Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_variability.wasp
Title produced by softwareVariability
Date of computationThu, 27 Dec 2012 09:36:12 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/27/t1356619210sh74t4onszcs6e9.htm/, Retrieved Tue, 31 Jan 2023 06:06:30 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=204772, Retrieved Tue, 31 Jan 2023 06:06:30 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact96
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Variability] [Variability prijs...] [2012-12-27 14:36:12] [4633288e60d40b4ed5f0b9573dd4d146] [Current]
Feedback Forum

Post a new message
Dataseries X:
132
133,7
127
128,7
127,3
136,7
133,8
137,2
147,4
137,6
123,6
117,4
113,7
106,8
103,3
96,3
96,2
94,7
94,6
95,7
106,7
100,2
94,2
97,6
94,3
98
93,6
86,3
90,7
81,8
87,6
73,8
63,3
59,1
52,9
54,6
52,4
67,5
90,4
126
144,3
167,8
166,2
156
137
129,3
118
114,7
112,8
115,7
103,9
96,9
88,8
93
86,3
82,3
82,4
76,6
72,7
67,5
77,3
73,7
73
78,2
90,7
91,5
86,3
86,8
86,1
77,1
75,7
78,7
71,5
69,6
73,6
78,1
78,3
71,5
68,7
61,2
64,7
64,6
56,3
54,5
49,5
54
59,2
52,4
52,8
47,8
45,2
47,1
42,6
42,1
39,4
39,6




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=204772&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=204772&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=204772&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ yule.wessa.net







Variability - Ungrouped Data
Absolute range128.4
Relative range (unbiased)4.21617927207899
Relative range (biased)4.23831159880493
Variance (unbiased)927.452998903509
Variance (biased)917.792030164931
Standard Deviation (unbiased)30.4541130047077
Standard Deviation (biased)30.2950826069996
Coefficient of Variation (unbiased)0.338916435604134
Coefficient of Variation (biased)0.337146624888071
Mean Squared Error (MSE versus 0)8992.12489583333
Mean Squared Error (MSE versus Mean)917.792030164931
Mean Absolute Deviation from Mean (MAD Mean)24.3671223958333
Mean Absolute Deviation from Median (MAD Median)24.234375
Median Absolute Deviation from Mean21.7572916666667
Median Absolute Deviation from Median19.6
Mean Squared Deviation from Mean917.792030164931
Mean Squared Deviation from Median928.730208333333
Interquartile Difference (Weighted Average at Xnp)39.3
Interquartile Difference (Weighted Average at X(n+1)p)43.5
Interquartile Difference (Empirical Distribution Function)39.3
Interquartile Difference (Empirical Distribution Function - Averaging)41.7
Interquartile Difference (Empirical Distribution Function - Interpolation)39.9
Interquartile Difference (Closest Observation)39.3
Interquartile Difference (True Basic - Statistics Graphics Toolkit)39.9
Interquartile Difference (MS Excel (old versions))45.3
Semi Interquartile Difference (Weighted Average at Xnp)19.65
Semi Interquartile Difference (Weighted Average at X(n+1)p)21.75
Semi Interquartile Difference (Empirical Distribution Function)19.65
Semi Interquartile Difference (Empirical Distribution Function - Averaging)20.85
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)19.95
Semi Interquartile Difference (Closest Observation)19.65
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)19.95
Semi Interquartile Difference (MS Excel (old versions))22.65
Coefficient of Quartile Variation (Weighted Average at Xnp)0.225473321858864
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.242881072026801
Coefficient of Quartile Variation (Empirical Distribution Function)0.225473321858864
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.234401349072513
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.225806451612903
Coefficient of Quartile Variation (Closest Observation)0.225473321858864
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.225806451612903
Coefficient of Quartile Variation (MS Excel (old versions))0.251247920133111
Number of all Pairs of Observations4560
Squared Differences between all Pairs of Observations1854.90599780701
Mean Absolute Differences between all Pairs of Observations34.5760745614037
Gini Mean Difference34.5760745614037
Leik Measure of Dispersion0.47239451933103
