## Free Statistics

of Irreproducible Research!

Author's title
Author*Unverified author*
R Software Modulerwasp_variability.wasp
Title produced by softwareVariability
Date of computationThu, 27 Dec 2012 16:17:49 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/27/t1356643100d8v07nh4jpfytrw.htm/, Retrieved Tue, 07 Feb 2023 17:14:53 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=204794, Retrieved Tue, 07 Feb 2023 17:14:53 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact93
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [(Partial) Autocorrelation Function] [Autocorrelatie In...] [2012-11-12 10:59:56] [41982c7b3984978a38ca838fef047984]
- RMPD  [Bootstrap Plot - Central Tendency] [Bootstrap Plot (m...] [2012-12-27 20:12:14] [41982c7b3984978a38ca838fef047984]
- R P     [Bootstrap Plot - Central Tendency] [Bootstrap Plot (m...] [2012-12-27 20:14:03] [41982c7b3984978a38ca838fef047984]
- RMPD      [Blocked Bootstrap Plot - Central Tendency] [Bootstrap Plot (g...] [2012-12-27 20:38:33] [41982c7b3984978a38ca838fef047984]
- R  D        [Blocked Bootstrap Plot - Central Tendency] [Bootstrap Plot (g...] [2012-12-27 20:42:04] [41982c7b3984978a38ca838fef047984]
- RM D            [Variability] [Spreidingsmaten g...] [2012-12-27 21:17:49] [97ff841fcf87514e420f2e9629cfd808] [Current]
Feedback Forum

Post a new message
Dataseries X:
0,75
0,75
0,77
0,78
0,79
1,01
1,16
1,14
1,12
1,1
1,1
1,1
1,1
1,09
1,09
1,1
1,1
1,17
1,15
1,04
0,94
0,88
0,85
0,85
0,85
0,84
0,83
0,8
0,78
1,02
1,19
1,1
0,96
0,87
0,83
0,82
0,81
0,78
0,79
0,8
0,79
0,97
1,01
0,92
0,87
0,84
0,81
0,81
0,83
0,83
0,85
0,88
0,89
1,21
1,32
1,33
1,23
1,16
1,12
1,06
1,08
1,09
1,03
1,04
1,05
1,19
1,14
1,05
0,95
0,87
0,86
0,85

 Summary of computational transaction Raw Input view raw input (R code) Raw Output view raw output of R engine Computing time 1 seconds R Server 'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=204794&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=204794&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=204794&T=0

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Summary of computational transaction Raw Input view raw input (R code) Raw Output view raw output of R engine Computing time 1 seconds R Server 'George Udny Yule' @ yule.wessa.net

 Variability - Ungrouped Data Absolute range 0.58 Relative range (unbiased) 3.76249120437173 Relative range (biased) 3.78889497535682 Variance (unbiased) 0.0237632042253521 Variance (biased) 0.0234331597222222 Standard Deviation (unbiased) 0.154153184285477 Standard Deviation (biased) 0.153078932979761 Coefficient of Variation (unbiased) 0.158716277256604 Coefficient of Variation (biased) 0.157610227006189 Mean Squared Error (MSE versus 0) 0.966759722222222 Mean Squared Error (MSE versus Mean) 0.0234331597222222 Mean Absolute Deviation from Mean (MAD Mean) 0.137986111111111 Mean Absolute Deviation from Median (MAD Median) 0.137638888888889 Median Absolute Deviation from Mean 0.12875 Median Absolute Deviation from Median 0.135 Mean Squared Deviation from Mean 0.0234331597222222 Mean Squared Deviation from Median 0.0236972222222222 Interquartile Difference (Weighted Average at Xnp) 0.27 Interquartile Difference (Weighted Average at X(n+1)p) 0.27 Interquartile Difference (Empirical Distribution Function) 0.27 Interquartile Difference (Empirical Distribution Function - Averaging) 0.27 Interquartile Difference (Empirical Distribution Function - Interpolation) 0.27 Interquartile Difference (Closest Observation) 0.27 Interquartile Difference (True Basic - Statistics Graphics Toolkit) 0.27 Interquartile Difference (MS Excel (old versions)) 0.27 Semi Interquartile Difference (Weighted Average at Xnp) 0.135 Semi Interquartile Difference (Weighted Average at X(n+1)p) 0.135 Semi Interquartile Difference (Empirical Distribution Function) 0.135 Semi Interquartile Difference (Empirical Distribution