
9910061123.47649608827113.05947059563775.4640333161117.47649608827
100789815.051530790703-15.6760032933739778.62447250267126.0515307907033
101734665.08120921401721.1338790967424781.784911689241-68.9187907859834
102906916.113868921504112.751923981864783.13420709663210.1138689215038
103532499.146658514713-219.630161018736784.483502504023-32.8533414852869
104387314.86306717701-325.905063752496785.041996575485-72.1369328229896
1059911031.30679637828165.092712974768785.60049064694840.3067963782839
106841791.26905182181103.197365117209787.533583060981-49.7309481781904
107892994.776701688109-0.24337716312347789.466675475014102.776701688109
108782751.34153666919.0702714489306793.588191882069-30.6584633309996
109811807.51382576615716.7764659447189797.709708289124-3.48617423384258
110792773.04162960943910.372510657387800.585859733174-18.9583703905606
1119781039.47851822715113.05947059563803.46201117722461.4785182271464
112773758.345290492298-15.6760032933739803.330712801076-14.654709507702
113796767.6667064783321.1338790967424803.199414424928-28.3332935216705
114946978.137430759859112.751923981864801.11064525827732.1374307598588
115594608.60828492711-219.630161018736799.02187609162514.6082849271103
116438403.086237854914-325.905063752496798.818825897582-34.9137621450861
11710231082.29151132169165.092712974768798.61577570353859.2915113216937
118868831.79659327477103.197365117209801.006041608021-36.2034067252305
119791778.847069650619-0.24337716312347803.396307512504-12.1529303493809
120760694.94418980897519.0702714489306805.985538742094-65.0558101910245
121779732.64876408359816.7764659447189808.574769971683-46.3512359164023
122852880.49105926483710.372510657387813.13643007777628.4910592648368
12310011071.2424392205113.05947059563817.69809018386970.242439220501
124734656.140073059279-15.6760032933739827.535930234095-77.8599269407208
1259961133.4923506189421.1338790967424837.37377028432137.492350618938
126869778.734493077548112.751923981864846.513582940587-90.2655069224516
127599561.976765421882-219.630161018736855.653395596854-37.0232345781185
128426313.380070634893-325.905063752496864.524993117603-112.619929365107
12911381237.51069638688165.092712974768873.39659063835199.5106963868808
13010911196.29500848095103.197365117209882.507626401842105.295008480949
131830768.62471499779-0.24337716312347891.618662165333-61.3752850022096
132909898.03801769250319.0702714489306900.891710858567-10.9619823074975



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')