Index of Diversity0.988399293263819
Index of Qualitative Variation0.998803496350806
Coefficient of Dispersion0.281538098160986
Observations96

\begin{tabular}{lllllllll}
\hline
Variability - Ungrouped Data \tabularnewline
Absolute range & 128.4 \tabularnewline
Relative range (unbiased) & 4.21617927207899 \tabularnewline
Relative range (biased) & 4.23831159880493 \tabularnewline
Variance (unbiased) & 927.452998903509 \tabularnewline
Variance (biased) & 917.792030164931 \tabularnewline
Standard Deviation (unbiased) & 30.4541130047077 \tabularnewline
Standard Deviation (biased) & 30.2950826069996 \tabularnewline
Coefficient of Variation (unbiased) & 0.338916435604134 \tabularnewline
Coefficient of Variation (biased) & 0.337146624888071 \tabularnewline
Mean Squared Error (MSE versus 0) & 8992.12489583333 \tabularnewline
Mean Squared Error (MSE versus Mean) & 917.792030164931 \tabularnewline
Mean Absolute Deviation from Mean (MAD Mean) & 24.3671223958333 \tabularnewline
Mean Absolute Deviation from Median (MAD Median) & 24.234375 \tabularnewline
Median Absolute Deviation from Mean & 21.7572916666667 \tabularnewline
Median Absolute Deviation from Median & 19.6 \tabularnewline
Mean Squared Deviation from Mean & 917.792030164931 \tabularnewline
Mean Squared Deviation from Median & 928.730208333333 \tabularnewline
Interquartile Difference (Weighted Average at Xnp) & 39.3 \tabularnewline
Interquartile Difference (Weighted Average at X(n+1)p) & 43.5 \tabularnewline
Interquartile Difference (Empirical Distribution Function) & 39.3 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Averaging) & 41.7 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Interpolation) & 39.9 \tabularnewline
Interquartile Difference (Closest Observation) & 39.3 \tabularnewline
Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 39.9 \tabularnewline
Interquartile Difference (MS Excel (old versions)) & 45.3 \tabularnewline
Semi Interquartile Difference (Weighted Average at Xnp) & 19.65 \tabularnewline
Semi Interquartile Difference (Weighted Average at X(n+1)p) & 21.75 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function) & 19.65 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Averaging) & 20.85 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Interpolation) & 19.95 \tabularnewline
Semi Interquartile Difference (Closest Observation) & 19.65 \tabularnewline
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 19.95 \tabularnewline
Semi Interquartile Difference (MS Excel (old versions)) & 22.65 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at Xnp) & 0.225473321858864 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at X(n+1)p) & 0.242881072026801 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function) & 0.225473321858864 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) & 0.234401349072513 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) & 0.225806451612903 \tabularnewline
Coefficient of Quartile Variation (Closest Observation) & 0.225473321858864 \tabularnewline
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) & 0.225806451612903 \tabularnewline
Coefficient of Quartile Variation (MS Excel (old versions)) & 0.251247920133111 \tabularnewline
Number of all Pairs of Observations & 4560 \tabularnewline
Squared Differences between all Pairs of Observations & 1854.90599780701 \tabularnewline
Mean Absolute Differences between all Pairs of Observations & 34.5760745614037 \tabularnewline
Gini Mean Difference & 34.5760745614037 \tabularnewline
Leik Measure of Dispersion & 0.47239451933103 \tabularnewline
Index of Diversity & 0.988399293263819 \tabularnewline
Index of Qualitative Variation & 0.998803496350806 \tabularnewline
Coefficient of Dispersion & 0.281538098160986 \tabularnewline
Observations & 96 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=204772&T=1

[TABLE]
[ROW][C]Variability - Ungrouped Data[/C][/ROW]
[ROW][C]Absolute range[/C][C]128.4[/C][/ROW]
[ROW][C]Relative range (unbiased)[/C][C]4.21617927207899[/C][/ROW]
[ROW][C]Relative range (biased)[/C][C]4.23831159880493[/C][/ROW]