Function - Averaging) 0.135 Semi Interquartile Difference (Empirical Distribution Function - Interpolation) 0.135 Semi Interquartile Difference (Closest Observation) 0.135 Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) 0.135 Semi Interquartile Difference (MS Excel (old versions)) 0.135 Coefficient of Quartile Variation (Weighted Average at Xnp) 0.139896373056995 Coefficient of Quartile Variation (Weighted Average at X(n+1)p) 0.139896373056995 Coefficient of Quartile Variation (Empirical Distribution Function) 0.139896373056995 Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) 0.139896373056995 Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) 0.139896373056995 Coefficient of Quartile Variation (Closest Observation) 0.139896373056995 Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) 0.139896373056995 Coefficient of Quartile Variation (MS Excel (old versions)) 0.139896373056995 Number of all Pairs of Observations 2556 Squared Differences between all Pairs of Observations 0.0475264084507044 Mean Absolute Differences between all Pairs of Observations 0.175723787167449 Gini Mean Difference 0.175723787167447 Leik Measure of Dispersion 0.519747111296407 Index of Diversity 0.985766097449209 Index of Qualitative Variation 0.999650126990747 Coefficient of Dispersion 0.144488074461896 Observations 72

\begin{tabular}{lllllllll}
\hline
Variability - Ungrouped Data \tabularnewline
Absolute range & 0.58 \tabularnewline
Relative range (unbiased) & 3.76249120437173 \tabularnewline
Relative range (biased) & 3.78889497535682 \tabularnewline
Variance (unbiased) & 0.0237632042253521 \tabularnewline
Variance (biased) & 0.0234331597222222 \tabularnewline
Standard Deviation (unbiased) & 0.154153184285477 \tabularnewline
Standard Deviation (biased) & 0.153078932979761 \tabularnewline
Coefficient of Variation (unbiased) & 0.158716277256604 \tabularnewline
Coefficient of Variation (biased) & 0.157610227006189 \tabularnewline
Mean Squared Error (MSE versus 0) & 0.966759722222222 \tabularnewline
Mean Squared Error (MSE versus Mean) & 0.0234331597222222 \tabularnewline
Mean Absolute Deviation from Mean (MAD Mean) & 0.137986111111111 \tabularnewline
Mean Absolute Deviation from Median (MAD Median) & 0.137638888888889 \tabularnewline
Median Absolute Deviation from Mean & 0.12875 \tabularnewline
Median Absolute Deviation from Median & 0.135 \tabularnewline
Mean Squared Deviation from Mean & 0.0234331597222222 \tabularnewline
Mean Squared Deviation from Median & 0.0236972222222222 \tabularnewline
Interquartile Difference (Weighted Average at Xnp) & 0.27 \tabularnewline
Interquartile Difference (Weighted Average at X(n+1)p) & 0.27 \tabularnewline
Interquartile Difference (Empirical Distribution Function) & 0.27 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Averaging) & 0.27 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Interpolation) & 0.27 \tabularnewline
Interquartile Difference (Closest Observation) & 0.27 \tabularnewline
Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 0.27 \tabularnewline
Interquartile Difference (MS Excel (old versions)) & 0.27 \tabularnewline
Semi Interquartile Difference (Weighted Average at Xnp) & 0.135 \tabularnewline
Semi Interquartile Difference (Weighted Average at X(n+1)p) & 0.135 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function) & 0.135 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Averaging) & 0.135 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Interpolation) & 0.135 \tabularnewline
Semi Interquartile Difference (Closest Observation) & 0.135 \tabularnewline
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 0.135 \tabularnewline
Semi Interquartile Difference (MS Excel (old versions)) & 0.135 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at Xnp) & 0.139896373056995 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at X(n+1)p) & 0.139896373056995 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function) & 0.139896373056995 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) & 0.139896373056995 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) & 0.139896373056995 \tabularnewline
Coefficient of Quartile Variation (Closest Observation) & 0.139896373056995 \tabularnewline
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) & 0.139896373056995 \tabularnewline
Coefficient of Quartile Variation (MS Excel (old versions)) & 0.139896373056995 \tabularnewline
Number of all Pairs of Observations & 2556 \tabularnewline
Squared Differences between all Pairs of Observations & 0.0475264084507044 \tabularnewline
Mean Absolute Differences between all Pairs of Observations & 0.175723787167449 \tabularnewline
Gini Mean Difference & 0.175723787167447 \tabularnewline
Leik Measure of Dispersion & 0.519747111296407 \tabularnewline
Index of Diversity & 0.985766097449209 \tabularnewline
Index of Qualitative Variation & 0.999650126990747 \tabularnewline
Coefficient of Dispersion & 0.144488074461896 \tabularnewline
Observations & 72 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=204794&T=1

[TABLE]
[ROW][C]Variability - Ungrouped Data[/C][/ROW]
[ROW][C]Absolute range[/C][C]0.58[/C][/ROW]
[ROW][C]Relative range (unbiased)[/C][C]3.76249120437173[/C][/ROW]
[ROW][C]Relative range (biased)[/C][C]3.78889497535682[/C][/ROW]
[ROW][C]Variance (unbiased)[/C][C]0.0237632042253521[/C][/ROW]
[ROW][C]Variance (biased)[/C][C]0.0234331597222222[/C][/ROW]
[ROW][C]Standard Deviation (unbiased)[/C][C]0.154153184285477[/C][/ROW]
[ROW][C]Standard Deviation (biased)[/C][C]0.153078932979761[/C][/ROW]
[ROW][C]Coefficient of Variation (unbiased)[/C][C]0.158716277256604[/C][/ROW]
[ROW][C]Coefficient of Variation (biased)[/C][C]0.157610227006189[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus 0)[/C][C]0.966759722222222[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus Mean)[/C][C]0.0234331597222222[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Mean (MAD Mean)[/C][C]0.137986111111111[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Median (MAD Median)[/C][C]0.137638888888889[/C][/ROW]
[ROW][C]Median Absolute Deviation from Mean[/C][C]0.12875[/C][/ROW]
[ROW][C]Median Absolute Deviation from Median[/C][C]0.135[/C][/ROW]
[ROW][C]Mean Squared Deviation from Mean[/C][C]0.0234331597222222[/C][/ROW]
[ROW][C]Mean Squared Deviation from Median[/C][C]0.0236972222222222[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at Xnp)[/C][C]0.27[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]0.27[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function)[/C][C]0.27[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]0.27[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]0.27[/C][/ROW]
[ROW][C]Interquartile Difference (Closest Observation)[/C][C]0.27[/C][/ROW]
[ROW][C]Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]0.27[/C][/ROW]
[ROW][C]Interquartile Difference (MS Excel (old versions))[/C][C]0.27[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at Xnp)[/C][C]0.135[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]0.135[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function)[/C][C]0.135[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]0.135[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]0.135[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Closest Observation)[/C][C]0.135[/C][/ROW]
[ROW][C]Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]0.135[/C][/ROW]