[ROW][C]Variance (unbiased)[/C][C]927.452998903509[/C][/ROW]
[ROW][C]Variance (biased)[/C][C]917.792030164931[/C][/ROW]
[ROW][C]Standard Deviation (unbiased)[/C][C]30.4541130047077[/C][/ROW]
[ROW][C]Standard Deviation (biased)[/C][C]30.2950826069996[/C][/ROW]
[ROW][C]Coefficient of Variation (unbiased)[/C][C]0.338916435604134[/C][/ROW]
[ROW][C]Coefficient of Variation (biased)[/C][C]0.337146624888071[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus 0)[/C][C]8992.12489583333[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus Mean)[/C][C]917.792030164931[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Mean (MAD Mean)[/C][C]24.3671223958333[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Median (MAD Median)[/C][C]24.234375[/C][/ROW]
[ROW][C]Median Absolute Deviation from Mean[/C][C]21.7572916666667[/C][/ROW]
[ROW][C]Median Absolute Deviation from Median[/C][C]19.6[/C][/ROW]
[ROW][C]Mean Squared Deviation from Mean[/C][C]917.792030164931[/C][/ROW]
[ROW][C]Mean Squared Deviation from Median[/C][C]928.730208333333[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at Xnp)[/C][C]39.3[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]43.5[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function)[/C][C]39.3[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]41.7[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]39.9[/C][/ROW]
[ROW][C]Interquartile Difference (Closest Observation)[/C][C]39.3[/C][/ROW]
[ROW][C]Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]39.9[/C][/ROW]
[ROW][C]Interquartile Difference (MS Excel (old versions))[/C][C]45.3[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at Xnp)[/C][C]19.65[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]21.75[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function)[/C][C]19.65[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]20.85[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]19.95[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Closest Observation)[/C][C]19.65[/C][/ROW]
[ROW][C]Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]19.95[/C][/ROW]
[ROW][C]Semi Interquartile Difference (MS Excel (old versions))[/C][C]22.65[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at Xnp)[/C][C]0.225473321858864[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at X(n+1)p)[/C][C]0.242881072026801[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function)[/C][C]0.225473321858864[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)[/C][C]0.234401349072513[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)[/C][C]0.225806451612903[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Closest Observation)[/C][C]0.225473321858864[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)[/C][C]0.225806451612903[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (MS Excel (old versions))[/C][C]0.251247920133111[/C][/ROW]
[ROW][C]Number of all Pairs of Observations[/C][C]4560[/C][/ROW]
[ROW][C]Squared Differences between all Pairs of Observations[/C][C]1854.90599780701[/C][/ROW]
[ROW][C]Mean Absolute Differences between all Pairs of Observations[/C][C]34.5760745614037[/C][/ROW]
[ROW][C]Gini Mean Difference[/C][C]34.5760745614037[/C][/ROW]
[ROW][C]Leik Measure of Dispersion[/C][C]0.47239451933103[/C][/ROW]
[ROW][C]Index of Diversity[/C][C]0.988399293263819[/C][/ROW]
[ROW][C]Index of Qualitative Variation[/C][C]0.998803496350806[/C][/ROW]
[ROW][C]Coefficient of Dispersion[/C][C]0.281538098160986[/C][/ROW]
[ROW][C]Observations[/C][C]96[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=204772&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=204772&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variability - Ungrouped Data
Absolute range128.4
Relative range (unbiased)4.21617927207899
Relative range (biased)4.23831159880493
Variance (unbiased)927.452998903509
Variance (biased)917.792030164931
Standard Deviation (unbiased)30.4541130047077
Standard Deviation (biased)30.2950826069996
Coefficient of Variation (unbiased)0.338916435604134
Coefficient of Variation (biased)0.337146624888071