[ROW][C]Semi Interquartile Difference (MS Excel (old versions))[/C][C]0.135[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at Xnp)[/C][C]0.139896373056995[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at X(n+1)p)[/C][C]0.139896373056995[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function)[/C][C]0.139896373056995[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)[/C][C]0.139896373056995[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)[/C][C]0.139896373056995[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Closest Observation)[/C][C]0.139896373056995[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)[/C][C]0.139896373056995[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (MS Excel (old versions))[/C][C]0.139896373056995[/C][/ROW]
[ROW][C]Number of all Pairs of Observations[/C][C]2556[/C][/ROW]
[ROW][C]Squared Differences between all Pairs of Observations[/C][C]0.0475264084507044[/C][/ROW]
[ROW][C]Mean Absolute Differences between all Pairs of Observations[/C][C]0.175723787167449[/C][/ROW]
[ROW][C]Gini Mean Difference[/C][C]0.175723787167447[/C][/ROW]
[ROW][C]Leik Measure of Dispersion[/C][C]0.519747111296407[/C][/ROW]
[ROW][C]Index of Diversity[/C][C]0.985766097449209[/C][/ROW]
[ROW][C]Index of Qualitative Variation[/C][C]0.999650126990747[/C][/ROW]
[ROW][C]Coefficient of Dispersion[/C][C]0.144488074461896[/C][/ROW]
[ROW][C]Observations[/C][C]72[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=204794&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=204794&T=1

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Variability - Ungrouped Data Absolute range 0.58 Relative range (unbiased) 3.76249120437173 Relative range (biased) 3.78889497535682 Variance (unbiased) 0.0237632042253521 Variance (biased) 0.0234331597222222 Standard Deviation (unbiased) 0.154153184285477 Standard Deviation (biased) 0.153078932979761 Coefficient of Variation (unbiased) 0.158716277256604 Coefficient of Variation (biased) 0.157610227006189 Mean Squared Error (MSE versus 0) 0.966759722222222 Mean Squared Error (MSE versus Mean) 0.0234331597222222 Mean Absolute Deviation from Mean (MAD Mean) 0.137986111111111 Mean Absolute Deviation from Median (MAD Median) 0.137638888888889 Median Absolute Deviation from Mean 0.12875 Median Absolute Deviation from Median 0.135 Mean Squared Deviation from Mean 0.0234331597222222 Mean Squared Deviation from Median 0.0236972222222222 Interquartile Difference (Weighted Average at Xnp) 0.27 Interquartile Difference (Weighted Average at X(n+1)p) 0.27 Interquartile Difference (Empirical Distribution Function) 0.27 Interquartile Difference (Empirical Distribution Function - Averaging) 0.27 Interquartile Difference (Empirical Distribution Function - Interpolation) 0.27 Interquartile Difference (Closest Observation) 0.27 Interquartile Difference (True Basic - Statistics Graphics Toolkit) 0.27 Interquartile Difference (MS Excel (old versions)) 0.27 Semi Interquartile Difference (Weighted Average at Xnp) 0.135 Semi Interquartile Difference (Weighted Average at X(n+1)p) 0.135 Semi Interquartile Difference (Empirical Distribution Function) 0.135 Semi Interquartile Difference (Empirical Distribution Function - Averaging) 0.135 Semi Interquartile Difference (Empirical Distribution Function - Interpolation) 0.135 Semi Interquartile Difference (Closest Observation) 0.135 Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) 0.135 Semi Interquartile Difference (MS Excel (old versions)) 0.135 Coefficient of Quartile Variation (Weighted Average at Xnp) 0.139896373056995 Coefficient of Quartile Variation (Weighted Average at X(n+1)p) 0.139896373056995 Coefficient of Quartile Variation (Empirical Distribution Function) 0.139896373056995 Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) 0.139896373056995 Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) 0.139896373056995 Coefficient of Quartile Variation (Closest Observation) 0.139896373056995 Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) 0.139896373056995 Coefficient of Quartile Variation (MS Excel (old versions)) 0.139896373056995 Number of all Pairs of Observations 2556 Squared Differences between all Pairs of Observations 0.0475264084507044 Mean Absolute Differences between all Pairs of Observations 0.175723787167449 Gini Mean Difference 0.175723787167447 Leik Measure of Dispersion 0.519747111296407 Index of Diversity 0.985766097449209 Index of Qualitative Variation 0.999650126990747 Coefficient of Dispersion 0.144488074461896 Observations 72