Mean Squared Error (MSE versus 0)8992.12489583333
Mean Squared Error (MSE versus Mean)917.792030164931
Mean Absolute Deviation from Mean (MAD Mean)24.3671223958333
Mean Absolute Deviation from Median (MAD Median)24.234375
Median Absolute Deviation from Mean21.7572916666667
Median Absolute Deviation from Median19.6
Mean Squared Deviation from Mean917.792030164931
Mean Squared Deviation from Median928.730208333333
Interquartile Difference (Weighted Average at Xnp)39.3
Interquartile Difference (Weighted Average at X(n+1)p)43.5
Interquartile Difference (Empirical Distribution Function)39.3
Interquartile Difference (Empirical Distribution Function - Averaging)41.7
Interquartile Difference (Empirical Distribution Function - Interpolation)39.9
Interquartile Difference (Closest Observation)39.3
Interquartile Difference (True Basic - Statistics Graphics Toolkit)39.9
Interquartile Difference (MS Excel (old versions))45.3
Semi Interquartile Difference (Weighted Average at Xnp)19.65
Semi Interquartile Difference (Weighted Average at X(n+1)p)21.75
Semi Interquartile Difference (Empirical Distribution Function)19.65
Semi Interquartile Difference (Empirical Distribution Function - Averaging)20.85
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)19.95
Semi Interquartile Difference (Closest Observation)19.65
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)19.95
Semi Interquartile Difference (MS Excel (old versions))22.65
Coefficient of Quartile Variation (Weighted Average at Xnp)0.225473321858864
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.242881072026801
Coefficient of Quartile Variation (Empirical Distribution Function)0.225473321858864
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.234401349072513
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.225806451612903
Coefficient of Quartile Variation (Closest Observation)0.225473321858864
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.225806451612903
Coefficient of Quartile Variation (MS Excel (old versions))0.251247920133111
Number of all Pairs of Observations4560
Squared Differences between all Pairs of Observations1854.90599780701
Mean Absolute Differences between all Pairs of Observations34.5760745614037
Gini Mean Difference34.5760745614037
Leik Measure of Dispersion0.47239451933103
Index of Diversity0.988399293263819
Index of Qualitative Variation0.998803496350806
Coefficient of Dispersion0.281538098160986
Observations96



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
num <- 50
res <- array(NA,dim=c(num,3))
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
iqd <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
iqdiff <- qvalue3 - qvalue1
return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))
}
range <- max(x) - min(x)
lx <- length(x)
biasf <- (lx-1)/lx
varx <- var(x)
bvarx <- varx*biasf
sdx <- sqrt(varx)
mx <- mean(x)
bsdx <- sqrt(bvarx)
x2 <- x*x
mse0 <- sum(x2)/lx
xmm <- x-mx
xmm2 <- xmm*xmm
msem <- sum(xmm2)/lx
axmm <- abs(x - mx)
medx <- median(x)
axmmed <- abs(x - medx)
xmmed <- x - medx
xmmed2 <- xmmed*xmmed
msemed <- sum(xmmed2)/lx
qarr <- array(NA,dim=c(8,3))
for (j in 1:8) {
qarr[j,] <- iqd(x,j)
}
sdpo <- 0
adpo <- 0
for (i in 1:(lx-1)) {
for (j in (i+1):lx) {
ldi <- x[i]-x[j]
aldi <- abs(ldi)
sdpo = sdpo + ldi * ldi
adpo = adpo + aldi
}
}
denom <- (lx*(lx-1)/2)
sdpo = sdpo / denom
adpo = adpo / denom
gmd <- 0
for (i in 1:lx) {
for (j in 1:lx) {
ldi <- abs(x[i]-x[j])
gmd = gmd + ldi
}
}
gmd <- gmd / (lx*(lx-1))
sumx <- sum(x)
pk <- x / sumx
ck <- cumsum(pk)
dk <- array(NA,dim=lx)
for (i in 1:lx) {
if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]
}
bigd <- sum(dk) * 2 / (lx-1)
iod <- 1 - sum(pk*pk)
res[1,] <- c('Absolute range','absolute.htm', range)
res[2,] <- c('Relative range (unbiased)','relative.htm', range/sd(x))
res[3,] <- c('Relative range (biased)','relative.htm', range/sqrt(varx*biasf))
res[4,] <- c('Variance (unbiased)','unbiased.htm', varx)
res[5,] <- c('Variance (biased)','biased.htm', bvarx)
res[6,] <- c('Standard Deviation (unbiased)','unbiased1.htm', sdx)
res[7,] <- c('Standard Deviation (biased)','biased1.htm', bsdx)
res[8,] <- c('Coefficient of Variation (unbiased)','variation.htm', sdx/mx)
res[9,] <- c('Coefficient of Variation (biased)','variation.htm', bsdx/mx)
res[10,] <- c('Mean Squared Error (MSE versus 0)','mse.htm', mse0)
res[11,] <- c('Mean Squared Error (MSE versus Mean)','mse.htm', msem)
res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'mean2.htm', sum(axmm)/lx)
res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'median1.htm', sum(axmmed)/lx)
res[14,] <- c('Median Absolute Deviation from Mean', 'mean3.htm', median(axmm))
res[15,] <- c('Median Absolute Deviation from Median', 'median2.htm', median(axmmed))
res[16,] <- c('Mean Squared Deviation from Mean', 'mean1.htm', msem)
res[17,] <- c('Mean Squared Deviation from Median', 'median.htm', msemed)
load(file='createtable')
mylink1 <- hyperlink('difference.htm','Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[18,] <- c('', mylink2, qarr[1,1])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[19,] <- c('', mylink2, qarr[2,1])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[20,] <- c('', mylink2, qarr[3,1])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[21,] <- c('', mylink2, qarr[4,1])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[22,] <- c('', mylink2, qarr[5,1])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[23,] <- c('', mylink2, qarr[6,1])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[24,] <- c('', mylink2, qarr[7,1])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[25,] <- c('', mylink2, qarr[8,1])
mylink1 <- hyperlink('deviation.htm','Semi Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[26,] <- c('', mylink2, qarr[1,2])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[27,] <- c('', mylink2, qarr[2,2])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[28,] <- c('', mylink2, qarr[3,2])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[29,] <- c('', mylink2, qarr[4,2])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[30,] <- c('', mylink2, qarr[5,2])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[31,] <- c('', mylink2, qarr[6,2])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[32,] <- c('', mylink2, qarr[7,2])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[33,] <- c('', mylink2, qarr[8,2])
mylink1 <- hyperlink('variation1.htm','Coefficient of Quartile Variation','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[34,] <- c('', mylink2, qarr[1,3])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[35,] <- c('', mylink2, qarr[2,3])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[36,] <- c('', mylink2, qarr[3,3])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[37,] <- c('', mylink2, qarr[4,3])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[38,] <- c('', mylink2, qarr[5,3])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[39,] <- c('', mylink2, qarr[6,3])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[40,] <- c('', mylink2, qarr[7,3])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[41,] <- c('', mylink2, qarr[8,3])
res[42,] <- c('Number of all Pairs of Observations', 'pair_numbers.htm', lx*(lx-1)/2)
res[43,] <- c('Squared Differences between all Pairs of Observations', 'squared_differences.htm', sdpo)
res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'mean_abs_differences.htm', adpo)
res[45,] <- c('Gini Mean Difference', 'gini_mean_difference.htm', gmd)
res[46,] <- c('Leik Measure of Dispersion', 'leiks_d.htm', bigd)
res[47,] <- c('Index of Diversity', 'diversity.htm', iod)
res[48,] <- c('Index of Qualitative Variation', 'qualitative_variation.htm', iod*lx/(lx-1))
res[49,] <- c('Coefficient of Dispersion', 'dispersion.htm', sum(axmm)/lx/medx)
res[50,] <- c('Observations', '', lx)
res
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)
a<-table.row.end(a)
for (i in 1:num) {
a<-table.row.start(a)
if (res[i,1] != '') {
a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)
} else {
a<-table.element(a,res[i,2],header=TRUE)
}
a<-table.element(a,res[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')