Parameters (Session):
par1 = 50 ; par2 = 12 ;
Parameters (R input):
R code (references can be found in the software module):
num <- 50res <- array(NA,dim=c(num,3))q1 <- function(data,n,p,i,f) {np <- n*p;i <<- floor(np)f <<- np - iqvalue <- (1-f)*data[i] + f*data[i+1]}q2 <- function(data,n,p,i,f) {np <- (n+1)*pi <<- floor(np)f <<- np - iqvalue <- (1-f)*data[i] + f*data[i+1]}q3 <- function(data,n,p,i,f) {np <- n*pi <<- floor(np)f <<- np - iif (f==0) {qvalue <- data[i]} else {qvalue <- data[i+1]}}q4 <- function(data,n,p,i,f) {np <- n*pi <<- floor(np)f <<- np - iif (f==0) {qvalue <- (data[i]+data[i+1])/2} else {qvalue <- data[i+1]}}q5 <- function(data,n,p,i,f) {np <- (n-1)*pi <<- floor(np)f <<- np - iif (f==0) {qvalue <- data[i+1]} else {qvalue <- data[i+1] + f*(data[i+2]-data[i+1])}}q6 <- function(data,n,p,i,f) {np <- n*p+0.5i <<- floor(np)f <<- np - iqvalue <- data[i]}q7 <- function(data,n,p,i,f) {np <- (n+1)*pi <<- floor(np)f <<- np - iif (f==0) {qvalue <- data[i]} else {qvalue <- f*data[i] + (1-f)*data[i+1]}}q8 <- function(data,n,p,i,f) {np <- (n+1)*pi <<- floor(np)f <<- np - iif (f==0) {qvalue <- data[i]} else {if (f == 0.5) {qvalue <- (data[i]+data[i+1])/2} else {if (f < 0.5) {qvalue <- data[i]} else {qvalue <- data[i+1]}}}}iqd <- function(x,def) {x <-sort(x[!is.na(x)])n<-length(x)if (def==1) {qvalue1 <- q1(x,n,0.25,i,f)qvalue3 <- q1(x,n,0.75,i,f)}if (def==2) {qvalue1 <- q2(x,n,0.25,i,f)qvalue3 <- q2(x,n,0.75,i,f)}if (def==3) {qvalue1 <- q3(x,n,0.25,i,f)qvalue3 <- q3(x,n,0.75,i,f)}if (def==4) {qvalue1 <- q4(x,n,0.25,i,f)qvalue3 <- q4(x,n,0.75,i,f)}if (def==5) {qvalue1 <- q5(x,n,0.25,i,f)qvalue3 <- q5(x,n,0.75,i,f)}if (def==6) {qvalue1 <- q6(x,n,0.25,i,f)qvalue3 <- q6(x,n,0.75,i,f)}if (def==7) {qvalue1 <- q7(x,n,0.25,i,f)qvalue3 <- q7(x,n,0.75,i,f)}if (def==8) {qvalue1 <- q8(x,n,0.25,i,f)qvalue3 <- q8(x,n,0.75,i,f)}iqdiff <- qvalue3 - qvalue1return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))}range <- max(x) - min(x)lx <- length(x)biasf <- (lx-1)/lxvarx <- var(x)bvarx <- varx*biasfsdx <- sqrt(varx)mx <- mean(x)bsdx <- sqrt(bvarx)x2 <- x*xmse0 <- sum(x2)/lxxmm <- x-mxxmm2 <- xmm*xmmmsem <- sum(xmm2)/lxaxmm <- abs(x - mx)medx <- median(x)axmmed <- abs(x - medx)xmmed <- x - medxxmmed2 <- xmmed*xmmedmsemed <- sum(xmmed2)/lxqarr <- array(NA,dim=c(8,3))for (j in 1:8) {qarr[j,] <- iqd(x,j)}sdpo <- 0adpo <- 0for (i in 1:(lx-1)) {for (j in (i+1):lx) {ldi <- x[i]-x[j]aldi <- abs(ldi)sdpo = sdpo + ldi * ldiadpo = adpo + aldi}}denom <- (lx*(lx-1)/2)sdpo = sdpo / denomadpo = adpo / denomgmd <- 0for (i in 1:lx) {for (j in 1:lx) {ldi <- abs(x[i]-x[j])gmd = gmd + ldi}}gmd <- gmd / (lx*(lx-1))sumx <- sum(x)pk <- x / sumxck <- cumsum(pk)dk <- array(NA,dim=lx)for (i in 1:lx) {if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]}bigd <- sum(dk) * 2 / (lx-1)iod <- 1 - sum(pk*pk)res[1,] <- c('Absolute range','absolute.htm', range)res[2,] <- c('Relative range (unbiased)','relative.htm', range/sd(x))res[3,] <- c('Relative range (biased)','relative.htm', range/sqrt(varx*biasf))res[4,] <- c('Variance (unbiased)','unbiased.htm', varx)res[5,] <- c('Variance (biased)','biased.htm', bvarx)res[6,] <- c('Standard Deviation (unbiased)','unbiased1.htm', sdx)res[7,] <- c('Standard Deviation (biased)','biased1.htm', bsdx)res[8,] <- c('Coefficient of Variation (unbiased)','variation.htm', sdx/mx)res[9,] <- c('Coefficient of Variation (biased)','variation.htm', bsdx/mx)res[10,] <- c('Mean Squared Error (MSE versus 0)','mse.htm', mse0)res[11,] <- c('Mean Squared Error (MSE versus Mean)','mse.htm', msem)res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'mean2.htm', sum(axmm)/lx)res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'median1.htm', sum(axmmed)/lx)res[14,] <- c('Median Absolute Deviation from Mean', 'mean3.htm', median(axmm))res[15,] <- c('Median Absolute Deviation from Median', 'median2.htm', median(axmmed))res[16,] <- c('Mean Squared Deviation from Mean', 'mean1.htm', msem)res[17,] <- c('Mean Squared Deviation from Median', 'median.htm', msemed)load(file='createtable')mylink1 <- hyperlink('difference.htm','Interquartile Difference','')mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')res[18,] <- c('', mylink2, qarr[1,1])mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')res[19,] <- c('', mylink2, qarr[2,1])mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')res[20,] <- c('', mylink2, qarr[3,1])mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')res[21,] <- c('', mylink2, qarr[4,1])mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')res[22,] <- c('', mylink2, qarr[5,1])mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')res[23,] <- c('', mylink2, qarr[6,1])mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')res[24,] <- c('', mylink2, qarr[7,1])mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')res[25,] <- c('', mylink2, qarr[8,1])mylink1 <- hyperlink('deviation.htm','Semi Interquartile Difference','')mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')res[26,] <- c('', mylink2, qarr[1,2])mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')res[27,] <- c('', mylink2, qarr[2,2])mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')res[28,] <- c('', mylink2, qarr[3,2])mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')res[29,] <- c('', mylink2, qarr[4,2])mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')res[30,] <- c('', mylink2, qarr[5,2])mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')res[31,] <- c('', mylink2, qarr[6,2])mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')res[32,] <- c('', mylink2, qarr[7,2])mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')res[33,] <- c('', mylink2, qarr[8,2])mylink1 <- hyperlink('variation1.htm','Coefficient of Quartile Variation','')mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')res[34,] <- c('', mylink2, qarr[1,3])mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')res[35,] <- c('', mylink2, qarr[2,3])mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')res[36,] <- c('', mylink2, qarr[3,3])mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')res[37,] <- c('', mylink2, qarr[4,3])mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')res[38,] <- c('', mylink2, qarr[5,3])mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')res[39,] <- c('', mylink2, qarr[6,3])mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')res[40,] <- c('', mylink2, qarr[7,3])mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')res[41,] <- c('', mylink2, qarr[8,3])res[42,] <- c('Number of all Pairs of Observations', 'pair_numbers.htm', lx*(lx-1)/2)res[43,] <- c('Squared Differences between all Pairs of Observations', 'squared_differences.htm', sdpo)res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'mean_abs_differences.htm', adpo)res[45,] <- c('Gini Mean Difference', 'gini_mean_difference.htm', gmd)res[46,] <- c('Leik Measure of Dispersion', 'leiks_d.htm', bigd)res[47,] <- c('Index of Diversity', 'diversity.htm', iod)res[48,] <- c('Index of Qualitative Variation', 'qualitative_variation.htm', iod*lx/(lx-1))res[49,] <- c('Coefficient of Dispersion', 'dispersion.htm', sum(axmm)/lx/medx)res[50,] <- c('Observations', '', lx)resa<-table.start()a<-table.row.start(a)a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)a<-table.row.end(a)for (i in 1:num) {a<-table.row.start(a)if (res[i,1] != '') {a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)} else {a<-table.element(a,res[i,2],header=TRUE)}a<-table.element(a,res[i,3])a<-table.row.end(a)}a<-table.end(a)table.save(a,file='mytable.tab')